JPH0438303Y2 - - Google Patents

Info

Publication number
JPH0438303Y2
JPH0438303Y2 JP11227586U JP11227586U JPH0438303Y2 JP H0438303 Y2 JPH0438303 Y2 JP H0438303Y2 JP 11227586 U JP11227586 U JP 11227586U JP 11227586 U JP11227586 U JP 11227586U JP H0438303 Y2 JPH0438303 Y2 JP H0438303Y2
Authority
JP
Japan
Prior art keywords
voltage
current
terminal
circuit
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11227586U
Other languages
Japanese (ja)
Other versions
JPS6319281U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11227586U priority Critical patent/JPH0438303Y2/ja
Publication of JPS6319281U publication Critical patent/JPS6319281U/ja
Application granted granted Critical
Publication of JPH0438303Y2 publication Critical patent/JPH0438303Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

【考案の詳細な説明】 「産業上の利用分野」 この考案は例えば半導体集積回路素子を試験す
るICテスト装置等に利用することができる電圧
印加電流測定装置に関する。
[Detailed Description of the Invention] "Industrial Application Field" This invention relates to a voltage applied current measuring device that can be used, for example, in an IC test device for testing semiconductor integrated circuit elements.

「考案の背景」 半導体集積回路素子(以下ICと称す)を試験
する方法としてはICを動作させて所定の動作を
行うか否かを試験する機能試験と、ICの各端子
の直流特性が正規の特性を持つているか否かを試
験する直流試験とがある。
"Background of the Invention" Methods for testing semiconductor integrated circuit elements (hereinafter referred to as ICs) include functional testing, which operates the IC to determine whether it performs a specified function, and DC testing, which tests whether the DC characteristics of each terminal of the IC are normal.

直流試験には端子に所定の電圧を印加したとき
所定の電流が流れるか否かを見る電圧印加電流測
定試験と、端子に所定の電流を名がしたとき、そ
の端子に所定の電圧が発生するか否かを見る電流
印加電圧測定試験とがある。
The DC test includes a voltage application current measurement test that checks whether a specified current flows when a specified voltage is applied to a terminal, and a voltage application current measurement test that checks whether a specified current flows when a specified voltage is applied to a terminal.When a specified current is applied to a terminal, a specified voltage is generated at that terminal. There is a current applied voltage measurement test to see whether or not.

電圧印加電流測定装置には被験体の端子に所望
の電圧を印加する電圧供給源と、この電圧供給源
から被験体に供給される電流測定手段とが設けら
れる。
The voltage applied current measuring device is provided with a voltage supply source that applies a desired voltage to a terminal of a subject, and a current measuring means that is supplied from this voltage supply source to the subject.

一方機能試験では被験体の電流端子に電圧を変
化させることができる直流電源を接続し、この直
流電源から被験体に与える電源電圧を変化させな
がら機能試験を行つている。
On the other hand, in functional tests, a DC power supply that can change the voltage is connected to the current terminal of the test object, and the functional test is performed while varying the power supply voltage applied to the test object from this DC power supply.

このような背景から従来は電圧印加電流測定試
験に用いる電圧供給源と機能試験時に被験体に電
源電圧を与える直流電源とを共用している。
For this reason, conventionally, the voltage supply source used for the voltage applied current measurement test and the DC power supply that supplies the power supply voltage to the test object during the functional test are shared.

「従来技術」 第4図に従来の直流電源装置を示す。図中10
0はIC等の被験体200はこの被験体100の
各一つの端子に所望の電圧を印加する電圧供給源
を示す。電圧供給源200の出力側に電流測定手
段300が直列に接続され、電流測定手段300
とゲーブル400を通じ被験体100に電圧VO
が印加される。
"Prior Art" Figure 4 shows a conventional DC power supply device. 10 in the diagram
0 indicates a voltage supply source that applies a desired voltage to each terminal of the test object 100 such as an IC. A current measuring means 300 is connected in series to the output side of the voltage supply source 200.
and a voltage VO to the test object 100 through the gable 400.
is applied.

ケーブル400は電圧供給線401の他に電圧
検出線402を有する。この電圧検出線402は
被験体100側において被験体100の端子に接
続し、この端子の電圧を電圧供給源200に帰還
する。500は電圧検出線402の検出電圧を電
圧供給源に帰還させる電圧帰還回路を示す。この
電圧帰還回路500は高入力インピーダンスを持
つ増幅器によつて構成され、この高入力インピー
ダンスの増幅器によつて電圧検出線402に電流
を流すことなく電圧を取り出し、電線の直流抵抗
による電圧測定誤差が生じないようにしている。
Cable 400 has voltage detection line 402 in addition to voltage supply line 401 . This voltage detection line 402 is connected to a terminal of the subject 100 on the subject 100 side, and feeds back the voltage of this terminal to the voltage supply source 200. Reference numeral 500 indicates a voltage feedback circuit that feeds back the detected voltage of the voltage detection line 402 to the voltage supply source. This voltage feedback circuit 500 is constituted by an amplifier with high input impedance, and this high input impedance amplifier extracts the voltage without passing current through the voltage detection line 402, thereby eliminating voltage measurement errors due to the direct current resistance of the wire. I'm trying to prevent it from happening.

