JPH02177731A - Receiver for distribution line carrier current signal - Google Patents

Receiver for distribution line carrier current signal

Info

Publication number
JPH02177731A
JPH02177731A JP33194488A JP33194488A JPH02177731A JP H02177731 A JPH02177731 A JP H02177731A JP 33194488 A JP33194488 A JP 33194488A JP 33194488 A JP33194488 A JP 33194488A JP H02177731 A JPH02177731 A JP H02177731A
Authority
JP
Japan
Prior art keywords
signal
phase
noise component
phases
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33194488A
Other languages
Japanese (ja)
Other versions
JPH0666717B2 (en
Inventor
Hiroo Sato
佐藤 裕雄
Naoto Miura
直人 三浦
Masahiro Oikawa
及川 昌洋
Satoshi Komazawa
駒沢 聰
Tatsuji Naka
中 達次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaki Electric Co Ltd
Tohoku Electric Power Co Inc
Original Assignee
Osaki Electric Co Ltd
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaki Electric Co Ltd, Tohoku Electric Power Co Inc filed Critical Osaki Electric Co Ltd
Priority to JP33194488A priority Critical patent/JPH0666717B2/en
Publication of JPH02177731A publication Critical patent/JPH02177731A/en
Publication of JPH0666717B2 publication Critical patent/JPH0666717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To eliminate the 3-phase noise component at a signal transmission band and to improve the S/N at signal transmission by detecting a signal including the noise component in 2 phases among 3 phases at a receiver side of the signal, retarding the signal by 1/3 period of the signal and subtracting it from signals of the other phases. CONSTITUTION:A receiver 20 detects a current signal including a noise component of two phases among three phases of a distribution line, current-voltage conversion circuits 21,22 convert the signal into a voltage, which is filtered by band pass reception filters 23, 24. A signal and noise component received from an advanced phase is retarded by a 1/3 period delay circuit 26. Moreover, a signal and noise component received from a retarded phase is inverted by a phase inverting circuit 26, after the two signal and noise components are added and synthesized by an adder circuit 27, the resulting signal is demodulated by a demodulation circuit 28. Thus, the 3 phase noise component distributed on the distribution line r is eliminated and the S/N of the received signal output is improved.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、三相配電線路に接がる配電用変圧器の2次側
から注入された単相の電流信号を、変電所の三相のフィ
ーダ変流器のうちの二相により検出する配電線搬送電流
信号用受信装置の改良に関し、配電線の電圧・電流など
の配電線情報や各種制御システムのデータなどの伝達に
好適なものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention converts a single-phase current signal injected from the secondary side of a distribution transformer connected to a three-phase distribution line into a three-phase current signal of a substation. Regarding the improvement of a receiving device for distribution line carrier current signals detected by two phases of feeder current transformers, it is suitable for transmitting distribution line information such as voltage and current of distribution lines and data of various control systems. .

(発明の背景) 配電系統の遠隔監視・制御、配電線情報または各種制御
システムからのデータの収集などを行う場合、一般的に
配電線路がそれらの情報信号の伝送路として使用される
(Background of the Invention) When remote monitoring and control of a power distribution system, collection of power distribution line information or data from various control systems, etc., power distribution lines are generally used as transmission paths for these information signals.

この場合、配電系統の電源端の親局装置から負荷側の子
局装置に対して行う、各種の監視・制御のための指令信
号などの搬送方式は、商用周波電圧に数百Hzの比較的
低周波帯の電圧信号を重畳させるリップルコントロール
方式が使用されているが、他方、配電線路を伝送路とし
て子局装置から親局装置に同じく比較的低周波帯の電流
信号を搬送する方式が電流信号伝送方式である。
In this case, the transmission method for command signals for various monitoring and control from the master station device at the power supply end of the power distribution system to the slave station devices at the load side is a comparatively A ripple control method is used that superimposes a voltage signal in a low frequency band, but on the other hand, a method in which a current signal in a relatively low frequency band is conveyed from the slave station device to the master station device using the distribution line as a transmission path is used. It is a signal transmission method.

後者の方式は、配電線路の負荷側の低圧配電線から信号
を電流として注入し、配電用変圧器を介して高圧配電線
(フィーダ)により信号を配電用変電所まで搬送し、フ
ィーダ変流器で電流信号を検出・受信する方式であり、
負荷側での電流信号の注入が可能であること、既設の配
電線路、配電用変圧器、及びフィーダ変流器をそのまま
利用できることなどの理由により、負荷側の開閉器制御
システムなど、監視・制御対象システムのデータを、指
令光である親局装置へ伝送するために簡易−で有効な方
式として広く利用されている。
In the latter method, the signal is injected as a current from the low-voltage distribution line on the load side of the distribution line, and the signal is conveyed to the distribution substation by the high-voltage distribution line (feeder) via the distribution transformer. This is a method of detecting and receiving current signals with
Because it is possible to inject current signals on the load side, and existing distribution lines, distribution transformers, and feeder current transformers can be used as is, it is possible to monitor and control load-side switchgear control systems, etc. It is widely used as a simple and effective method for transmitting data of the target system to a master station device using command light.

