JPH04127581A - Solar cell module - Google Patents

Solar cell module

Info

Publication number
JPH04127581A
JPH04127581A JP2247374A JP24737490A JPH04127581A JP H04127581 A JPH04127581 A JP H04127581A JP 2247374 A JP2247374 A JP 2247374A JP 24737490 A JP24737490 A JP 24737490A JP H04127581 A JPH04127581 A JP H04127581A
Authority
JP
Japan
Prior art keywords
solar cell
electrode
cell module
electric field
conversion efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2247374A
Other languages
Japanese (ja)
Inventor
Hiroyuki Baba
裕幸 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2247374A priority Critical patent/JPH04127581A/en
Publication of JPH04127581A publication Critical patent/JPH04127581A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance a solar cell module in conversion efficiency by a method wherein an electrode located on a side where light is incident is formed transparent, two electrodes are connected to a power supply, and an external electrical field is applied onto the solar cell in the direction in which light is incident. CONSTITUTION:A solar cell 2 is provided with a P-type single-crystal silicon substrate 4, and a finger electrode 5 and an anti-reflection film 6 are provided to the front side of the substrate 4, and a back electrode 7 is provided to the rear side of the substrate 4. A protective case 3 is provided with a module protecting glass cover 8 and a base 9, and a transparent electrode 10 is provided to all the underside of the protective cover 8. Furthermore, an electrode 11 formed of an aluminum film is formed on all the surface of the rear base 9, and an insulating sheet 12 of vinyl chloride is formed on the surface of the aluminum electrode 11 so as to insulate the solar cell 2 mounted on the electrode 11 from the electrode 11. The transparent electrode 10 and the aluminum electrode 11 are connected to a direct constant voltage power supply 13 to be given a voltage so as to apply an external electrical field to all solar cell 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、太陽電池モジュールに関するものであり、特
に、変換効率を高くした太陽電池モジュールに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a solar cell module, and particularly to a solar cell module with high conversion efficiency.

(従来の技術) 太陽電池の変換効率を高くする技術としては、太陽電池
セルの裏面電極近傍の多数キャリアの濃度を高くして、
太陽電池セル内に内部電界を形成し、少数キャリアの見
かけ上の拡散長を長くすることによって、太陽電池セル
の裏面電極近傍での少数キャリアの再結合を押さえる方
法がある。この方法は、例えば、J、Lindmaye
r+ J、八l1ison、 Proc。
(Conventional technology) As a technology to increase the conversion efficiency of solar cells, increasing the concentration of majority carriers near the back electrode of the solar cell,
There is a method of suppressing the recombination of minority carriers near the back electrode of the solar cell by forming an internal electric field within the solar cell and increasing the apparent diffusion length of the minority carriers. This method has been described, for example, by J. Lindmaye.
r+ J, 8l1ison, Proc.

9th IEEE Photovoltaic 5pe
c、 Conf、、 PO2(1972)や、 R3八
、Arndt、  J、F、All1son、  J、
G、  Haynos、  A、Meulenberg
、 Jr、 Proc、 11th IEEE Pho
tovoltaicSpec、 Conf、、 P2O
(1975)に開示されている。
9th IEEE Photovoltaic 5pe
c, Conf, PO2 (1972), R38, Arndt, J.F., Allson, J.
G, Haynos, A, Meulenberg
, Jr., Proc, 11th IEEE Pho
tovoltaicSpec, Conf, P2O
(1975).

(発明が解決しようとする課題) しかしながら、太陽電池セルの裏面電極近傍において多
数キャリアを高濃度にするためには、太陽電池セルを製
造する工程において、マスキング、エツチング、多数キ
ャリアの注入等の工程が増えることとなる。更に、太陽
電池セルを多数集めてモジュール化する場合、これらの
工程の増加に伴って製造コストが高くなることが問題と
なる。
(Problem to be Solved by the Invention) However, in order to increase the concentration of majority carriers near the back electrode of a solar cell, steps such as masking, etching, and injection of majority carriers are required in the process of manufacturing the solar cell. will increase. Furthermore, when a large number of solar cells are assembled into a module, there is a problem in that the manufacturing cost increases as the number of steps increases.

本発明は、この問題点を解決して、個々の太陽電池セル
の構造を変える事なく、したがって太陽電池セルの製造
工程を増やす事な(、変換効率の高い太陽電池モジュー
ルを提供しようとするものである。
The present invention aims to solve this problem and provide a solar cell module with high conversion efficiency without changing the structure of each individual solar cell and therefore without increasing the manufacturing process of the solar cell. It is.