電圧帰還回路500の出力電圧は抵抗器501
を通じて電圧供給源200に帰還される。電圧供
給源200は演算増幅器201と、電圧設定器2
02及び抵抗器203とによつて構成することが
できる。演算増幅器201の非反転入力端子は共
通電位点600に接続し、電圧設定器202の電
圧を抵抗器203を通じて演算増幅器201の反
転入力端子に供給する。また電圧帰還回路500
の帰還電圧は演算増幅器201の反転入力端子に
帰還する。
The output voltage of the voltage feedback circuit 500 is connected to the resistor 501.
is fed back to the voltage supply source 200 through. The voltage supply source 200 includes an operational amplifier 201 and a voltage setting device 2.
02 and a resistor 203. A non-inverting input terminal of the operational amplifier 201 is connected to a common potential point 600, and the voltage of the voltage setter 202 is supplied to the inverting input terminal of the operational amplifier 201 through a resistor 203. Also, the voltage feedback circuit 500
The feedback voltage is fed back to the inverting input terminal of operational amplifier 201.

電圧設定器202は実際はDA変換器が用いら
れ、このDA変換器に制御器からデイジタル信号
が与えられて電圧供給源202の出力電圧が高速
度で変化することができるように構成される。
The voltage setting device 202 is actually a DA converter, and the DA converter is configured to receive a digital signal from a controller so that the output voltage of the voltage supply source 202 can be changed at high speed.

演算増幅器201の出力端子は電流測定手段3
00に接続される。電流測定手段300は電流検
出用抵抗器301と、この電流検出用抵抗器30
1の両端に発生する電圧を検出する引算回路30
2と、この引算回路302の出力電圧を必要に応
じてデイジタル信号に変換するAD変換器303
と、電流検出抵抗器301に並列接続されたレン
ジ切替手段304とによつて構成することができ
る。
The output terminal of the operational amplifier 201 is the current measuring means 3.
Connected to 00. The current measuring means 300 includes a current detection resistor 301 and this current detection resistor 30.
A subtraction circuit 30 that detects the voltage generated across 1
2, and an AD converter 303 that converts the output voltage of this subtraction circuit 302 into a digital signal as necessary.
and a range switching means 304 connected in parallel to the current detection resistor 301.

レンジ切替手段304はスイツチと抵抗器によ
る複数の直列回路によつて構成され、スイツチを
オンにすることによつて電流検出用抵抗器301
に他の抵抗器を並列接続し、電流検出用抵抗器3
01の抵抗値を変化させて電流測定レンジを切替
える動作を行う。
The range switching means 304 is composed of a plurality of series circuits consisting of a switch and a resistor, and when the switch is turned on, the current detection resistor 301 is switched on.
Connect another resistor in parallel to the current detection resistor 3.
The current measurement range is switched by changing the resistance value of 01.

一方電圧帰還回路500を構成する増幅器は出
力端子を反転入力端子に接続し全帰還が掛けられ
利得1の増幅器として動作し、シールド403の
電位を電圧供給線401及び電圧検出線402の
電圧と等しい状態に保持するように同相駆動を行
う。この同相駆動によつて電圧供給線401及び
電圧検出線402とシールド403との間を同電
位に保持し、シールド403と電圧供給線401
及び電圧検出線402の間のリーク抵抗Raと静
電容量Caによる影響を除去し、電圧供給線40
1及び電圧検出線402を外来雑音から保護し、
特に微小電流測定時におけるリーク電流の影響を
除去するようにしている。このようにシールドに
信号線の電位を与える動作を同相ガードドライブ
と称している。従つて帰還回路500を構成する
増幅器の出力側とシールド403との間を接続す
る配線700をガード電圧印加手段と称すること
にする。
On the other hand, the amplifier constituting the voltage feedback circuit 500 connects its output terminal to the inverting input terminal and operates as an amplifier with a gain of 1 by applying full feedback, so that the potential of the shield 403 is equal to the voltage of the voltage supply line 401 and the voltage detection line 402. In-phase drive is performed to maintain this state. By this in-phase drive, the voltage supply line 401 and the voltage detection line 402 and the shield 403 are held at the same potential.
By removing the influence of leakage resistance Ra and capacitance Ca between the voltage detection line 402 and the voltage detection line 402,
1 and voltage detection line 402 from external noise,
In particular, the influence of leakage current is removed when measuring minute currents. The operation of applying the potential of the signal line to the shield in this manner is called common-mode guard drive. Therefore, the wiring 700 connecting the output side of the amplifier constituting the feedback circuit 500 and the shield 403 will be referred to as guard voltage applying means.

