JPH04138063A - Power converter - Google Patents

Power converter

Info

Publication number
JPH04138063A
JPH04138063A JP25644390A JP25644390A JPH04138063A JP H04138063 A JPH04138063 A JP H04138063A JP 25644390 A JP25644390 A JP 25644390A JP 25644390 A JP25644390 A JP 25644390A JP H04138063 A JPH04138063 A JP H04138063A
Authority
JP
Japan
Prior art keywords
circuit
chopper
control
power converter
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25644390A
Other languages
Japanese (ja)
Other versions
JP2560530B2 (en
Inventor
Katsuharu Masaki
正木 克治
Hisao Hanmura
半村 久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2256443A priority Critical patent/JP2560530B2/en
Publication of JPH04138063A publication Critical patent/JPH04138063A/en
Application granted granted Critical
Publication of JP2560530B2 publication Critical patent/JP2560530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To suppress a rush current when a power source is turned ON and to rapidly interrupt an overcurrent by composing at least part of rectifiers of a bridge type rectifier circuit of a controlled rectifier, and controlling a conducting angle. CONSTITUTION:A bridge type rectifier circuit RC is composed by bridge- connecting thyristors SCR1, SCR2 as controlled rectifiers and diodes D3, D4. Reverse polarity self-extinguishing type semiconductor elements S1, S2 are connected in parallel at both ends of the diodes D3, D4. The conducting angles of the elements SCR1, SCR2 are controlled when an AC power source is turned ON to suppress a rush current. The conducting angle is reduced when the AC power source is turned ON, and the angle is so controlled as to increase the angle through a predetermined time. The angle is gradually increased from 0 degree to 180 degrees in a predetermined period of time. Thus, the rush current when a power source switch SW is closed can be effectively suppressed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電力変換器に関するものであり、具体的には
交流入力電流が交流電源電圧と所定の位相で正弦波形と
なる交流−直流変換式の電力変換器に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a power converter, and specifically, an AC-DC conversion in which an AC input current has a sinusoidal waveform with a predetermined phase with an AC power supply voltage. This relates to a power converter of the formula.

[従来の技術] 整流回路の交流入力電流波形を交流電源電圧と所定の位
相関係で正弦波形とする技術としては、例えば、昭和6
3年電気学会全国大会発表No。
[Prior Art] As a technique for making the AC input current waveform of a rectifier circuit into a sine waveform with a predetermined phase relationship with the AC power supply voltage, for example,
Presentation No. 3 at the National Conference of the Institute of Electrical Engineers of Japan.

509「低損失高力率コンバータ回路」等で知られてい
る。この大会で発表されたコンバータ回路は、第11図
に示す構成を有している。この回路は、電源スイッチS
W1リアクトルL1ダイオードD1〜D4、ゲートター
ンオフサイリスタ(GTo)やトランジスタのような自
己消弧形半導体素子S1及びS2及び平滑用コンデンサ
Cを図示のように接続して構成される。なおβは負荷で
あり、図示しない制御装置により、自己消弧形半導体素
子S1及びS2のオン・オフ動作を制御しする。制御装
置は、電源電圧の瞬時値の変化に対応してパルス幅が適
切に増減するパルス幅変調即ちPWM信号で自己消弧形
半導体素子S1及びS2を制御して、交流電源1からの
入力電流波形を交流電源電圧と所定の位相関係で正弦波
形となるようにしている。
509 "Low loss high power factor converter circuit" etc. The converter circuit presented at this conference has the configuration shown in FIG. This circuit consists of power switch S
It is constructed by connecting W1 reactor L1 diodes D1 to D4, self-extinguishing semiconductor elements S1 and S2 such as gate turn-off thyristors (GTo) and transistors, and smoothing capacitor C as shown in the figure. Note that β is a load, and a control device (not shown) controls the on/off operation of the self-arc-extinguishing semiconductor elements S1 and S2. The control device controls the self-extinguishing semiconductor elements S1 and S2 using a pulse width modulation signal, that is, a PWM signal whose pulse width appropriately increases or decreases in response to changes in the instantaneous value of the power supply voltage, and controls the input current from the AC power supply 1. The waveform is made to be a sine waveform with a predetermined phase relationship with the AC power supply voltage.

この回路では、電源スィッチSWの投入時に、ダイオー
ドDi−D4よりなるブリッジ型整流回路を通って平滑
用コンデンサCに大きな突入電流が流れる。一般に、こ
の突入電流を抑制する手段としては、第12図に示すよ
うに電流制限用抵抗Rと短絡用スイッチSWIの並列接
続回路をスイッチSWと直列に接続する構成が採用され
ている。
In this circuit, when the power switch SW is turned on, a large rush current flows into the smoothing capacitor C through the bridge type rectifier circuit made up of the diode Di-D4. Generally, as a means for suppressing this rush current, a configuration is adopted in which a parallel connection circuit of a current limiting resistor R and a shorting switch SWI is connected in series with the switch SW, as shown in FIG.

この回路では、電源スィッチSWの投入時には短絡用ス
イッチSWIは開放状態としてコンデンサCの充電電流
を抵抗Rにより抑制し、コンデンサCの電圧が所定値に
達した時点で短絡用スイッチSWIを閉じて、自己消弧
形半導体素子s1及びS2のオン・オフ動作を開始する
In this circuit, when the power switch SW is turned on, the shorting switch SWI is opened and the charging current of the capacitor C is suppressed by the resistor R, and when the voltage of the capacitor C reaches a predetermined value, the shorting switch SWI is closed. The on/off operation of the self-extinguishing semiconductor elements s1 and S2 is started.