第5図は一般的な配電線搬送用電流信号伝送方式の構成
図である。
FIG. 5 is a configuration diagram of a general current signal transmission system for carrying power distribution lines.

負荷側の子局装置1から低圧配電線2に単相の電流信号
として注入された線路開閉器3などの各種制御システム
からのデータ信号は、配電用変圧器4を経て三相の高圧
配電線(フィーダ)5に入り、変電所主変圧器6を有す
る配電用変電所へと搬送されて、フィーダ変流器7の二
次側に設けられた補助変流器8により検出され、変電所
装置9の受信装置10により受信される。
Data signals from various control systems such as a line switch 3 are injected as single-phase current signals from the slave station device 1 on the load side to the low-voltage distribution line 2, and are transferred to the three-phase high-voltage distribution line via the distribution transformer 4. (feeder) 5, is transported to a distribution substation having a substation main transformer 6, is detected by an auxiliary current transformer 8 provided on the secondary side of the feeder current transformer 7, and is detected by the substation equipment. It is received by the receiving device 10 of 9.

変電所装置9の受信装置10は、受信したデータを通信
線11により電力会社の営業所に設置された中実装置1
2へ送る。変電所装置9と中実装置12が親局装置13
を構成する。
The receiving device 10 of the substation device 9 transmits the received data via a communication line 11 to the solid device 1 installed at the office of the electric power company.
Send to 2. The substation device 9 and the solid device 12 are the master station device 13
Configure.

電流信号伝送方式は、搬送信号として低周波帯を用いる
ことから伝送特性が良好であり、上述のように配電系統
の各種システムからのデータ信号などの伝送に非常に有
効な方式であるが、信号の伝送路として専用の信号線を
使用する代わりに商用電力供給用の配電線を使用するた
め、信号の送信側である子局装置1で、三和或いは単相
の配電用変圧器4の二次側の配電線の線間に信号を注入
し、変電所装置9の受信装置10で、三相の内の二相で
信号を検出・受信しく三相の内の二相から信号を検出・
受信することは、二相の内少な(とも−相に必ず信号が
あり、子局側の信号性入相が自由になることから、一般
的に行われている)、復調した信号をそのままオア回路
を通して出力として得る従来の方法では、信号の伝送帯
域に過大なレベルの雑音を発生する負荷機器が存在する
場合においては、信号受信時のS/N比の劣化により、
信号伝達の信頼性が低下することがある。
The current signal transmission method has good transmission characteristics because it uses a low frequency band as a carrier signal, and as mentioned above, it is a very effective method for transmitting data signals from various systems in the power distribution system. In order to use a distribution line for commercial power supply instead of using a dedicated signal line as a transmission path, the slave station device 1, which is the signal transmitting side, connects the two of the Sanwa or single-phase distribution transformers 4. A signal is injected between the lines of the distribution line on the next side, and the receiving device 10 of the substation equipment 9 detects and receives the signal from two of the three phases.
Reception is generally done by receiving the demodulated signal from the lesser of the two phases (because there is always a signal in both the negative phases and the slave station is free to enter the signal phase), the demodulated signal is sent directly to the OR. In the conventional method of obtaining output through a circuit, if there is a load device that generates an excessive level of noise in the signal transmission band, the S/N ratio deteriorates when receiving the signal.
Reliability of signal transmission may be reduced.

特に、三相の負荷機器が大きな三相雑音を発生し、三相
雑音はS/N比の劣化に影響を及ぼす比率が高かった。
In particular, three-phase load equipment generated large three-phase noise, and the three-phase noise had a high proportion of affecting the deterioration of the S/N ratio.

このような問題点を解決するため、従来は、信号の標準
注入レベルを雑音レベルに対して一定以上のS/N比が
得られるよう十分な余裕度を見込んだ高レベルに設定し
ていたが、これにより、信号伝送時のS/N比は、殆ど
の適用フィールド及び負荷条件において良好な状態が確
保されるものの、配電系統に接がる負荷機器に対する影
響や、信号送信回路の形状などからは、信号注入レベル
はできるだけ低レベルであることが望ましく、配電線搬
送用電流信号伝送方式における一つの課題となっていた
In order to solve these problems, conventionally, the standard injection level of the signal was set to a high level with sufficient margin to obtain an S/N ratio above a certain level with respect to the noise level. Although this ensures a good S/N ratio during signal transmission under most applicable fields and load conditions, it may be affected by the impact on load equipment connected to the power distribution system, the shape of the signal transmission circuit, etc. It is desirable that the signal injection level be as low as possible, and this has been an issue in current signal transmission systems for power distribution lines.

(発明の目的) 本発明の目的は、上述した問題点を解決し、三相雑音を
低減することができ、S/N比の向上により安定した受
信に必要な送信信号レベルを小さくして、送信装置の小
型低廉化を可能にすることができる配電線搬送電流信号
用受信装置を提供することである。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned problems, reduce three-phase noise, and reduce the transmission signal level necessary for stable reception by improving the S/N ratio. It is an object of the present invention to provide a receiving device for a distribution line carrier current signal that can make a transmitting device smaller and cheaper.

