JPH0353092A - Production of copper fine powder - Google Patents

Production of copper fine powder

Info

Publication number
JPH0353092A
JPH0353092A JP18446989A JP18446989A JPH0353092A JP H0353092 A JPH0353092 A JP H0353092A JP 18446989 A JP18446989 A JP 18446989A JP 18446989 A JP18446989 A JP 18446989A JP H0353092 A JPH0353092 A JP H0353092A
Authority
JP
Japan
Prior art keywords
copper
copper powder
powder
electrolytic
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18446989A
Other languages
Japanese (ja)
Inventor
Mitsuru Kitamura
満 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP18446989A priority Critical patent/JPH0353092A/en
Publication of JPH0353092A publication Critical patent/JPH0353092A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce the copper fine powder to be used for a conductive paste, an electrically conductive coating, etc., by specifying the time interval for scraping the copper powder deposited on a cathode plate in the electrolytic production of copper powder. CONSTITUTION:Electrolytic copper is ordinarily used as the anode and a copper sheet or a Ti sheet as the cathode, when copper powder is electrolytically produced. The electrodes are alternately arranged at regular intervals. An electrolyte acidified with sulfuric acid and contg. about 2.5-10g/l of copper is used, and the current density is controlled to about 10-30A/dm<2>. In this case, the time interval for scraping the copper powder deposited on the cathode plate is adjusted to <=60sec. Consequently, copper fine powder having <=10mum, or preferably 2-5mum, average particle diameter is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電解法による銅微粉末の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing fine copper powder using an electrolytic method.

〔従来技術ゴ 近年、電子部品等の電磁波による誤差動等を防止するた
め種々の規制が行われるようになり、これに対し各種の
方法が提案されている。この中で銅微粉末を用いた導電
ペースト、導電塗料等が高い電磁波シールド効果を示す
と共にコストが安いため、多数使用されるようになって
きた。
[Prior Art] In recent years, various regulations have been put in place to prevent erroneous movements of electronic components and the like due to electromagnetic waves, and various methods have been proposed in response. Among these, conductive pastes, conductive paints, etc. using fine copper powder have come to be used in large numbers because they have a high electromagnetic shielding effect and are inexpensive.

これらの用途に用いられる銅微粉末の平均粒径は10μ
m以下好ましくは2〜5μmのものが好ましいとされ、
その需要が高まってきている,現在、lOμm以下の銅
微粉末の製造方法としては、 (1)銅イオンを含有する水溶液に還元剤である水素化
ホウ素ナトリウムまたはジメチルアミンボランを添加す
る方法 (2)硫酸銅水溶液にビスマスを添加し、水素により加
圧下還元する方法 (3)酸化銅を保護コロイドを含む水性媒体中でヒドラ
ジン及び/又はヒドラジン化合物で還元する方法 (4)銅化合物を融点以下の温度でC○、H,等により
還元する方法 (5)真空あるいは不活性ガス中で銅を蒸発、凝縮させ
る方法 (6)高圧の噴霧装置で銅の溶湯をアトマイズする方法 等が知られている。
The average particle size of fine copper powder used for these purposes is 10μ.
m or less, preferably 2 to 5 μm,
Currently, the demand for copper fine powder of less than 10 μm is being produced as follows: (1) Adding sodium borohydride or dimethylamine borane as a reducing agent to an aqueous solution containing copper ions (2) ) A method in which bismuth is added to an aqueous copper sulfate solution and reduced under pressure with hydrogen. (3) A method in which copper oxide is reduced with hydrazine and/or a hydrazine compound in an aqueous medium containing a protective colloid. (4) A method in which the copper compound is reduced to a temperature below its melting point. Methods of reducing copper with C○, H, etc. at high temperatures (5) Methods of evaporating and condensing copper in a vacuum or inert gas (6) Methods of atomizing molten copper using a high-pressure spray device are known. .

しかしながらこれらの方法は、 ■ 原料、副原料の薬品が必要で=ストが高くなる(前
記(1)、(2))。
However, these methods: (1) require chemicals as raw materials and auxiliary raw materials, resulting in high costs ((1), (2) above);

■ 特殊な設備を必要としコストが高くなる(前記(2
)、(4)、(5)、(6))。
■ Special equipment is required and costs are high ((2)
), (4), (5), (6)).

