JPH04191374A - Production of silicon oxide film by cvd method - Google Patents

Production of silicon oxide film by cvd method

Info

Publication number
JPH04191374A
JPH04191374A JP2321462A JP32146290A JPH04191374A JP H04191374 A JPH04191374 A JP H04191374A JP 2321462 A JP2321462 A JP 2321462A JP 32146290 A JP32146290 A JP 32146290A JP H04191374 A JPH04191374 A JP H04191374A
Authority
JP
Japan
Prior art keywords
monosilane
silicon oxide
oxide film
tetraethoxysilane
alkoxysilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2321462A
Other languages
Japanese (ja)
Inventor
Akio Tomimoto
富本 昭雄
Takuya Ikeda
拓也 池田
Yuko Hochido
寳地戸 雄幸
Takehiko Futaki
剛彦 二木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Kojundo Kagaku Kenkyusho KK
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Kojundo Kagaku Kenkyusho KK
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Kojundo Kagaku Kenkyusho KK, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP2321462A priority Critical patent/JPH04191374A/en
Publication of JPH04191374A publication Critical patent/JPH04191374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Silicon Polymers (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To efficiently form a silicon oxide film by CVD method by simultaneously using alkoxysilanes and monosilanes as the main raw material. CONSTITUTION:Alkoxysilanes and monosilanes are simultaneously used as the main raw material, when a silicon oxide film is produced by CVD method. The mixing ratio of the alkoxysilane to monosilane varies with the operational condition of CVD, structure of the device, requisite for flattening the silicon oxide film, etc. However, 0.001 to 0.5mols of monosilane is preferably used for 1mol of tetraethoxysilane when tetraethoxysilane is used as the alkoxysilane. Since different metals are used in this way, the substrate need not be selected, and a silicon oxide film excellent in flatness is produced at low temp. under the conditions where dust is hardly generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、CVD法(ケミカルペーパーデポジッション
:化学蒸着法)による酸化珪素膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a silicon oxide film by a CVD method (chemical paper deposition: chemical vapor deposition method).

〔従来の技術〕[Conventional technology]

半導体装置製造工程において、酸化珪素膜は、電気的絶
縁体、誘電体、空間充填体、保護膜等として用いられて
いる。この酸化珪素膜の形成方法としては、得られる膜
質が良好なこと、形成速度が早いことから、気体あるい
は気体化した原料を化学反応させて膜を形成するCVD
法が多用されている。このCVD法により酸化珪素膜を
形成する際の主原料としては、従来はモノシラン(Si
H4)が用いられていた。
In semiconductor device manufacturing processes, silicon oxide films are used as electrical insulators, dielectrics, space fillers, protective films, and the like. The method for forming this silicon oxide film is CVD, which forms a film by chemically reacting gas or gasified raw materials, because the film quality obtained is good and the formation speed is fast.
Laws are widely used. Conventionally, monosilane (Si
H4) was used.

しかし、半導体装置の最小設計寸法が極微細化するにつ
れて、モノシランの性質のいくつかが欠点として見られ
るようになってきた。即ち、凹凸の激しい面上では表面
が平滑な膜を得に<<、穴埋め作用も無いこと、ダスト
を生じ易いこと、膜中に水酸基を残し易いことなどであ
る。このため、近時、モノシランに変わる原料として、
モノシランの珪素に結合している水素原子の一部又は全
部を炭素数5以下のアルコキシ基で置き換えたアルコキ
シシラン、特にその中でもテトラエトキシシラン(S 
i (OC2Hs ) 4 )が検討され、実用化され
てきている。
However, as the minimum design dimensions of semiconductor devices become extremely fine, some of the properties of monosilane have come to be seen as drawbacks. That is, it is difficult to obtain a film with a smooth surface on a highly uneven surface, there is no hole-filling effect, it is easy to generate dust, and it is easy to leave hydroxyl groups in the film. For this reason, recently, as a raw material to replace monosilane,
Alkoxysilanes in which part or all of the hydrogen atoms bonded to silicon in monosilane are replaced with alkoxy groups having 5 or less carbon atoms, especially tetraethoxysilane (S
i (OC2Hs) 4) has been studied and put into practical use.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしながら、このようなアルコキシシランを主原料と
して用いた場合には、基層の種類や表面状態に成膜速度
か依存すること、及び基板温度を比較的高くする必要か
あることか、欠点として挙げられている。
However, when such alkoxysilane is used as the main raw material, the disadvantages include that the film formation rate depends on the type and surface condition of the base layer, and that the substrate temperature must be relatively high. ing.

