JPH04217869A - Power supply - Google Patents

Power supply

Info

Publication number
JPH04217869A
JPH04217869A JP2404275A JP40427590A JPH04217869A JP H04217869 A JPH04217869 A JP H04217869A JP 2404275 A JP2404275 A JP 2404275A JP 40427590 A JP40427590 A JP 40427590A JP H04217869 A JPH04217869 A JP H04217869A
Authority
JP
Japan
Prior art keywords
power factor
output
circuit
power supply
factor correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2404275A
Other languages
Japanese (ja)
Inventor
Hisaichi Murayama
寿市 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Lambda Corp
Original Assignee
TDK Lambda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Lambda Corp filed Critical TDK Lambda Corp
Priority to JP2404275A priority Critical patent/JPH04217869A/en
Publication of JPH04217869A publication Critical patent/JPH04217869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Control Of Electrical Variables (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE:To reduce the capacity of smoothing capacitor on the input side by suppressing the ripple current on the input side of an inverter. CONSTITUTION:Two power factor improving circuits 6, 6A are connected in parallel on the input side of an inverter and an input voltage Vi is divided through resistors 8, 9. Pulses having periods corresponding to the input voltage detection levels are then delivered, as driving signals D1, D2 having phase difference of 360 deg./2, to the switching elements 3, 3A in the power factor improving circuits 6, 6A from an oscillation circuit 19. Output currents I1, I2 from the power factor improving circuits 6, 6A flow into a smoothing capacitor 7 with rising gradient during H level interval while with lowering gradient during L level interval. Consequently, the input current I function as if it has doubled frequency thus suppressing ripple current.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はインバ―タの入力側に力
率改善回路を接続した電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device having a power factor correction circuit connected to the input side of an inverter.

【0002】0002

【従来の技術】一般に電源装置は直流電圧を入力して安
定した任意の電圧を出力するものであるが、交流電源電
圧を整流ダイオ―ドと平滑コンデンサで整流平滑して直
流電圧に変換した場合、交流電源電圧が完全な正弦波形
であるにもかかわらず、電流は平滑コンデンサの充電さ
れている期間のみ流れてパルス波形となり、入力力率の
低下を生じて高周波ノイズの発生源となる。
[Prior Art] Generally, a power supply device inputs a DC voltage and outputs a stable arbitrary voltage, but when the AC power supply voltage is rectified and smoothed using a rectifier diode and a smoothing capacitor and converted to a DC voltage. Even though the AC power supply voltage has a perfect sine waveform, the current flows only during the period when the smoothing capacitor is charged, resulting in a pulse waveform, which causes a drop in the input power factor and becomes a source of high-frequency noise.

【0003】このような入力力率の低下を防止するもの
として図9に示す電源装置が提案されている。この電源
装置は三相交流電源1を整流する三相整流回路2に第1
のスイッチング素子3と、インダクタンス4と、ダイオ
―ド5とにより構成される昇圧チョッパ回路からなる力
率改善回路6を接続し、この力率改善回路6の出力端間
に平滑コンデンサ7を接続するとともに、力率改善回路
6で昇圧されかつ平滑コンデンサ7で平滑された直流入
力電圧Vi を抵抗8と抵抗9で分圧された入力検出電
圧として第1の制御用IC10に供給する。この制御用
IC10はこの入力検出電圧のレベルに応じて入力電圧
Vi が一定になるように形成された駆動信号Dを第1
のスイッチング素子3に供給する。前記直流入力電圧V
i はトランス11と第2のスイッチング素子12から
なるインバ―タ13に供給され、第2のスイッチング素
子12をスイッチングすることによりトランス11の二
次巻線に誘起された電圧を整流平滑回路14により整流
平滑し、出力端子+V,−Vを介して負荷15に直流出
力電圧Vo を供給する。この直流出力電圧Vo は抵
抗16と抵抗17で分圧された出力検出電圧として第2
の制御用IC18に供給され、制御用IC18はこの出
力検出電圧のレベルに応じて出力電圧Vo が一定にな
るように形成された駆動信号を第2のスイッチング素子
12に供給する。
A power supply device shown in FIG. 9 has been proposed to prevent such a decrease in the input power factor. This power supply device has a three-phase rectifier circuit 2 that rectifies a three-phase AC power source 1.
A power factor correction circuit 6 consisting of a boost chopper circuit constituted by a switching element 3, an inductance 4, and a diode 5 is connected, and a smoothing capacitor 7 is connected between the output terminals of this power factor correction circuit 6. At the same time, the DC input voltage Vi boosted by the power factor correction circuit 6 and smoothed by the smoothing capacitor 7 is supplied to the first control IC 10 as an input detection voltage divided by the resistors 8 and 9. The control IC 10 outputs a first drive signal D, which is formed so that the input voltage Vi is constant, according to the level of the input detection voltage.
is supplied to the switching element 3 of. The DC input voltage V
i is supplied to an inverter 13 consisting of a transformer 11 and a second switching element 12, and by switching the second switching element 12, the voltage induced in the secondary winding of the transformer 11 is converted by a rectifying and smoothing circuit 14. After rectification and smoothing, a DC output voltage Vo is supplied to the load 15 via output terminals +V and -V. This DC output voltage Vo is the second output detection voltage divided by the resistor 16 and resistor 17.
The control IC 18 supplies the second switching element 12 with a drive signal formed so that the output voltage Vo is constant according to the level of this output detection voltage.

【0004】このように、力率改善回路6をインバ―タ
13の入力側に備えた電源装置においては、力率改善回
路6の第1のスイッチング素子3が駆動信号Dによりオ
ン動作している時にはインダクタンス4に電磁エネルギ
―が蓄積され、第1のスイッチング素子3がオフの時に
は蓄積された電磁エネルギ―と三相整流回路2からの出
力電流とを重量させてダイオ―ド5を通して平滑コンデ
ンサ7を充電することで交流電圧波形に電流波形を近づ
けることにより入力力率を改善するものであり、この場
合、平滑コンデンサ7に流れ込む入力電流Iの波形は図
10に示すように駆動信号Dのオン期間に上昇勾配にな
るとともにオフ期間に下降勾配となる。
As described above, in the power supply device including the power factor correction circuit 6 on the input side of the inverter 13, the first switching element 3 of the power factor correction circuit 6 is turned on by the drive signal D. At times, electromagnetic energy is accumulated in the inductance 4, and when the first switching element 3 is off, the accumulated electromagnetic energy and the output current from the three-phase rectifier circuit 2 are combined and passed through the diode 5 to the smoothing capacitor 7. By charging the current waveform, the input power factor is improved by bringing the current waveform closer to the AC voltage waveform. In this case, the waveform of the input current I flowing into the smoothing capacitor 7 changes when the drive signal D is turned on, as shown in FIG. There is an upward slope during the off period and a downward slope during the off period.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術において
は、1個の力率改善回路6が設けられているだけである
ため特に大電流容量の電源装置においては、力率改善回
路6のインダクタンスL分が小さくなり、これによりリ
プル電流が増大し大容量の平滑コンデンサを必要とする
という問題があった。
[Problems to be Solved by the Invention] In the above-mentioned prior art, since only one power factor correction circuit 6 is provided, the inductance L of the power factor correction circuit 6 is particularly large in a power supply device with a large current capacity. This causes a problem in that the ripple current increases and a large capacity smoothing capacitor is required.

【0006】そこで本発明はインバ―タの入力側に発生
するリプル電流を低減させ入力側の平滑コンデンサの容
量を小さくすることができる電源装置を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a power supply device that can reduce the ripple current generated on the input side of an inverter and reduce the capacity of the smoothing capacitor on the input side.

【0007】[0007]

【課題を解決するための手段】本発明は交流電源電圧を
整流回路により整流するとともに、スイッチング素子を
スイッチングして前記交流電源電圧の電圧波形と電流波
形を近づけるための力率改善回路を介在して平滑コンデ
ンサにより平滑した直流入力電圧をインバ―タに供給す
る電源装置において、前記力率改善回路をn個並列に接
続するとともに、これらの各力率改善回路のスイッチン
グ素子に駆動信号を供給する発振回路は360 °/n
の位相差を有する駆動信号を各スイッチング素子に供給
するものである。
[Means for Solving the Problems] The present invention rectifies the AC power supply voltage using a rectifier circuit, and also includes a power factor correction circuit for switching a switching element to bring the voltage waveform and current waveform of the AC power supply voltage close to each other. In a power supply device that supplies a DC input voltage smoothed by a smoothing capacitor to an inverter, n pieces of the power factor correction circuits are connected in parallel, and a drive signal is supplied to the switching element of each of these power factor correction circuits. The oscillation circuit is 360°/n
A drive signal having a phase difference of 1 is supplied to each switching element.

【0008】[0008]

【作用】上記構成によって、発振回路から360 °/
nの位相差を有する駆動信号が各スイッチング素子に供
給され、これによりn個の力率改善回路の各スイッチン
グ素子は360 °/nの位相差で順次駆動され、n個
の力率改善回路の出力電流が合成されて平滑コンデンサ
に流れ込む。
[Operation] With the above configuration, 360°/360° from the oscillation circuit
A drive signal having a phase difference of n is supplied to each switching element, whereby each switching element of the n power factor correction circuits is sequentially driven with a phase difference of 360°/n, and the driving signal of the n power factor correction circuits is sequentially driven with a phase difference of 360°/n. The output currents are combined and flow into the smoothing capacitor.

【0009】[0009]

【実施例】以下、本発明の実施例を添付図面を参照して
説明する。なお、図9と同一部分に同一符号を付し同一
箇所の詳細な説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Note that the same parts as in FIG. 9 are given the same reference numerals, and detailed explanations of the same parts are omitted.

【0010】図1乃至図4は本発明の第1実施例を示し
、図1に示すようにインダクタンス4とダイオ―ド5と
第1のスイッチング素子3からなり図9と同一の構成を
有する第1の力率改善回路6に対し、インダクタンス4
Aとダイオ―ド5Aと第3のスイッチング素子3Aから
なる第2の力率改善回路6Aが並列に接続されており、
第1,第2の力率改善回路6,6Aの第1,第3のスイ
ッチング素子3,3Aには制御用IC10Aに内蔵する
発振回路19から360°/2の位相差を有する駆動信
号が供給されるようになっている。発振回路19は図2
に示すように図示しない電圧−周波数変換回路を介して
入力検出電圧レベルに応じた一定周期のパルスを出力す
る基準信号発生回路20の出力信号S1 をフリップフ
ロップ21Aのクロック入力端子CK及び各ナンドゲ―
ト22A,22Bの一方の入力端子に供給するとともに
、このフリップフロップ21Aを駆動させるための基準
電圧Vccをフリップフロップ21Aの電源供給端子V
ccに印加しかつ電流制限用抵抗23を介して入力端子
J及び入力端子Kに印加する。そして、基準信号発生回
路20からの出力信号S1 に基づいてフリップフロッ
プ21Aの非反転入力端子Q及び反転入力端子Q´から
それぞれ出力信号S2 ,S3がナンドゲ―ト22A,
22Bの他方の入力端子に供給されることにより、この
各ナンドゲ―ト22A,22Bの出力端子から180 
°の位相差を有する駆動信号D1 ,D2 が出力され
るように構成されている。
FIGS. 1 to 4 show a first embodiment of the present invention, and as shown in FIG. 1 power factor correction circuit 6, inductance 4
A, a second power factor correction circuit 6A consisting of a diode 5A and a third switching element 3A are connected in parallel,
A drive signal having a phase difference of 360°/2 is supplied from the oscillation circuit 19 built in the control IC 10A to the first and third switching elements 3 and 3A of the first and second power factor correction circuits 6 and 6A. It is now possible to do so. The oscillation circuit 19 is shown in Figure 2.
As shown in FIG. 2, the output signal S1 of the reference signal generation circuit 20, which outputs a pulse with a constant period according to the input detection voltage level, is sent to the clock input terminal CK of the flip-flop 21A and each NAND gate through a voltage-frequency conversion circuit (not shown).
The reference voltage Vcc for driving the flip-flop 21A is supplied to the power supply terminal V of the flip-flop 21A.
cc and is applied to the input terminals J and K via the current limiting resistor 23. Based on the output signal S1 from the reference signal generation circuit 20, output signals S2 and S3 are output from the non-inverting input terminal Q and the inverting input terminal Q' of the flip-flop 21A, respectively, to the NAND gate 22A,
180 from the output terminal of each NAND gate 22A, 22B by being supplied to the other input terminal of 22B.
The drive signals D1 and D2 having a phase difference of .degree. are output.

【0011】次に上記構成につきその作用を説明する。 電源を投入すると、三相交流電源1からの電源電圧が三
相整流回路2により整流され、この整流された電圧は第
1,第2の力率改善回路6,6Aを介して平滑コンデン
サ7により平滑されてインバ―タ13に供給され、イン
バ―タ13から出力された電圧は整流平滑回路14によ
り整流平滑されて負荷15に供給される。この場合、発
振回路19においては第3図のタイムチャ―トに示すよ
うにフリップフロップ21Aの入力端子J及び入力端子
Kは共にHレベルのため、基準信号発生回路20からの
出力信号がHレベルに立上ってフリップフロップ21A
のクロック入力端子CKに印加されると、その瞬間に出
力端子Qからの出力信号S2 はHレベルになるととも
に、出力端子Qからの出力信号S3 はLレベルとなる
。このフリップフロップ21Aは次に基準信号発生回路
20からの出力信号S1 が再びLレベルからHレベル
に立上るまで、出力端子Q,Q´の状態を保持するとと
もに、この出力信号S1 がHレベルに立上った瞬間に
各出力端子Q,Q´はその状態を反転させるため出力信
号S1 がHレベルに立上るごとに出力信号S2 ,S
3 は互いに反転状態を保ちながらLレベル又はHレベ
ルに切り換って各ナンドゲ―ト22A,22Bに出力さ
れる。そして、図3のように出力信号S1 及び出力信
号S2 が共にHレベルの期間はナンドゲ―ト22Aか
らの駆動信号D1 はLレベルとなり、出力信号S1 
及び出力信号S3 が共にHレベルの期間はナンドゲ―
ト22Bからの駆動信号D2 はLレベルになるため、
駆動信号D1 ,D2 は基準信号発生回路20からの
出力信号S1 に応じて180 °の位相差を有するよ
うに出力されて第1,第2の力率改善回路6,6Aのス
イッチング素子3,3Aに供給される。
Next, the operation of the above structure will be explained. When the power is turned on, the power supply voltage from the three-phase AC power supply 1 is rectified by the three-phase rectifier circuit 2, and this rectified voltage is passed through the first and second power factor correction circuits 6, 6A to the smoothing capacitor 7. The voltage output from the inverter 13 is smoothed and then supplied to the load 15 after being rectified and smoothed by the rectification and smoothing circuit 14 . In this case, in the oscillation circuit 19, the input terminals J and K of the flip-flop 21A are both at H level as shown in the time chart of FIG. Stand up and flip flop 21A
At that moment, the output signal S2 from the output terminal Q becomes H level, and the output signal S3 from the output terminal Q becomes L level. This flip-flop 21A holds the states of the output terminals Q and Q' until the output signal S1 from the reference signal generation circuit 20 rises from the L level to the H level again, and this output signal S1 also rises to the H level. The output terminals Q and Q' invert their states at the moment of rising, so each time the output signal S1 rises to H level, the output signals S2 and S
3 are switched to L level or H level while maintaining an inverted state, and are outputted to each NAND gate 22A, 22B. Then, as shown in FIG. 3, during the period when both the output signal S1 and the output signal S2 are at the H level, the drive signal D1 from the NAND gate 22A is at the L level, and the output signal S1
and output signal S3 are both at H level, the NAND game
Since the drive signal D2 from the port 22B becomes L level,
The drive signals D1 and D2 are outputted with a phase difference of 180 degrees according to the output signal S1 from the reference signal generation circuit 20, and are outputted to the switching elements 3 and 3A of the first and second power factor correction circuits 6 and 6A. supplied to

【0012】このため、図4の波形図に示すように第1
のスイッチング素子3のオン期間つまり駆動信号D1 
がHレベルの期間は第1の力率改善回路6の出力電流I
1 が上昇勾配になり、第1のスイッチング素子3のオ
フ期間つまり駆動信号D1 がLレベルの期間は出力電
流I1 が下降勾配になる。そして、第2の力率改善回
路6Aの出力電流I2 は駆動信号D2 による第3の
スイッチング素子3Aの動作によって出力電流I1 と
同一形状で出力電流I1 と180 °の位相差を有す
るものになる。従って平滑コンデンサ7に流れ込む入力
電流Iは駆動信号D1 とD2 がHレベルのとき上昇
勾配となり、駆動信号D1 又はD2 がLレベルのと
き下降勾配となって、図10に示す従来のものに比べ恰
も2倍の周波数を有するように作用し、リプル電流が1
/2に低減され、これによって平滑コンデンサ7の容量
も小さくすることができ、特に大電流容量の電源装置に
おいて優れた効果がある。
Therefore, as shown in the waveform diagram of FIG.
The on period of the switching element 3, that is, the drive signal D1
During the period when is at H level, the output current I of the first power factor correction circuit 6
1 has an upward slope, and during the off period of the first switching element 3, that is, the period when the drive signal D1 is at L level, the output current I1 has a downward slope. The output current I2 of the second power factor correction circuit 6A has the same shape as the output current I1 and has a phase difference of 180° from the output current I1 due to the operation of the third switching element 3A based on the drive signal D2. Therefore, the input current I flowing into the smoothing capacitor 7 has an upward slope when the drive signals D1 and D2 are at the H level, and has a downward slope when the drive signal D1 or D2 is at the L level. It acts to have twice the frequency, and the ripple current is 1
/2, thereby making it possible to reduce the capacitance of the smoothing capacitor 7, which is particularly effective in a power supply device with a large current capacity.

【0013】図5乃至図8は本発明の第2実施例を示し
、第1実施例と同一部分に同一符号を付し同一箇所の詳
細な説明を省略する。
FIGS. 5 to 8 show a second embodiment of the present invention, in which the same parts as in the first embodiment are given the same reference numerals and detailed explanations of the same parts will be omitted.

【0014】図5においては、第1の力率改善回路6に
対し第2,第3,第4の力率改善回路6A,6B,6C
を並列接続するとともに、発振回路19Aを各力率改善
回路6〜6Cの各スイッチング素子3,3A…に対し9
0°の位相差を有する駆動信号D1 ´,D2 ´,D
3 ,D4 を供給するように構成したものであり、発
振回路19Aは図6に示すようにアンドゲ―ト22Cの
出力端子からフリップフロップ21Bのクロック入力端
子CK及び各ナンドゲ―ト22E,22Fの一方の入力
端子に出力信号S4 を供給し、アンドゲ―ト22Dの
出力端子からフリップフロップ21Cのクロック入力端
子CK及び各ナンドゲ―ト22G,22Hの一方の入力
端子に出力信号S5を供給するとともにフリップフロッ
プ21B,21Cの電源供給端子Vccに基準電圧Vc
cを供給し、かつ電流制限用抵抗23A,23Bを介し
て入力端子J及び入力端子Kに基準電圧Vccを供給す
る。そして、前記フリップフロップ21Bの出力端子Q
及び出力端子Q´から、それぞれ各ナンドゲ―ト22E
,22Fの他方の入力端子に出力信号S6 ,S7 を
供給して、この各ナンドゲ―ト22E,22Fの出力端
子から第1,第2の力率改善回路6,6Aのスイッチン
グ素子3,3Aに駆動信号D1´,D2 ´を出力する
とともに、フリップフロップ21Cの出力端子Q及び出
力端子Q´からそれぞれ各ナンドゲ―ト22G,22H
の他方の入力端子に出力信号S8,S9 を供給して、
このナンドゲ―ト22G,22Hの出力端子から各第3
,第4の力率改善回路6B,6Cのスイッチング素子に
駆動信号D3 ,D4 を出力するように構成される。
In FIG. 5, second, third, and fourth power factor improvement circuits 6A, 6B, and 6C are connected to the first power factor improvement circuit 6.
are connected in parallel, and the oscillation circuit 19A is connected to each switching element 3, 3A, .
Drive signals D1', D2', D with a phase difference of 0°
As shown in FIG. 6, the oscillation circuit 19A is configured to supply signals from the output terminal of the AND gate 22C to the clock input terminal CK of the flip-flop 21B and one of the NAND gates 22E and 22F. An output signal S4 is supplied to the input terminal of the AND gate 22D, and an output signal S5 is supplied from the output terminal of the AND gate 22D to the clock input terminal CK of the flip-flop 21C and one input terminal of each of the NAND gates 22G and 22H. Reference voltage Vc is applied to the power supply terminal Vcc of 21B and 21C.
A reference voltage Vcc is supplied to input terminal J and input terminal K via current limiting resistors 23A and 23B. Then, the output terminal Q of the flip-flop 21B
and each NAND gate 22E from the output terminal Q'.
, 22F are supplied with the output signals S6, S7 to the other input terminals of the NAND gates 22E, 22F to the switching elements 3, 3A of the first and second power factor correction circuits 6, 6A. While outputting the drive signals D1' and D2', the output terminals Q and Q' of the flip-flop 21C are connected to the NAND gates 22G and 22H, respectively.
Supplying output signals S8 and S9 to the other input terminal of
From the output terminals of these NAND gates 22G and 22H, each third
, and are configured to output drive signals D3 and D4 to the switching elements of the fourth power factor correction circuits 6B and 6C.

【0015】発振回路19Aでは図7のタイムチャ―ト
に示すように、基準信号発生回路20からの出力信号S
1 のパルス毎にアンドゲ―ト22C,22Dから18
0 °の位相差を有する出力信号S4 ,S5 が、各
フリップフロップ21B,21Cのクロック入力端子C
Kに供給される。このフリップフロップ21B,21C
は、出力信号S4 ,S5 がLレベルからHレベルに
立上るまで出力端子Q,Q´の状態を保持するとともに
、この出力信号S4 ,S5 がHレベルに立上った瞬
間に出力端子Q,Q´の状態を切り換えて、出力信号S
6 ,S7 及び出力信号S8 ,S9 は互いに反転
状態を保ちながら各ナンドゲ―ト22E,22F及び各
ナンドゲ―ト22G,22Hに出力される。これによっ
て、先ず出力信号S4 ,S6 が共にHレベルとなっ
てナンドゲ―ト22Eからの駆動信号D1 ´がLレベ
ルになり、その後出力信号S5 ,S8 、出力信号S
4 ,S7 、出力信号S5 ,S9 が順次Hレベル
になり、これにより各ナンドゲ―ト22E,22F,2
2G,22Hから駆動信号D1 ´→D3 →D2 ´
→D4 の順に90°の位相差を有して出力され、第1
〜第4の力率改善回路6〜6Cに供給される。
As shown in the time chart of FIG. 7, the oscillation circuit 19A receives the output signal S from the reference signal generation circuit 20.
18 from AND gates 22C and 22D for every pulse of 1
Output signals S4 and S5 having a phase difference of 0° are applied to the clock input terminal C of each flip-flop 21B and 21C.
K is supplied. This flip-flop 21B, 21C
holds the states of the output terminals Q, Q' until the output signals S4, S5 rise from the L level to the H level, and at the moment the output signals S4, S5 rise to the H level, the output terminals Q, By switching the state of Q', the output signal S
6, S7 and output signals S8, S9 are outputted to each NAND gate 22E, 22F and each NAND gate 22G, 22H while maintaining mutually inverted states. As a result, both the output signals S4 and S6 become H level, the drive signal D1' from the NAND gate 22E becomes L level, and then the output signals S5 and S8 and the output signal S
4, S7, and the output signals S5, S9 sequentially become H level, thereby each NAND gate 22E, 22F, 2
Drive signal D1 '→D3 →D2' from 2G and 22H
→D4 is output with a phase difference of 90°, and the first
- Supplied to the fourth power factor correction circuits 6 to 6C.

【0016】このため、図8の波形図に示すように平滑
コンデンサ7に流れ込む入力電流Iは図10に示す従来
のものに比べ恰も4倍の周波数を有したもののように作
用し、これによりリプル電流も1/4に低減し、平滑コ
ンデンサ7の容量も小さくすることができる。
Therefore, as shown in the waveform diagram of FIG. 8, the input current I flowing into the smoothing capacitor 7 acts as if it had four times the frequency as compared to the conventional one shown in FIG. The current can also be reduced to 1/4, and the capacity of the smoothing capacitor 7 can also be reduced.

【0017】なお、本発明は上記実施例に限定されるも
のではなく本発明の要旨の範囲内において種々の変形実
施が可能である。例えば力率改善回路は昇圧チョッパ回
路を用いたが昇降圧チョッパ回路等を用いることもでき
、またスイッチング素子はFETに代えてトランジスタ
等を用いることもできる。さらに、インバ―タは各種タ
イプのものに適用できる。また三相交流電源に代えて単
相交流電源を用いてもよい。
Note that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made within the scope of the gist of the present invention. For example, although a step-up chopper circuit is used as the power factor correction circuit, a step-up/down chopper circuit or the like may also be used, and a transistor or the like may be used instead of an FET as the switching element. Furthermore, the inverter can be applied to various types. Furthermore, a single-phase AC power source may be used instead of the three-phase AC power source.

【0018】[0018]

【発明の効果】本発明は交流電源電圧を整流回路により
整流するとともに、スイッチング素子をスイッチングし
て前記交流電源電圧の電圧波形と電流波形を近づけるた
めの力率改善回路を介在して平滑コンデンサにより平滑
した直流入力電圧をインバ―タに供給する電源装置にお
いて、前記力率改善回路をn個並列に接続するとともに
、これらの各力率改善回路のスイッチング素子に駆動信
号を供給する発振回路は360 °/nの位相差を有す
る駆動信号を各スイッチング素子に供給するようにした
ものであり、インバ―タの入力側に発生するリプル電流
を低減させ入力側の平滑コンデンサの容量を小さくする
ことができる電源装置を提供できる。
Effects of the Invention The present invention rectifies the AC power supply voltage using a rectifier circuit, and also uses a smoothing capacitor via a power factor correction circuit for switching a switching element to bring the voltage waveform and current waveform of the AC power supply voltage close to each other. In a power supply device that supplies a smoothed DC input voltage to an inverter, n power factor correction circuits are connected in parallel, and an oscillation circuit that supplies drive signals to switching elements of each of these power factor correction circuits is 360. A drive signal with a phase difference of °/n is supplied to each switching element, which reduces the ripple current generated on the input side of the inverter and reduces the capacitance of the smoothing capacitor on the input side. We can provide a power supply device that can

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例を示す電源装置の回路構成
図である。
FIG. 1 is a circuit configuration diagram of a power supply device showing a first embodiment of the present invention.

【図2】本発明の第1実施例を示す発振回路の回路構成
図である。
FIG. 2 is a circuit configuration diagram of an oscillation circuit showing a first embodiment of the present invention.

【図3】本発明の第1実施例を示す発振回路の動作を示
すタイムチャ―トである。
FIG. 3 is a time chart showing the operation of the oscillation circuit according to the first embodiment of the present invention.

【図4】本発明の第1実施例を示す駆動信号と電流の波
形図である。
FIG. 4 is a waveform diagram of drive signals and current showing the first embodiment of the present invention.

【図5】本発明の第2実施例を示す電源装置の回路構成
図である。
FIG. 5 is a circuit configuration diagram of a power supply device showing a second embodiment of the present invention.

【図6】本発明の第2実施例を示す発振回路の回路構成
図である。
FIG. 6 is a circuit configuration diagram of an oscillation circuit showing a second embodiment of the present invention.

【図7】本発明の第2実施例を示す発振回路の動作を示
すタイムチャ―トである。
FIG. 7 is a time chart showing the operation of an oscillation circuit according to a second embodiment of the present invention.

【図8】本発明の第2実施例を示す駆動信号と電流の波
形図である。
FIG. 8 is a drive signal and current waveform diagram showing a second embodiment of the present invention.

【図9】従来例を示す電源装置の回路構成図である。FIG. 9 is a circuit configuration diagram of a power supply device showing a conventional example.

【図10】従来例を示す駆動信号と電流の波形図である
FIG. 10 is a drive signal and current waveform diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1  三相交流電源(交流電源) 2  三相整流回路(整流回路) 3,3A  スイッチング素子 6,6A,6B,6C  力率改善回路7  平滑コン
デンサ 19,19A  発振回路
1 Three-phase AC power supply (AC power supply) 2 Three-phase rectifier circuit (rectifier circuit) 3, 3A Switching element 6, 6A, 6B, 6C Power factor correction circuit 7 Smoothing capacitor 19, 19A Oscillator circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  交流電源電圧を整流回路により整流す
るとともに、スイッチング素子をスイッチングして前記
交流電源電圧の電圧波形と電流波形を近づけるための力
率改善回路を介在して平滑コンデンサにより平滑した直
流入力電圧をインバ―タに供給する電源装置において、
前記力率改善回路をn個並列に接続するとともに、これ
らの各力率改善回路のスイッチング素子に駆動信号を供
給する発振回路は360 °/nの位相差を有する駆動
信号を各スイッチング素子に供給するように構成される
ものであることを特徴とする電源装置。
1. Direct current that is rectified by a rectifier circuit and smoothed by a smoothing capacitor through a power factor correction circuit for switching a switching element to bring the voltage waveform and current waveform of the AC power source voltage closer together. In the power supply device that supplies input voltage to the inverter,
The n power factor correction circuits are connected in parallel, and an oscillation circuit that supplies a drive signal to the switching elements of each of these power factor correction circuits supplies a drive signal having a phase difference of 360°/n to each switching element. A power supply device characterized in that it is configured to.
JP2404275A 1990-12-20 1990-12-20 Power supply Pending JPH04217869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2404275A JPH04217869A (en) 1990-12-20 1990-12-20 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2404275A JPH04217869A (en) 1990-12-20 1990-12-20 Power supply

Publications (1)

Publication Number Publication Date
JPH04217869A true JPH04217869A (en) 1992-08-07

Family

ID=18513960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2404275A Pending JPH04217869A (en) 1990-12-20 1990-12-20 Power supply

Country Status (1)

Country Link
JP (1) JPH04217869A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133550A (en) * 1992-10-12 1994-05-13 Nemitsuku Ramuda Kk Power supply
JP2008512982A (en) * 2004-09-07 2008-04-24 フレクストロニクス エーピー,リミテッド ライアビリティ カンパニー Power supply system, power factor correction system, and power factor correction method
US7978489B1 (en) 2007-08-03 2011-07-12 Flextronics Ap, Llc Integrated power converters
US8040117B2 (en) 2009-05-15 2011-10-18 Flextronics Ap, Llc Closed loop negative feedback system with low frequency modulated gain
US8102678B2 (en) 2008-05-21 2012-01-24 Flextronics Ap, Llc High power factor isolated buck-type power factor correction converter
US8279646B1 (en) 2007-12-14 2012-10-02 Flextronics Ap, Llc Coordinated power sequencing to limit inrush currents and ensure optimum filtering
US8289741B2 (en) 2010-01-14 2012-10-16 Flextronics Ap, Llc Line switcher for power converters
US8441810B2 (en) 2010-11-09 2013-05-14 Flextronics Ap, Llc Cascade power system architecture
US8467201B2 (en) 2007-01-16 2013-06-18 Flextronics GmbH & Co KG Simplified primary triggering circuit for the switch in a switched-mode power supply
US8531174B2 (en) 2008-06-12 2013-09-10 Flextronics Ap, Llc AC-DC input adapter
US8842450B2 (en) 2011-04-12 2014-09-23 Flextronics, Ap, Llc Power converter using multiple phase-shifting quasi-resonant converters
US9621053B1 (en) 2014-08-05 2017-04-11 Flextronics Ap, Llc Peak power control technique for primary side controller operation in continuous conduction mode
US9660540B2 (en) 2012-11-05 2017-05-23 Flextronics Ap, Llc Digital error signal comparator
US9711990B2 (en) 2013-03-15 2017-07-18 Flextronics Ap, Llc No load detection and slew rate compensation

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133550A (en) * 1992-10-12 1994-05-13 Nemitsuku Ramuda Kk Power supply
JP2008512982A (en) * 2004-09-07 2008-04-24 フレクストロニクス エーピー,リミテッド ライアビリティ カンパニー Power supply system, power factor correction system, and power factor correction method
JP4897686B2 (en) * 2004-09-07 2012-03-14 フレクストロニクス エーピー,リミテッド ライアビリティ カンパニー POWER SUPPLY DEVICE, POWER FACTOR IMPROVEMENT DEVICE, AND POWER FACTOR IMPROVEMENT METHOD
US8467201B2 (en) 2007-01-16 2013-06-18 Flextronics GmbH & Co KG Simplified primary triggering circuit for the switch in a switched-mode power supply
US7978489B1 (en) 2007-08-03 2011-07-12 Flextronics Ap, Llc Integrated power converters
US8279646B1 (en) 2007-12-14 2012-10-02 Flextronics Ap, Llc Coordinated power sequencing to limit inrush currents and ensure optimum filtering
US8102678B2 (en) 2008-05-21 2012-01-24 Flextronics Ap, Llc High power factor isolated buck-type power factor correction converter
US8531174B2 (en) 2008-06-12 2013-09-10 Flextronics Ap, Llc AC-DC input adapter
US8040117B2 (en) 2009-05-15 2011-10-18 Flextronics Ap, Llc Closed loop negative feedback system with low frequency modulated gain
US8289741B2 (en) 2010-01-14 2012-10-16 Flextronics Ap, Llc Line switcher for power converters
US8441810B2 (en) 2010-11-09 2013-05-14 Flextronics Ap, Llc Cascade power system architecture
US8842450B2 (en) 2011-04-12 2014-09-23 Flextronics, Ap, Llc Power converter using multiple phase-shifting quasi-resonant converters
US9660540B2 (en) 2012-11-05 2017-05-23 Flextronics Ap, Llc Digital error signal comparator
US9711990B2 (en) 2013-03-15 2017-07-18 Flextronics Ap, Llc No load detection and slew rate compensation
US9843212B2 (en) 2013-03-15 2017-12-12 Flextronics Ap, Llc No load detection
US9621053B1 (en) 2014-08-05 2017-04-11 Flextronics Ap, Llc Peak power control technique for primary side controller operation in continuous conduction mode

Similar Documents

Publication Publication Date Title
US4816982A (en) AC to DC power converter with integrated line current control for improving power factor
US4980812A (en) Uninterrupted power supply system having improved power factor correction circuit
JPH04217869A (en) Power supply
JP2707465B2 (en) Inverter device
CN110932553B (en) Power supply control apparatus
JP3142755B2 (en) Switching power supply circuit
JPH08130871A (en) Dc-dc converter
JP4379981B2 (en) Power supply control circuit
JPS63316666A (en) Control of charge/discharce states of oscillation circuit and circuit apparatus
JP2003088105A (en) Switching regulator
JP3001009B2 (en) Switching power supply
JP3252540B2 (en) Inverter device
JPS61277372A (en) Power supply device
JP2920957B2 (en) Discharge lamp lighting device
JPS5833729A (en) Ac high voltage power supply
JP3191756B2 (en) Switching power supply
JPH08149851A (en) Piezoelectric transformer driver
JPS6032574A (en) Inverter device
JPH025677Y2 (en)
JPH0713435Y2 (en) Inverter device
JPS6087665A (en) Booster circuit
JP3543038B2 (en) Inverter device
JP3319882B2 (en) Discharge lamp lighting device
JP2729478B2 (en) converter
JPH1080155A (en) Formation apparatus for positive and negative pulses

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991122