[発明が解決しようとする課題] 上記のような従来の電力変換器では、電流制限用抵抗R
に定格電力の大きいものを使用せねばならず、また短絡
用スイッチSWIの動作に万一不具合を生じた場合には
抵抗Rが焼損するおそれがあった。また、突入電流防止
のために構成部品数が増加して不経済である。更に、負
荷βに短絡等の異常が生じて過電流が流れた場合に、自
己消弧形半導体素子St及びS2を非道通状態にしても
ブリッジ型整流回路のダイオードが導通し続けるために
、急速に過電流を遮断することができない。
[Problem to be solved by the invention] In the conventional power converter as described above, the current limiting resistor R
A device with a large rated power must be used for the short-circuiting switch SWI, and if a malfunction occurs in the operation of the short-circuiting switch SWI, there is a risk that the resistor R will be burnt out. Furthermore, the number of components increases to prevent inrush current, which is uneconomical. Furthermore, when an abnormality such as a short circuit occurs in the load β and an overcurrent flows, the diodes of the bridge rectifier circuit continue to conduct even if the self-extinguishing semiconductor elements St and S2 are turned off, so that the diode of the bridge rectifier circuit continues to conduct. cannot cut off overcurrent.

本発明の目的は、上記の問題点に鑑み、簡単に且つ確実
に電源投入時の突入電流を抑制することができる電力変
換器を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a power converter that can easily and reliably suppress rush current when power is turned on.

本発明の他の目的は、電源投入時の突入電流を抑制する
ことができ、しかも過電流を急速に遮断することができ
る電力変換器を提供することにある。
Another object of the present invention is to provide a power converter that can suppress inrush current when the power is turned on and can quickly cut off overcurrent.

[課題を解決するための手段] 請求項1の発明においては、整流素子をブリッジ接続し
て構成されて交流を直流に変換するブリッジ型整流回路
と、平滑用コンデンサと、チョッパ制御用半導体素子を
備えてブリッジ型整流回路の出力をチョッパ制御するチ
ョッパ回路とを具備してなる電力変換器を改良の対象と
する。
[Means for Solving the Problems] In the invention of claim 1, a bridge type rectifier circuit configured by connecting rectifying elements in a bridge to convert alternating current to direct current, a smoothing capacitor, and a chopper control semiconductor element are provided. The object of the present invention is to improve a power converter including a chopper circuit that performs chopper control on the output of a bridge rectifier circuit.

そしてブリッジ型整流回路の整流素子の少なくとも一部
を制御整流素子から構成し、交流電源投入時の突入電流
を制御整流素子の導通角を制御して抑制する制御装置を
具備することを特徴とする請求項2の発明では、制御装
置が交流電源投入時において、ブリッジ型整流回路の直
流出方電圧が飽和するまでは導通角を徐々に増加させ、
直流電圧が飽和した後は、導通角を直ちに180度まで
増加させる。好ましい一実施例では、導通角を0度から
90度までは徐々に増加させ、導通角が90度に達する
と直ちに導通角を直ちに増加させている。
At least a part of the rectifying elements of the bridge type rectifier circuit is composed of a controlled rectifying element, and the bridge type rectifying circuit is characterized by comprising a control device that suppresses inrush current by controlling the conduction angle of the controlled rectifying element when the AC power is turned on. In the invention of claim 2, when the AC power is turned on, the control device gradually increases the conduction angle until the DC forward voltage of the bridge rectifier circuit is saturated;
After the DC voltage is saturated, the conduction angle is immediately increased to 180 degrees. In one preferred embodiment, the conduction angle is gradually increased from 0 degrees to 90 degrees, and as soon as the conduction angle reaches 90 degrees, the conduction angle is immediately increased.

請求項3の発明では、制御装置は更に、短絡事故等で発
生する過電流を制御整流素子及びチョッパ制御用半導体
素子を非導通状態にして遮断する構成を備えていること
を特徴とする 請求項4の発明では、チョッパ制御用半導体素子を自己
消弧形半導体素子から構成し、ブリッジ型整流回路の少
なくとも隣り合う2辺の整流素子に対してそれぞれ自己
消弧形半導体素子を特徴とする 請求項5の発明では、ブリッジ型整流回路に対して直列
にリアクトルを設け、チョッパ回路のチョッパ制御用半
導体素子をパルス幅変調制御し、ブリッジ型整流回路の
整流素子の少なくとも一部を制御整流素子から構成し、
交流電源投入時の突入電流及び短絡事故等で発生する過
電流を制御整流素子の導通角を制御して抑制または遮断
する制御装置を設けることを特徴とする。
The invention according to claim 3 is characterized in that the control device further includes a configuration that cuts off an overcurrent that occurs due to a short circuit accident by turning the control rectifier element and the chopper control semiconductor element into a non-conducting state. In the invention according to claim 4, the chopper control semiconductor element is composed of a self-arc-extinguishing semiconductor element, and the rectifying elements on at least two adjacent sides of the bridge type rectifier circuit are each provided with a self-arc-extinguishing semiconductor element. In the invention of item 5, a reactor is provided in series with the bridge type rectifier circuit, a chopper control semiconductor element of the chopper circuit is controlled by pulse width modulation, and at least a part of the rectifier elements of the bridge type rectifier circuit are configured from a control rectifier element. death,
The present invention is characterized in that it is provided with a control device that controls the conduction angle of the control rectifying element to suppress or cut off inrush current when AC power is turned on and overcurrent that occurs due to a short circuit accident.

[作用] 請求項1の電力変換器において、交流電源投入時に制御
整流素子の導通角を制御して突入電流を抑制する。制御
装置は、交流電源投入時に導通角を小さくし、所定の時
間を経て導通角を大きくするように導通角の制御を行う
。導通角の制御方法は一定ではないが、典型的なものと
しては、導通角を所定の時間をかけて0度から180度
に漸増させる方法がある。
[Function] In the power converter according to the first aspect, when the AC power source is turned on, the conduction angle of the control rectifying element is controlled to suppress inrush current. The control device controls the conduction angle such that the conduction angle is made small when the AC power is turned on, and the conduction angle is made large after a predetermined period of time. The method of controlling the conduction angle is not constant, but a typical method is to gradually increase the conduction angle from 0 degrees to 180 degrees over a predetermined period of time.

請求項2の発明では、直流出力電圧が飽和した後は突入
電流を抑制する必要性がないため1、直流電圧が飽和し
た後に直ちに導通角を180度まで増加させる。従って
本発明によれば、起動時の動作時間を短縮化することが
できる。
In the invention of claim 2, since there is no need to suppress the rush current after the DC output voltage is saturated, the conduction angle is increased to 180 degrees immediately after the DC voltage is saturated. Therefore, according to the present invention, the operation time at startup can be shortened.

請求項3の発明では、短絡事故等で過電流が発生した際
に、制御整流素子及びチョッパ制御用半導体素子の両方
を非導通状態にして過電流を遮断すれば、過電流を流す
通路が全て遮断されるため、過電流を急速に遮断するこ
とができる。
In the invention of claim 3, when an overcurrent occurs due to a short circuit accident, etc., if both the control rectifying element and the chopper control semiconductor element are made non-conductive to cut off the overcurrent, all the paths through which the overcurrent flows are eliminated. Therefore, the overcurrent can be cut off rapidly.

請求項5の発明のように、制御整流素子の導通角を制御
して過電流を抑制すれば、し)わゆる垂下特性を得るこ
とができる。
By controlling the conduction angle of the controlled rectifying element to suppress overcurrent as in the fifth aspect of the invention, so-called drooping characteristics can be obtained.

[実施例コ 説明する。[Example code] explain.

第1図の実施例は、交流電源ACに電源スイ・ンチSW
、リアクトルLを介してブリ・ソジ型整流回路RCの交
流入力端子が接続されて0る。ブ1)・ソジ型整流回路
RCは、制御整流素子としてのサイリスタ5CRI、5
CR2及びダイオードD3゜D4がブリッジ接続されて
構成されて(為る。ダイオードD3.DJの両端には、
逆極性で自己ン肖弧形半導体素子Sl、82が並列接続
されて0る。
In the embodiment shown in Fig. 1, the power switch
, the AC input terminal of the Buri-Soji type rectifier circuit RC is connected via the reactor L. 1) The Soji type rectifier circuit RC includes thyristors 5CRI and 5 as control rectifier elements.
CR2 and diodes D3 and D4 are bridge-connected.
Self-portrait semiconductor elements Sl, 82 with opposite polarities are connected in parallel.

この自己消弧形半導体素子81,826よ、昇圧チョッ
パ回路のチョッパ制御用半導体素子を構成している。自
己消弧形半導体素子S1は、PWMIII御によりオン
・オフされてサイリスタ5CR1を通る一方の極性の半
波をチヨ・ソノ々制御する。また自己消弧形半導体素子
S2は、PWM制御(こよりオン・オフされてサイリス
タ5CR2を通る一方の極性の半波をチョッパ制御する
。ブリッジ型整流回路RCの直流出力端子間に平滑用コ
ンデンサCが接続されている。本装置の出力端T1及び
T2には負荷ぶが並列接続されている。
These self-arc-extinguishing semiconductor elements 81 and 826 constitute a chopper control semiconductor element of a boost chopper circuit. The self-arc-extinguishing semiconductor element S1 is turned on and off by PWM III control, and controls half-waves of one polarity passing through the thyristor 5CR1. In addition, the self-arc-extinguishing semiconductor element S2 performs PWM control (by which it is turned on and off and chopper-controls the half-wave of one polarity that passes through the thyristor 5CR2. A smoothing capacitor C is connected between the DC output terminals of the bridge rectifier circuit RC. A load is connected in parallel to the output terminals T1 and T2 of this device.

なおサイリスタ5CRI、5CR2及び自己消弧形半導
体素子Sl、32を制御する制御装置については図示し
ていないが、本実施例においては、サイリスタ5CRI
、5CR2及び自己消弧形半導体素子St、82を次の
ように制御する。まず電源スィッチSWを投入したとき
に、サイリスタ5CRI、5CR2のゲートの各々に交
流電源ACの電圧の正、負の極性に応じて、導通角を所
定の時間の経過にしたがって0度から徐々に180度と
するようにゲート信号を供給する。これにより、平滑用
コンデンサCは零電圧から交流電源ACの電圧の略波高
値になる直流電圧まで徐々に充電される。これにより電
源スィッチSWの投入時における突入電流が確実に抑制
される。
Although the control device for controlling the thyristors 5CRI and 5CR2 and the self-extinguishing semiconductor elements Sl and 32 is not shown, in this embodiment, the thyristors 5CRI and 5CR2 are
, 5CR2 and the self-extinguishing semiconductor element St, 82 are controlled as follows. First, when the power switch SW is turned on, the conduction angle of each of the gates of thyristors 5CRI and 5CR2 is gradually changed from 0 degrees to 180 degrees as a predetermined time elapses, depending on the positive or negative polarity of the voltage of the AC power source AC. A gate signal is supplied as needed. As a result, the smoothing capacitor C is gradually charged from zero voltage to a DC voltage that is approximately the peak value of the voltage of the AC power source AC. This reliably suppresses inrush current when the power switch SW is turned on.

第2図は上記の動作を示す波形図で、第2図(A)は交
流電源電圧V1同図(B)はサイリスタ5CRIのゲー
ト信号g s 1 、同図(C)はサイリスタ5CR2
のゲート信号gs2、同図(DはコンデンサCの端子電
圧Vcの各波形を示す。
FIG. 2 is a waveform diagram showing the above operation. FIG. 2 (A) shows the AC power supply voltage V1, FIG. 2 (B) shows the gate signal g s 1 of the thyristor 5CRI, and FIG.
The gate signal gs2 in the figure (D shows each waveform of the terminal voltage Vc of the capacitor C).

自己消弧形半導体素子St、S2は、電源スィッチSW
の投入時からサイリスタ5CRI、5CR2の導通角が
180度になるまではオフ状態にある。そして、上記導
通角が180度になった後にPWM制御によるオン・オ
フ動作を開始して、コンデンサCの端子電圧を所定の設
定電圧とし且つ入力電流波形を交流電源電圧と所定の位
相関係で正弦波形とする。
The self-extinguishing semiconductor elements St and S2 are connected to a power switch SW.
The thyristors 5CRI and 5CR2 remain in the off state from when they are turned on until the conduction angle of the thyristors 5CRI and 5CR2 reaches 180 degrees. After the conduction angle reaches 180 degrees, the on/off operation by PWM control is started, and the terminal voltage of capacitor C is set to a predetermined set voltage, and the input current waveform is set to a sine with a predetermined phase relationship with the AC power supply voltage. Waveform.

なお第2図(D)を見ると明らかなように、平滑用コン
デンサCの充電電圧Vcは、導通角90度を過ぎる付近
で交流電源ACの電圧のほぼ波高値に近い値で飽和して
いる。従って導通角90から180度までの期間は、導
通角の制御が不要な期間である。よって平滑用コンデン
サCの充電電圧の飽和を検出する直流電圧検出回路を用
いる場合には、充電電圧の飽和を検出した時点で導通角
の制御を停止し、導通角を直ちに180度としてその後
直ちに自己消弧形半導体素子81.S2のPWM制御を
開始し、平溝用コンデンサCの端子電圧を所定の設定電
圧とするようにしてもよい。
As is clear from Figure 2 (D), the charging voltage Vc of the smoothing capacitor C is saturated at a value close to the peak value of the voltage of the AC power supply AC near the conduction angle of 90 degrees. . Therefore, the period from 90 degrees to 180 degrees is a period in which the conduction angle does not need to be controlled. Therefore, when using a DC voltage detection circuit that detects the saturation of the charging voltage of the smoothing capacitor C, the control of the conduction angle is stopped when the saturation of the charging voltage is detected, and the conduction angle is immediately set to 180 degrees. Arc-extinguishing semiconductor element 81. The PWM control of S2 may be started to set the terminal voltage of the flat groove capacitor C to a predetermined set voltage.

なお直流電圧検出回路を用いない場合には、導通角90
度の時点で導通角制御を停止してもよい。
Note that if a DC voltage detection circuit is not used, the conduction angle is 90
The conduction angle control may be stopped at the point in time.

次に、負荷(に短絡等の異常が起り過電流が流れた場合
について説明する。この場合には、自己消弧形半導体素
子Sl、82をオフにし、更にサイリスタ5CRI 、
5CR2の導通角を減少または零にすることにより、直
流出力電圧を零電圧まで低下させて、負荷への過電流を
抑制または停止させることができる。
Next, a case will be explained in which an abnormality such as a short circuit occurs in the load and an overcurrent flows.
By reducing the conduction angle of 5CR2 or making it zero, the DC output voltage can be lowered to zero voltage, and overcurrent to the load can be suppressed or stopped.

第3図は過電流が発生した時の動作を説明するための波
形図であり、同図(A)は交流電源電圧V1同図(B)
はサイリスタ5CR1のゲート信号gs1、同図(C)
はサイリスタ5CR2のゲート信号gS2、同図(D)
は自己消弧形半導体素子SlのPWM制御信号c s 
l s同図(E)は自己消弧形半導体素子S2のPWM
制御信号C82、同図(F)はコンデンサCの端子電圧
の各波形を示す。図は、時間ifにおいて過電流が発生
したことにより自己消弧形半導体素子81.82をオフ
として平滑用コンデンサCの端子電圧Vcを低下させ、
更に時間t2においてサイリスタ5CRI、5CR2の
導通角を減少させてコンデンサCの端子電圧Vcを零電
圧に低下させた場合の状態を経時的に示している。
Figure 3 is a waveform diagram for explaining the operation when an overcurrent occurs, and (A) shows the AC power supply voltage V1 (B).
is the gate signal gs1 of thyristor 5CR1, the same figure (C)
is the gate signal gS2 of thyristor 5CR2, the same figure (D)
is the PWM control signal cs of the self-extinguishing semiconductor element Sl
l sThe same figure (E) shows the PWM of the self-extinguishing semiconductor element S2.
The control signal C82 (F) in the same figure shows each waveform of the terminal voltage of the capacitor C. The figure shows that when an overcurrent occurs at time if, self-extinguishing semiconductor elements 81 and 82 are turned off, and the terminal voltage Vc of the smoothing capacitor C is reduced.
Furthermore, the state is shown over time when the conduction angle of the thyristors 5CRI and 5CR2 is decreased to reduce the terminal voltage Vc of the capacitor C to zero voltage at time t2.

第4図は上記の制御動作を行うために本発明で用いる制
御装置の一例の概要を示すブロック図である。同図にお
いて、交流電源監視回路1が交流電源電圧の入力を検知
すると、タイマ回路2が動作して所定の時間、サイリス
タ位相制御回路3へ指令信号を送る。サイリスタ位相制
御回路3は、この指令信号に基づいて交流入力電圧の正
・負の半波ごとにサイリスタ5CRI、5CR2の導通
角を0度から徐々に180度にするようなゲート信号を
出力する。なお図示のように直流電圧検出回路4を設け
て平滑用コンデンサCの充電電圧を測定する場合には、
平滑用コンデンサCの充電電圧の飽和を検出した時点で
サイリスタ位相制御回路3に直流電圧検出回路から信号
を出力し、位相制御を停止するようにしてもよい。サイ
リスタ駆動回路5は、ゲート信号を電力増幅してサイリ
スタ5CR1,5CR2を駆動する。サイリスタ5CR
I 、5CR2の導通角が180度に達するようになる
と(直流電圧検出回路4を用いる場合には、電圧の飽和
を検出すると)、切換回路6が動作して自己消弧形半導
体素子制御回路7へ駆動信号を送り、該自己消弧形半導
体素子制御回路7から自己消弧形半導体素子31.32
をPWM制御によりオン・オフさせる制御信号を出力さ
せる。
FIG. 4 is a block diagram schematically showing an example of a control device used in the present invention to perform the above control operations. In the figure, when an AC power supply monitoring circuit 1 detects input of an AC power supply voltage, a timer circuit 2 operates and sends a command signal to a thyristor phase control circuit 3 for a predetermined period of time. Based on this command signal, the thyristor phase control circuit 3 outputs a gate signal that gradually increases the conduction angle of the thyristors 5CRI and 5CR2 from 0 degrees to 180 degrees for each positive and negative half wave of the AC input voltage. Note that when measuring the charging voltage of the smoothing capacitor C by providing the DC voltage detection circuit 4 as shown in the figure,
A signal may be output from the DC voltage detection circuit to the thyristor phase control circuit 3 to stop the phase control when the saturation of the charging voltage of the smoothing capacitor C is detected. The thyristor drive circuit 5 amplifies the power of the gate signal and drives the thyristors 5CR1 and 5CR2. Thyristor 5CR
When the conduction angle of I, 5CR2 reaches 180 degrees (when DC voltage detection circuit 4 is used, when voltage saturation is detected), switching circuit 6 operates and self-extinguishing semiconductor element control circuit 7 The self-arc-extinguishing semiconductor element control circuit 7 sends a drive signal to the self-arc-extinguishing semiconductor element 31, 32.
A control signal is output to turn on and off by PWM control.

自己消弧形半導体素子駆動回路8はこの制御信号を電力
増幅して自己消弧形半導体素子S1.82を駆動する。
The self-turn-off type semiconductor element driving circuit 8 amplifies the power of this control signal and drives the self-turn-off type semiconductor element S1.82.

次に、過電流が流れた場合には、過電流検出回路27が
動作して、先ず自己消弧形半導体素子制御回路7からの
制御信号の出力を停止することにより、自己消弧形半導
体素子S1.S2をオフにして直流出力電圧を低下させ
る。
Next, when an overcurrent flows, the overcurrent detection circuit 27 operates and first stops the output of the control signal from the self-arc-extinguishing semiconductor element control circuit 7, thereby causing the self-arc-extinguishing semiconductor element to S1. Turn off S2 to lower the DC output voltage.

他方、自己消弧形半導体素子制御回路7からの制御信号
の出力の停止により、切換回路6を介してサイリスタ位
相制御回路3へ動作制御信号が送られる。そして、直流
出力電圧の低下ではまだ不十分で過電流検出回路9が依
然過電流状態を検出する場合には、サイリスタ位相制御
回路3が制御されて、サイリスタ5CRI、5CR2へ
のゲート制御信号の導通角が漸次減少されるかまたは零
とされる。これにより、直流出力電圧が零電圧にまで低
下される。なお過電流を検出した時点で、サイリスタ5
CRI、5CR2へのゲート制御信号の導通角を徐々に
減少させずに、瞬時にゲート信号を遮断するようにして
もよいのは勿論である。
On the other hand, when the output of the control signal from the self-extinguishing semiconductor element control circuit 7 is stopped, an operation control signal is sent to the thyristor phase control circuit 3 via the switching circuit 6. If the reduction in the DC output voltage is still insufficient and the overcurrent detection circuit 9 still detects an overcurrent state, the thyristor phase control circuit 3 is controlled to turn off the gate control signal to the thyristors 5CRI and 5CR2. The angle is gradually reduced or zeroed out. This reduces the DC output voltage to zero voltage. Note that when overcurrent is detected, thyristor 5
Of course, the gate signal may be cut off instantaneously without gradually decreasing the conduction angle of the gate control signal to CRI and 5CR2.