(課題を解決するための手段及び作用)上記課題を解決
するために、本発明の太陽電池モジュールは、太陽電池
セルと、前記太陽電池セルを収納するケースとを具えた
太陽電池モジュールにおいて、前記ケースの内側に2枚
の電極を相対向させて設け、少なくとも光の入射側の電
極を透明電極とし、前記2枚の電極を電源に接続して前
記太陽電池セルに外部から電界を光の入射方向に与え得
るように構成したことをを特徴とするものである。
(Means and effects for solving the problems) In order to solve the above problems, the solar cell module of the present invention includes a solar cell and a case for housing the solar cell. Two electrodes are provided inside the case to face each other, at least the electrode on the light incident side is a transparent electrode, and the two electrodes are connected to a power source to apply an electric field to the solar cell from the outside when light is incident. It is characterized by being configured so that it can be applied in any direction.

上述した通り、本発明の太陽電池モジュールは、太陽電
池セルを収納したケースの内側に相対向して電極を設け
て太陽電池セルに外部から電界を与えて、セル内の少数
キャリアの拡散速度を高めるようにしている。このため
、実質的にキャリアの拡散長が長くなり、光電流が増加
して、光電変換効率が増加する。
As described above, in the solar cell module of the present invention, electrodes are provided facing each other inside the case housing the solar cell, and an electric field is applied to the solar cell from the outside to control the diffusion rate of minority carriers within the cell. I'm trying to increase it. Therefore, the carrier diffusion length becomes substantially longer, the photocurrent increases, and the photoelectric conversion efficiency increases.

本発明の太陽電池モジュールでは、モジュールとして並
べたセル全体に同時に外部から電界を与えるように構成
しているため、この外部電界内に存在するセル全体の少
数キャリアの移動速度が増加し、実質的にこれら少数キ
ャリアの拡散長が長くなることとなる。
In the solar cell module of the present invention, an electric field is simultaneously applied from the outside to all the cells arranged as a module, so the movement speed of minority carriers throughout the cells existing within this external electric field increases, and the The diffusion length of these minority carriers becomes longer.

また、本発明の太陽電池モジュールでは、個々の太陽電
池セルの裏面電極近傍の多数キャリアの濃度を上げるな
どして内部電界を生じさせ、個々の太陽電池セルに変換
効率の高いものを使用した場合でも、この内部電界に加
えて更に外部電界を与えることができるので、より一層
変換効率をあげることができる。
In addition, in the solar cell module of the present invention, an internal electric field is generated by increasing the concentration of majority carriers near the back electrode of each solar cell, and when each solar cell has a high conversion efficiency. However, since an external electric field can be applied in addition to this internal electric field, the conversion efficiency can be further increased.

本発明の太陽電池モジュールにおいては、外部から与え
る電界は定常的に安定しており、電力消費がほとんどな
い。したがって、電源として、例えば小型電池が考えら
れるが、当該太陽電池モジュールで発電した電力をこの
電源として使用しても良い。
In the solar cell module of the present invention, the electric field applied from the outside is constantly stable, and there is almost no power consumption. Therefore, for example, a small battery is conceivable as the power source, but the power generated by the solar cell module may also be used as the power source.

(実施例) 第1図は、本発明の好適な実施例の全体の構成を示す分
解斜視図、第2図は第1図に示す実施例の部分的な断面
図である。
(Embodiment) FIG. 1 is an exploded perspective view showing the overall structure of a preferred embodiment of the present invention, and FIG. 2 is a partial sectional view of the embodiment shown in FIG. 1.

第1図に明らかなように、本実施例の太陽電池モジュー
ル1では、10個の太陽電池セル2が保護ケース3内に
並べられて収納されている。太陽電池セル2は、第2図
に断面図で示すとおり、p型車結晶のシリコン基板4を
具え、基板4は、表面にはフィンガ電極5及び反射防止
膜6を、底面には裏面電極7を形成されている。
As is clear from FIG. 1, in the solar cell module 1 of this embodiment, ten solar cells 2 are arranged and housed in a protective case 3. As shown in the cross-sectional view in FIG. 2, the solar cell 2 includes a p-type wheel crystal silicon substrate 4, and the substrate 4 has a finger electrode 5 and an antireflection film 6 on the front surface, and a back electrode 7 on the bottom surface. is formed.