以上の構成によれば電圧設定器202に設定し
た電圧が演算増幅器201から出力されて被験体
100の一つの端子に供給される。この端子の電
圧は電圧検出線402を通じて電圧帰還回路50
0に与えられ、電圧供給源200に帰還される。
According to the above configuration, the voltage set in the voltage setting device 202 is output from the operational amplifier 201 and supplied to one terminal of the subject 100. The voltage at this terminal is passed through the voltage detection line 402 to the voltage feedback circuit 50.
0 and fed back to the voltage supply source 200.

演算増幅器201はこの帰還電圧と電圧設定器
202から与えられる電圧が等しくなるように動
作する。従つて電流測定手段300及び電圧供給
線401における電圧降下分は修正され、被験体
100の端子には電圧設定器202に設定した電
圧が正確に印加される。
The operational amplifier 201 operates so that this feedback voltage and the voltage given from the voltage setter 202 become equal. Therefore, the voltage drop in the current measuring means 300 and the voltage supply line 401 is corrected, and the voltage set in the voltage setting device 202 is accurately applied to the terminal of the subject 100.

被験体100の端子に電圧設定器202で設定
した電圧が印加された状態で電流測定手段300
は被験体100に流れ込む電流ILを設定し、こ
のILが規定が規定の値か否かを比較し、この端
子の直流特性が正常か否かを判定する。
The current measuring means 300 is applied with the voltage set by the voltage setting device 202 being applied to the terminal of the subject 100.
sets the current IL flowing into the test object 100, compares whether or not this IL is a specified value, and determines whether or not the DC characteristics of this terminal are normal.

「考案が解決しようとする問題点」 第4図に示した回路において電圧帰還回路50
0とガード電圧印加手段700は第5図に示すよ
うな等価回路に書替えることができる。第5図に
示す等価回路においてCaはケーブル400のシ
ールド403と電圧検出線402との間の静電容
量、Raはケーブル400及びプリント板等のリ
ーク抵抗を示す。
"Problem that the invention attempts to solve" In the circuit shown in FIG. 4, the voltage feedback circuit 50
0 and the guard voltage applying means 700 can be rewritten into an equivalent circuit as shown in FIG. In the equivalent circuit shown in FIG. 5, Ca indicates the capacitance between the shield 403 of the cable 400 and the voltage detection line 402, and Ra indicates the leakage resistance of the cable 400, the printed board, etc.

ガード電圧印加手段700を設けたことによつ
て電圧帰還回路500を構成する増幅器の反転入
力端子と非反転入力端子の間に静電容量Caと絶
縁抵抗Raが等価的に接続されることになる。こ
の接続構造によつて正帰還回路が構成され動作の
安定性に問題がある。 このため従来より第6図
に示すように電圧帰還回路500を構成する増幅
器の入力側に発振防止用の時定数回路502を接
続するか、または第7図に示すようにガード電圧
供給手段700を増幅器701で構成し、この増
幅器701の入力側に時定数回路702を接続す
る構造が採られている。
By providing the guard voltage applying means 700, the capacitance Ca and the insulation resistance Ra are equivalently connected between the inverting input terminal and the non-inverting input terminal of the amplifier constituting the voltage feedback circuit 500. . This connection structure constitutes a positive feedback circuit, which poses a problem in operational stability. For this reason, conventionally, as shown in FIG. 6, a time constant circuit 502 for preventing oscillation is connected to the input side of the amplifier constituting the voltage feedback circuit 500, or as shown in FIG. 7, a guard voltage supply means 700 is connected. A structure is adopted in which the circuit is composed of an amplifier 701 and a time constant circuit 702 is connected to the input side of the amplifier 701.

これら第6図及び第7図に示す回路構造にする
ことによつて系の安定性は向上するが時定数回路
502または702によつて帰還回路500の応
答が遅くなり系の応答速度が遅くなる欠点があ
る。つまり試験時間を短縮するために被験体10
0の端子に与える電圧を段階状に高速度で変化さ
せ、その各電圧値における電流ILの値を順次測
定するようにした場合、帰還回路500またはカ
ード電圧印加手段700に設けた時定数回路50
2または702によつて被験体100の端子に加
える電圧が電圧設定器202の設定電圧の変化に
忠実に追従しなくなり試験に要する時間が長く掛
る欠点を持つ。
By adopting the circuit structure shown in FIGS. 6 and 7, the stability of the system is improved, but the time constant circuit 502 or 702 slows down the response of the feedback circuit 500, which slows down the response speed of the system. There are drawbacks. In other words, in order to shorten the test time,
When the voltage applied to the terminal 0 is changed stepwise at high speed and the value of the current IL at each voltage value is sequentially measured, the time constant circuit 50 provided in the feedback circuit 500 or the card voltage applying means 700
2 or 702, the voltage applied to the terminal of the test object 100 does not faithfully follow the change in the set voltage of the voltage setting device 202, resulting in a disadvantage that the test takes a long time.

系の応答速度が遅くなる理由を更に詳細に説明
する。第6図に示す回路構造の場合は電圧検出線
402を通じて取り出した電圧は時定数回路50
2でその立上がり遅らせられて帰還回路500に
入力される。従つて第8図Aに示すように電圧設
定器202の設定電圧VMを時点TOにおいてVM1
からVM2に変更したとすると電圧供給手段200
に帰還される帰還電圧が遅れるため被験体100
に与える電圧VOは第8図Bに示すように目標値
を越えてオーバーシユートし、その後電圧設定器
202の設定電圧VM2に安定する。これに伴つて
被験体100に流れ込む電流ILは第8図Cに示す
ように変化するため電流測定のタイミングは電圧
VO及び電流ILが安定するまでまたなければなら
ない。つまり被験体100に与える電圧VOを変
更した時点TOから電流ILが安定するまで時間πだ
け待つて電流を測定しなければならない。
The reason why the response speed of the system is slow will be explained in more detail. In the case of the circuit structure shown in FIG. 6, the voltage taken out through the voltage detection line 402 is
2, its rise is delayed and input to the feedback circuit 500. Therefore, as shown in FIG. 8A, the set voltage V M of the voltage setter 202 is set to V M1 at the time TO.
When changing from V M2 to V M2, the voltage supply means 200
Because the feedback voltage fed back to the test object 100 is delayed,
As shown in FIG. 8B, the voltage VO applied to the voltage exceeds the target value and overshoots, and then stabilizes at the set voltage V M2 of the voltage setter 202. Along with this, the current I L flowing into the subject 100 changes as shown in FIG.
This must be continued until VO and current I L stabilize. In other words, the current must be measured after waiting a period of time π from the time T O when the voltage VO applied to the subject 100 is changed until the current I L stabilizes.

一方第7図に示すようにガード電圧印加手段7
00を増幅器701によつて構成し、時定数回路
702を増幅器701の入力側に接続した構造の
場合には、電圧供給源200に帰還される帰還電
圧は遅れることなく帰還され、被験体100には
電圧設定器202の電圧変化に正確に追従した電
圧が印加される。
On the other hand, as shown in FIG.
In the case of a structure in which 00 is configured by an amplifier 701 and a time constant circuit 702 is connected to the input side of the amplifier 701, the feedback voltage fed back to the voltage supply source 200 is fed back without delay, and the feedback voltage is fed back to the test object 100. A voltage that accurately follows the voltage change of the voltage setting device 202 is applied.

然るにケーブル400のシールド403に印加
するガード電圧は時定数回路702によつて遅れ
変化する。このため電圧検出線402とシールド
403との間に電位差が発生し、この電位差によ
つて静電容量Caに充電電流(または放電電流)
が流れる。この充電電流は電圧検出線402と電
圧供給線401及び電流測定手段200を通り電
圧供給源200を構成する増幅器201から電源
を通り、電源から増幅器701に帰るループを流
れる。
However, the guard voltage applied to the shield 403 of the cable 400 changes with a delay due to the time constant circuit 702. Therefore, a potential difference occurs between the voltage detection line 402 and the shield 403, and this potential difference causes a charging current (or discharging current) to be generated in the capacitance Ca.
flows. This charging current flows through a loop that passes through the voltage detection line 402, the voltage supply line 401, and the current measurement means 200, the amplifier 201 constituting the voltage supply source 200, the power supply, and returns from the power supply to the amplifier 701.

この充電電流が流れる時間は時定数回路702
の時定数で決まる時間となる。従つてこの場合も
被験体100に与える電圧を変更した時点から時
定数回路702の時定数で決まる時間πだけ遅れ
たタイミングで電流を測定しなければならない。
The time during which this charging current flows is determined by the time constant circuit 702.
The time is determined by the time constant of . Therefore, in this case as well, the current must be measured at a timing delayed by the time π determined by the time constant of the time constant circuit 702 from the point in time when the voltage applied to the subject 100 is changed.

時定数回路502及び702の時定数R1,C1
は系の発振を防止するにはシールド403と電圧
供給線402の間の静電容量Caと絶縁抵抗Raの
時定数Ra・CaとはR1・Ca>Ra・Caの関係に選
定しなければならない。この結果電流の測定タイ
ミングは比較的大きく遅らせなくてはならないこ
とになり測定に要する時間が長くなる欠点があ
る。
Time constants R 1 and C 1 of time constant circuits 502 and 702
In order to prevent system oscillation, the capacitance Ca between the shield 403 and the voltage supply line 402 and the time constant Ra・Ca of the insulation resistance Ra must be selected so that the relationship R 1・Ca > Ra・Ca is satisfied. No. As a result, the timing of current measurement must be delayed by a relatively large amount, which has the drawback of increasing the time required for measurement.

「問題点を解決しようとする手段」 この考案ではケーブルのシールドにガード電圧
を与える構造を採るとき電流の測定に時間が掛る
点及びガード電圧は微小電流を測定する場合にだ
け有効である点に着目し、比較的大きい電流を測
定する場合にはケーブルのシールドを電圧帰還系
から切離し、シールドに共通電位を与える切替手
段を設けた構造としたものである。
``Means for solving problems'' This idea takes time to measure the current when using a structure that applies a guard voltage to the cable shield, and the guard voltage is only effective when measuring minute currents. When measuring a relatively large current, the cable shield is separated from the voltage feedback system, and a switching means is provided to apply a common potential to the shield.

この考案の構成によれば必要に応じて、つまり
比較的大きい電流を測定する場合は切替手段を切
替かることによつてケーブルのシールドを電圧帰
還回路から切離すことによつて転帰還回路を構成
する増幅器に対しケーブルのシールドを電圧検出
線との間の静電容量と絶縁抵抗が正帰還ループを
構成しなくなる。
According to the configuration of this invention, when necessary, that is, when measuring a relatively large current, the switching means is switched to disconnect the cable shield from the voltage feedback circuit, thereby constructing the transfer feedback circuit. The capacitance and insulation resistance between the cable shield and the voltage detection line no longer constitute a positive feedback loop for the amplifier.

この結果切替手段を切替えた状態では発振防止
用の時定数回路を接続しておく必要がないから時
定数回路も回路から切離すことができる。よつて
電圧帰還回路の応答速度が速くなり、特に定常電
流を流して作動させる機能試験において被験体の
電流端子に高速で変化する電圧を与えることでき
る。従つて機能試験に要する時間を短縮すること
ができる。
As a result, when the switching means is switched, there is no need to connect the time constant circuit for preventing oscillation, so the time constant circuit can also be disconnected from the circuit. Therefore, the response speed of the voltage feedback circuit becomes faster, and a rapidly changing voltage can be applied to the current terminal of the test object, especially in a functional test in which the circuit is operated by flowing a steady current. Therefore, the time required for functional testing can be shortened.

「実施例」 第1図にこの考案の一実施例を示す。第1図に
おいて第4図と対応する部分には同一符合を付し
て示す。
``Example'' Figure 1 shows an example of this invention. In FIG. 1, parts corresponding to those in FIG. 4 are designated by the same reference numerals.

この例では演算増幅器501の入力側に時定数
回路502を設け、ゲート印加手段700を配線
によつて構成した場合を示す。
In this example, a time constant circuit 502 is provided on the input side of an operational amplifier 501, and a gate application means 700 is configured by wiring.

この考案においてはゲート印加手段700を電
圧帰還回路500から切離し、ケーブル400の
シールド403を共通電位点600に接続する切
替手段を設ける。
In this invention, a switching means is provided which separates the gate application means 700 from the voltage feedback circuit 500 and connects the shield 403 of the cable 400 to the common potential point 600.

この例では電圧帰還回路500を構成する演算
増幅器の出力端子と反転入力端子との共通接続点
を切替手段800の一方の固定接点801に接続
し、切替手段800の他方の固定接点802を共
通電位点600に接続する。切替手段800の可
動接点はガード印加手段700を構成する配線を
通じケーブル400のシールド403に接続す
る。
In this example, the common connection point between the output terminal and the inverting input terminal of the operational amplifier constituting the voltage feedback circuit 500 is connected to one fixed contact 801 of the switching means 800, and the other fixed contact 802 of the switching means 800 is connected to the common potential. Connect to point 600. The movable contact of the switching means 800 is connected to the shield 403 of the cable 400 through the wiring constituting the guard applying means 700.

このように構成すれば切替手段800を必要に
応じて固定設定802に転換することによりケー
ブル400のシールド403を電圧帰還回路50
0から切離すことができ、これと同時にケーブル
の400シールド403を共通電位点600に接
続することができる。
With this configuration, by converting the switching means 800 to the fixed setting 802 as necessary, the shield 403 of the cable 400 can be switched to the voltage feedback circuit 50.
0 and at the same time connect the cable's 400 shield 403 to a common potential point 600.

これと共に切替手段800の切替と連動して動
作する他の切替手段900を設け、この切替手段
900によつて時定数回路502を回路から切離
す動作を行わせる。
Along with this, another switching means 900 is provided which operates in conjunction with the switching of the switching means 800, and this switching means 900 performs the operation of disconnecting the time constant circuit 502 from the circuit.

切替手段800と900は電流切替手段304
のレンジ切替があるレンジ以上になつたときこれ
と連動して自動的に切替動作を行わせるように構
成する。
Switching means 800 and 900 are current switching means 304
When the range switching exceeds a certain range, the switching operation is automatically performed in conjunction with this.

つまり被験体100の端子の直流特性を測定す
るレンジでは切替手段800は接点801に接触
させ、このとき切替手段900はオンの状態にさ
せて時定数回路502を回路に接続させておき、
被験体100の機能試験を行う状態では切替手段
800を接点802に接触させ、切替手段900
はオフにし時定数回路502を回路から切離すよ
うに連動させることができる。
That is, in the range for measuring the DC characteristics of the terminal of the test object 100, the switching means 800 is brought into contact with the contact 801, and at this time, the switching means 900 is turned on and the time constant circuit 502 is connected to the circuit.
When performing a functional test on the subject 100, the switching means 800 is brought into contact with the contact point 802, and the switching means 900
can be linked to turn off and disconnect the time constant circuit 502 from the circuit.