次に、本発明の他の異なる実施例の要部を第5図〜第1
0図により説明する。これらの図面において、第1図の
実施例と同一部分には同符号を付しである。
Next, main parts of other different embodiments of the present invention are shown in FIGS.
This will be explained using Figure 0. In these drawings, the same parts as in the embodiment of FIG. 1 are given the same reference numerals.

第5図の実施例は、2個のサイリスタ5CRI。The embodiment of FIG. 5 has two thyristors 5CRI.

5CR3のカソードを共通接続して、ゲート駆動回路の
絶縁を簡略化できる構成としたものである。
The cathodes of 5CR3 are commonly connected to simplify the insulation of the gate drive circuit.

2個のサイリスタを用いる場合にはまた、第6図及び第
7図のように配置・接続してもよい。
When two thyristors are used, they may also be arranged and connected as shown in FIGS. 6 and 7.

第8図の実施例は、自己消弧形半導体素子82゜S3の
エミッタを共通接続して、該自己消弧形半導体素子S2
,33の駆動回路の絶縁を簡略化できる構成としたもの
である。
In the embodiment shown in FIG. 8, the emitters of the self-arc-extinguishing semiconductor element 82°S3 are connected in common, and the self-arc-extinguishing semiconductor element S2
, 33 has a structure that can simplify the insulation of the drive circuits.

第9図及び第10図は更に他の変形例を示したもので、
第9図の変形例は、4個の自己消弧形半導体素子Sl、
S2.S3.S4がブリッジ回路に接続されて回正運転
も可能とするものであるが、この場合でも、2個のサイ
リスタを用いる場合の回路例としては第6図及び第7図
に示すようにしてもよい。
FIG. 9 and FIG. 10 show still other modified examples,
The modification shown in FIG. 9 includes four self-extinguishing semiconductor elements Sl,
S2. S3. S4 is connected to a bridge circuit to enable regenerative operation, but even in this case, circuit examples using two thyristors may be as shown in FIGS. 6 and 7. .

第10図の変形例は、自己消弧形半導体素子81個でオ
ン・オフ動作して昇圧チョッパの作用をするタイプのも
ので、2個のサイリスタ5CRI。
The modification shown in FIG. 10 is of a type in which 81 self-extinguishing semiconductor elements operate on and off to act as a boost chopper, and include two thyristors 5CRI.

5CR2と2個のダイオードD3.D4でブリッジ回路
を構成し、該ブリッジ回路の直流出力間にリアクトルL
と自己消弧形半導体素子Sの直列回路を並列接続し、該
自己消弧形半導体素子Sに並列にダイオードDと平滑用
コンデンサCの直列回路を並列接続したものである。
5CR2 and two diodes D3. D4 constitutes a bridge circuit, and a reactor L is connected between the DC output of the bridge circuit.
A series circuit of a self-arc-extinguishing semiconductor element S is connected in parallel, and a series circuit of a diode D and a smoothing capacitor C is connected in parallel to the self-arc-extinguishing semiconductor element S.

[発明の効果] 請求項1の電力変換器によれば、交流電源投入時に制御
整流素子の導通角を制御して確実に突入電流を抑制する
ことができる。
[Effects of the Invention] According to the power converter of the first aspect, the conduction angle of the control rectifying element can be controlled when the AC power source is turned on, thereby reliably suppressing inrush current.

請求項2の発明によれば、起動時の動作時間を短縮化す
ることができる。
According to the invention of claim 2, the operating time at startup can be shortened.

請求項3の発明によれば、短絡事故等で過電流が発生し
た際に、制御整流素子及びチョッパ制御用半導体素子の
両方を非導通状態にして過電流を遮断するので、過電流
を急速に遮断することができる。
According to the invention of claim 3, when an overcurrent occurs due to a short circuit accident, etc., both the control rectifying element and the chopper control semiconductor element are made non-conductive to cut off the overcurrent, so the overcurrent can be quickly stopped. Can be blocked.

