JPH03191802A - Strain sensitive element - Google Patents

Strain sensitive element

Info

Publication number
JPH03191802A
JPH03191802A JP33358289A JP33358289A JPH03191802A JP H03191802 A JPH03191802 A JP H03191802A JP 33358289 A JP33358289 A JP 33358289A JP 33358289 A JP33358289 A JP 33358289A JP H03191802 A JPH03191802 A JP H03191802A
Authority
JP
Japan
Prior art keywords
strain
strain sensitive
resistance
sensitive
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33358289A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sasaki
伸行 佐々木
Masahiro Kume
昌宏 粂
Hidetoshi Saito
英敏 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP33358289A priority Critical patent/JPH03191802A/en
Publication of JPH03191802A publication Critical patent/JPH03191802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To improve the sensitivity of an element by arranging a plurality of strain sensitive electric resistors which are extending in one direction in parallel, connecting each strain sensitive electric resistor with a low-resistance electric resistor, and forming one unit of strain sensitive body. CONSTITUTION:In an element 10, a plurality of strain sensitive electric resistors 11 which are extending in one direction are arranged in parallel, and the strain sensitive resistors 11 are connected with low-resistance electric resistors 12 in series. Thus one unit of strain sensitive body is formed. The strain sensitive body is fixed to the surface of a test specimen under the state wherein strain can be received. The element 10 formed in this way is provided on the test specimen under the state wherein the extending direction of the strain sensitive electric resistor 11 agrees with the strain generating direction. Then the strain generated in the material to be measured is efficiently transmitted to the strain sensitive electric resistors 11. Therefore, the strain is positively transduced into the electric signal through the change in resistance of the strain sensitive electric resistor. Since the resistance value of the low resistance electric resistor extending in the direction where strain is not generated is small, the rate of the resistance value of the strain sensitive electric resistor occupying the resistance value in the entire strain sensitive element is large. Therefore, the resistance change in strain sensitive electric resistor becomes conspicuous.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、抵抗線歪ゲージ等に利用される感歪素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a strain-sensitive element used in a resistance wire strain gauge or the like.

〔従来の技術と発明の課題〕[Prior art and problems with the invention]

第7図に示すように、歪ゲージ等に利用される感歪素子
aは、一般に同一の感歪電気抵抗材料を用いて被測定物
すの表面や、樹脂フィルム上に真空蒸着法等によって形
成される。
As shown in Fig. 7, the strain-sensitive elements a used in strain gauges, etc. are generally formed using the same strain-sensitive electric resistance material on the surface of the object to be measured or on a resin film by vacuum evaporation, etc. be done.

ところで、この感歪素子は、歪に応して電気抵抗が変化
する性質を専ら利用するものであるため、例えば、被測
定物の一方向に発生ずる歪を測定する場合には、感歪素
子の長手方向を歪発生方向に一致させて使用する。
By the way, this strain-sensitive element exclusively utilizes the property that electrical resistance changes in response to strain. The longitudinal direction of the strainer should be aligned with the direction of strain generation.

このような場合、上述した従来の構造であると被測定物
の歪 により、抵抗変化を生しない部分の抵抗値が感歪
素子全体の抵抗値に占める割合が大きくなるため、感歪
素子全体としての歪による抵抗変化率が小さくなり、感
度が低下する。
In such a case, with the conventional structure described above, due to the strain of the object to be measured, the resistance value of the part that does not cause a resistance change will account for a large proportion of the resistance value of the entire strain-sensitive element. The rate of change in resistance due to strain becomes smaller, resulting in lower sensitivity.

そこで、この発明の課題は、全抵抗値における非変化抵
抗値の占める割合を小さくすることにより、感歪素子の
感度を上げることにある。
Therefore, an object of the present invention is to increase the sensitivity of the strain-sensitive element by reducing the proportion of the unchanging resistance value in the total resistance value.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するため、この発明の感歪素子は、一
方向に延びる複数の感歪電気抵抗体を並列に配置し、各
感歪電気抵抗体を低電気抵抗体で直列に接続して一連の
感歪体を形成し、この感歪体を歪を受け得る状態で非測
定物の表面に固着するようにしたのである。
In order to solve the above problems, the strain-sensitive element of the present invention has a plurality of strain-sensitive electric resistors extending in one direction arranged in parallel, and each strain-sensitive electric resistor is connected in series with a low electric resistance element. A series of strain-sensitive elements were formed, and the strain-sensitive elements were fixed to the surface of a non-measurable object in a state where they could receive strain.

