JPH05105513A - Production of carbonaceous inorganic oxide composite - Google Patents

Production of carbonaceous inorganic oxide composite

Info

Publication number
JPH05105513A
JPH05105513A JP3294896A JP29489691A JPH05105513A JP H05105513 A JPH05105513 A JP H05105513A JP 3294896 A JP3294896 A JP 3294896A JP 29489691 A JP29489691 A JP 29489691A JP H05105513 A JPH05105513 A JP H05105513A
Authority
JP
Japan
Prior art keywords
inorganic oxide
carbonaceous
oxide composite
phenol resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3294896A
Other languages
Japanese (ja)
Inventor
Takanori Miyake
孝典 三宅
Makoto Hanatani
誠 花谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP3294896A priority Critical patent/JPH05105513A/en
Publication of JPH05105513A publication Critical patent/JPH05105513A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To safely and readily obtain a carbonaceous inorganic oxide composite excellent in mechanical strength and uniformity with good reproducibility by mixing an inorganic oxide having a porous structure with a phenolic resin and then heat-treating the resultant mixture. CONSTITUTION:A carbonaceous inorganic oxide composite is obtained by mixing an inorganic oxide having a porous structure with a phenolic resin and then heat-treating the resultant mixture. For example, silica, alumina, magnesia, titania and zirconia are cited as the inorganic oxide and the specific surface area is preferably 5-500m<2>/g or the pore volume is preferably about 0.1-1.3ml/g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒、触媒担体、吸着
剤、電極材料、あるいは導電性フィラ−などとして有機
化学工業、無機化学工業あるいは電気化学工業などにお
いて有用な炭素質無機酸化物複合体の製法に関する。
FIELD OF THE INVENTION The present invention relates to a carbonaceous inorganic oxide composite useful as a catalyst, a catalyst carrier, an adsorbent, an electrode material, a conductive filler, etc. in the organic chemical industry, the inorganic chemical industry or the electrochemical industry. Regarding how to make a body.

【0002】[0002]

【従来の技術】活性炭に代表される炭素質の物質は、し
ばしば、天然原料から製造されるため、その中に不純物
を含んだり、製造過程で残存する水酸基等に由来する酸
素を少量含んでいる場合もあるが実質的にはその成分は
炭素から成っている(例えば、活性炭工業、51頁、重
化学工業通信社)。炭素質の物質は、その特性を生か
し、触媒、触媒担体、吸着剤、電極材料、導電性フィラ
−などとして幅広く使用されている。
2. Description of the Related Art Carbonaceous substances, typified by activated carbon, are often produced from natural raw materials, so that they contain impurities and a small amount of oxygen derived from hydroxyl groups remaining in the production process. In some cases, the component is substantially composed of carbon (for example, activated carbon industry, p. 51, Heavy Chemical Industry News Agency). Carbonaceous substances are widely used as catalysts, catalyst carriers, adsorbents, electrode materials, conductive fillers, etc. by taking advantage of their characteristics.

【0003】しかし、炭素質の物質、例えば活性炭は無
機の酸化物であるシリカ、アルミナなどに比べ、機械的
強度が低いという欠点を有している。そのため、炭素質
の物質と無機の酸化物を複合化して、その機械的強度を
改良するばかりでなく、新しい物理化学的な性質を持つ
炭素質無機酸化物複合体を製造しようとするいくつかの
試みが知られている。
However, carbonaceous substances, such as activated carbon, have the drawback of lower mechanical strength than silica, alumina, and the like which are inorganic oxides. Therefore, in order to combine a carbonaceous substance with an inorganic oxide to improve its mechanical strength, it is necessary to produce a carbonaceous inorganic oxide complex having new physicochemical properties. Attempts are known.

【0004】例えば、J.Catal.,114,29
1−302(1988)には、アルミナ担体を600 〜70
0 ℃の高温に保ち、ここにエチレンガスあるいはシクロ
ヘキセン蒸気を供給し炭化させ、炭素質をアルミナ上に
担持した炭素質無機酸化物複合体の製法が、また、米国
特許第4018943号には、アルミナ、シリカ−アル
ミナなどを605 ℃に保ち、ここにシクロヘキサン、ペン
タン、シクロヘキセン、あるいは、ヘキサンなどの蒸気
を供給し、炭素質を表面に担持、場合によっては、コ−
ティングした炭素質無機酸化物複合体の製法が開示され
ている。
For example, J. Catal. , 114, 29
1-302 (1988), alumina carrier 600-70.
A method for producing a carbonaceous inorganic oxide composite in which ethylene gas or cyclohexene vapor is supplied and carbonized to carry a carbonaceous material on alumina, which is maintained at a high temperature of 0 ° C., and US Pat. , Silica-alumina, etc. are kept at 605 ° C., and vapors of cyclohexane, pentane, cyclohexene, hexane, etc. are supplied thereto to carry a carbonaceous material on the surface.
A method of making a coated carbonaceous inorganic oxide composite is disclosed.