保護ケース3はガラス製のモジュール保護用カバー8及
び基台9とを具えており、保護用カバー8の下面には全
面に透明電極lOが形成されている。更に、裏面基台8
の表面全面にアルミニウム膜からなる電極11が形成さ
れており、更にアルミニウム電極11の表面にはこの上
に設置する太陽電池セルと前記アルミニウム電極とを電
気的に絶縁すべく塩化ビニール製の絶縁シート12が形
成されている。前記保護用カバー8は厚さ約2mm1透
明電極10は厚さ約100μ印程度とする。
The protective case 3 includes a glass module protective cover 8 and a base 9, and a transparent electrode 1O is formed on the entire lower surface of the protective cover 8. Furthermore, the back base 8
An electrode 11 made of an aluminum film is formed on the entire surface of the aluminum electrode 11, and an insulating sheet made of vinyl chloride is further formed on the surface of the aluminum electrode 11 to electrically insulate the solar cell installed thereon from the aluminum electrode. 12 are formed. The protective cover 8 has a thickness of about 2 mm, and the transparent electrode 10 has a thickness of about 100 μm.

基台9は、プラスチック類で厚さ約3m、アルミニウム
電極11は厚さ約200μm、絶縁シート12は厚さ約
1−とする。なお、透明電極9の導電率は高い方が好ま
しいが、太陽電池セルに印加する電圧は安定しているた
め、電界電流はほぼOに近く、したがって、導電率がそ
れほど高いものでなくても良い。
The base 9 is made of plastic and has a thickness of about 3 m, the aluminum electrode 11 has a thickness of about 200 μm, and the insulating sheet 12 has a thickness of about 1-. Note that it is preferable that the conductivity of the transparent electrode 9 is high, but since the voltage applied to the solar cell is stable, the electric field current is approximately close to O, so the conductivity does not need to be so high. .

各々の太陽電池セル2に出力が約0.5V、変換効率は
約15%のものを使用し、透明電極10及びアルミニウ
ム電極11をそれぞれ直流定電圧電源13に接続して電
圧を印加し、太陽電池セル1全体に外部電界を与えた。
Each solar cell 2 has an output of about 0.5V and a conversion efficiency of about 15%, and the transparent electrode 10 and aluminum electrode 11 are each connected to a DC constant voltage power supply 13 to apply a voltage to the solar cell 2. An external electric field was applied to the entire battery cell 1.

太陽光強度AMIのもとに、透明電極10及びアルミニ
ウム電極11に印加する電圧を変化させて、太陽電池モ
ジュール1の発電実験を行ったところ、第1表に示すよ
うになった。この表から明らかな通り、外部から電界を
与えない場合の太陽電池モジュールの変換効率に比して
、外部から電界を印加した時のモジュールの変換効率は
改善されている。すなわち、電界をまったく印加しない
場合のモジュールの変換効率が13.5%であるのに対
して、25Vの電圧を印加したときの変換効率は15.
3%であり、1.8%の増加がみられ、印加電圧が大き
くなるほど変換効率も良くなることがわかった。なお、
この外部からあたえる電界は安定しており、ミリアンペ
ア計14にて測定した電界電流はほぼ0に近い値を支持
していた。
A power generation experiment of the solar cell module 1 was conducted by changing the voltage applied to the transparent electrode 10 and the aluminum electrode 11 under the sunlight intensity AMI, and the results are shown in Table 1. As is clear from this table, the conversion efficiency of the solar cell module when an electric field is applied from the outside is improved compared to the conversion efficiency of the solar cell module when no electric field is applied from the outside. That is, while the conversion efficiency of the module when no electric field is applied is 13.5%, the conversion efficiency when a voltage of 25V is applied is 15.
3%, an increase of 1.8% was observed, and it was found that the larger the applied voltage, the better the conversion efficiency. In addition,
The electric field applied from the outside was stable, and the electric field current measured by the milliampere meter 14 supported a value close to almost zero.