一方、前記モノシランは大気中で直ちに発火する程、補
助原料である酸素と反応しやすい物質であるが、前記テ
トラエトキシシランは、マツチやライターの炎を近イ」
けたくらいでは容易に着火しない程、酸素と反応しにく
い物質であるため、成g操作にあたってはオゾンやプラ
ズマ支援酸素が酸化剤として用いられている。
On the other hand, monosilane is a substance that easily reacts with oxygen, an auxiliary raw material, to the extent that it immediately ignites in the atmosphere, but tetraethoxysilane is a substance that is easily ignited by the flame of a matchstick or lighter.
Ozone or plasma-assisted oxygen is used as an oxidizing agent in the oxidizing operation because it is a substance that does not react easily with oxygen, so much so that it does not easily ignite at high temperatures.

そこで本発明者らは、上記モノシランとアルコキシシラ
ンのように性質の異なる原料を用いた反応に注目し、C
VD法を用いて、より効率良く成膜することができる酸
化珪素膜の製造方法を開発すべく鋭意研究を重ねた。
Therefore, the present inventors focused on a reaction using raw materials with different properties such as the above-mentioned monosilane and alkoxysilane, and
We have conducted extensive research to develop a method for manufacturing silicon oxide films that can be formed more efficiently using the VD method.

〔課題を解決するための手段〕 その結果、アルコキシシランにモノシランかよく溶ける
という事実を発見1−、モノシランとアルコキシシラン
とを併用することにより」−記目的を達成できることを
見出たした。本発明は、かかる知見に基づいて成された
ものである。
[Means for Solving the Problem] As a result, it was discovered that monosilane is well soluble in alkoxysilane, and it was discovered that by using monosilane and alkoxysilane together, the object described above can be achieved. The present invention has been made based on this knowledge.

即ち、本発明のCVD法による酸化珪素膜の製造方法は
、主原料としてアルコキシシランとモノシランとを併用
することを特徴とするものである。
That is, the method of manufacturing a silicon oxide film by the CVD method of the present invention is characterized in that alkoxysilane and monosilane are used in combination as main raw materials.

ここで、本発明方法により酸化珪素膜を形成する際の反
応原理を説明する。
Here, the reaction principle when forming a silicon oxide film by the method of the present invention will be explained.

まず、モノシランは、加熱された基板の近傍で同時に供
給される酸素出戻応し、ンラノ〜ル(S i  (OH
) 4 )になる。このとき反応熱として、1モル当た
り1515kJの大量の熱が発生する。このシラノール
は、50℃以下での昇華蒸気圧より推定した標準沸点が
115℃と、揮発性の物質であり、50℃では不安定で
ある。このシラノールが水と二酸化珪素(Sin2)に
分解するには、]モル当たり約87kJの反応熱が必要
であり、過剰なエネルギーや脱水環境か無ければ、この
分解が起こりに<<、基板上に付着しても再び揮発して
しまうため成膜することが困難である。
First, monosilane reacts with oxygen, which is simultaneously supplied in the vicinity of the heated substrate, and reacts with nitrogen (Si(OH)).
) 4) becomes. At this time, a large amount of heat of 1515 kJ per mole is generated as reaction heat. This silanol is a volatile substance with a standard boiling point of 115°C estimated from the sublimation vapor pressure at temperatures below 50°C, and is unstable at 50°C. In order for this silanol to decompose into water and silicon dioxide (Sin2), approximately 87 kJ of reaction heat is required per mole, and in the absence of excess energy or a dehydrating environment, this decomposition will not occur. Even if it adheres, it will volatilize again, making it difficult to form a film.

しかし、前記モノシランの大きな燃焼熱と、この反応が
CVD装置の反応室内の亜真空下で行われ、水の蒸気圧
か小さいことから、上記シラノールの分解が進み、基板
上への成膜か可能となる。
However, due to the large combustion heat of the monosilane and the fact that this reaction is carried out in a sub-vacuum inside the reaction chamber of the CVD device, and the vapor pressure of water is low, the silanol decomposes and it becomes possible to form a film on the substrate. becomes.