【0005】しかしながら、前記の引例には、無機の酸
化物に炭素質を担持あるいはコ−ティングするにおい
て、炭化させる原料化合物の種類、原料ガスや蒸気の導
入条件、さらに、炭化時の温度や時間などの条件が、得
られる炭素質無機酸化物複合体の性質に大きく影響を及
ぼし、性状の異なった複合体が得られることが記載され
ている。
However, in the above-mentioned reference, in carrying or coating a carbonaceous material on an inorganic oxide, the kind of the raw material compound to be carbonized, the introduction conditions of the raw material gas or steam, and the temperature and time during the carbonization. It is described that such conditions greatly affect the properties of the obtained carbonaceous inorganic oxide composite and that composites having different properties can be obtained.

【0006】[0006]

【発明が解決しようとする課題】前記引例の技術によれ
ば、確かに従来の炭素質の物質の弱点である機械的強度
を改良した炭素質無機酸化物複合体が得られている。し
かし、その製造法は、有機化合物のガスや蒸気を、60
0〜700℃という高温に保った無機の酸化物上に導入
し、炭化させる必要があり、工業的な製造方法を考慮す
ると、複雑な装置が必要となり、また、安全上の工夫も
必要となる。
According to the technique of the above cited reference, a carbonaceous inorganic oxide composite having improved mechanical strength, which is a weak point of conventional carbonaceous substances, is certainly obtained. However, the manufacturing method uses gas and vapor of organic compounds
It is necessary to introduce it onto an inorganic oxide kept at a high temperature of 0 to 700 ° C. and carbonize it. Considering an industrial manufacturing method, a complicated device is required and a safety measure is required. ..

【0007】さらに、前述の如く、製造時の諸条件が、
得られる複合体の物理的、化学的性質に大きな影響を及
ぼすことから、工業的製造方法において最も重要な、再
現性、均一性および簡易性に欠けるという重大な欠陥を
持っている。
Further, as described above, the various conditions at the time of manufacture are
Since it has a great influence on the physical and chemical properties of the obtained composite, it has a serious defect of lacking reproducibility, homogeneity and simplicity, which are the most important factors in industrial production methods.

【0008】そこで、機械的強度に優れ、再現性、均一
性に優れ、かつ、容易に複合体を製造できる技術が望ま
れていた。
Therefore, there has been a demand for a technique which is excellent in mechanical strength, excellent in reproducibility and uniformity, and which can easily produce a composite.

【0009】[0009]

【課題を解決するための手段】本発明者らはこの様な現
状に鑑み、鋭意検討した結果、意外にもフェノ−ル樹脂
を用いると、安全、簡便かつ再現性よく炭素質無機酸化
物複合体を製造することができることを見出し、本発明
を完成するに至った。すなわち、本発明は、細孔構造を
有する無機の酸化物とフェノ−ル樹脂を混合した後、熱
処理して得られる炭素質無機酸化物複合体およびその製
法を提供するものである。
Means for Solving the Problems The inventors of the present invention have made earnest studies in view of such a situation. As a result, surprisingly, when a phenol resin is used, the carbonaceous inorganic oxide composite is safe, convenient and reproducible. The inventors have found that the body can be manufactured, and have completed the present invention. That is, the present invention provides a carbonaceous inorganic oxide composite obtained by mixing an inorganic oxide having a pore structure with a phenol resin and then heat treating the mixture, and a method for producing the same.

【0010】以下に、本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0011】本発明によれば、炭素質無機酸化物複合体
は、細孔構造を有する無機の酸化物およびフェノ−ル樹
脂を用いて製造される。
According to the present invention, the carbonaceous inorganic oxide composite is produced by using an inorganic oxide having a pore structure and a phenol resin.

【0012】本発明では細孔構造を有する無機の酸化物
が使用される。この細孔構造を一義的に規定することは
困難であるが、無機酸化物の比表面積(単位重量の無機
酸化物あたりの表面積)または細孔容積で規定すること
ができる。本発明において比表面積が通常1〜600m
/g、好ましくは5〜500m/g、または細孔容
積が通常0.05〜1.5ml/g、好ましくは0.1
〜1.3ml/gの無機酸化物が用いられる。比表面積
が1m/g未満、あるいは細孔容積が0.05ml/
g未満では得られる複合体を触媒、吸着剤等として用い
た場合、性能が低くなるおそれがあるので好ましくな
い。
In the present invention, an inorganic oxide having a pore structure is used. Although it is difficult to uniquely define this pore structure, it can be defined by the specific surface area (surface area per unit weight of inorganic oxide) of the inorganic oxide or the pore volume. In the present invention, the specific surface area is usually 1 to 600 m
2 / g, preferably 5 to 500 m 2 / g, or the pore volume is usually 0.05 to 1.5 ml / g, preferably 0.1.
~ 1.3 ml / g of inorganic oxide is used. Specific surface area of less than 1 m 2 / g or pore volume of 0.05 ml /
If it is less than g, when the obtained composite is used as a catalyst, an adsorbent or the like, the performance may be deteriorated, which is not preferable.