前記低電気抵抗体は、低電気抵抗体と感歪電気抵抗体と
の二層構造にしてもよい。
The low electric resistance body may have a two-layer structure including a low electric resistance body and a strain-sensitive electric resistance body.

〔作用〕[Effect]

以上のように構成された感歪素子をその感歪電気抵抗体
の延びる方向と歪発生方向とを一致させた状態で被測定
物に設けておくと、被測定物に生ずる歪が効率よく感歪
電気抵抗体に伝わるので感歪電気抵抗体の抵抗変化を通
して確実に電気信号に変換される。さらに、歪非発生力
向に延びる低電気抵抗体は抵抗値が小さいため、感歪素
子全体の抵抗値における感歪電気抵抗体の抵抗値の占め
る割合が大きく、感歪電気抵抗体の抵抗変化が顕著に現
われる。
If the strain-sensitive element configured as described above is provided on the object to be measured with the direction in which the strain-sensitive electric resistor extends and the direction in which strain occurs coincide, the strain occurring in the object to be measured can be efficiently sensed. Since the signal is transmitted to the strain-sensitive electric resistor, it is reliably converted into an electrical signal through the resistance change of the strain-sensitive electric resistor. Furthermore, since the resistance value of the low electrical resistance element extending in the direction of the non-strain-generating force is small, the resistance value of the strain-sensitive electrical resistance element accounts for a large proportion of the resistance value of the entire strain-sensitive element, and the resistance of the strain-sensitive electrical resistance element changes. appears prominently.

なお、前記低電気抵抗体を低電気抵抗体と感歪電気抵抗
体との二層構造にした場合も低電気抵抗体単独の場合と
同様に感歪電気抵抗体の抵抗変化が顕著に現われる。
Note that even when the low electrical resistance body has a two-layer structure of a low electrical resistance body and a strain-sensitive electric resistor, the change in resistance of the strain-sensitive electric resistor appears as remarkable as in the case where the low electric resistance body is used alone.

〔実施例] 以下、実施例について図面を参照して説明する。〔Example] Examples will be described below with reference to the drawings.

第1図および第2図に示すように、この感歪素子10は
、並列に配置された一方向に延びる複数の感歪電気抵抗
体11と、この感歪電気抵抗体11を直列に接続する低
電気抵抗体12とから成り、被測定体A上に直接真空蒸
着して形成されている。
As shown in FIGS. 1 and 2, this strain-sensitive element 10 includes a plurality of strain-sensitive electric resistors 11 arranged in parallel and extending in one direction, and the strain-sensitive electric resistors 11 are connected in series. It is formed by direct vacuum deposition on the object A to be measured.

前記感歪電気抵抗体11は、60%Cu−40%Ni合
金で形成されており、前記低電気抵抗体12はAuで形
成されている。
The strain-sensitive electrical resistor 11 is made of a 60% Cu-40% Ni alloy, and the low electrical resistor 12 is made of Au.

このようにしておくと、60%Cu−40%N1合金は
電気抵抗率RCu−Niが49×l0−bΩ−cmであ
り、一方のAuの電気抵抗率RAuは2.2X 10−
6Ω・Cl11であるので、前記低電気抵抗体12部分
を感歪電気抵抗体11と同一の60%Cu−40%N1
合金で形成した場合に比べその電気抵抗が約1722に
低下し、感歪電気抵抗体11の抵抗変化が顕著に現われ
る。
In this way, the electrical resistivity RCu-Ni of the 60% Cu-40% N1 alloy is 49×10-bΩ-cm, while the electrical resistivity RAu of Au is 2.2×10-cm.
6Ω・Cl11, the low electrical resistance element 12 is made of the same 60% Cu-40% N1 as the strain-sensitive electrical resistor 11.
Compared to the case where it is made of an alloy, its electrical resistance is reduced to about 1722, and the resistance change of the strain-sensitive electrical resistor 11 becomes noticeable.

また、製造方法についていえば、従来は、第8図乃至第
10図の各(a)図に示すような3種類のマスクe、f
、 gを使用し、各(1))図に示すように、感歪素子
aと電極体Cとを順次蒸着していくのが一般的である。
Regarding the manufacturing method, conventionally, three types of masks e and f are shown in each of FIGS. 8 to 10 (a).
, g, and the strain-sensitive element a and the electrode body C are generally deposited one after another as shown in each (1)).

しかし、この感歪素子10の場合は低電気抵抗体12と
同一材料で電極部13を形成することにより、第3図(
a)および第4図(a)に示すように、感歪電気抵抗体
11用のマスク(イ)と低電気抵抗体12および電極部
13用のマスク(ロ)の二枚で第3図(b)および第4
図(b)に示すように順次蒸着していくことができるの
で生産性も良い。
However, in the case of this strain-sensitive element 10, the electrode part 13 is formed of the same material as the low electrical resistance body 12, as shown in FIG.
As shown in FIG. 3 (a) and FIG. b) and fourth
As shown in Figure (b), the deposition can be performed sequentially, resulting in good productivity.

なお、この発明の感歪素子は第5図に示すように、同一
材料で一連の感歪電気抵抗体11を形成した後に所要部
に低電気抵抗体12を重ね合わせるようにしてもよい。
As shown in FIG. 5, the strain-sensitive element of the present invention may be constructed by forming a series of strain-sensitive electrical resistors 11 of the same material and then overlapping low electrical resistors 12 at required portions.

また、第6図に示すように、樹脂フィルム14上に各抵
抗体11.12および電極部13を蒸着し、この樹脂フ
ィルム14を介して被測定物に貼り付けるようにしても
よい。
Alternatively, as shown in FIG. 6, the resistors 11, 12 and the electrode portions 13 may be deposited on a resin film 14 and attached to the object to be measured via the resin film 14.

さらに、被測定物あるいは樹脂フィルム等への感歪素子
の形成方法も例示のような真空蒸着法に限定されず、ス
パッタリング、イオンブレーティング等の各種PVD法
またはスクリーン印刷法であってもよい。
Furthermore, the method for forming the strain-sensitive element on the object to be measured or the resin film is not limited to the vacuum evaporation method as exemplified, but may be any of various PVD methods such as sputtering and ion blasting, or screen printing methods.

〔効果〕〔effect〕

以上のように、この発明の感歪素子は、一方向に延びる
複数の感歪電気抵抗体を並列に配置し、各感歪電気抵抗
体を低電気抵抗体で直列に接続する構成にしたため、一
方向に発生する歪のみを感知することができ、しかも、
感歪電気抵抗体の抵抗値が感歪素子全体の抵抗値に占め
る割合が大きくなるのでその抵抗変化が顕著に現われ、
感歪素子の悪魔が向上する。
As described above, the strain-sensitive element of the present invention has a configuration in which a plurality of strain-sensitive electrical resistors extending in one direction are arranged in parallel, and each strain-sensitive electrical resistor is connected in series with a low electrical resistance member. It is possible to sense only distortion occurring in one direction, and
As the resistance value of the strain-sensitive electrical resistor occupies a large proportion of the resistance value of the entire strain-sensitive element, the change in resistance becomes noticeable.
The demon of the sensitive distortion element improves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る一実施例を示す斜視図、第2図
は同上の要部を示す拡大斜視図、第3図および第4図は
製造過程を示す平面図、第5図は変形例を示す斜視図、
第6図は他の実施例を示す平面図である。 また、第7図は従来例を示す斜視図であり、第8図乃至
第10図は同上の製造過程を示す平面図である。 10・・・・・・感歪素子、  11・・・・・・感歪
電気抵抗体、12・・・・・・低電気抵抗体、13・・
・・・・電極部、14・・ 樹脂フィルム。 同
Fig. 1 is a perspective view showing one embodiment of the present invention, Fig. 2 is an enlarged perspective view showing the main parts of the same, Figs. 3 and 4 are plan views showing the manufacturing process, and Fig. 5 is a modified version. A perspective view showing an example,
FIG. 6 is a plan view showing another embodiment. Moreover, FIG. 7 is a perspective view showing a conventional example, and FIGS. 8 to 10 are plan views showing the manufacturing process of the same. 10...Strain sensitive element, 11...Strain sensitive electrical resistor, 12...Low electrical resistance body, 13...
...Electrode part, 14... Resin film. same

Claims (2)

【特許請求の範囲】[Claims] (1)一方向に延びる複数の感歪電気抵抗体を並列に配
置し各感歪電気抵抗体を低電気抵抗体で直列に接続して
一連の感歪体を形成し、この感歪体を歪を受け得る状態
で被測定物の表面に固着するようにした感歪素子。
(1) A plurality of strain-sensitive electrical resistors extending in one direction are arranged in parallel, and each strain-sensitive electrical resistor is connected in series with a low electrical resistance member to form a series of strain-sensitive members. A strain-sensitive element that is fixed to the surface of an object to be measured in a state where it can receive strain.
(2)前記低電気抵抗体を低電気抵抗体と感歪電気抵抗
体との二層構造にした請求項(1)記載の感歪素子。
(2) The strain-sensitive element according to claim (1), wherein the low electrical resistance body has a two-layer structure of a low electrical resistance body and a strain-sensitive electric resistance body.
JP33358289A 1989-12-21 1989-12-21 Strain sensitive element Pending JPH03191802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33358289A JPH03191802A (en) 1989-12-21 1989-12-21 Strain sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33358289A JPH03191802A (en) 1989-12-21 1989-12-21 Strain sensitive element

Publications (1)

Publication Number Publication Date
JPH03191802A true JPH03191802A (en) 1991-08-21

Family

ID=18267658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33358289A Pending JPH03191802A (en) 1989-12-21 1989-12-21 Strain sensitive element

Country Status (1)

Country Link
JP (1) JPH03191802A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183883A (en) * 1990-09-28 1993-02-02 Mercian Corporation Conjugate of adriamycin and cyclodextrin
US5450755A (en) * 1992-10-21 1995-09-19 Matsushita Electric Industrial Co., Ltd. Mechanical sensor having a U-shaped planar coil and a magnetic layer
CN103727871A (en) * 2013-12-20 2014-04-16 广西科技大学 Resistance strain gauge
KR101701222B1 (en) * 2015-10-07 2017-02-06 월드잉 주식회사 Wrist temper sporting goods
JP2018040776A (en) * 2016-09-09 2018-03-15 株式会社NejiLaw Sensor structure and component having the same
JP2019132790A (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge
JP2019132791A (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge
JP2019184344A (en) * 2018-04-05 2019-10-24 ミネベアミツミ株式会社 Strain gauge and manufacturing method therefor
CN110824181A (en) * 2019-10-18 2020-02-21 中国航空工业集团公司西安飞行自动控制研究所 Signal connection method for low-resistance sensitive device
JP2021051091A (en) * 2020-12-24 2021-04-01 株式会社NejiLaw Sensor structure patterning method
WO2021193405A1 (en) * 2020-03-24 2021-09-30 ミネベアミツミ株式会社 Strain gauge
US11543309B2 (en) 2017-12-22 2023-01-03 Minebea Mitsumi Inc. Strain gauge and sensor module
US11543308B2 (en) 2017-09-29 2023-01-03 Minebea Mitsumi Inc. Strain gauge
US11542590B2 (en) 2017-09-29 2023-01-03 Minebea Mitsumi Inc. Strain gauge
US11692806B2 (en) 2017-09-29 2023-07-04 Minebea Mitsumi Inc. Strain gauge with improved stability
US11774303B2 (en) 2018-10-23 2023-10-03 Minebea Mitsumi Inc. Accelerator, steering wheel, six-axis sensor, engine, bumper and the like
WO2024010027A1 (en) * 2022-07-07 2024-01-11 ミネベアミツミ株式会社 Strain gauge