請求項5の発明によれば、制御整流素子の導通角を制御
して、いわゆる垂下特性を得ることができる。
According to the fifth aspect of the invention, the conduction angle of the controlled rectifying element can be controlled to obtain so-called drooping characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の要部を示す回路図、第2図及
び第3図はいずれも実施例の動作を説明するための波形
図、第4図は本発明に用いられる制御装置の構成例を示
すブロック図、第5図〜第10図はそれぞれ本発明の他
の異なる実施例の要部を示す回路図、第11図及び第1
2図はいずれも従来の電力変換器の要部を示す回路図で
ある。 AC・・・交流電源、L・・・リアクトル、5CRI〜
5CR4・・・制御整流素子(サイリスタ)、81〜S
4・・・自己消弧形半導体素子、Di−D4・・・整流
素子、C・・・平滑用コンデンサ、1・・・交流電源監
視回路、2・・・タイマ回路、3・・・サイリスタ位相
制御回路、4・・・直流電圧検出回路、5・・・サイリ
スタ駆動回路、6・・・切換回路、7・・・自己消弧形
半導体素子制御回路、8・・・自己消弧形半導体素子駆
動回路、9・・・過電流検出回路。 第 図 第 図 第 図 第 図
FIG. 1 is a circuit diagram showing the main parts of an embodiment of the present invention, FIGS. 2 and 3 are waveform diagrams for explaining the operation of the embodiment, and FIG. 4 is a control device used in the present invention. 5 to 10 are circuit diagrams showing main parts of other different embodiments of the present invention, and FIG. 11 and FIG.
Both figures are circuit diagrams showing the main parts of a conventional power converter. AC...AC power supply, L...reactor, 5CRI~
5CR4...Control rectifier (thyristor), 81~S
4... Self-extinguishing semiconductor element, Di-D4... Rectifying element, C... Smoothing capacitor, 1... AC power supply monitoring circuit, 2... Timer circuit, 3... Thyristor phase Control circuit, 4... DC voltage detection circuit, 5... Thyristor drive circuit, 6... Switching circuit, 7... Self-extinguishing semiconductor element control circuit, 8... Self-extinguishing semiconductor element Drive circuit, 9... overcurrent detection circuit. Figure Figure Figure Figure

Claims (5)

【特許請求の範囲】[Claims] (1)整流素子をブリッジ接続して構成されて交流を直
流に変換するブリッジ型整流回路と、平滑用コンデンサ
と、 チョッパ制御用半導体素子を備えて前記ブリッジ型整流
回路の出力をチョッパ制御するチョッパ回路とを具備し
てなる電力変換器において、前記ブリッジ型整流回路の
前記整流素子の少なくとも一部を制御整流素子から構成
し、 交流電源投入時の突入電流を前記制御整流素子の導通角
を制御して抑制する制御装置を具備することを特徴とす
る電力変換器。
(1) A chopper that includes a bridge type rectifier circuit configured by connecting rectifier elements in a bridge connection and converts alternating current into direct current, a smoothing capacitor, and a semiconductor element for chopper control, and performs chopper control on the output of the bridge type rectifier circuit. In the power converter comprising a circuit, at least a part of the rectifying elements of the bridge type rectifier circuit are constituted by controlled rectifying elements, and the conduction angle of the controlled rectifying elements is controlled by the inrush current when AC power is turned on. A power converter characterized by comprising a control device that suppresses
(2)前記制御装置は、交流電源投入時において前記ブ
リッジ型整流回路の直流出力電圧が飽和するまでは前記
導通角を徐々に増加させ、前記直流電圧が飽和した後は
導通角を直ちに180度まで増加させることを特徴とす
る請求項1に記載の電力変換器。
(2) The control device gradually increases the conduction angle until the DC output voltage of the bridge type rectifier circuit is saturated when the AC power is turned on, and immediately increases the conduction angle to 180 degrees after the DC voltage is saturated. 2. The power converter according to claim 1, wherein the power converter increases to .
(3)前記制御装置は、短絡事故等で発生する過電流を
前記制御整流素子及び前記チョッパ制御用半導体素子を
非導通状態にして遮断する構成を更に備えていることを
特徴とする請求項1または2に記載の電力変換器。
(3) The control device further includes a configuration that cuts off an overcurrent that occurs due to a short circuit accident or the like by making the control rectifying element and the chopper control semiconductor element non-conductive. Or the power converter according to 2.
(4)前記チョッパ制御用半導体素子は自己消弧形半導
体素子からなり、 前記ブリッジ型整流回路の少なくとも隣り合う2辺の前
記整流素子に対してそれぞれ前記自己消弧形半導体素子
が並列接続されている請求項5に記載の電力変換器。
(4) The chopper control semiconductor element is composed of a self-arc extinguishing semiconductor element, and the self-arc extinguishing semiconductor element is connected in parallel to each of the rectifying elements on at least two adjacent sides of the bridge rectifier circuit. The power converter according to claim 5.
(5)整流素子をブリッジ接続して構成されて交流を直
流に変換するブリッジ型整流回路と、平滑用コンデンサ
と、 前記ブリッジ型整流回路に対して直列に接続されたリア
クトルと、 チョッパ制御用半導体素子を備えて前記ブリッジ型整流
回路の出力をチョッパ制御するチョッパ回路とを具備し
、 前記チョッパ回路の前記チョッパ制御用半導体素子をパ
ルス幅変調制御する電力変換器において、前記ブリッジ
型整流回路の前記整流素子の少なくとも一部を制御整流
素子から構成し、 交流電源投入時の突入電流及び短絡事故等で発生する過
電流を前記制御整流素子の導通角を制御して抑制または
遮断する制御装置を具備することを特徴とする電力変換
器。
(5) A bridge type rectifier circuit configured by connecting rectifier elements in a bridge manner to convert alternating current to direct current, a smoothing capacitor, a reactor connected in series to the bridge type rectifier circuit, and a semiconductor for chopper control. a chopper circuit that chopper-controls the output of the bridge-type rectifier circuit, the power converter comprising a chopper circuit that performs pulse-width modulation control of the chopper-control semiconductor element of the chopper circuit, the power converter comprising: At least a part of the rectifying element is composed of a controlled rectifying element, and includes a control device that controls the conduction angle of the controlled rectifying element to suppress or cut off an inrush current when AC power is turned on and an overcurrent that occurs due to a short circuit accident, etc. A power converter characterized by:
JP2256443A 1990-09-26 1990-09-26 Power converter Expired - Lifetime JP2560530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2256443A JP2560530B2 (en) 1990-09-26 1990-09-26 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256443A JP2560530B2 (en) 1990-09-26 1990-09-26 Power converter