【0013】一方、比表面積が600m/gを越える
と、フェノ−ル樹脂と混合し,調製するとき調製しにく
い場合がある。また、細孔容積が1.5ml/gを越え
ると、機械的強度が低下する場合がある。
On the other hand, if the specific surface area exceeds 600 m 2 / g, it may be difficult to prepare when mixed with the phenol resin and prepared. If the pore volume exceeds 1.5 ml / g, the mechanical strength may decrease.

【0014】本発明の無機の酸化物としては、酸化物が
本質的に有する酸・塩基、あるいは酸化・還元性には関
係なく、あらゆる無機の酸化物を用いることができる。
無機の酸化物としては、例えば、単一金属の酸化物であ
るシリカ、アルミナ、マグネシア、チタニア、ジルコニ
ア等が挙げられ、また、二つ以上の金属の酸化物で、い
わゆる複合酸化物といわれるものでは、シリカ−アルミ
ナ、シリカ−チタニア等を挙げることができる。これら
の無機の酸化物は、結晶性であっても非晶質であっても
一向に差し支えない。無機の化合物が結晶性である場
合、その結晶構造にとくに制限はなく、二次元の層状構
造でも、三次元の立体的な結晶構造を有していても一向
に差し支えない。さらに、これらの無機の酸化物の形状
にとくに制限はなく、球状、ペレット、ハニカム状等の
成型されたものであっても、あるいは、成型されていな
い粉末状のものであっても一向に差し支えなく種々の形
状の物が使用できる。
As the inorganic oxide of the present invention, any inorganic oxide can be used regardless of the acid / base inherent in the oxide or the oxidizing / reducing property.
Examples of the inorganic oxides include single metal oxides such as silica, alumina, magnesia, titania, and zirconia, and oxides of two or more metals, which are so-called complex oxides. Then, silica-alumina, silica-titania, etc. can be mentioned. These inorganic oxides may be crystalline or amorphous and can be used. When the inorganic compound is crystalline, its crystal structure is not particularly limited, and may have a two-dimensional layered structure or a three-dimensional three-dimensional crystal structure. Furthermore, there is no particular limitation on the shape of these inorganic oxides, and they may be spherical, pelletized, honeycomb-shaped or the like, or may be non-molded powdery. Various shapes can be used.

【0015】また、本発明において用いられるフェノ−
ル樹脂は特別に製造されたものでなくてよく、市販のも
のを用いることができる。粉末状のものであっても、あ
るいは、溶剤に溶解した液状のものであっても一向に差
し支えない。一般に、フェノ−ル樹脂は、フェノ−ル類
とホルムアルデヒドから製造されるが、フェノ−ル類に
とくに制限はなく、フェノ−ル、クレゾ−ル、キシレノ
−ル等を単独で、あるいは混合して製造したものでも使
用することができる。また、フェノ−ル樹脂は、その製
法によって、レゾ−ル系フェノ−ル樹脂とノボラック系
フェノ−ル樹脂に大別されるが、本発明においてはいず
れのものでも使用できる。さらに、フェノ−ル樹脂はそ
の重合条件によって様々な平均分子量のものが製造され
るが、平均分子量にとくに制限はない。
The phenol used in the present invention
The resin does not have to be specially manufactured, and a commercially available resin can be used. It does not matter whether it is a powder or a liquid dissolved in a solvent. Generally, a phenol resin is produced from phenols and formaldehyde, but the phenols are not particularly limited, and phenol, cresol, xylenol, etc. may be used alone or in combination. A manufactured product can also be used. Further, the phenol resin is roughly classified into a resole-based phenol resin and a novolac-based phenol resin according to the production method thereof, and any of them can be used in the present invention. Further, the phenol resin is produced in various average molecular weights depending on the polymerization conditions, but the average molecular weight is not particularly limited.