(発明の特徴) 本発明は、上記目的を達成するために、電流信号を検出
する二相のフィーダ変流器のうちの進み相で検出された
信号及び雑音成分を、該信号の三分の一の周期だけ遅延
させる遅延手段と、該遅延手段により遅延された信号及
び雑音成分より、二相のうちの遅れ相で検出された信号
及び雑音成分を減算する減算手段と、該減算手段の出力
を復調するt[手段とを設け、以て、二相で検出された
信号通過帯域の雑音のうち、2π/3の位相差を有する
ものを相殺するようにしたことを特徴とする。
(Features of the Invention) In order to achieve the above object, the present invention converts the signal and noise component detected in the leading phase of a two-phase feeder current transformer that detects a current signal into a third part of the signal. a delay means for delaying by one period; a subtraction means for subtracting the signal and noise component detected in the delayed phase of the two phases from the signal and noise component delayed by the delay means; and an output of the subtraction means. The present invention is characterized in that it is provided with means for demodulating t[, and thereby cancels noise having a phase difference of 2π/3 among the noise in the signal pass band detected in the two phases.

本発明は、また、二相のうちの第1の相で検出された信
号及び雑音成分を、該信号の三分の一の周期だけ遅延さ
せる第1の遅延手段と、前記二相のうちの第2の相で検
出された信号及び雑音成分を、該信号の三分の一の周期
だけ遅延させる第2の遅延手段と、前記第1の遅延手段
により遅延された信号及び雑音成分より、前記二相のう
ちの第2の相で検出された信号及び雑音成分を減算する
第1の減算手段と、前記第2の遅延手段により遅延され
た信号及び雑音成分より、前記二相のうちの第1の相で
検出された信号及び雑音成分を減算する第2の減算手段
と、前記第1の減算手段の出力を復調する第1の復調手
段と、前記第2の減算手段の出力を復調する第2の復調
手段と、前記第1及び第2の復調手段からの信号出力の
正常性を比較判定する受信判定手段とを設け、以て、三
相雑音成分の相回転方向が変化した場合に対処するため
に、遅延から復調までの処理を二系統で行うようにした
ことを特徴とする。
The present invention also provides a first delay means for delaying the signal and noise component detected in the first phase of the two phases by one-third of the period of the signal; a second delay means for delaying the signal and noise component detected in the second phase by one-third of the period of the signal; and the signal and noise component delayed by the first delay means, A first subtraction means for subtracting a signal and a noise component detected in a second phase of the two phases, and a signal and a noise component delayed by the second delay means. a second subtraction means for subtracting the signal and noise component detected in the first phase; a first demodulation means for demodulating the output of the first subtraction means; and a demodulation for the output of the second subtraction means. A second demodulation means and a reception determination means for comparing and determining the normality of the signal output from the first and second demodulation means are provided, so that when the phase rotation direction of the three-phase noise component changes, In order to cope with this problem, the present invention is characterized in that the processing from delay to demodulation is performed in two systems.

(発明の実施例) 配電線路に接がる負荷には、三相負荷と単相負荷とがあ
り、負荷機器から発生する電流雑音についても、三相の
位相関係をもつものと、単相のものが混在している。
(Embodiment of the invention) There are two types of loads connected to distribution lines: three-phase loads and single-phase loads. Regarding current noise generated from load equipment, there are two types: those with a three-phase phase relationship and those with a single-phase phase relationship. Things are mixed.

これに対して、子局装置から親局装置に対して送るデー
タ信号などの電流信号は、通常配電用変圧器の二次側か
ら単相信号として注入されるため、前記の三相の位相関
係をもつ雑音成分との間には位相関係に差があることに
なる。
On the other hand, current signals such as data signals sent from the slave station device to the master station device are usually injected as single-phase signals from the secondary side of the distribution transformer, so the three-phase phase relationship described above is This means that there is a difference in phase relationship between the noise component and the noise component that has .

三相各相の雑音電流1 mls  1w5s  l++
t  は120度の位相差を有し、その多くは第2図(
a)に示されるように、相回転方向が負荷電流の相回転
方向と同方向である。これに対して、第2図(b)に示
されるように、単相の電流信号1s1%  IS’A及
び単相の雑音電流1mm、I−s (三相のうちのR相
及びS相に流れる場合)は1110度の位相差を有する
Noise current for each phase of three phases 1 mls 1w5s l++
t has a phase difference of 120 degrees, many of which are shown in Figure 2 (
As shown in a), the phase rotation direction is the same as the phase rotation direction of the load current. On the other hand, as shown in Fig. 2(b), the single-phase current signal 1s1% IS'A and the single-phase noise current 1mm, I-s (R phase and S phase of the three phases flowing) has a phase difference of 1110 degrees.

本発明はこのような信号と雑音の位相関係に着目して、
信号の受信側で三相の内の二相で雑音成分を含む信号を
検出し、進み相から検出したものについて、信号の17
3周期分だけ遅延させて、これから他相のものを減算す
ることにより、信号伝送帯域の三相の雑音成分を除去し
、信号注入レベルを増大させることなく、信号伝送時の
S/NJtを向上させるものである。
The present invention focuses on the phase relationship between such a signal and noise, and
On the signal receiving side, a signal containing a noise component is detected in two of the three phases, and 17 of the signal is detected from the leading phase.
By delaying by 3 cycles and subtracting other phases from this, three-phase noise components in the signal transmission band are removed, improving S/NJt during signal transmission without increasing the signal injection level. It is something that makes you

第1図は、本発明の一実施例である配電線搬送用親局装
置内の電流信号用受信装置を示すブロック図である。
FIG. 1 is a block diagram showing a current signal receiving device in a distribution line carrier master station device, which is an embodiment of the present invention.