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183883A (en) * 1990-09-28 1993-02-02 Mercian Corporation Conjugate of adriamycin and cyclodextrin
US5450755A (en) * 1992-10-21 1995-09-19 Matsushita Electric Industrial Co., Ltd. Mechanical sensor having a U-shaped planar coil and a magnetic layer
CN103727871A (en) * 2013-12-20 2014-04-16 广西科技大学 Resistance strain gauge
KR101701222B1 (en) * 2015-10-07 2017-02-06 월드잉 주식회사 Wrist temper sporting goods
JP2021119354A (en) * 2016-09-09 2021-08-12 株式会社NejiLaw Sensor structure and member having sensor structure
JP2018040776A (en) * 2016-09-09 2018-03-15 株式会社NejiLaw Sensor structure and component having the same
US11702730B2 (en) 2017-09-29 2023-07-18 Minebea Mitsumi Inc. Strain gauge
US11692806B2 (en) 2017-09-29 2023-07-04 Minebea Mitsumi Inc. Strain gauge with improved stability
US11542590B2 (en) 2017-09-29 2023-01-03 Minebea Mitsumi Inc. Strain gauge
US11543308B2 (en) 2017-09-29 2023-01-03 Minebea Mitsumi Inc. Strain gauge
US11543309B2 (en) 2017-12-22 2023-01-03 Minebea Mitsumi Inc. Strain gauge and sensor module
JP2019132791A (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge
CN111656129B (en) * 2018-02-02 2023-08-22 美蓓亚三美株式会社 Strain gauge
US11326967B2 (en) 2018-02-02 2022-05-10 Minebea Mitsumi Inc. Strain gauge with improved temperature effect detection
CN111656129A (en) * 2018-02-02 2020-09-11 美蓓亚三美株式会社 Strain gauge
WO2019151345A1 (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge
JP2019132790A (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge
CN111919083A (en) * 2018-04-05 2020-11-10 美蓓亚三美株式会社 Strain gauge and manufacturing method thereof
US11747225B2 (en) 2018-04-05 2023-09-05 Minebea Mitsumi Inc. Strain gauge with improved stability and stress reduction
CN111919083B (en) * 2018-04-05 2023-08-22 美蓓亚三美株式会社 Strain gauge and method for manufacturing same
JP2019184344A (en) * 2018-04-05 2019-10-24 ミネベアミツミ株式会社 Strain gauge and manufacturing method therefor
US11774303B2 (en) 2018-10-23 2023-10-03 Minebea Mitsumi Inc. Accelerator, steering wheel, six-axis sensor, engine, bumper and the like
CN110824181B (en) * 2019-10-18 2021-10-15 中国航空工业集团公司西安飞行自动控制研究所 Signal connection method for low-resistance sensitive device
CN110824181A (en) * 2019-10-18 2020-02-21 中国航空工业集团公司西安飞行自动控制研究所 Signal connection method for low-resistance sensitive device
WO2021193405A1 (en) * 2020-03-24 2021-09-30 ミネベアミツミ株式会社 Strain gauge
JP2021051091A (en) * 2020-12-24 2021-04-01 株式会社NejiLaw Sensor structure patterning method
WO2024010027A1 (en) * 2022-07-07 2024-01-11 ミネベアミツミ株式会社 Strain gauge

Similar Documents

Publication Publication Date Title
JPH03191802A (en) Strain sensitive element
US2885524A (en) Electric resistance devices
EP0436920A2 (en) Pressure sensor
US20090235762A1 (en) Transverse force measurement
JPS62226029A (en) Temperature correcting method for load cell
DE19754613A1 (en) Pressure sensor with diaphragm responding to pressure and four strain gauge units esp. for vehicle hydraulic braking system
DE19600541C2 (en) Semiconductor acceleration detection device
JP6717442B2 (en) Magnetic sensor and current sensor
JP3010048B2 (en) Positioning device of warp knitting machine for positioning yarn guide
US2415082A (en) Fine wire strain gauge
JPS5842941A (en) Load cell
JP3338983B2 (en) Pressure sensitive distribution sensor sheet and disconnection detection method thereof
DE102019213127A1 (en) DEVICE FOR A NON-CONTACTIVE SENSOR WITH ESD PROTECTION STRUCTURE
DE3004031C2 (en) Pressure transducer
CA2227259C (en) Force sensors with segmental electrodes
EP0155391A1 (en) Device for measuring electrical currents using a magnetic-field sensor
JPS5612526A (en) Load transducer
US3621435A (en) Transducer beam with back-to-back related deposited film type strain gages
JP2722080B2 (en) Free filament strain gauge and its manufacturing method
JPS615327A (en) Information input tablet
JPH09257601A (en) Load cell
CN115533467B (en) Strain beam manufacturing method and pressure sensor
JPH07248265A (en) Platinum temperature sensor
JP3471500B2 (en) Output circuit of detection sensor
JPH02256278A (en) Semiconductor pressure sensor