このように構成することにより被験体100の
端子の直流試験を行う場合は電流測定手段300
のレンジ切替手段304は微少電流の測定レンジ
に切替られるからシールド403にガード電圧を
与えることができる。よつて微少電流を測定する
状態ではリーク抵抗Raにリーク電流が流れるこ
とを阻止し、精度よく微少電流を測定することが
できる。
With this configuration, when performing a DC test on the terminal of the test object 100, the current measuring means 300
Since the range switching means 304 is switched to the micro current measurement range, a guard voltage can be applied to the shield 403. Therefore, in a state where a minute current is to be measured, leakage current is prevented from flowing through the leak resistance Ra, and the minute current can be measured with high accuracy.

一方被験体100の機能試験を行う場合は比較
的大きい電流を流すためケーブル400のシール
ド403と電圧検出線402との間のリーク抵抗
Raに多少漏れ電流が流れても大きな誤差が生じ
るものでないから切替手段800を接点802に
切替えケーブル400のシールド403を共通電
位点600に接続してもよい。
On the other hand, when performing a functional test of the test object 100, a relatively large current is passed, so there is a leak resistance between the shield 403 of the cable 400 and the voltage detection line 402.
Even if some leakage current flows through Ra, it does not cause a large error, so the switching means 800 may be connected to the contact 802 and the shield 403 of the switching cable 400 may be connected to the common potential point 600.

シールド400を共通電位点600に接続した
状態では電圧帰還回路500を構成する演算増幅
器に対しシールド400と電圧検出線402との
間のリーク抵抗Raと静電容量Caは正帰還ループ
を構成しない。
When the shield 400 is connected to the common potential point 600, the leak resistance Ra and capacitance Ca between the shield 400 and the voltage detection line 402 do not constitute a positive feedback loop for the operational amplifier that constitutes the voltage feedback circuit 500.

この結果時点数回路502も切替手段900を
オフにして切離すことができる。時定数回路50
2を切離すことができることから電圧帰還回路5
00の応答速度が速くなり被験体100の端子に
与える電圧を高速度で変化させてもオーバーシユ
ートを生じることなく正確に電圧設定器202の
設定電圧の変化に忠実に追従して変化させること
ができる。
As a result, the time point counting circuit 502 can also be disconnected by turning off the switching means 900. Time constant circuit 50
Voltage feedback circuit 5 can be disconnected from 2.
The response speed of the voltage setting device 202 becomes faster, and even if the voltage applied to the terminal of the test object 100 is changed at high speed, the voltage can be changed accurately by faithfully following the change in the set voltage of the voltage setting device 202 without causing an overshoot. I can do it.

よつて機能試験を高速度で実行でき、試験に要
する時間を短縮することができる。
Therefore, the functional test can be executed at high speed, and the time required for the test can be shortened.

「変形実施例」 第2図にこの考案の変形実施例を示す。この例
ではガード電圧印加手段700として増幅器70
1を用いた場合を示す。この例では増幅器701
の出力端子とシールド403の間に切替手段80
0を設ける。
"Modified Embodiment" FIG. 2 shows a modified embodiment of this invention. In this example, an amplifier 70 is used as the guard voltage applying means 700.
The case where 1 is used is shown. In this example, amplifier 701
A switching means 80 is connected between the output terminal of the shield 403 and the shield 403.
Set 0.

切替手段800を接点802に切替えることに
よりケーブル400のシールド403を共通電位
点600に接続し、時定数回路702は帰還回路
500を構成する増幅器の出力とガード電圧印加
手段700を構成する増幅器701の入力端子の
間に接続したままとする。
By switching the switching means 800 to the contact 802, the shield 403 of the cable 400 is connected to the common potential point 600. Leave the connection between the input terminals.

切替手段800を接点802に切替えることに
より、リーク抵抗Raと静電容量Caは増幅器70
1の出力端子から切離され帰還回路500から間
接的に切離される。この結果電圧検出線401の
電圧の変化に対して増幅器701の出力電圧が時
定数回路702の時定数によつて遅れても静電容
量Caに充電電流を流し込む動作を行われること
がない。
By switching the switching means 800 to the contact 802, the leak resistance Ra and capacitance Ca can be changed to the amplifier 70.
1 and is indirectly disconnected from the feedback circuit 500. As a result, even if the output voltage of the amplifier 701 is delayed by the time constant of the time constant circuit 702 with respect to a change in the voltage of the voltage detection line 401, the operation of flowing charging current into the capacitor Ca is not performed.