受信装置20では、二相のフィーダ変流器7R。In the receiving device 20, a two-phase feeder current transformer 7R.

7S及び補助変流器8R18Sを介して、雑音成分を含
む電流信号を配電線路の三相の内の二相で検出しく第1
図ではR相及びS相)、例えば、抵抗から成る電流−電
圧変換回路21.22により電圧に変換し、それぞれ帯
域通過形の受信フィルタ23及び24でろ波する。
7S and the auxiliary current transformer 8R18S, the current signal containing the noise component is detected in two of the three phases of the distribution line.
(R phase and S phase in the figure) are converted into voltage by current-voltage conversion circuits 21 and 22 made of resistors, for example, and filtered by band-pass receiving filters 23 and 24, respectively.

位相が進んでいる相(R相)から受信した信号及び雑音
成分については、173周期遅延回路25により信号の
173の周期に相当する遅延を与える。
For the signal and noise component received from the phase leading in phase (R phase), a delay corresponding to 173 cycles of the signal is given by the 173 cycle delay circuit 25.

一方、位相が遅れている相(S相)から受信した信号及
び雑音成分については、位相反転回路2Gで位相を反転
し、これら二つの相から受信した二つの信号及び雑音成
分を加算回路27で加算・合成した後、復調回路28で
復調することにより信号出力を得る。
On the other hand, the phase of the signal and noise component received from the phase with a lag (S phase) is inverted by the phase inversion circuit 2G, and the two signals and noise components received from these two phases are combined by the addition circuit 27. After addition and synthesis, a signal output is obtained by demodulating in the demodulation circuit 28.

以上の処理を行うことにより、配電線路5に分布する三
相の雑音成分を除去することができ、受信された信号出
力のS/N比が改善される。
By performing the above processing, the three-phase noise components distributed in the power distribution line 5 can be removed, and the S/N ratio of the received signal output is improved.

なお、第1図の受信装置20の構成では、S相の信号及
び雑音成分について位相反転回路26で位相を反転し、
遅延されたR相の信号及び雑音成分に加算回路27で加
算するとしているが、S相の信号及び雑音成分の位相を
反転せず、遅延されたR相の信号及び雑音成分からその
まま減算するようにしてもよい。
In the configuration of the receiving device 20 shown in FIG. 1, the phase of the S-phase signal and the noise component is inverted by the phase inverting circuit 26,
Although it is assumed that the addition circuit 27 adds the delayed R-phase signal and noise component, the phase of the S-phase signal and noise component is not inverted, but is subtracted as is from the delayed R-phase signal and noise component. You can also do this.

次に、上述した雑音及び信号処理を数式を用いて説明す
る。
Next, the above-mentioned noise and signal processing will be explained using mathematical formulas.

第1図において、R相及びS相の補助変流器8R,8S
に接続された受信フィルタ23.24の出力をそれぞれ
pm(t)及びPs(t)とすると、上述した処理は、 T。
In Fig. 1, R-phase and S-phase auxiliary current transformers 8R, 8S
Assuming that the outputs of the receiving filters 23 and 24 connected to T are pm(t) and Ps(t), respectively, the above processing is performed as follows.

h(t −−)−F、(t)  ・・・(1)To:信
号通過帯域の中心周波数の周期(1/f、)と表わされ
る。
h(t--)-F, (t)...(1) To: Represented as the period (1/f,) of the center frequency of the signal passband.

まず、三相の雑音成分に対する低減効果は、雑音の周波
数をf、とじて、R相の雑音を単位振幅で、 Nu(t)=  5in2πf++t  ・ ・ ・ 
(2)と表わすと、S相の雑音は、 N、(t) = 5in(2πfNt−Tπ)(3)と
なり、(2)式及び (3)式について (1)式の処
理を行うと、 Nm(t−!−!’)−Ns(t) 一5in(2πfd−’π) xcos(2πf、+t T (1+ r++to)) ro:信号通過帯域の中心周波数 (4)式から、周波数f、の三相雑音に対する低減処理
の利得は1 、π  f。
First, the reduction effect on three-phase noise components is as follows, where the frequency of the noise is f, and the R-phase noise is a unit amplitude, Nu(t) = 5in2πf++t ・ ・ ・
Expressed as (2), the S-phase noise becomes N, (t) = 5in (2πfNt-Tπ) (3), and when formula (1) is processed for formulas (2) and (3), Nm(t-!-!')-Ns(t) -5in(2πfd-'π) xcos(2πf, +t T (1+ r++to)) ro: Center frequency of signal passband From equation (4), frequency f, The gain of the reduction process for three-phase noise is 1, π f.

Gm(fs) = l 2s+n−(1−−) l ・
・ (5)3  「。
Gm(fs) = l 2s+n-(1--) l ・
・(5)3 ``.