【0016】本発明においては、炭素質無機酸化物複合
体はフェノ−ル樹脂と無機の酸化物を混合した後、熱処
理して製造されるが、その混合方法にとくに制限はな
い。例えば、粉末状のフェノ−ル樹脂を用いる場合に
は、粉末のフェノ−ル樹脂と無機の酸化物を物理的に混
合してもよい。また、粉末状のフェノ−ル樹脂を溶媒に
溶解して、無機の酸化物に含浸し、その後、乾燥して溶
媒を取り除く、いわゆる含浸法によって混合してもよ
い。この場合には、溶媒としてはフェノ−ル樹脂を溶解
できるものであればとくに制限はなく、例えば、アセト
ン、エタノ−ル又はメタノール等を使用することができ
る。勿論、市販の溶剤に溶解した液状のフェノ−ル樹脂
は、そのまま含浸に使用できる。
In the present invention, the carbonaceous inorganic oxide composite is produced by mixing the phenol resin and the inorganic oxide and then heat-treating the mixture, but the mixing method is not particularly limited. For example, when using a powdery phenolic resin, the powdery phenolic resin and the inorganic oxide may be physically mixed. Alternatively, the powdery phenolic resin may be dissolved in a solvent, impregnated with an inorganic oxide, and then dried to remove the solvent, and the mixture may be mixed by a so-called impregnation method. In this case, the solvent is not particularly limited as long as it can dissolve the phenol resin, and for example, acetone, ethanol or methanol can be used. Of course, a liquid phenol resin dissolved in a commercially available solvent can be used as it is for impregnation.

【0017】更に熱処理の方法にとくに制限はなく、フ
ェノ−ル樹脂の含浸に溶媒を使用した場合には、あらか
じめ溶媒を取り除いた後、熱処理を行ってもよい。
Further, the heat treatment method is not particularly limited, and when a solvent is used for impregnating the phenol resin, the heat treatment may be carried out after removing the solvent in advance.

【0018】この熱処理は、ガスを供給しながら行って
も、あるいは、ガスの供給なしに行ってもよい。ガスを
供給しながら熱処理を行う場合には、例えば、低温で
は、酸素を含む雰囲気下で熱処理し、途中で窒素等の不
活性ガスに切り換えても、あるいは、最初から窒素等の
不活性ガス雰囲気で熱処理を行っても構わない。この熱
処理の間にフェノ−ル樹脂は炭化するが、あまり高温で
酸化性の雰囲気にさらすと、炭化したフェノ−ル樹脂が
燃焼するため、使用したフェノ−ル樹脂に対する残存し
ている有効な炭素質の量が少なくなるおそれがある。
This heat treatment may be carried out while supplying gas or may be carried out without supplying gas. When the heat treatment is performed while supplying the gas, for example, at a low temperature, the heat treatment may be performed in an atmosphere containing oxygen, and the atmosphere may be switched to an inert gas such as nitrogen, or the atmosphere may be an inert gas atmosphere such as nitrogen from the beginning. You may heat-process with. During this heat treatment, the phenol resin is carbonized. However, if the phenol resin is exposed to an oxidizing atmosphere at too high a temperature, the carbonized phenol resin burns, so that the remaining effective carbon for the phenol resin used. The quality may be reduced.

【0019】熱処理の温度を段階的に上げながら行って
も、あるいは、一定の昇温速度で所定の温度としても構
わない。通常、処理温度は150℃〜1200℃でよ
い。150℃未満では、フェノ−ル樹脂が十分硬化しな
いことがある。一方、1200℃を越えると無機の酸化
物の表面積が著しく小さくなることがあるが、無機の酸
化物が構造的に著しく変化しなければ1200℃を越え
ても構わない。
The heat treatment may be performed while raising the temperature stepwise, or may be performed at a predetermined temperature at a constant rate of temperature increase. Generally, the processing temperature may be 150 ° C to 1200 ° C. If the temperature is lower than 150 ° C, the phenol resin may not be sufficiently cured. On the other hand, when the temperature exceeds 1200 ° C, the surface area of the inorganic oxide may be remarkably reduced, but the temperature may be higher than 1200 ° C as long as the inorganic oxide does not change structurally.

【0020】熱処理の時間はとくに制限はなく、所定の
温度に達したら直ちに温度を下げてもよいし、所定の温
度に所望な時間保持しても構わない。
The heat treatment time is not particularly limited, and the temperature may be lowered immediately after reaching a predetermined temperature, or may be maintained at the predetermined temperature for a desired time.

【0021】一般に、フェノ−ル樹脂は、約200℃ま
での熱処理温度で硬化し、さらに処理温度を高くすると
約700℃までで、フェノ−ル樹脂に由来する酸素原子
はほとんど残らなくなる。従って、熱処理にあたって
は、フェノ−ル樹脂の熱的変化にとくに注意する必要が
ある。即ち、目的の用途によってフェノ−ル樹脂に、酸
素原子を残しておく方が好ましい場合には、原料フェノ
−ル樹脂の熱に対する挙動を充分把握して最終処理温度
を決めるべきである。しかし、いったん酸素原子がなく
なったとしても、再び公知の方法により酸素を含有する
官能基を導入することも可能である。
Generally, the phenol resin is cured at a heat treatment temperature of up to about 200 ° C., and when the treatment temperature is further raised, the temperature is up to about 700 ° C. and almost no oxygen atoms derived from the phenol resin remain. Therefore, it is necessary to pay particular attention to the thermal change of the phenol resin during the heat treatment. That is, when it is preferable to leave oxygen atoms in the phenol resin depending on the intended use, the final treatment temperature should be determined by fully grasping the behavior of the raw phenol resin to heat. However, even if the oxygen atom disappears, it is possible to introduce a functional group containing oxygen again by a known method.