■ 粒度のコントロールが難しく収率が低い。■ Difficult to control particle size and low yield.

等の欠点を有している。It has the following drawbacks.

又、従来の電解法による銅粉の製造においては、平均粒
径が20〜40μmの粉末しか得られていないのが現状
である。
Furthermore, in the production of copper powder by conventional electrolytic methods, the present situation is that only powder having an average particle size of 20 to 40 μm can be obtained.

〔問題点を解決するための手段] 上記問題点を解決するため、本発明者等が特に連続、大
量生産に適していると考えられる電解法による銅粉の製
造方法について鋭意検討した結果、特定の電解条件下で
かき取り間隔を60秒以下とすることにより、平均粒径
がlOμm以下の銅微粉末を収率良く得られることを知
見し本発明に至った。
[Means for Solving the Problems] In order to solve the above problems, the inventors of the present invention have conducted intensive studies on a method for producing copper powder using an electrolytic method, which is considered to be especially suitable for continuous and mass production. The inventors have discovered that by setting the scraping interval to 60 seconds or less under the electrolytic conditions described above, fine copper powder having an average particle size of 10 μm or less can be obtained in good yield, leading to the present invention.

従って本発明の目的は、導電ペースト、導電塗料用等に
用いられる平均粒径がIOμm一以下好ましくは2〜5
μmの銅微粉末を効率良く製造出来る電解法による銅微
粉末の製造方法を提供することにある。
Therefore, it is an object of the present invention that the average particle size used for conductive pastes, conductive paints, etc. be less than 10 μm, preferably 2 to 5 μm.
It is an object of the present invention to provide a method for producing fine copper powder using an electrolytic method that can efficiently produce fine copper powder of μm size.

[発明の構威] すなわち本発明は、電解法による銅粉末の製造方法にお
いて、陰極板に電着した銅粉末のかき取り間隔を60秒
以下とすることにより、該銅微粉末の平均粒径をIOμ
m以下とすることを特徴とする銅微粉末の製造方法を提
供する。
[Structure of the Invention] That is, the present invention provides a method for producing copper powder by electrolytic method, in which the average particle size of the fine copper powder is reduced by scraping the copper powder electrodeposited on the cathode plate at a scraping interval of 60 seconds or less. IOμ
Provided is a method for producing fine copper powder, characterized in that the particle diameter is less than or equal to m.

[発明の具体的説明] 次に本発明の理解を容易にするために具体的かつ詳細に
説明する。
[Specific Description of the Invention] Next, the present invention will be described in detail in order to facilitate understanding of the present invention.

電解法で銅粉を製造する際、通常陽極(アノード)とし
て電気銅、陰極(カソード)として銅板又はTi板等が
用いられる。そしてこれらを交互に適当な間隔(約20
〜5 0n/m)を置き配置する。
When producing copper powder by an electrolytic method, electrolytic copper is usually used as an anode, and a copper plate or a Ti plate is used as a cathode. Then alternate these at appropriate intervals (approximately 20
~50n/m).

電解液としては硫酸酸性で銅濃度 2.5〜10giの
ものを用いる。銅濃度が2.5g/Q未満では、電解液
中の銅濃度のコントロールが難しく、一方、10g/Ω
を超えると得られる銅粉の粒度が粗くなり、目標とする
銅微粉末を得ることが出来ない。
The electrolyte used is acidic with sulfuric acid and has a copper concentration of 2.5 to 10 gi. When the copper concentration is less than 2.5 g/Q, it is difficult to control the copper concentration in the electrolyte;
If it exceeds this, the particle size of the copper powder obtained will become coarse, making it impossible to obtain the target fine copper powder.

液温は10〜35℃好ましくは20〜25℃である。1
0℃未満では、液温管理上特殊な設備が必要となり実用
的ではなく、35℃を超えると得られる銅粉の粒度が粗
くなる。
The liquid temperature is 10-35°C, preferably 20-25°C. 1
If it is less than 0°C, special equipment will be required for liquid temperature control, which is impractical, and if it exceeds 35°C, the particle size of the resulting copper powder will become coarse.