となる。雑音の低減処理による三相雑音の利得、Gm 
(f I)の周波数特性は、第3図(a)のようになり
、このように処理することで、三相雑音は信号通過帯域
の中心周波数r0の近傍で極めて小さくなる。
becomes. Gain of three-phase noise due to noise reduction processing, Gm
The frequency characteristic of (f I) is as shown in FIG. 3(a), and by processing in this way, the three-phase noise becomes extremely small near the center frequency r0 of the signal passband.

次に、単相の信号及び雑音成分に与える処理の影響につ
いて説明する。
Next, the influence of processing on single-phase signals and noise components will be explained.

まず、R相またはS相のいずれかの一相のみに存在する
信号及び雑音成分は、(1)式の処理による影響は受け
ず、R相に存在する信号及び雑音成分の時間遅れのみで
、歪は生じない。
First, the signal and noise components that exist only in one phase, either the R phase or the S phase, are not affected by the processing of equation (1), and only the signal and noise components that exist in the R phase are delayed. No distortion occurs.

R相及びS相の両相に信号(雑音)成分がある場合は、
(1)式の処理により以下の影響を受ける。
If there are signal (noise) components in both R and S phases,
The processing of equation (1) has the following effects.

即ち、信号周波数をfsとして、R相の信号を単位振幅
で、 Sm(t) = 5in2πfst ・・・(6)と表
わすと、S相の信号は単相であるから逆位相となり、 5s(t) =  5in2πfst  ・・・(7)
であるから、(6)式及び(7)式について (1)式
の処理を行うと、 xsin(2πf s t  a f 5TO)「。:
信号通過帯域の中心周波数 となり、(8)式から単相の信号成分に対する雑音低減
処理の利得をGs (fs)とすると、となり、この周
波数特性を第3図(b)に示す。
That is, if the signal frequency is fs, and the R-phase signal is expressed as unit amplitude, Sm(t) = 5in2πfst (6), the S-phase signal is single-phase, so it has an opposite phase, and 5s(t ) = 5in2πfst...(7)
Therefore, when processing equation (1) for equations (6) and (7), xsin(2πf s t a f 5TO) ".:
If Gs (fs) is the center frequency of the signal passband and the gain of noise reduction processing for a single-phase signal component from equation (8), then the frequency characteristic is shown in FIG. 3(b).

即ち、このような処理を行っても、単相の信号成分に対
する利得は信号通過帯域の中心周波数r0の近傍で変わ
らない。
That is, even if such processing is performed, the gain for the single-phase signal component does not change in the vicinity of the center frequency r0 of the signal passband.

また、単相の雑音成分に対する処理利得も同様に変わら
ない。
Furthermore, the processing gain for single-phase noise components does not change as well.

(8)式から本処理による信号に対する位相特性(遅延
特性)を求めた結果を第3図(c)に示す。
FIG. 3(c) shows the result of determining the phase characteristic (delay characteristic) for the signal by this processing from equation (8).

即ち、3「。/2までは位相歪は生じない。That is, no phase distortion occurs up to 3'./2.

また、65=1を基阜にして利得G5が3dB変化する
、中心周波数f。を中心とする帯域幅を計算すると、f
o+〇、086fo 、 fo−0,109foとなり
、これらの帯域幅における三相雑音の減衰率は、「。+
〇、 086f、で0.180 (−15dB)fo 
O,109foで0.218(−13dB)となる。こ
れにより、実験ではS/N比が5倍程度向上した。
Further, the center frequency f is such that the gain G5 changes by 3 dB based on 65=1. Calculating the bandwidth centered at f
o+〇, 086fo, fo-0, 109fo, and the attenuation rate of three-phase noise in these bandwidths is ``.+
〇, 086f, 0.180 (-15dB) fo
O,109fo becomes 0.218 (-13 dB). As a result, the S/N ratio was improved by about 5 times in experiments.

以上の説明においては、三相のうちの位相の進んでいる
相から受信した信号及び雑音成分について、信号の17
3周期に相当する遅延を与え、位相が遅れている相から
受信した信号及び雑音成分をそれから減算することによ
り、三相の雑音成分を除去するようにしたが、三相雑音
成分の相回転方向は、信号伝送帯域、或いは、三相交流
モータなどの雑音発生源によって異なることがあり、第
2図(c)に示すように、必ずしも負荷電流の相回転と
同方向ではない場合もある。このように、雑音発生源の
変化により三相雑音の相回転方向が変動する場合は、前
述のように三相雑音成分の進み相を固定した処理のみで
は処理効果が得られなくなることになる。
In the above explanation, regarding the signal and noise component received from the leading phase of the three phases, 17
The three-phase noise component was removed by giving a delay equivalent to three periods and subtracting the signal and noise component received from the phase whose phase is delayed, but the phase rotation direction of the three-phase noise component may vary depending on the signal transmission band or the noise source such as a three-phase AC motor, and may not necessarily be in the same direction as the phase rotation of the load current, as shown in FIG. 2(c). In this way, when the phase rotation direction of the three-phase noise changes due to a change in the noise source, the processing effect cannot be obtained only by the process of fixing the leading phase of the three-phase noise component as described above.