【0022】本発明により得られる炭素質無機酸化物複
合体に対する炭素質の比率は、用途によっても異なる
が、例えば、炭素質無機酸化物複合体を触媒あるいは触
媒担体として用いる場合には、炭素質の担持率は、一般
には0.1〜15%程度でよく、吸着剤として用いる場
合には、吸着量との兼ね合いで担持率は変化させること
ができるが、例えば、0.5〜25%程度のものを用い
ることができる。また、電極材料等に用いる場合にはそ
の担持率は0.1〜50%までのものを用いる事ができ
る。一般的に、炭素質の比率が0.1%未満では本来の
炭素質の効果が小さく、また、50%を越えるとそれ以
上増加させる効果は小さい。含有炭素質の比率が高い場
合には、一度に調製できない場合もあるが、この時には
混合と熱処理を繰り返して調製すればよい。なお、本発
明においては、炭素質の比率とは前述の如く炭素質が熱
処理温度によっては酸素原子を含有している場合もある
ので、熱処理後に無機の酸化物上に担持されている全て
の成分の炭素質無機酸化物複合体に対する比率と解釈さ
れるべきである。
The ratio of the carbonaceous material to the carbonaceous inorganic oxide composite obtained by the present invention varies depending on the use. For example, when the carbonaceous inorganic oxide composite is used as a catalyst or a catalyst support, the carbonaceous material is used. In general, the loading rate of 0.1 to 15% is sufficient, and when used as an adsorbent, the loading rate can be changed in consideration of the adsorption amount, but for example, 0.5 to 25%. Can be used. When it is used as an electrode material or the like, a material having a supporting rate of 0.1 to 50% can be used. Generally, if the carbonaceous content is less than 0.1%, the original effect of carbonaceous material is small, and if it exceeds 50%, the effect of further increasing is small. When the ratio of contained carbonaceous matter is high, it may not be possible to prepare all at once, but at this time, it may be prepared by repeating mixing and heat treatment. In the present invention, the ratio of carbonaceous matter may include oxygen atoms depending on the heat treatment temperature as described above, so that all components supported on the inorganic oxide after the heat treatment. Should be construed as the ratio of to the carbonaceous inorganic oxide composite.

【0023】[0023]

【実施例】以下に本発明を実施例を用いて説明するが、
本発明がこれら実施例のみに限定されるものでないこと
は言うまでもない。 実施例1 エタノ−ル20mlに粉末状のノボラック系フェノ−ル
樹脂(日立化成工業(株)、HP−309NS)0.2
28gを溶解させた。ここに、表面積70m/g、細
孔容積1.05ml/gの球状のシリカゲル(富士デヴ
ィソン化学(株)製キャリアクト−50)10.0gを
加えた。40℃の温浴上でエタノ−ルを蒸発乾燥した
後、80℃の恒温槽に16時間保った。乾燥済みの試料
を電気炉に入れ、窒素ガス流通下で,毎分5℃の速度で
180℃まで昇温した。180℃に一時間保った後、毎
分5℃の速度で600℃まで昇温し、600℃に4時間
保つ熱処理を行った。得られた炭素質無機酸化物複合体
は、1.2%の炭素質を有していた。 実施例2〜5 フェノ−ル樹脂の重量をそれぞれ0.904g、1.0
8g、3.37g、6.75gとした以外は実施例1と
全く同様にして、4.5%、8.3%、13.9%、2
3.4%の炭素質を有する炭素質無機酸化物複合体を得
た。実施例3の8.3%の炭素質を有する炭素質無機酸
化物複合体のフ−リエ変換赤外分光スペクトルを図1に
示した。比較のために、原料のフェノ−ル樹脂、およ
び、シリカゲルのスペルトルもそれぞれ図2に示した。
さらに、X線回折パタ−ンを図3に示した。BET法に
より測定した表面積は135m/gであった。また、
細孔容積は0.9ml/gであった。また、細孔容積は
0.9ml/gであった。さらに、木屋式硬度計で10
個の粒子についてその強度を測定したところ平均強度
は、5.4kgであった。比較のために、成型活性炭
(武田薬品(株)、粒状ヤシ殻活性炭;商品名白鷲C)
の強度を測定したが、その強度は、10個の平均値で
3.9kg(長軸方向)、4.9kg(直径方向)であ
った。 実施例6 表面積110m/g、細孔容積1.05ml/gの球
状のシリカゲル(富士デヴィソン化学(株)製キャリア
クト−30)10.0g、粉末状のノボラック系フェノ
−ル樹脂(日立化成工業(株)、HP−309NS)
1.08gを用いた以外は、実施例1と全く同様にして
炭素質無機酸化物複合体を調製した。得られた炭素質無
機酸化物複合体は、7.3%の炭素質を有していた。B
ET法により測定した表面積は158m/gであっ
た。また、細孔容積は0.9ml/gであった。 実施例7 無機の酸化物として表面積110m/g、細孔容積
0.90ml/gの球状のアルミナ(住友化学工業
(株)製NKH1−24)10.0gを用いた以外は、
実施例1と全く同様にして炭素質無機酸化物複合体を調
製した。得られた炭素質無機酸化物複合体は、7.9%
の炭素質を有していた。BET法により測定した表面積
は138m/gであった。また、細孔容積は0.8m
l/gであった。 実施例8 無機の酸化物として表面積200m/g、細孔容積
0.95ml/gのペレット状のアルミナ((株)ダイ
ヤキャタリスト製DC−2382)10.0gを用いた
以外は、実施例1と全く同様にして炭素質無機酸化物複
合体を調製した。得られた炭素質無機酸化物複合体は、
8.2%の炭素質を有していた。水銀圧入法により測定
した細孔分布を図4に示した。 実施例9 無機の酸化物として表面積39.5m/g、細孔容積
0.33ml/gの球状のチタニア(堺化学工業(株)
製)10.0gを用い、最終熱処理温度を450℃と
し、混合を3回行った以外は、実施例1と全く同様にし
て炭素質無機酸化物複合体を調製した。得られた炭素質
無機酸化物複合体は、5.5%の炭素質を有していた。 実施例10 最終熱処理温度を900℃とした以外は、実施例3と全
く同様にして炭素質無機酸化物複合体を調製した。得ら
れた炭素質無機酸化物複合体は、7.5%の炭素質を有
していた。 実施例11 ノボラック系フェノール樹脂の代わりにレゾール系フェ
ノール樹脂(昭和高分子(株)、BRM−421)1.
15gを用いさらに、エタノールの代わりにメタノール
を用いた以外は、実施例3と全く同様にして炭素質無機
酸化物複合体を調整した。得られた炭素質無機酸化物複
合体は、7.9%の炭素質を有していた。 実施例12 炭素質無機酸化物複合体の調整方法の再現性を検討する
ため、実施例3と全く同じ条件で炭素質無機酸化物複合
体を調整したところ、8.2%の炭素質を有していた。
EXAMPLES The present invention will be described below with reference to examples.
Needless to say, the present invention is not limited to these examples. Example 1 0.2 ml of powdered novolac-based phenol resin (HP-309NS, Hitachi Chemical Co., Ltd.) in 20 ml of ethanol
28 g was dissolved. To this, 10.0 g of spherical silica gel having a surface area of 70 m 2 / g and a pore volume of 1.05 ml / g (Carrieract-50 manufactured by Fuji Devison Chemical Co., Ltd.) was added. The ethanol was evaporated to dryness on a 40 ° C. hot bath and then kept in an 80 ° C. thermostat for 16 hours. The dried sample was put in an electric furnace and heated to 180 ° C. at a rate of 5 ° C./min under a nitrogen gas flow. After the temperature was kept at 180 ° C. for 1 hour, the temperature was raised to 600 ° C. at a rate of 5 ° C./min, and heat treatment was performed at 600 ° C. for 4 hours. The obtained carbonaceous inorganic oxide composite had 1.2% carbonaceous matter. Examples 2 to 5 The weight of the phenol resin was 0.904 g and 1.0, respectively.
4.5%, 8.3%, 13.9%, and 2% in exactly the same manner as in Example 1 except that 8 g, 3.37 g, and 6.75 g were used.
A carbonaceous inorganic oxide composite having a carbonaceous content of 3.4% was obtained. The Fourier transform infrared spectroscopic spectrum of the carbonaceous inorganic oxide composite having 8.3% carbonaceous matter of Example 3 is shown in FIG. For comparison, the raw material phenol resin and the silica gel pellet are also shown in FIG.
Further, the X-ray diffraction pattern is shown in FIG. The surface area measured by the BET method was 135 m 2 / g. Also,
The pore volume was 0.9 ml / g. The pore volume was 0.9 ml / g. Furthermore, it is 10 with a Kiya type hardness tester.
When the strength of each particle was measured, the average strength was 5.4 kg. For comparison, molded activated carbon (Takeda Yakuhin Co., Ltd., granular coconut shell activated carbon; trade name Shiraea C)
Was measured, and the average value of 10 was 3.9 kg (long axis direction) and 4.9 kg (diameter direction). Example 6 10.0 g of spherical silica gel having a surface area of 110 m 2 / g and a pore volume of 1.05 ml / g (Carrieract-30 manufactured by Fuji Devison Chemical Co., Ltd.), a powdered novolac-based phenol resin (Hitachi Chemical Co., Ltd. Industry Co., Ltd., HP-309NS)
A carbonaceous inorganic oxide composite was prepared in exactly the same manner as in Example 1 except that 1.08 g was used. The resulting carbonaceous inorganic oxide composite had a carbonaceous content of 7.3%. B
The surface area measured by the ET method was 158 m 2 / g. The pore volume was 0.9 ml / g. Example 7 Except that 10.0 g of spherical alumina (NKH1-24 manufactured by Sumitomo Chemical Co., Ltd.) having a surface area of 110 m 2 / g and a pore volume of 0.90 ml / g was used as the inorganic oxide,
A carbonaceous inorganic oxide composite was prepared in exactly the same manner as in Example 1. The obtained carbonaceous inorganic oxide composite was 7.9%.
Had a carbonaceous content of. The surface area measured by the BET method was 138 m 2 / g. The pore volume is 0.8m
It was 1 / g. Example 8 Example 1 was repeated except that 10.0 g of alumina pellets (DC-2382 manufactured by Dia Catalyst Co., Ltd.) having a surface area of 200 m 2 / g and a pore volume of 0.95 ml / g was used as the inorganic oxide. A carbonaceous inorganic oxide composite was prepared in exactly the same manner as in 1. The obtained carbonaceous inorganic oxide composite,
It had 8.2% carbonaceous matter. The pore distribution measured by the mercury penetration method is shown in FIG. Example 9 As an inorganic oxide, a spherical titania having a surface area of 39.5 m 2 / g and a pore volume of 0.33 ml / g (Sakai Chemical Industry Co., Ltd.)
A carbonaceous inorganic oxide composite was prepared in exactly the same manner as in Example 1 except that 10.0 g of the product was used, the final heat treatment temperature was 450 ° C., and mixing was performed 3 times. The obtained carbonaceous inorganic oxide composite had 5.5% carbonaceous matter. Example 10 A carbonaceous inorganic oxide composite was prepared in exactly the same manner as in Example 3 except that the final heat treatment temperature was 900 ° C. The obtained carbonaceous inorganic oxide composite had 7.5% carbonaceous matter. Example 11 Instead of a novolac phenolic resin, a resole phenolic resin (Showa Highpolymer Co., Ltd., BRM-421)
A carbonaceous inorganic oxide composite was prepared in exactly the same manner as in Example 3 except that 15 g was used and methanol was used instead of ethanol. The obtained carbonaceous inorganic oxide composite had a carbonaceous substance of 7.9%. Example 12 A carbonaceous inorganic oxide composite was prepared under exactly the same conditions as in Example 3 in order to examine the reproducibility of the method for preparing a carbonaceous inorganic oxide composite. Was.