電解中にアノードから発生するアノードスライムによる
汚染を防止するために隔膜を使用することが好ましく、
又電解液は通常の電解精製の場合と同様に液循環を行い
電解槽内の液濃度を均一にする。
Preferably, a diaphragm is used to prevent contamination by anode slime generated from the anode during electrolysis;
Further, the electrolytic solution is circulated in the same manner as in normal electrolytic refining to make the concentration of the electrolytic solution uniform in the electrolytic cell.

又、銅粉電解は、効率が必ずしも100%でないため、
電解を続けると銅濃度が増加すると共に硫酸濃度が低下
する。従って、上記液循環工程の中で適宜脱銅電解(造
酸電解)を行い銅濃度及び硫酸濃度を適正値にコントロ
ールする必要がある。
In addition, copper powder electrolysis is not necessarily 100% efficient, so
As electrolysis continues, the copper concentration increases and the sulfuric acid concentration decreases. Therefore, it is necessary to appropriately perform copper removal electrolysis (acid-forming electrolysis) during the liquid circulation process to control the copper concentration and sulfuric acid concentration to appropriate values.

一方、アノードより溶出する微量の有機添加剤は、必要
に応じ活性炭等を充填したカラムに通液することにより
除去することが出来る。
On the other hand, trace amounts of organic additives eluted from the anode can be removed by passing the solution through a column filled with activated carbon or the like, if necessary.

電流密度は1 0 〜3 0 A/dm”とする。1 
0A/dm’未満では目標とする粒度の銅粉が得られず
、30A/dm” を超えると陽極の不働態化が生じ好
ましくない。
The current density is 10 to 30 A/dm.1
If it is less than 0 A/dm', copper powder with the target particle size cannot be obtained, and if it exceeds 30 A/dm', the anode becomes passivated, which is not preferable.

かき取り間隔は、60秒以下とする必要がある。The scraping interval must be 60 seconds or less.

60秒を超えると銅粉末の粒度が粗くなり、目標とする
粒度すなわち10μm以下好ましくは2〜5μmの銅粉
の収率が悪くなる。
If it exceeds 60 seconds, the particle size of the copper powder becomes coarse, and the yield of copper powder with the target particle size of 10 μm or less, preferably 2 to 5 μm becomes poor.

かき取り方法としては、耐酸性のゴム、テフロン(商品
名)、軟質PVC等を用い、銅粉が生成するカソード表
面を、カソードが動かないように表と裏と同時に機械的
に上下動させること等により達戒出来る。
The scraping method involves using acid-resistant rubber, Teflon (trade name), soft PVC, etc., and mechanically moving the cathode surface where copper powder is generated up and down at the same time as the front and back sides so that the cathode does not move. etc., it is possible to attain the precepts.

このようにして得られた平均粒径が10μm好ましくは
2〜5μmの銅微粉末は、自然沈降により電解槽下部の
ホッパー又は場合によっては液循環工程にシックナーを
設けることにより、沈降分離させこれを抜き出し、水洗
一防錆一脱水一乾燥一篩別工程を経て製品とする。防錆
工程では、取り扱う銅粉が非常に微細なため、乾燥時等
に表面酸化を起しやすいので、防錆処理を十分に行う必
要があり、ニカワ、ペンゾトリアゾール等の防錆剤の種
類及びその濃度等を得られる銅粉に応じ選定する必要が
ある。
The thus obtained fine copper powder having an average particle size of 10 μm, preferably 2 to 5 μm, is separated by natural sedimentation in a hopper at the bottom of the electrolytic cell or, in some cases, by providing a thickener in the liquid circulation process. After extraction, washing with water, rust prevention, dehydration, drying, and sieving, the product is made into a product. In the rust prevention process, the copper powder handled is very fine and easily causes surface oxidation during drying, so sufficient rust prevention treatment is required. It is necessary to select according to the copper powder that can obtain the copper powder and its concentration.

この際、必要に応じ水素化ホウ素ナトリウムを用い還元
を行っても良く、又乾燥後にH,ガスにより還元するこ
とも出来る。
At this time, reduction may be carried out using sodium borohydride if necessary, or reduction may be carried out using H or gas after drying.

以下、実施例について説明する。Examples will be described below.