第3図は、本発明の第2実施例の全体の構成を示す分解
斜視図である。第3図に示すように、本実施例では外部
電圧を印加する電源に当該太陽電池モジュールが発生す
る電力を利用している。すなわち、直列に接続した太陽
電池セル1の表面に設けたフィンガ電極5及び裏面電極
7とケース3に設けた透明電極10及びアルミニウム電
極11とを電源回路15を介して接続して、太陽電池モ
ジュール2に外部電界を与えるようにする。先に述べた
ように、本発明において、太陽電池セル1に与える外部
電界は安定しており、セルに流れる電流はほぼ0に近い
といえる。したがって、当該太陽電池モジュールで発生
する電力を利用して、外部電界を与えるように構成し、
この外部電界を高電圧にした場合でも、そのための電力
の消費はほとんど無視できる程度に少ないと言える。
FIG. 3 is an exploded perspective view showing the overall configuration of a second embodiment of the present invention. As shown in FIG. 3, in this embodiment, the power generated by the solar cell module is used as a power source for applying an external voltage. That is, the finger electrodes 5 and back electrodes 7 provided on the front surface of the solar cells 1 connected in series and the transparent electrodes 10 and aluminum electrodes 11 provided on the case 3 are connected via the power supply circuit 15 to form a solar cell module. 2 to apply an external electric field. As described above, in the present invention, the external electric field applied to the solar cell 1 is stable, and the current flowing through the cell can be said to be almost zero. Therefore, it is configured to apply an external electric field using the power generated by the solar cell module,
Even if this external electric field is made to have a high voltage, the power consumption for this purpose can be said to be so small as to be almost negligible.

(発明の効果) 上記に詳述した通り、本発明の太陽電池モジュールは、
複数の太陽電池セルを直列に接続して保護ケース内に収
納し、これらの太陽電池セルに外部から電界を印加して
、太陽電池セルの変換効率を上げるようにしているため
、個々の太陽電池セルの構造を変化させる事なく太陽電
池モジュール全体の変換効率を上げることができる。ま
た、これから製造する太陽電池モジュールのみならず、
既にモジュール化された太陽電池についても、ケースの
表裏に電界電極を設け、これに電圧を印加して外部電界
を与えてやることで変換効率を上げることが可能である
。また、太陽電池セルの光の入射方向にキャリアが移動
する構造の太陽電池セルであれば、本発明を応用するこ
とができるため、裏面電極近傍の多数キャリア濃度を上
げて内部電界を生じさせる等の他の変換効率を上げる手
段を講じた太陽電池セルに本発明を応用して、−層高効
率化を図ることが可能である。
(Effect of the invention) As detailed above, the solar cell module of the present invention has the following features:
Multiple solar cells are connected in series and housed in a protective case, and an electric field is applied to these solar cells from the outside to increase the conversion efficiency of the solar cells. The conversion efficiency of the entire solar cell module can be increased without changing the cell structure. In addition to the solar cell modules that will be manufactured in the future,
Even for solar cells that have already been modularized, it is possible to increase the conversion efficiency by providing electric field electrodes on the front and back of the case and applying a voltage to them to provide an external electric field. Additionally, the present invention can be applied to any solar cell with a structure in which carriers move in the direction of light incidence on the solar cell, so the majority carrier concentration near the back electrode may be increased to generate an internal electric field. By applying the present invention to a solar cell that takes other measures to increase the conversion efficiency, it is possible to achieve higher efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1実施例の全体の構成を示す分解
斜視図、 第2図は、第1図に示す実施例の部分的断面図、第3図
は、本発明の第2実施例の全体の構成を示す分解斜視図
である。 1・・・太陽電池モジュール 2・・・太陽電池セル     3・・・保護ケース4
・・・P型車結晶シリコン  5・・・フィンガ電極6
・・・反射防止膜      7・・・裏面電極8・・
・保護用カバー     9・・・基台10・・・透明
電極 11・・・アルミニウム電極  12・・・絶縁シート
13・・・電源
FIG. 1 is an exploded perspective view showing the overall configuration of a first embodiment of the present invention, FIG. 2 is a partial sectional view of the embodiment shown in FIG. 1, and FIG. 3 is a second embodiment of the present invention. FIG. 2 is an exploded perspective view showing the overall configuration of the embodiment. 1... Solar cell module 2... Solar cell 3... Protective case 4
...P type car crystal silicon 5...Finger electrode 6
...Anti-reflection film 7...Back electrode 8...
- Protective cover 9... Base 10... Transparent electrode 11... Aluminum electrode 12... Insulating sheet 13... Power supply

Claims (1)