【0024】[0024]

【発明の効果】以上述べたように本発明によれば、機械
的強度に優れた炭素質無機酸化物複合体を容易に安全に
再現性良く製造することができる。
As described above, according to the present invention, it is possible to easily, safely and reproducibly produce a carbonaceous inorganic oxide composite having excellent mechanical strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例3の炭素質8.3%を有する炭素質無機
酸化物複合体のフ−リエ変換赤外分光スペクトルを示す
図である。
1 is a diagram showing a Fourier transform infrared spectroscopic spectrum of a carbonaceous inorganic oxide composite having 8.3% carbonaceous matter of Example 3. FIG.

【図2】粉末状のノボラック系フェノ−ル樹脂(日立化
成工業(株)、HP−309NS)のフ−リエ変換赤外
分光スペクトルを示す図である。
FIG. 2 is a diagram showing a Fourier transform infrared spectroscopic spectrum of a powdery novolac-based phenol resin (Hitachi Chemical Co., Ltd., HP-309NS).

【図3】実施例3の炭素質8.3%を有する炭素質無機
酸化物複合体のX線回折パタ−ン(測定条件;35K
v、20mA、Cu Kα線)
FIG. 3 is an X-ray diffraction pattern (measurement condition; 35K) of the carbonaceous inorganic oxide composite having 8.3% carbonaceous matter of Example 3.
v, 20mA, Cu Kα ray)

【図4】実施例8の炭素質8.2%を有する炭素質無機
酸化物複合体の水銀圧入法により測定した細孔分布を示
す図である。
FIG. 4 is a diagram showing a pore distribution measured by a mercury intrusion method of a carbonaceous inorganic oxide composite having 8.2% carbonaceous matter of Example 8.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】細孔構造を有する無機酸化物とフェノ−ル
樹脂を混合した後、熱処理して得られる炭素質無機酸化
物複合体の製法。
1. A method for producing a carbonaceous inorganic oxide composite obtained by mixing an inorganic oxide having a pore structure and a phenol resin and then heat treating the mixture.
JP3294896A 1991-10-16 1991-10-16 Production of carbonaceous inorganic oxide composite Pending JPH05105513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3294896A JPH05105513A (en) 1991-10-16 1991-10-16 Production of carbonaceous inorganic oxide composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3294896A JPH05105513A (en) 1991-10-16 1991-10-16 Production of carbonaceous inorganic oxide composite

Publications (1)

Publication Number Publication Date
JPH05105513A true JPH05105513A (en) 1993-04-27

Family

ID=17813655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3294896A Pending JPH05105513A (en) 1991-10-16 1991-10-16 Production of carbonaceous inorganic oxide composite

Country Status (1)

Country Link
JP (1) JPH05105513A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028966A1 (en) * 2002-09-30 2004-04-08 Matsushita Electric Industrial Co., Ltd. Porous article and method for production thereof and electrochemical element using the porous article
WO2004113251A1 (en) * 2003-06-20 2004-12-29 Matsushita Electric Industrial Co., Ltd. Porous body and method for producing same
JP2013095936A (en) * 2011-10-28 2013-05-20 Eagle Industry Co Ltd Electrode for electrical discharge surface treatment and manufacturing method of electrode for electrical discharge surface treatment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028966A1 (en) * 2002-09-30 2004-04-08 Matsushita Electric Industrial Co., Ltd. Porous article and method for production thereof and electrochemical element using the porous article
JPWO2004028966A1 (en) * 2002-09-30 2006-01-26 松下電器産業株式会社 Method for producing porous body
US7390474B2 (en) 2002-09-30 2008-06-24 Matsushita Electric Industrial Co., Ltd. Porous material and method for manufacturing same, and electrochemical element made using this porous material
WO2004113251A1 (en) * 2003-06-20 2004-12-29 Matsushita Electric Industrial Co., Ltd. Porous body and method for producing same
US7256147B2 (en) 2003-06-20 2007-08-14 Matsushita Electric Industrial Co., Ltd. Porous body and manufacturing method therefor
JP2013095936A (en) * 2011-10-28 2013-05-20 Eagle Industry Co Ltd Electrode for electrical discharge surface treatment and manufacturing method of electrode for electrical discharge surface treatment

Similar Documents

Publication Publication Date Title
CN107051398B (en) Method for preparing silk fibroin nanofiber-metal organic framework composite film
EP2626131A1 (en) Highly sinter-stable metal nanoparticles supported on mesoporous graphitic particles and their use
Horikawa et al. Preparation and characterization of the carbonized material of phenol–formaldehyde resin with addition of various organic substances
MXPA04006324A (en) Aerogel and metallic compositions.
CN110642238A (en) Graphene-like nitrogen-doped porous carbon material and preparation method and application thereof
US20220177309A1 (en) Process for the preparation of a porous carbonaceous material, porous carbonaceous material, and a catalyst made of the material
Ania et al. Importance of the hydrophobic character of activated carbons on the removal of naphthalene from the aqueous phase
JP2020093977A (en) Porous carbon
US11718760B2 (en) Carbon black molded body and a method for producing the same
Belapurkar et al. PTFE Dispersed hydrophobic catalysts for hydrogen—water isotopic exchange: I. Preparation and characterization
JPH05105513A (en) Production of carbonaceous inorganic oxide composite
US8232226B2 (en) Method for producing spherical activated carbon
Popa et al. Physicochemical features of polyaniline supported heteropolyacids
JPH0620546B2 (en) Molecular sieving carbon and its manufacturing method
JPS6320762B2 (en)
JP2010030844A (en) Method for manufacturing carbon nitride porous material (mcn)
KR100912203B1 (en) Method for stabilizing particles containing carbon, activated carbon and method for preparing the same
JPH05155673A (en) Porous carbon material and its production
JP2510183B2 (en) Method for producing molecular sieving carbon
JPH09124312A (en) Modification of surface of carbonaceous particle
Paek et al. Preparation, characterization, and reactivity of Pt/SDBC catalysts for the hydrogen-water isotopic exchange reaction
CN112934212B (en) Method for preparing catalyst by taking silica gel particles as carrier
Pei et al. The self-assembly of gold nanoparticles in large-pore ordered mesoporous carbons
Stoica et al. One‐pot reduction‐hydrophobization of heterogenized platinum with 1, 1, 3, 3‐tetramethyldisiloxane
JPH06157009A (en) Chlorine-containing carbonaceous inorganic oxide complex and its production