〔実施例] アノードとして100mmWX 120+nmHX I
Ommtの電気鋼を3枚、カソードとして100師WX
l20帥HX5+nn+tのTi板2枚を用い、アノー
トとカソードを極間距離35閣で交互に配置し、各種電
解条件で48r電解した。そして得られた銅粉を水洗水
のpHが6〜7になるまで水洗を行い、コロミン(商品
名)3mQ/Qの防錆液中で5分間撹伴処理した後が過
し、エタノール溶液中に2分間浸漬後、常温で真空乾燥
を行った。このようにして得られた銅粉を自動乳鉢によ
りlO分間解砕した後3 5 0meshの篩を用い篩
別を行った。
[Example] 100mmWX 120+nmHX I as anode
3 pieces of Ommt electric steel, 100mm WX as a cathode
Using two Ti plates of 120 mm HX5 + nn + t, anodes and cathodes were alternately arranged with a distance of 35 mm, and electrolysis was performed for 48 r under various electrolytic conditions. The obtained copper powder was washed with water until the pH of the washing water became 6 to 7, stirred for 5 minutes in a rust preventive solution of Colomin (trade name) 3 mQ/Q, and then washed in an ethanol solution. After immersion in water for 2 minutes, vacuum drying was performed at room temperature. The copper powder thus obtained was crushed in an automatic mortar for 10 minutes, and then sieved using a 350 mesh sieve.

第1表に電解条件及び試験結果を示す。Table 1 shows the electrolysis conditions and test results.

第 l 表 本l:平均粒径は島津製作所製CP−50型遠心沈降粒
度測定器を用いて測定した。
Table 1: Average particle size was measured using a Shimadzu CP-50 centrifugal sedimentation particle size analyzer.

零2:不働態化し電解不能。Zero 2: Passivated and cannot be electrolyzed.

第1表から判るように本発明例Na l〜10では、平
均粒径が10μm以下の銅微粉末が得られ、収率はいず
れも90%以上であった。
As can be seen from Table 1, fine copper powder having an average particle size of 10 μm or less was obtained in Inventive Examples Na1 to 10, and the yield was 90% or more in all cases.

これに対し、比較例の胤1 1では銅濃度力v15g/
悲と高く、Nll2では電流密度が5A/dm”と低く
そしてl’hl4、l5では、かき取り間隔が90秒、
■20秒と長いため平均粒径が10μmを超えてしまう
On the other hand, in the comparative example Seed 1 1, the copper concentration force v15g/
In Nll2, the current density is as low as 5 A/dm, and in l'hl4 and l5, the scraping interval is 90 seconds,
(2) Because it takes 20 seconds, the average particle size exceeds 10 μm.

一方、P&Ll4では電流密度が35A/di”と高い
ため、陽極が不働熊化を起し、銅粉を得ることが出来な
い。
On the other hand, in P&Ll4, the current density is as high as 35 A/di'', so the anode becomes inactive and copper powder cannot be obtained.

〔発明の効果〕〔Effect of the invention〕

以上示したように、本発明により導電ペースト、導電塗
料用等に好適に用いられる平均粒径が10μm以下好ま
しくは2〜5μmの銅微粉末を効率良く製造出来る、電
解法による銅微粉末の製造方法を確立することが出来た
As shown above, according to the present invention, copper fine powder with an average particle size of 10 μm or less, preferably 2 to 5 μm, which is suitably used for conductive pastes, conductive paints, etc., can be efficiently produced by an electrolytic method. I was able to establish a method.

Claims (1)

【特許請求の範囲】[Claims] (1)電解法による銅粉末の製造方法において、陰極板
に電着した銅粉末のかき取り間隔を60秒以下とするこ
とにより、該銅粉末の平均粒径を10μm以下とするこ
とを特徴とする銅微粉末の製造方法。
(1) A method for producing copper powder by electrolytic method, characterized in that the average particle size of the copper powder is made 10 μm or less by scraping off the copper powder electrodeposited on the cathode plate at 60 seconds or less. A method for producing fine copper powder.
JP18446989A 1989-07-19 1989-07-19 Production of copper fine powder Pending JPH0353092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18446989A JPH0353092A (en) 1989-07-19 1989-07-19 Production of copper fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18446989A JPH0353092A (en) 1989-07-19 1989-07-19 Production of copper fine powder