【特許請求の範囲】 1、太陽電池セルと、前記太陽電池セルを収納するケー
スとを具えた太陽電池モジュールにおいて、前記ケース
の内側に2枚の電極を相対向させて設け、少なくとも光
の入射側の電極を透明電極とし、前記2枚の電極を電源
に接続して前記太陽電池セルに外部から電界を光の入射
方向に与え得るように構成したことをを特徴とする太陽
電池モジュール。 2、前記電極に接続する電力源が、前記太陽電池の出力
であることを特徴とする請求項1に記載の太陽電池モジ
ュール。
[Scope of Claims] 1. In a solar cell module comprising a solar cell and a case housing the solar cell, two electrodes are provided inside the case so as to face each other, and at least light is incident on the solar cell module. A solar cell module characterized in that the side electrode is a transparent electrode, and the two electrodes are connected to a power source so that an electric field can be applied to the solar cell from the outside in the direction of incidence of light. 2. The solar cell module according to claim 1, wherein the power source connected to the electrode is an output of the solar cell.
JP2247374A 1990-09-19 1990-09-19 Solar cell module Pending JPH04127581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2247374A JPH04127581A (en) 1990-09-19 1990-09-19 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2247374A JPH04127581A (en) 1990-09-19 1990-09-19 Solar cell module

Publications (1)

Publication Number Publication Date
JPH04127581A true JPH04127581A (en) 1992-04-28

Family

ID=17162482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2247374A Pending JPH04127581A (en) 1990-09-19 1990-09-19 Solar cell module

Country Status (1)

Country Link
JP (1) JPH04127581A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439531A (en) * 1993-12-14 1995-08-08 Finkl; Anthony W. Method and system for maintaining the efficiency of photo-voltaic cells
US6150616A (en) * 1996-04-12 2000-11-21 Nhk Spring Co., Ltd. Electroconductive contact unit system
US20130056712A1 (en) * 2009-12-02 2013-03-07 Versatilis Llc Static-Electrical-Field-Enhanced Semiconductor-Based Devices and Methods of Enhancing Semiconductor-Based Device Performance
US20180374966A1 (en) * 2012-06-04 2018-12-27 Solaredge Technologies Ltd. Integrated Photovoltaic Panel Circuitry

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439531A (en) * 1993-12-14 1995-08-08 Finkl; Anthony W. Method and system for maintaining the efficiency of photo-voltaic cells
US6150616A (en) * 1996-04-12 2000-11-21 Nhk Spring Co., Ltd. Electroconductive contact unit system
US20130056712A1 (en) * 2009-12-02 2013-03-07 Versatilis Llc Static-Electrical-Field-Enhanced Semiconductor-Based Devices and Methods of Enhancing Semiconductor-Based Device Performance
US9006931B2 (en) * 2009-12-02 2015-04-14 Versatilis Llc Static-electrical-field-enhanced semiconductor-based devices and methods of enhancing semiconductor-based device performance
US20180374966A1 (en) * 2012-06-04 2018-12-27 Solaredge Technologies Ltd. Integrated Photovoltaic Panel Circuitry
US11177768B2 (en) * 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11606061B2 (en) 2012-06-04 2023-03-14 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry

Similar Documents

Publication Publication Date Title
US9496424B2 (en) Crystalline solar cell, method for producing said type of solar cell and method for producing a solar cell module
US20090084439A1 (en) TCO-based hybrid solar photovoltaic energy conversion apparatus
JPH0460355B2 (en)
ES8202987A1 (en) Multilayer photovoltaic solar cell with semiconductor layer at shorting junction interface
KR20120080336A (en) Solar cell module having white back sheet
US4914044A (en) Method of making tandem solar cell module
US8466582B2 (en) Method and apparatus for applying an electric field to a photovoltaic element
KR101923658B1 (en) Solar cell module
ITVA20090011A1 (en) SOLAR PANEL WITH TWO MONOLITHIC MULTICELLULAR PHOTOVOLTAIC MODULES OF DIFFERENT TECHNOLOGY
JP2002050783A (en) Solar battery cell and manufacturing method therefor
CN114759063A (en) Solar cell composite assembly and photovoltaic system
US4357400A (en) Photoelectrochemical cell employing discrete semiconductor bodies
JPH04127581A (en) Solar cell module
JPS5763866A (en) Solar battery module
JPS57181176A (en) High voltage amorphous semiconductor/amorphous silicon hetero junction photosensor
US9076911B2 (en) Solar cell module and manufacturing method thereof
CN111092597A (en) Energy storage type solar cell and energy storage type photovoltaic module
US4140545A (en) Plural solar cell arrangement including transparent interconnectors
CN215342625U (en) Photovoltaic module
RU2686449C1 (en) Planar high-voltage photoelectric module
CN217426751U (en) Solar cell composite assembly and photovoltaic system
KR100322709B1 (en) Self-voltage applying solar cell and module using the same
CN211266857U (en) Energy storage type solar cell and energy storage type photovoltaic module
WO2015016480A1 (en) Silicon substrate for solar cell and manufacturing method therefor
JPS60116180A (en) Thin film semiconductor photovoltaic device