この反応は、気体から固体への変化であるので、基板表
面に付着した反応生成物の流動は起こり難く、穴埋め効
果は全く期待てきない。また、シラノールが完全に分解
した後の反応生成物は、基板着床蒸気圧等の基板上での
分子移動能力かないので緻密な膜にならずに粉状になっ
てしまう。従って、基板上への成膜は、シラノールか半
分解状態で基板上に着床し、分解が進んで膜状に固体化
することによって行われる。また、このとき生成して固
体中に閉し込められた水酸基は離脱し難く、固体中に残
存することになる。即ち、モノシランの持つ大きな生成
エネルギーかむしろ欠点として作用する条件となる。
Since this reaction is a change from gas to solid, it is difficult for the reaction product attached to the substrate surface to flow, and no hole-filling effect can be expected. Furthermore, the reaction product after the silanol is completely decomposed does not have the ability to move molecules on the substrate, such as the vapor pressure on the substrate, so it does not form a dense film but becomes powder. Therefore, a film is formed on a substrate by depositing the silanol on the substrate in a half-decomposed state, progressing to decomposition, and solidifying into a film. Furthermore, the hydroxyl groups generated at this time and trapped in the solid are difficult to leave and remain in the solid. In other words, the large production energy of monosilane is a condition that acts as a disadvantage.

一方のアルコキシシランは、前述のように、モノシラン
の珪素に結合している水素原子の一部又は全部を炭素数
5以下のアルコキシ基で置き換えたもので、本発明に用
いるアルコキシシランとしては、前記テトラエトキシシ
ランを初めとして、トリエトキシシラン、テトライソプ
ロポキシンラン、テトラセカンダリブトキシシラン等各
種のものを挙げることかできる。
As mentioned above, one alkoxysilane is a monosilane in which part or all of the hydrogen atoms bonded to silicon are replaced with an alkoxy group having 5 or less carbon atoms. In addition to tetraethoxysilane, there may be mentioned various types such as triethoxysilane, tetraisopropoxinlan, and tetrasecandabutoxysilane.

このようなアルコキシシランの代表としてテトラエトキ
シシランと酸素との反応を考えてみると、この反応でテ
トラエトキシシラン1モル当たり、913kJの反応熱
が発生するとともに、シラノール、アセトアルデヒド、
エタノールが生成することが考えられる。しかしこの反
応は、−度に起こるのではなく、テトラエトキシシラン
の側鎖が取れて水酸基に変わるのに大きな活性化エネル
ギーが必要であり、これによって反応が律速される。
Considering the reaction between tetraethoxysilane and oxygen, which is a typical example of such alkoxysilane, this reaction generates 913 kJ of reaction heat per mole of tetraethoxysilane, and also produces silanol, acetaldehyde,
It is possible that ethanol is generated. However, this reaction does not occur instantaneously, and a large amount of activation energy is required to remove the side chain of tetraethoxysilane and convert it into a hydroxyl group, which limits the rate of the reaction.

さらに、水酸基を持った中間分解物は5i−0−3iの
シロキサン結合により縮合して高分子化する。この縮合
体は、分子量数十万以上になるまでは低揮発性、低粘性
率の液体であることを知見した。
Further, the intermediate decomposition product having a hydroxyl group is condensed through a 5i-0-3i siloxane bond to form a polymer. It was found that this condensate is a liquid with low volatility and low viscosity until the molecular weight reaches several hundred thousand or more.

即ち、CVD法におけるテトラエトキシシランの成膜反
応は、気体から液体に変化した後、該液体が固体化する
ことにより行われる。従って、水酸基の離脱もかなりの
程度まで液相中で行われ、モノシランのように固体化し
た後に水酸基が離脱する必要性は比較的小さくて済む。
That is, the film-forming reaction of tetraethoxysilane in the CVD method is performed by changing from gas to liquid and then solidifying the liquid. Therefore, the elimination of hydroxyl groups is also carried out to a considerable extent in the liquid phase, and there is relatively little need for the elimination of hydroxyl groups after solidification as in the case of monosilane.

即ち、反応条件を工夫することによって、水酸基の残存
量を少なくすることが可能である。
That is, by modifying the reaction conditions, it is possible to reduce the amount of remaining hydroxyl groups.

それたけてなく、基板表面に流動性の大きな液体を存在
させることができるので、穴埋め効果等の平坦化が期待
てきる。しかし、ロウに水が濡れないのと同じように、
表面エネルギーの大きく異なる固体表面には液体の濡れ
が悪くなる。
In addition, since a highly fluid liquid can be present on the substrate surface, it is expected to have a flattening effect such as filling holes. However, just as water does not get wet with wax,
Solid surfaces with greatly different surface energies have poor wettability with liquids.