よつて電圧検出線401の電圧が高速度に変化
した場合でも電圧供給源200に正常な帰還電圧
を与えることができる。従つて電圧供給手段20
0において被験体100に与える電圧を高速度に
変化させても、その電圧の変化に追従して帰還電
圧も変化するから、電圧供給手段200から被験
体100に与えられる電圧もオーバーシユートが
発生することなく、電圧設定器202の電圧も安
定化される。
Therefore, even if the voltage of the voltage detection line 401 changes at a high speed, a normal feedback voltage can be provided to the voltage supply source 200. Therefore, the voltage supply means 20
Even if the voltage applied to the test object 100 at 0 is changed at high speed, the feedback voltage will also change following the change in voltage, so overshoot will occur in the voltage applied to the test object 100 from the voltage supply means 200. The voltage of the voltage setter 202 is also stabilized without the need to do so.

第3図にこの考案の更に他の実施例を示す。こ
の例ではガード電圧印加手段700を構成する増
幅器701と帰還回路500を構成する演算増幅
器の間に切替手段800を設けた場合を示す。
FIG. 3 shows still another embodiment of this invention. This example shows a case where switching means 800 is provided between amplifier 701 forming guard voltage applying means 700 and operational amplifier forming feedback circuit 500.

つまり切替手段800を増幅器701の入力側
に設け、シールド403は増幅器701の入力側
に接続されたままの構造にした場合を示す。
In other words, a structure is shown in which the switching means 800 is provided on the input side of the amplifier 701, and the shield 403 remains connected to the input side of the amplifier 701.

切替手段800を接点802に切替えることに
よつて増幅器701の入力端子は時定数回路70
2を介して共通電位点600に接続され、ケーブ
ル400のシールド403に共通電位点600の
電位を与えることができる。
By switching the switching means 800 to the contact 802, the input terminal of the amplifier 701 is connected to the time constant circuit 70.
2 to the common potential point 600, and can apply the potential of the common potential point 600 to the shield 403 of the cable 400.

この場合も切替手段800を接点802に切替
えると時定数回路702とシールド403及び電
圧検出線402との間のリーク抵抗Raと静電容
量Caは電圧帰還回路500から切離される。こ
の結果電圧帰還回路500の応答速度が速くなり
被験体100に高速度で変化する電圧を正確に与
えることがで、機能試験を短縮時間に行うことが
できる。
In this case as well, when the switching means 800 is switched to the contact 802, the leak resistance Ra and capacitance Ca between the time constant circuit 702, the shield 403, and the voltage detection line 402 are disconnected from the voltage feedback circuit 500. As a result, the response speed of the voltage feedback circuit 500 becomes faster, and by accurately applying a rapidly changing voltage to the test object 100, a functional test can be performed in a shortened time.

「考案の作用効果」 以上説明したようにこの考案によれば被験体1
00の端子の直流特性を測定する場合のように微
少電流測定時はケーブル400のシールド403
にガード電圧を与え、このガード電圧によつてケ
ーブル400のリーク抵抗Ra及び静電容量Caに
よる電流測定の悪影響を除去し、微少電流を精度
よく測定することができる。
“Effects of the device” As explained above, according to this device, subject 1
When measuring a minute current, such as when measuring the DC characteristics of the terminal 00, the shield 403 of the cable 400
A guard voltage is applied to the cable 400, and this guard voltage removes the adverse effects of current measurement due to the leakage resistance Ra and capacitance Ca of the cable 400, making it possible to accurately measure minute currents.

更に被験体の機能試験のように被験体100の
電源端子に比較的大きい電流を流す試験を行う場
合はガード電圧の印加回路を截断し、これによつ
て電圧帰還回路の応答速度を高めることによつて
被験体100の端子に与える電圧の応答を速くす
ることができる。
Furthermore, when performing a test in which a relatively large current is passed through the power supply terminal of the test object 100, such as a functional test of the test object, the guard voltage application circuit is cut off, thereby increasing the response speed of the voltage feedback circuit. Therefore, the response of the voltage applied to the terminal of the subject 100 can be made faster.

つまり段階状に変化する電圧を端子に与えた場
合、その各ステツプで起きるオーバーシユートは
短時間に収斂するため各電圧における電流測定を
電圧の変化時点から大きく遅らせなくても測定で
きる。よつて機能試験を高速度で行うことができ
る。
In other words, when a voltage that changes stepwise is applied to the terminal, the overshoot that occurs at each step converges in a short time, so the current measurement at each voltage can be measured without a large delay from the point at which the voltage changes. Therefore, functional tests can be performed at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の一実施例を示す接続図、第
2図及び第3図はこの考案の他の実施例を説明す
るための接続図、第4図は従来の電圧印加電流測
定装置を説明するための接続図、第5図は従来装
置における電圧帰還回路の部分の等価回路を示す
接続図、第6図及び第7図は従来のガード電圧印
加手段の接続構造を説明するための接続図、第8
図は従来の電圧印加電流測定装置の動作を説明す
るための波形図である。 100……被験体、200……電圧供給源、3
00……電流測定手段、304……レンジ切替手
段、400……ケーブル、401……電圧供給
源、402……電圧検出線、403……シール
ド、Ra……リーク抵抗、Ca……静電容量、50
0……電圧帰還回路、600……共通電位点、7
00……ガード電圧印加手段、800……切替手
段。
Fig. 1 is a connection diagram showing one embodiment of this invention, Figs. 2 and 3 are connection diagrams for explaining other embodiments of this invention, and Fig. 4 shows a conventional voltage applied current measuring device. 5 is a connection diagram showing an equivalent circuit of the voltage feedback circuit in a conventional device. FIGS. 6 and 7 are connection diagrams for explaining the connection structure of a conventional guard voltage applying means. Figure, 8th
The figure is a waveform diagram for explaining the operation of a conventional voltage applied current measuring device. 100...Test, 200...Voltage supply source, 3
00... Current measuring means, 304... Range switching means, 400... Cable, 401... Voltage supply source, 402... Voltage detection line, 403... Shield, Ra... Leak resistance, Ca... Capacitance , 50
0... Voltage feedback circuit, 600... Common potential point, 7
00...Guard voltage application means, 800...Switching means.

Claims (1)

【実用新案登録請求の範囲】 A 被験体の端子に電圧供給線を介して電圧を印
加する電圧供給源と、 B 被験体の端子電圧を電圧検出線を通じて取り
出し、上記電圧供給源に帰還し、被験体の端子
電圧を所望の電圧に維持させるための電圧帰還
回路と、 C 上記電圧供給線を通じて被験体に流れる電流
を測定する電流測定手段と、 D 上記電流測定手段に設けられ、測定電流値を
切換えるレンジ切換手段と、 E 上記電圧供給線及び電圧検出線を保護するシ
ールドに上記電圧供給線に与える電圧と同じ電
圧を印加するガード電圧印加手段と、 F 上記レンジ切換手段が大電流測定レンジに切
換えられるのと連動して上記ガード電圧印加手
段に共通電位点の電圧を与える切替手段と、 から成る電圧印加電流測定装置。
[Scope of Claim for Utility Model Registration] A. A voltage supply source that applies voltage to the terminals of the test object via a voltage supply line; B. The terminal voltage of the test object is extracted through a voltage detection line and returned to the voltage supply source; A voltage feedback circuit for maintaining the terminal voltage of the test object at a desired voltage; C. A current measuring means for measuring the current flowing through the test object through the voltage supply line; D. A current measuring means provided in the current measuring means and measuring a current value. E a guard voltage applying means that applies the same voltage as the voltage applied to the voltage supply line to a shield that protects the voltage supply line and the voltage detection line; and a switching means for applying a voltage at a common potential point to the guard voltage applying means in conjunction with switching to the guard voltage applying means.
JP11227586U 1986-07-21 1986-07-21 Expired JPH0438303Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11227586U JPH0438303Y2 (en) 1986-07-21 1986-07-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11227586U JPH0438303Y2 (en) 1986-07-21 1986-07-21

Publications (2)

Publication Number Publication Date
JPS6319281U JPS6319281U (en) 1988-02-08
JPH0438303Y2 true JPH0438303Y2 (en) 1992-09-08

Family

ID=30992995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11227586U Expired JPH0438303Y2 (en) 1986-07-21 1986-07-21

Country Status (1)

Country Link
JP (1) JPH0438303Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674005B2 (en) * 2001-07-04 2011-04-20 株式会社アドバンテスト Power supply device and test device
JP2015111087A (en) * 2013-12-06 2015-06-18 オムロン株式会社 Non-contact voltage measurement device and non-contact voltage measurement method

Also Published As

Publication number Publication date
JPS6319281U (en) 1988-02-08

Similar Documents

Publication Publication Date Title
JP3088727B2 (en) Quiescent current measuring device
EP3605118B1 (en) Open current sense detection in multiphase buck voltage regulator
JP3072880B2 (en) Voltage generator for IC test
JPH11174113A (en) Circuit for measuring current of ic tester based on impressed voltage
JP3119335B2 (en) IC test equipment
JPH0438303Y2 (en)
KR19980032847A (en) Voltage application circuit
JPS641649Y2 (en)
JP2001091562A (en) Device for inspecting circuit board
JPH0136362Y2 (en)
JPH0827332B2 (en) Interface circuit
KR100231649B1 (en) A test board having a capacitor charging circuit and a test method using the test board
JP2003014825A (en) Electric source device and test device
JP3147486B2 (en) Semiconductor element measurement circuit
JPH0650786Y2 (en) IC test equipment
JPH0524222Y2 (en)
SU1626221A1 (en) Device for measuring the gain of analog chips
JPH05870Y2 (en)
JPS6142138Y2 (en)
JPH051824Y2 (en)
JP2723688B2 (en) Apparatus for measuring frequency characteristics of semiconductor integrated circuits
JP2561076Y2 (en) Resistance measuring device
JPS6342484A (en) Integrated circuit device
JPH0519819Y2 (en)
JPH04244974A (en) Measurement of semiconductor integrated circuit