従って、本発明では、更に、第4図に示すように、受信
装置20において、二相のフィーダ変流器7R17S及
び補助変流器8R,8Sを介して、雑音成分を含む電流
信号を配電線路の三相の内の二相で検出しく第4図では
R相及びS相)、位相が進んでいる相(R相)から受信
した信号及び雑音成分について、173周期遅延回路2
5により信号の1/3の周期に相当する遅延を与え、一
方、位相が遅れている相(S相)から受信した信号及び
雑音成分について、位相反転回路26で位相を反転し、
これら二つの相から受信した二つの信号及び雑音成分を
加算回路27で加算・合成した後、復調回路28で復調
することにより信号出力を得るばかりでなく、位相が遅
れている相(S相)から受信した信号及び雑音成分につ
いても、1/3周期遅延回路29により信号の173周
期に相当する遅延を与え、一方、位相が進んでいる相(
R相)から受信した信号及び雑音成分については、位相
反転回路30で位相を反転し、これら二つの相から受信
した二つの信号及び雑音成分を加算回路31で加算・合
成した後、復調回路32で復調することにより今一つの
信号出力を得るようにし、これら二つの信号出力を受信
判定回路33において並行して直列−並列変換を行って
受信データの正常性を判定し、正常に受信された方の受
信データを選択して中実装置12(第5図)へ伝送する
ようにする。
Therefore, in the present invention, as shown in FIG. 4, the receiving device 20 transmits the current signal containing the noise component to the distribution line via the two-phase feeder current transformer 7R17S and the auxiliary current transformers 8R, 8S. 173-cycle delay circuit 2 detects signals and noise components received from the phase leading in phase (R phase) (R phase and S phase in Figure 4).
5 gives a delay equivalent to 1/3 of the period of the signal, and on the other hand, the phase of the signal and noise component received from the delayed phase (S phase) is inverted by the phase inverting circuit 26,
After the two signals and noise components received from these two phases are added and synthesized in the adder circuit 27, they are demodulated in the demodulator circuit 28 to obtain not only a signal output but also a phase whose phase is delayed (S phase). The 1/3 period delay circuit 29 also applies a delay equivalent to 173 periods of the signal to the signal and noise component received from the phase leading phase (
Regarding the signal and noise component received from the R phase, the phase is inverted by the phase inversion circuit 30, and the two signals and noise components received from these two phases are added and combined by the addition circuit 31, and then the demodulation circuit 32 The received data is demodulated to obtain another signal output, and these two signal outputs are subjected to serial-to-parallel conversion in parallel in the reception determination circuit 33 to determine the normality of the received data. The received data is selected and transmitted to the solid device 12 (FIG. 5).

以上のような処理を行うことにより、フィーダ変流器7
と受信装置20との接続が自由となり、かつ、負荷変動
に伴って、三相雑音成分の相回転方向が変化しても、常
にいずれかの信号出力から三相雑音成分が低減された信
号を得ることができる。
By performing the above processing, the feeder current transformer 7
and the receiving device 20, and even if the phase rotation direction of the three-phase noise component changes due to load fluctuation, a signal with the three-phase noise component reduced is always available from one of the signal outputs. Obtainable.

なお、このような処理においても、単相の信号及び雑音
に対する処理効果は前述の場合と全(同様である。
Note that even in such processing, the processing effect on single-phase signals and noise is the same as in the above case.

(発明の効果) 以上説明したように、請求項1の発明によれば、電流信
号を検出する二相のフィーダ変流器のうちの進み相で検
出された信号及び雑音成分を、該信号の三分の一の周期
だけ遅延させる遅延手段と、該遅延手段により遅延され
た信号及び雑音成分より、二相のうちの遅れ相で検出さ
れた信号及び雑音成分を減算する減算手段と、該減算手
段の出力を復調する復調手段とを設け、以て、二相で検
出された信号通過帯域の雑音のうち、2π/3の位相差
を有するものを相殺するようにしたから、三相雑音を低
減することができ、S/N比の向上により安定した受信
に必要な送信信号レベルを小さくして、送信装置の小型
低廉化を可能にすることができる。
(Effects of the Invention) As explained above, according to the invention of claim 1, the signal and noise component detected in the leading phase of the two-phase feeder current transformer that detects the current signal are a delay means for delaying by one-third of the cycle; a subtraction means for subtracting the signal and noise component detected in the delayed phase of the two phases from the signal and noise component delayed by the delay means; Since the demodulation means for demodulating the output of the means is provided to cancel out the noise in the signal passband detected in the two phases that has a phase difference of 2π/3, the three-phase noise can be canceled out. By improving the S/N ratio, the transmission signal level required for stable reception can be reduced, making it possible to reduce the size and cost of the transmitter.