ところが、このテトラエトキシシランにおける不都合は
、前記モノシランの持つ大きな反応エネルギーと、本発
明者らか知見したアルコキシシランにモノシランがよく
溶けるという事実により解決が可能となった。即ち、テ
トラエトキシシラン等のアルコキシシランを主原料とす
るCVD装置内に、モノシランを同時に、あるいは時間
をずらせて導入すると、モノシランは、不安定な分子状
態と、容易に分解して発生する発生期の水素の還元作用
との働きにより、基板選択性の小さな酸化珪素の分子膜
を形成する。生成した酸化珪素膜は、テトラエトキシシ
ランから生成した液体と良く馴染み、液体の基板選択性
も無くすことができる。
However, this disadvantage of tetraethoxysilane can be overcome by the large reaction energy of monosilane and the fact that monosilane is well soluble in alkoxysilane, which the present inventors have discovered. In other words, if monosilane is introduced simultaneously or at different times into a CVD device that uses alkoxysilane such as tetraethoxysilane as its main raw material, monosilane will be in an unstable molecular state and will easily decompose during the generation phase. A molecular film of silicon oxide with low substrate selectivity is formed by the reduction action of hydrogen. The produced silicon oxide film is compatible with the liquid produced from tetraethoxysilane, and the substrate selectivity of the liquid can also be eliminated.

従って、アルミニウム配線等の表面とテトラエトキシシ
ランとが馴染まず、満足な酸化珪素膜を得ることができ
なかったか、馴染みの良いモノシランと併用することに
より、アルミニウム配線等の上でもテトラエトキシシラ
ンによる酸化珪素膜が形成できるなど、基板選択性の顕
著な改善が可能となった。
Therefore, tetraethoxysilane is not compatible with the surface of aluminum wiring, etc., making it impossible to obtain a satisfactory silicon oxide film, or by using it together with monosilane, which has good compatibility, tetraethoxysilane oxidizes even on aluminum wiring, etc. It has become possible to significantly improve substrate selectivity, including the ability to form a silicon film.

また、モノシランは、テトラエトキシシランの縮合した
液体中に溶けるので、反応時に生成した水を液相中に放
出することができる。さらにテトラエトキシシラン及び
その縮合物は、前記水の存在で、生成したエタノール等
を放出して縮合が進むとともに、モノシランの放出エネ
ルギーがテトラエトキシシランの活性化エネルギーの供
給源としても働くので、基板の加熱温度を低下させるこ
とが可能となる。
Moreover, since monosilane dissolves in the condensed liquid of tetraethoxysilane, water produced during the reaction can be released into the liquid phase. Furthermore, in the presence of water, tetraethoxysilane and its condensates release generated ethanol, etc., and condensation progresses, and the released energy of monosilane also serves as a source of activation energy for tetraethoxysilane, so It becomes possible to lower the heating temperature.

換言すれば、テトラエトキシシランの中でのモノシラン
は、モノシラン単独の時と異なり、シラノールを形成し
易く、かつ液相反応になる。このことにより、モノシラ
ンの欠点の原因と考えられる性質は長所となり、テトラ
エトキシシランの欠点を補うように作用し、両者の相乗
効果により、優れた酸化珪素膜を形成することが可能と
なる。
In other words, monosilane in tetraethoxysilane easily forms silanol and undergoes a liquid phase reaction, unlike monosilane alone. As a result, the properties that are thought to be the cause of the drawbacks of monosilane become advantages, and act to compensate for the drawbacks of tetraethoxysilane, and the synergistic effect of the two makes it possible to form an excellent silicon oxide film.

また、アルコキシシランとモノシランとの混合比は、C
VD法の操作条件や装置構成、得られる酸化珪素膜に要
求される平坦化等の各種の条件等により異なるが、例え
ば、アルコキシシランとしてテトラエトキシシランを用
いた場合には、テトラエトキシシラン1モルに対して、
モノシランが0.5モル以下、千分の1モル以上である
ことが望ましい。即ち、モノシラン1分子から2分子の
水ができ、テトラエトキシシラン1分子は2分子の水で
エタノールを放出して酸化珪素となるが、テトラエトキ
シシランの縮合速度を上げ過ぎると平坦化が困難になる
ことと、水酸基の残量をできるだけ少なくすることを考
慮すると、テトラエトキシシラン1モルに対してモノシ
ランを0.5モル以下とするべきてあり、また、モノシ
ランに、テトラエトキシシランの触媒的効果を期待し、
膜の平坦化を重視する見地からは、テトラエトキシシラ
ン1モルに対してモノシランが千分の1モル以上である
ことが目安になる。
In addition, the mixing ratio of alkoxysilane and monosilane is C
Although it varies depending on various conditions such as the operating conditions and equipment configuration of the VD method and the flattening required for the resulting silicon oxide film, for example, when tetraethoxysilane is used as the alkoxysilane, 1 mol of tetraethoxysilane is used. For,
It is desirable that the amount of monosilane is 0.5 mol or less, and 1/1000 mol or more. In other words, one molecule of monosilane produces two molecules of water, and one molecule of tetraethoxysilane releases ethanol with two molecules of water to become silicon oxide, but if the condensation rate of tetraethoxysilane is increased too much, flattening becomes difficult. Considering that the remaining amount of hydroxyl groups should be as small as possible, the amount of monosilane should be 0.5 mol or less per 1 mol of tetraethoxysilane. expecting,
From the viewpoint of placing importance on flattening the film, a guideline is that monosilane should be at least 1/1000 mole per mole of tetraethoxysilane.

尚、アルコキシシランとモノシランとを、時間をずらせ
て装置に導入する場合には、モノシランにより形成され
る基板上の酸化珪素膜の厚さが、100ns程度を限度
とすべきである。これは、前記モノシランにおける固体
中の拡散により水酸基を放出できる限界厚さであり、こ
れ以上の厚さにすると残存水酸基の量が多くなり好まし
くない。
Note that when alkoxysilane and monosilane are introduced into the device at different times, the thickness of the silicon oxide film on the substrate formed by monosilane should be limited to about 100 ns. This is the limit thickness at which the monosilane can release hydroxyl groups by diffusion in the solid, and if the thickness is greater than this, the amount of residual hydroxyl groups will increase, which is not preferable.

〔実施例〕〔Example〕

以下、本発明の実施例及び比較例を説明する。 Examples and comparative examples of the present invention will be described below.

実施例1 500 P a (3,75Torr)の反応室内に設
置した半導体基板を約350℃に加熱するとともに、モ
ノシラン、テトラエトキシシラン、オゾンを流量比率で
1〜2:20:40となるように供給して成膜を行った
。その結果、平坦性に優れ、水酸基残存量の少ない優れ
た酸化珪素膜を得ることかできた。
Example 1 A semiconductor substrate placed in a 500 Pa (3.75 Torr) reaction chamber was heated to about 350°C, and monosilane, tetraethoxysilane, and ozone were mixed at a flow rate of 1 to 2:20:40. The film was formed by supplying it. As a result, an excellent silicon oxide film with excellent flatness and a small amount of residual hydroxyl groups could be obtained.

比較例1 100〜500 Torrの反応室内に設置した半導体
基板を約350℃に加熱するとともに、モノシランと酸
素をモル流量比率で5=20となるように供給して成膜
を行った。その結果、得られた酸化珪素膜は実施例1に
比べて平坦性が劣り、水酸基残存量も多かった。
Comparative Example 1 A semiconductor substrate placed in a reaction chamber at 100 to 500 Torr was heated to about 350° C., and monosilane and oxygen were supplied at a molar flow rate ratio of 5=20 to form a film. As a result, the obtained silicon oxide film was inferior in flatness compared to Example 1, and had a large amount of residual hydroxyl groups.

比較例2 100〜500 Torrの反応室内に設置した半導体
基板を約500℃に加熱するとともに、テトラエトキシ
シランとオゾンとの流量比率を1;2となるように供給
して成膜を行ったが、基板面上の二酸化珪素膜厚は、シ
リコン面上に比べて薄く、不満足であった。
Comparative Example 2 A semiconductor substrate placed in a reaction chamber at 100 to 500 Torr was heated to about 500°C, and a film was formed by supplying tetraethoxysilane and ozone at a flow rate ratio of 1:2. The thickness of the silicon dioxide film on the substrate surface was thinner than that on the silicon surface, which was unsatisfactory.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の酸化珪素膜の製造方法は
、主原料としてアルコキシシランとモノシランとを併用
するから、基板選択性がなく、平坦化の特性も良い酸化
珪素膜を、より低い温度で、かつダスト発生か起こりに
くい条件下で製造することが可能となる。
As explained above, since the method for manufacturing a silicon oxide film of the present invention uses alkoxysilane and monosilane together as the main raw materials, it is possible to produce a silicon oxide film without substrate selectivity and with good planarization characteristics at a lower temperature. This makes it possible to manufacture the product under conditions where dust generation is unlikely to occur.

Claims (2)

【特許請求の範囲】[Claims] 1.主原料としてアルコキシシランとモノシランとを併
用することを特徴とするCVD法による酸化珪素膜の製
造方法。
1. A method for producing a silicon oxide film by a CVD method, characterized in that alkoxysilane and monosilane are used in combination as main raw materials.
2.前記アルコキシシランがテトラエトキシシランであ
り、該テトラエトキシシランとモノシランとの混合比が
、テトラエトキシシラン1モルに対して、モノシランが
0.5モル以下、千分の1モル以上であることを特徴と
する請求項1記載のCVD法による酸化珪素膜の製造方
法。
2. The alkoxysilane is tetraethoxysilane, and the mixing ratio of the tetraethoxysilane and monosilane is 0.5 mol or less and 1/1000 mol or more of monosilane per 1 mol of tetraethoxysilane. A method for manufacturing a silicon oxide film by a CVD method according to claim 1.
JP2321462A 1990-11-26 1990-11-26 Production of silicon oxide film by cvd method Pending JPH04191374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2321462A JPH04191374A (en) 1990-11-26 1990-11-26 Production of silicon oxide film by cvd method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2321462A JPH04191374A (en) 1990-11-26 1990-11-26 Production of silicon oxide film by cvd method

Publications (1)

Publication Number Publication Date
JPH04191374A true JPH04191374A (en) 1992-07-09

Family

ID=18132840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2321462A Pending JPH04191374A (en) 1990-11-26 1990-11-26 Production of silicon oxide film by cvd method

Country Status (1)

Country Link
JP (1) JPH04191374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830786B2 (en) 1997-05-21 2004-12-14 Nec Corporation Silicon oxide film, method of forming the silicon oxide film, and apparatus for depositing the silicon oxide film
US7902549B2 (en) 2002-05-17 2011-03-08 Samsung Electronics Co., Ltd. Deposition method of insulating layers having low dielectric constant of semiconductor device, a thin film transistor substrate using the same and a method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830786B2 (en) 1997-05-21 2004-12-14 Nec Corporation Silicon oxide film, method of forming the silicon oxide film, and apparatus for depositing the silicon oxide film
US7902549B2 (en) 2002-05-17 2011-03-08 Samsung Electronics Co., Ltd. Deposition method of insulating layers having low dielectric constant of semiconductor device, a thin film transistor substrate using the same and a method of manufacturing the same

Similar Documents

Publication Publication Date Title
TWI654335B (en) Precursor for manufacturing low-k film for filling surface features and flow CVD method
Fujino et al. Silicon dioxide deposition by atmospheric pressure and low‐temperature CVD using TEOS and ozone
KR102013412B1 (en) High temperature atomic layer deposition of silicon-containing films
JP3762304B2 (en) Method for forming low dielectric constant interlayer insulating film
JP5781750B2 (en) Silicon oxide and silicon oxynitride films, methods for forming them, and compositions for chemical vapor deposition
TWI792496B (en) N-h free and si-rich perhydropolysilazane compounds, their synthesis, and applications
US6828257B2 (en) Method for forming interlayer dielectric film
JP2007204850A (en) Porogen, porogenated precursor and method for using the same to provide porous organosilica glass film with low dielectric constant
JPS63144524A (en) Method of forming multilayer ceramic at low temperature
KR20020096963A (en) Methods for forming low-k dielectric films
JP6526562B2 (en) Method for producing silicon-containing thin film
TWI729417B (en) Silicon compounds and methods for depositing films using same
JP2011014925A (en) Porogen, porogenated precursor and method for using the same to provide porous organosilica glass film with low dielectric constant
JPH04191374A (en) Production of silicon oxide film by cvd method
JP2000077399A (en) Silica based porous film and production thereof
KR20210008172A (en) Siloxane composition and method of using the composition to deposit silicon-containing films
KR20200035493A (en) Alkoxysilacyclic or acyloxysilacyclic compounds and methods for depositing films using the same
JP3443978B2 (en) Method of forming low dielectric film
JP4354732B2 (en) Method for producing silicon nitride film by vapor deposition method
JP2772819B2 (en) Method for manufacturing oxide film of semiconductor device
JP3060185B2 (en) Method for manufacturing silicon oxide film of semiconductor device
JPH0785472B2 (en) Low temperature low pressure thermal CVD method
CN110952074B (en) Silicon compound and method for depositing film using silicon compound
KR102409869B1 (en) Silicon compounds and methods for depositing films using same
Grow et al. Plasma enhanced chemical vapor deposition of silicon nitride from novel organosilanes