Publications (1)

Publication Number Publication Date
JPH0353092A true JPH0353092A (en) 1991-03-07

Family

ID=16153704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18446989A Pending JPH0353092A (en) 1989-07-19 1989-07-19 Production of copper fine powder

Country Status (1)

Country Link
JP (1) JPH0353092A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6575289B2 (en) 2000-10-31 2003-06-10 Toyo Jidoki Co., Ltd Apparatus and method for feeding spout-equipped bags to bag filling and packaging machine
CN100344795C (en) * 2005-02-06 2007-10-24 金川集团有限公司 Method for producing copper powder by electrodeposition
JP4794008B2 (en) * 2004-07-22 2011-10-12 フェルプス ドッジ コーポレイション Apparatus for producing metal powder by electrowinning
JP2016089199A (en) * 2014-10-31 2016-05-23 住友金属鉱山株式会社 Copper powder, copper paste using the same, conductive coating and conductive sheet
CN112626568A (en) * 2020-11-23 2021-04-09 江苏净源新材料有限公司 Method for preparing copper powder by recovering copper from etching solution and electrolyzing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6575289B2 (en) 2000-10-31 2003-06-10 Toyo Jidoki Co., Ltd Apparatus and method for feeding spout-equipped bags to bag filling and packaging machine
JP4794008B2 (en) * 2004-07-22 2011-10-12 フェルプス ドッジ コーポレイション Apparatus for producing metal powder by electrowinning
CN100344795C (en) * 2005-02-06 2007-10-24 金川集团有限公司 Method for producing copper powder by electrodeposition
JP2016089199A (en) * 2014-10-31 2016-05-23 住友金属鉱山株式会社 Copper powder, copper paste using the same, conductive coating and conductive sheet
CN112626568A (en) * 2020-11-23 2021-04-09 江苏净源新材料有限公司 Method for preparing copper powder by recovering copper from etching solution and electrolyzing

Similar Documents

Publication Publication Date Title
DE60002838T2 (en) METHOD FOR RECOVERING TIN, TIN ALLOYS OR LEAD PLATE LEADING
CN101994128A (en) Method for preparing Al-Ti alloy or plated Al-Ti alloy by low-temperature electrolytic deposition of ionic liquid
US4992149A (en) Process for the simultaneous recovery of manganese dioxide and zinc
CN109402678B (en) Method for removing lead ions in electrolytic copper foil electrolyte
US2157699A (en) Electrolytic metal powders
Walker Ultrasound improves electrolytic recovery of metals
US4256557A (en) Copper electrowinning and Cr+6 reduction in spent etchants using porous fixed bed coke electrodes
JPH0353092A (en) Production of copper fine powder
US3677918A (en) Method for directly electrochemically extracting gallium from a circulating aluminate solution in the bayer process by eliminating impurities
CN106987869B (en) The method for being electrolysed the additive package of alkaline etching waste liquid for producing and preparing copper powder with it
DE2435206A1 (en) PROCESS FOR ELECTROLYTIC EXTRACTION OF COPPER FROM SOLIDS CONTAINING COPPER
CN109234767B (en) Preparation method of superfine spherical copper powder
DE3022751A1 (en) LOW OVERVOLTAGE ELECTRODE AND METHOD FOR PRODUCING THE SAME
US4164456A (en) Electrolytic process
CN111378992B (en) Preparation method of copper powder
US2182567A (en) Production of metal powders
CN106854768B (en) electrodeposition preparation method of superfine copper powder
RU2469111C1 (en) Method of producing copper powder from copper-containing ammoniate wastes
JPH1018073A (en) Electrolysis with addition of ultrasonic vibration
DE2232903C3 (en) Process for the electrolytic refining of copper using titanium electrodes
US4026786A (en) Preparation of PbO2 anode
RU2757151C2 (en) Method for producing zinc powder
CS199597B2 (en) Method of electrolytical obtaining gallium from alkaline metals solutions
US1687056A (en) Process of electrolytically separating the alloys of silver with other precious or base metals
US3844912A (en) Process for treating electrolytic manganese dioxide