また、請求項2の発明によれば、二相のうちの第1の相
で検出された信号及び雑音成分を、該信号の三分の一の
周期だけ遅延させる第1の遅延手段と、前記二相のうち
の第2の相で検出された信号及び雑音成分を、該信号の
三分の一の周期だけ遅延させる第2の遅延手段と、前記
第1の遅延手段により遅延された信号及び雑音成分より
、前記三相のうちの第2の相で検出された信号及び雑音
成分を減算する第1の減算手段と、前記第2の遅延手段
により遅延された信号及び雑音成分より、萌記二相のう
ちの第1の相で検出された信号及び雑音成分を減算する
第2の減算手段と、前記第1の減算手段の出力を復調す
る第1の復調手段と、前記第2の減算手段の出力を復調
する第2の復調手段と、前記第1及び第2の復調手段か
らの信号出力の正常性を比較判定する受信判定手段とを
設け、以て、三相雑音成分の相回転方向が変化した場合
に対処するために、遅延から復調までの処理を二系統で
行うようにしたから、三相雑音成分の相回転方向が変化
しても、常にS/N比の向上により安定した受信に必要
な送信信号レベルを小さくして、送信装置の小型低廉化
を可能にすることができる。
Further, according to the invention of claim 2, the first delay means delays the signal and noise component detected in the first phase of the two phases by one third of the period of the signal; a second delay means for delaying the signal and noise component detected in the second phase of the two phases by one-third of the period of the signal; and a signal delayed by the first delay means and A first subtraction means for subtracting the signal detected in the second phase of the three phases and the noise component from the noise component, and a signal delayed by the second delay means and the noise component. a second subtraction means for subtracting the signal and noise component detected in the first phase of the two phases; a first demodulation means for demodulating the output of the first subtraction means; and a second subtraction means for demodulating the output of the first subtraction means. A second demodulating means for demodulating the output of the first demodulating means and a reception determining means for comparing and determining the normality of the signal output from the first and second demodulating means are provided. In order to deal with the case where the direction changes, the processing from delay to demodulation is performed in two systems, so even if the direction of phase rotation of the three-phase noise component changes, the S/N ratio will always improve and it will remain stable. By reducing the level of the transmitted signal necessary for receiving the information, it is possible to make the transmitting device smaller and cheaper.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例である配電線搬送電流信
号用受信装置を示すブロック図、第2図は本発明に関わ
る三相の雑音ベクトル及び単相の信号並びに雑音ベクト
ルの位相関係図、第3図は本発明の一実施例による雑音
並びに信号の周波数対利得特性及び信号の周波数対位相
特性図、第4図は本発明の第二の実施例である配電線搬
送電流信号用受信装置を示すブロック図、第5図は一般
的な配電線搬送用電流信号伝送方式の構成図である。 111.子局装置、216.低圧配電線、4゜1.配電
用変圧器、51.、三相の高圧配電線、7・7R・7S
、、、フィーダ変流器、8・8R・8S、、、補助変流
器、20.、、受信装置、23・24.、、受信フィル
タ、25.、.1/3周期遅延回路、26.、、位相反
転回路、27゜加算回路、28.、、復調回路、29.
、。 1/3周期遅延回路、30.、、位相反転回路、311
9.加算回路、32.、、復調回路、33゜9.受信判
定回路。 第2図 (a) (b) 、/)l 、0 tnlIS4F)Iへ 1へ 9ra唄取□
FIG. 1 is a block diagram showing a distribution line carrier current signal receiving device according to the first embodiment of the present invention, and FIG. 2 is a three-phase noise vector, a single-phase signal, and the phase of the noise vector related to the present invention. FIG. 3 is a graph of noise and signal frequency vs. gain characteristics and signal frequency vs. phase characteristics according to an embodiment of the present invention, and FIG. 4 is a distribution line carrier current signal according to a second embodiment of the present invention. FIG. 5 is a block diagram illustrating a receiving device for power distribution, and FIG. 5 is a configuration diagram of a general current signal transmission system for carrying power distribution lines. 111. Slave station device, 216. Low voltage distribution line, 4゜1. Distribution transformer, 51. , three-phase high-voltage distribution line, 7/7R/7S
,,,Feeder current transformer, 8/8R/8S,,,Auxiliary current transformer,20. ,,receiving device, 23/24. ,,reception filter,25. ,. 1/3 period delay circuit, 26. , , phase inversion circuit, 27° addition circuit, 28. ,, demodulation circuit, 29.
,. 1/3 period delay circuit, 30. ,, phase inversion circuit, 311
9. Addition circuit, 32. ,, demodulation circuit, 33°9. Reception judgment circuit. Figure 2 (a) (b) , /) l , 0 tnl IS4F) To I 1 To 9ra song □

Claims (2)