Publications (2)

Publication Number Publication Date
JPH04138063A true JPH04138063A (en) 1992-05-12
JP2560530B2 JP2560530B2 (en) 1996-12-04

Family

ID=17292728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256443A Expired - Lifetime JP2560530B2 (en) 1990-09-26 1990-09-26 Power converter

Country Status (1)

Country Link
JP (1) JP2560530B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288968A (en) * 2006-04-19 2007-11-01 Fuji Electric Holdings Co Ltd Capacitor charging device for rectifier circuit
JP2011142726A (en) * 2010-01-06 2011-07-21 Logah Technology Corp Interleave bridgeless power factor corrector and method of controlling the same
CN102484430A (en) * 2009-09-11 2012-05-30 Abb研究有限公司 Fault current limitation in DC power transmission systems
EP2475090A1 (en) * 2011-01-07 2012-07-11 Siemens Aktiengesellschaft Rectifier stage of an AC-DC-AC converter and converter using the rectifier stage
EP3758209A1 (en) * 2019-06-24 2020-12-30 Renesas Electronics Corporation Semiconductor device
FR3122793A1 (en) * 2021-05-07 2022-11-11 Stmicroelectronics Ltd Electronic circuit with thyristor
CN109217707B (en) * 2017-06-30 2023-01-13 意法半导体(图尔)公司 Reversible AC-DC and DC-AC thyristor converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164273A (en) * 1987-12-21 1989-06-28 Mitsubishi Electric Corp Rectifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164273A (en) * 1987-12-21 1989-06-28 Mitsubishi Electric Corp Rectifier

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288968A (en) * 2006-04-19 2007-11-01 Fuji Electric Holdings Co Ltd Capacitor charging device for rectifier circuit
CN102484430A (en) * 2009-09-11 2012-05-30 Abb研究有限公司 Fault current limitation in DC power transmission systems
US8830708B2 (en) 2009-09-11 2014-09-09 Abb Research Ltd. Fault current limitation in DC power transmission systems
JP2011142726A (en) * 2010-01-06 2011-07-21 Logah Technology Corp Interleave bridgeless power factor corrector and method of controlling the same
CN103299530A (en) * 2011-01-07 2013-09-11 西门子公司 Assembly for converting an input AC voltage to an output AC voltage
WO2012093009A3 (en) * 2011-01-07 2012-10-04 Siemens Aktiengesellschaft Assembly for converting an input ac voltage to an output ac voltage
WO2012093009A2 (en) 2011-01-07 2012-07-12 Siemens Aktiengesellschaft Assembly for converting an input ac voltage to an output ac voltage
EP2475090A1 (en) * 2011-01-07 2012-07-11 Siemens Aktiengesellschaft Rectifier stage of an AC-DC-AC converter and converter using the rectifier stage
US9184654B2 (en) 2011-01-07 2015-11-10 Siemens Aktiengesellschaft Assembly for converting an input AC voltage to an output AC voltage
CN109217707B (en) * 2017-06-30 2023-01-13 意法半导体(图尔)公司 Reversible AC-DC and DC-AC thyristor converter
EP3758209A1 (en) * 2019-06-24 2020-12-30 Renesas Electronics Corporation Semiconductor device
US11139749B2 (en) 2019-06-24 2021-10-05 Renesas Electronics Corporation Semiconductor device
FR3122793A1 (en) * 2021-05-07 2022-11-11 Stmicroelectronics Ltd Electronic circuit with thyristor

Also Published As

Publication number Publication date
JP2560530B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
JP4096656B2 (en) Rectifier
US4670828A (en) Bi-directional switch for neutral point clamped PWM inverter
EP2858195B1 (en) Converter circuit
JPS61102172A (en) Current type converter utilizing self-extinguishing element
JPH04138063A (en) Power converter
JP2005192354A (en) Alternating-current switch device and power supply device using the same
Venkataramanan et al. A hybrid 4-quadrant switch for ac power conversion
US6377482B1 (en) Device and method for line-voltage dependent thyristor controlled pre-charging of output capacitors in a three-level pulse rectifier system
KR20200136250A (en) Power conversion apparatus cutting off overvoltage supplied from external power source
JPH0667191B2 (en) DC power supply with multiplex configuration
JPH0720340B2 (en) Inverter
JP3139682B2 (en) Power supply
US20230421054A1 (en) Circuitry and method for transitioning between modes of operation during an electrical fault
KR20180106622A (en) Apparatus for controlling active clamp
JPS62135269A (en) Rush-current preventive circuit
JP3096236B2 (en) Power supply
JPH0753035B2 (en) Rectified alternating current switching device
JP2001178140A (en) Ac-dc converter
JPS6350956B2 (en)
KR850002207Y1 (en) Power circuit
SU1661961A2 (en) Multiple-motor a c drive
JPS6015437Y2 (en) converter device
JPS6350955B2 (en)
SU961035A1 (en) Low voltage power source with protection
Simpson et al. High-power Electronics