【特許請求の範囲】[Claims] (1)三相配電線路に接がる配電用変圧器の2次側から
注入された単相の電流信号を、変電所の三相のフィーダ
変流器のうちの二相により検出する配電線搬送電流信号
用受信装置において、前記二相のうちの進み相で検出さ
れた信号及び雑音成分を、該信号の三分の一の周期だけ
遅延させる遅延手段と、該遅延手段により遅延された信
号及び雑音成分より、前記二相のうちの遅れ相で検出さ
れた信号及び雑音成分を減算する減算手段と、該減算手
段の出力を復調する復調手段とを設けたことを特徴とす
る配電線搬送電流信号用受信装置。
(1) Distribution line where two phases of the three-phase feeder current transformers in the substation detect the single-phase current signal injected from the secondary side of the distribution transformer connected to the three-phase distribution line. In the carrier current signal receiving device, a delay means for delaying the signal and noise component detected in the leading phase of the two phases by one-third of the period of the signal, and a signal delayed by the delay means. and a subtraction means for subtracting the signal and noise component detected in the delayed phase of the two phases from the noise component, and a demodulation means for demodulating the output of the subtraction means. Receiving device for current signals.
(2)三相配電線路上の配電用変圧器の2次側から注入
された単相の電流信号を、変電所の三相のフィーダ変流
器のうちの二相により検出する配電線搬送電流信号用受
信装置において、前記二相のうちの第1の相で検出され
た信号及び雑音成分を、該信号の三分の一の周期だけ遅
延させる第1の遅延手段と、前記二相のうちの第2の相
で検出された信号及び雑音成分を、該信号の三分の一の
周期だけ遅延させる第2の遅延手段と、前記第1の遅延
手段により遅延された信号及び雑音成分より、前記二相
のうちの第2の相で検出された信号及び雑音成分を減算
する第1の減算手段と、前記第2の遅延手段により遅延
された信号及び雑音成分より、前記二相のうちの第1の
相で検出された信号及び雑音成分を減算する第2の減算
手段と、前記第1の減算手段の出力を復調する第1の復
調手段と、前記第2の減算手段の出力を復調する第2の
復調手段と、前記第1及び第2の復調手段からの信号出
力の正常性を比較判定する受信判定手段とを設けたこと
を特徴とする配電線搬送電流信号用受信装置。
(2) Distribution line carrier current signal that detects the single-phase current signal injected from the secondary side of the distribution transformer on the three-phase distribution line by two phases of the three-phase feeder current transformers in the substation. a first delay means for delaying a signal and a noise component detected in a first phase of the two phases by one-third of the period of the signal; a second delay means for delaying the signal and noise component detected in the second phase by one-third of the period of the signal; and the signal and noise component delayed by the first delay means, A first subtraction means for subtracting a signal and a noise component detected in a second phase of the two phases, and a signal and a noise component delayed by the second delay means. a second subtraction means for subtracting the signal and noise component detected in the first phase; a first demodulation means for demodulating the output of the first subtraction means; and a demodulation for the output of the second subtraction means. A receiving device for a distribution line carrier current signal, comprising: a second demodulating means; and a reception determining means for comparing and determining the normality of signal outputs from the first and second demodulating means.
JP33194488A 1988-12-28 1988-12-28 Distribution line carrier current signal receiver Expired - Fee Related JPH0666717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33194488A JPH0666717B2 (en) 1988-12-28 1988-12-28 Distribution line carrier current signal receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33194488A JPH0666717B2 (en) 1988-12-28 1988-12-28 Distribution line carrier current signal receiver

Publications (2)

Publication Number Publication Date
JPH02177731A true JPH02177731A (en) 1990-07-10
JPH0666717B2 JPH0666717B2 (en) 1994-08-24

Family

ID=18249393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33194488A Expired - Fee Related JPH0666717B2 (en) 1988-12-28 1988-12-28 Distribution line carrier current signal receiver

Country Status (1)

Country Link
JP (1) JPH0666717B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006187A1 (en) * 1996-08-06 1998-02-12 Northern Telecom Limited Power line communications
US9698869B2 (en) 2012-02-16 2017-07-04 Enphase Energy, Inc. Method and apparatus for three-phase power line communications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006187A1 (en) * 1996-08-06 1998-02-12 Northern Telecom Limited Power line communications
US6317031B1 (en) 1996-08-06 2001-11-13 Nortel Networks Limited Power line communications
US9698869B2 (en) 2012-02-16 2017-07-04 Enphase Energy, Inc. Method and apparatus for three-phase power line communications

Also Published As

Publication number Publication date
JPH0666717B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US4602240A (en) Apparatus for and method of attenuating power line carrier communication signals passing between substation distribution lines and transmission lines through substation transformers
US4329727A (en) Directional power distance relay
US4636909A (en) Digital impedance relay
US4408246A (en) Protective relay apparatus
US4156194A (en) Frequency-shift-keyed receiver
JPH02177731A (en) Receiver for distribution line carrier current signal
JP2629131B2 (en) Power line communication device and power line communication network
US4510399A (en) Demodulator circuit for parallel AC power systems
McConnell et al. Phase-comparison carrier-current relaying
US4782421A (en) Electrical supply line protection apparatus
US6271778B1 (en) High pass filtering with automatic phase equalization
JPH0473827B2 (en)
JPH0775334B2 (en) Distribution line carrier signal transmission / reception method
JP2577424B2 (en) Current differential relay method
JP2004328614A (en) Method of correcting unbalanced signal
JPS60148247A (en) Signal transmitter using distribution line
SU801302A2 (en) Device for receiving signals of double phase telegraphy
RU2212760C2 (en) Signal transmitting and receiving system using three-phase power mains
JPS6260857B2 (en)
JPH0553326B2 (en)
JP2704089B2 (en) DC protection relay
JP2913944B2 (en) Distribution line carrier communication device
SU1755379A1 (en) System of signal transmitting by three-phase power line wires
RU2214052C2 (en) Method for transmitting and receiving signals using three-phase power line
JPH0237735B2 (en) SHINGODENSOHOHOOYOBISOCHI

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees