JPH02126650A - Manufacture of dielectric isolation semiconductor device - Google Patents

Manufacture of dielectric isolation semiconductor device

Info

Publication number
JPH02126650A
JPH02126650A JP27930388A JP27930388A JPH02126650A JP H02126650 A JPH02126650 A JP H02126650A JP 27930388 A JP27930388 A JP 27930388A JP 27930388 A JP27930388 A JP 27930388A JP H02126650 A JPH02126650 A JP H02126650A
Authority
JP
Japan
Prior art keywords
film
oxide film
substrate
isolation
shaped groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27930388A
Other languages
Japanese (ja)
Inventor
Katsujiro Tanzawa
丹澤 勝二郎
Kazuyoshi Furukawa
和由 古川
Kiyoshi Fukuda
潔 福田
Akio Nakagawa
明夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27930388A priority Critical patent/JPH02126650A/en
Publication of JPH02126650A publication Critical patent/JPH02126650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To effectively prevent the bottom of an element isolation groove from being side-etched and to obtain a semiconductor device whose isolation breakdown strength is high and whose reliability is high by a method wherein a silicon nitride film is used as an etching mask of the element isolation groove. CONSTITUTION:A silicon nitride film 25 (a second film) of 0.3mum is formed, by a CVD method, on the surface of an active layer of a united substrate; it is patterned and used as an etching mask; an anisotropic etching operation is executed by using an alkaline solution; a V-shaped groove 26, for element isolation use, reaching an oxide film 23 is formed. Then, a p<+> type layer 242 with a depth of about 3mum is formed on side faces of the V-shaped groove 26. Boron glass 27 formed on the side faces of the V-shaped groove 26 is etched and removed by using dilute hydrofluoric acid in such a way that an element- isolation dielectric film (a first insulating film) 23 is not excellent. The silicon nitride film 25 used as the mask is etched and removed by using hot phosphoric acid. Then, a thermal oxidation operation is executed; an oxide film (a third insulating film) 28 of 1mum is formed on the side faces of the V-shaped groove on the surface of the active layer.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、2枚の基板を接着して得られる誘電体分離半
導体基板を用いて半導体装置を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method of manufacturing a semiconductor device using a dielectrically isolated semiconductor substrate obtained by bonding two substrates together.

(従来の技術) 従来よシ、半導体装置の素子分離法として、pn接合分
離や誘電体分離が知られている。誘電体分離法は、pn
接合分離法に比べて以下のような優れた特徴を有する。
(Prior Art) Conventionally, pn junction isolation and dielectric isolation have been known as element isolation methods for semiconductor devices. Dielectric separation method is pn
It has the following superior features compared to the junction separation method.

■高温動作時においても漏れ電流が少ない。■Low leakage current even when operating at high temperatures.

■寄生サイリスタによるラッチアップがない。■No latch-up due to parasitic thyristor.

■高耐圧素子を分離する場合にも分離に要する面積が少
ない。
■The area required for separating high-voltage elements is small.

■電圧印加の極性を考慮する必要がない。■There is no need to consider the polarity of voltage application.

■寄生容量が少ない。■Low parasitic capacitance.

誘電体分離構造を実現するためにはいくつかの方法が知
られている。例えば、シリコン基板を間に絶縁膜を挟ん
で直接接着する方法、SO8と呼ばれるサファイア基板
上にシリコンを気相成長させる方法、絶縁膜上に非晶質
シリコン膜を堆積してこれを再結晶化させる方法、シリ
コン基板の一部をエツチングし酸化膜を形成した後多結
晶シリコン膜を堆積し裏面から研磨して多結晶シリコン
膜で保持された島状シリコン層を得る方法、等である。
Several methods are known for realizing a dielectric isolation structure. For example, there is a method of directly bonding a silicon substrate with an insulating film sandwiched between them, a method of vapor phase growth of silicon on a sapphire substrate called SO8, a method of depositing an amorphous silicon film on the insulating film and recrystallizing it. A method of etching a part of a silicon substrate to form an oxide film, depositing a polycrystalline silicon film, and polishing from the back side to obtain an island-shaped silicon layer supported by the polycrystalline silicon film.

これらの中で、直接接着技術は、簡便に良質の誘電体分
離半導体基板を得ることができるものとして最近注目さ
れている。
Among these, direct bonding technology has recently attracted attention as a method that can easily obtain high-quality dielectrically isolated semiconductor substrates.

第2図は、従来の直接接着技術による誘電体分離基板の
製造工程を示す。(a)に示すように、接着すべき面を
鏡面研磨した2枚のシリコン・ウェハ1.2を用意する
。一方のウェハ1には、図示のように表面に酸化膜3,
4を形成する。このような2枚のウェハ1,2を直接接
着して(b)に示すよように一体化する。続いて素子形
成を行なう活性層側、この例ではウェハ1側を研磨して
、(C)に示すように所定厚みに設定する。
FIG. 2 shows the manufacturing process of a dielectric isolation substrate using a conventional direct bonding technique. As shown in (a), two silicon wafers 1.2 with mirror-polished surfaces to be bonded are prepared. One wafer 1 has an oxide film 3 on its surface as shown in the figure.
form 4. These two wafers 1 and 2 are directly bonded together to integrate them as shown in FIG. 3(b). Subsequently, the active layer side on which elements are to be formed, in this example the wafer 1 side, is polished to a predetermined thickness as shown in (C).

次にこのウェハ全面にマスク用酸化膜5を形成し、活性
層側のウェハ1に形成する7字溝部分の酸化膜を選択エ
ツチングする(d)。
Next, a masking oxide film 5 is formed on the entire surface of this wafer, and the oxide film in the 7-shaped groove portion to be formed on the wafer 1 on the active layer side is selectively etched (d).

次に活性層側のウェハ1を異方性エツチングにより選択
エツチングして、(e)に示すように酸化膜4に達する
深さの断面V字状の分離溝6を形成する。これによシ、
各素子形成領域が島状に分離される。その後更に各島状
のシリコン層を電気的に分離するため、マスク用酸化膜
5をエツチングによシ除去(f)シてから、(g)に示
すように酸化膜7を形成する。そして、各分離溝6に多
結晶シリコン8を埋め込み必要に応じて表面の平坦化処
理を行なって、(h)に示すような誘電体分離基板を得
る。
Next, the wafer 1 on the active layer side is selectively etched by anisotropic etching to form a separation groove 6 having a V-shaped cross section and having a depth that reaches the oxide film 4, as shown in FIG. For this,
Each element forming region is separated into islands. Thereafter, in order to further electrically isolate each island-shaped silicon layer, the mask oxide film 5 is removed by etching (f), and then an oxide film 7 is formed as shown in (g). Then, polycrystalline silicon 8 is buried in each isolation groove 6 and the surface is planarized as required to obtain a dielectric isolation substrate as shown in FIG.

第3図は、この様な誘電体分離基板の一つの活性層にp
npトランジスタを形成した状態を示している。活性層
がp型である場合、ここにn型ベース層9、p型エミッ
タ層10を順次拡散形成してpnp トランジスタが得
られる。島状の活性層の酸化膜4,6との界面にはpW
層8t、8zが形成されている。これらはコレクタ電流
を良好にコレクタ電極に集めるためのもので、底部のp
型層81は接着前に予め第1の基板1に形成しておき、
溝部のp型層82は溝形成後に拡散形成される。
Figure 3 shows a p
This shows a state in which an np transistor is formed. When the active layer is p-type, a pnp transistor is obtained by sequentially diffusing an n-type base layer 9 and a p-type emitter layer 10 here. pW at the interface between the island-shaped active layer and the oxide films 4 and 6.
Layers 8t and 8z are formed. These are for collecting the collector current to the collector electrode well, and the bottom p
The mold layer 81 is previously formed on the first substrate 1 before bonding,
The p-type layer 82 in the trench is formed by diffusion after the trench is formed.

ところでこの様な誘電体分離基板を用いた半導体装置に
おいて、従来の方法では素子分離特性に次のような問題
があった。
However, in a semiconductor device using such a dielectric isolation substrate, conventional methods have the following problems with element isolation characteristics.

第4図を用いて説明する。第4図は、第2図の工程にお
ける一体化して活性層の厚みを調整した後の7字溝を形
成する工程を具体的に示したものである。第4図(a)
は、熱酸化膜11を活性層上に形成してこれをマスクと
して活性層を異方性エツチングによりエツチングし、7
字溝5を形成した状態である。この後(b)に示すよう
に、酸化i11を拡散マスクとして用いて溝側面に不純
物を拡散し、p+型層88を形成する。その後マスクと
して用いた酸化膜11はエツチング除去し、改めて熱酸
化によυ活性層表面および素子分離溝に良質の酸化膜を
形成する。このとき酸化膜エツチングには通常弗酸系の
エツチング液が用いられるが、7字溝5の底に露出して
いる酸化膜4も同時にエツチングされ、(C)に示すよ
うにサイドエツチングによる切込み12が生じる。この
後、7字溝5の側面に素子分離用の酸化膜6を形成する
と、(d)のような状態となる。この様に7字溝の底に
切込み12が生じた状態では、この部分の酸化膜厚が薄
くなり、分離耐圧が不十分になる。また切込み部12に
は、後の多結晶シリコン膜埋込み工程で完全に多結晶シ
リコン膜の埋込みができず、空洞ができた状態となシ、
これは素子の信頼性低下の原因となる。
This will be explained using FIG. FIG. 4 specifically shows the step of forming the 7-shaped groove after integrating and adjusting the thickness of the active layer in the step of FIG. 2. Figure 4(a)
A thermal oxide film 11 is formed on the active layer, and using this as a mask, the active layer is etched by anisotropic etching.
This is a state in which the groove 5 is formed. Thereafter, as shown in FIG. 3B, impurities are diffused into the groove side surfaces using the oxide i11 as a diffusion mask to form a p+ type layer 88. Thereafter, the oxide film 11 used as a mask is removed by etching, and a high quality oxide film is again formed on the surface of the active layer and the element isolation trench by thermal oxidation. At this time, a hydrofluoric acid-based etching solution is usually used for etching the oxide film, but the oxide film 4 exposed at the bottom of the 7-shaped groove 5 is also etched at the same time, and as shown in FIG. occurs. Thereafter, when an oxide film 6 for element isolation is formed on the side surface of the 7-shaped groove 5, a state as shown in (d) is obtained. In this state where the notch 12 is formed at the bottom of the figure 7 groove, the oxide film thickness at this portion becomes thinner and the isolation withstand voltage becomes insufficient. Further, in the notch 12, the polycrystalline silicon film cannot be completely filled in in the later polycrystalline silicon film filling process, and a cavity is formed.
This causes a decrease in reliability of the device.

(発明が解決しようとする課題) 以上のように接着技術によシ得られる誘電体分離基板を
用いた従来の半導体装置製造工程では、7字溝による横
方向の素子分離工程において、耐圧および信頼性の点で
問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional semiconductor device manufacturing process using a dielectric isolation substrate obtained by adhesive technology, in the lateral element isolation process using the figure 7 groove, it is difficult to improve the breakdown voltage and reliability. There was a problem with sexuality.

本発明は、この様な問題を解決した誘電体分離半導体装
置の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a dielectrically isolated semiconductor device that solves these problems.

〔発明の構成〕[Structure of the invention]

(課題を解決するだめの手段) 本発明の方法は、素子分離誘電体膜となる第1の絶縁膜
(酸化膜)を挟んで第1の半導体基板と第2の半導体基
板を接着して一体化した半導体基板にエツチング働マス
ク用の第2の膜を形成し、この膜を利用して素子分離用
の溝をエツチングで形成し)その後第2の膜を除去して
島状に分離された各活性層に所望の素子を形成するに際
して1溝エツチングのマスクに使う第2の票に窒化ケイ
素膜を使うことを特徴とする。
(Means for Solving the Problem) The method of the present invention involves bonding a first semiconductor substrate and a second semiconductor substrate together with a first insulating film (oxide film) serving as an element isolation dielectric film sandwiched therebetween. A second film for an etching mask is formed on the etched semiconductor substrate, and grooves for element isolation are formed using this film by etching).Then, the second film is removed to separate the devices into islands. A feature of the present invention is that a silicon nitride film is used as a second layer used as a mask for one-groove etching when forming desired elements in each active layer.

(作用) 本発明によれば、素子分離溝のエツチング・マスクとし
て窒化ケイ素膜を使用する。溝のエツチング後マスクを
除去するエツチングをする際に、窒化ケイ素膜なのでV
溝底部の酸化膜をエツチングしないエッチャントを使用
することができる。
(Operation) According to the present invention, a silicon nitride film is used as an etching mask for device isolation trenches. When etching to remove the mask after etching the grooves, V
An etchant that does not etch the oxide film at the bottom of the trench can be used.

例えばリン酸がある。これによシ、■溝底部の酸化膜の
サイドエッチが防止され、この溝に多結晶シリコンを埋
め込んだ時に空洞が残ることもなく分離耐圧が十分で信
頼性の高い誘電体分離半導体装置を得ることができる。
For example, phosphoric acid. This prevents side etching of the oxide film at the bottom of the trench, and when this trench is filled with polycrystalline silicon, no cavity remains, resulting in a highly reliable dielectrically isolated semiconductor device with sufficient isolation breakdown voltage. be able to.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

p型、比抵抗100Ω・傷、面方位(100)、厚み5
00μmのシリコン・ウェハを用いて、直接接着によシ
誘電体分離基板を作製した。接着に先立ち、一方のウェ
ハにはボロンイオン注入とアニールを行ない、熱酸化で
厚さ1μmの酸化膜を形成した。
p-type, resistivity 100Ω, scratches, plane orientation (100), thickness 5
A dielectric isolation substrate was fabricated by direct adhesion using a 00 μm silicon wafer. Prior to bonding, boron ion implantation and annealing were performed on one of the wafers, and an oxide film with a thickness of 1 μm was formed by thermal oxidation.

直接接着の具体的な工程は次の通シである。まず接着す
るウェハをH,S O,−H2O,混合液、HCl−H
20!混合液、王水等で洗浄した後、lO分程度水洗し
、スピンナーで脱水乾燥する。これらの処理を経たウェ
ハを、例えばクラス100以下の清浄な雰囲気中に設置
して実質的に異物が介在しない状態でその鏡面研磨面同
志を密着させる。これにより、2枚のウェハはある程度
の強度をもって接着する。
The specific process of direct adhesion is as follows. First, the wafer to be bonded is heated with H, SO, -H2O, mixed solution, HCl-H
20! After washing with a mixed solution, aqua regia, etc., it is washed with water for about 10 minutes, and dehydrated and dried using a spinner. The wafer that has undergone these treatments is placed in a clean atmosphere of, for example, class 100 or below, and its mirror-polished surfaces are brought into close contact with each other in a state where substantially no foreign matter is present. As a result, the two wafers are bonded with a certain degree of strength.

こうして接着した基板を拡散炉等で熱処理することによ
シ、接着強度が上がり、2枚のウェハは完全に一体化さ
れる。接着強度の向上は約200℃以上の熱処理で観測
される。熱処理の雰囲気は特に選ばす1酸素、窒素、水
素、不活性ガス、水蒸気、或いはこれらの混合雰囲気中
で行なうことができる。本実施例では、洗浄を迅So、
 −H!0.混合液とHCL−H!0.混合液で行ない
、熱処理は少量の酸素を含む窒素中で1100℃、2時
間行なった。
By heat-treating the bonded substrates in a diffusion furnace or the like, the adhesive strength is increased and the two wafers are completely integrated. Improvement in adhesive strength is observed by heat treatment at about 200° C. or higher. The heat treatment can be carried out in a particularly selected atmosphere of oxygen, nitrogen, hydrogen, inert gas, water vapor, or a mixture thereof. In this example, cleaning is performed quickly,
-H! 0. Mixed liquid and HCL-H! 0. A mixed solution was used, and the heat treatment was carried out at 1100° C. for 2 hours in nitrogen containing a small amount of oxygen.

こうして直接接着による誘電体分離基板を形成した後、
活性層となる側を研磨して活性層として必要な厚み50
μmに調整した。
After forming the dielectric isolation substrate by direct adhesion in this way,
The side that will become the active layer is polished to the required thickness of 50 mm as the active layer.
Adjusted to μm.

この後の工程を、素子分離溝の領域に着目して第1図(
a)〜(e)を参照して説明する。21は第1のシリコ
ン・ウェハであシ、接着後前述のように活性層として必
要な所定厚みに調整されている。
The subsequent steps are shown in Figure 1 (Fig.
This will be explained with reference to a) to (e). Reference numeral 21 denotes a first silicon wafer, which after bonding is adjusted to a predetermined thickness required as an active layer as described above.

22は第2のシリコン・ウェハであシ、第1のウェハ2
1との間に熱酸化による1μmの酸化膜(第1の膜)2
3が素子分離誘電体膜として形成されている。第1のシ
リコン・ウェハ21の底面には予めp型層24.が拡散
形成されている。こうして一体化された基板の活性層表
面にCVD法によシ0.3μmの窒化ケイ素膜25(第
2の膜)を形成シ、こレヲハターニングしてエッチンク
ψマスクとして用い、アルカリ性溶液で異方性エツチン
グを行なって酸化膜23に達する素子分離用のV字溝2
6を形成する( (a) )。次にv字溝26の側面に
深さ約3μmのp型層24鵞を形成する( (b) )
22 is the second silicon wafer, the first wafer 2
A 1 μm oxide film (first film) by thermal oxidation is placed between 1 and 2.
3 is formed as an element isolation dielectric film. The bottom surface of the first silicon wafer 21 has a p-type layer 24. is formed by diffusion. A silicon nitride film 25 (second film) with a thickness of 0.3 μm is formed on the surface of the active layer of the integrated substrate by the CVD method, and this film is patterned and used as an etching ψ mask, and then etched with an alkaline solution. V-shaped groove 2 for element isolation reaching oxide film 23 through directional etching
6 ((a)). Next, a p-type layer 24 with a depth of approximately 3 μm is formed on the side surface of the V-shaped groove 26 ((b)).
.

このp型層24zの形成は例えば、ボロンをドープした
多結晶シリコン漠を用いた固相拡散による。
The p-type layer 24z is formed, for example, by solid phase diffusion using polycrystalline silicon doped with boron.

この時7字溝26の側面に形成されるポロンガラス27
は希弗酸により素子分離誘電体膜(第1の絶縁膜)23
が侵れないようにエツチング除去する( (C) )。
At this time, the poron glass 27 formed on the side surface of the 7-shaped groove 26
is an element isolation dielectric film (first insulating film) 23 using dilute hydrofluoric acid.
Remove by etching to prevent corrosion ((C)).

そして、マスクとして用いた窒化ケイ素膜25を熱リン
酸でエツチング除去する( (d) )。
Then, the silicon nitride film 25 used as a mask is removed by etching with hot phosphoric acid ((d)).

次に熱酸化を行なって1μmの酸化膜(第3の絶縁膜)
28をV字溝側面および活性層表面に形成する( (e
) )。この後は図示しないが、V字溝26内に多結晶
シリコン膜を埋込み、必要に応じて平坦化処理を行なっ
て、誘電体分離基板を完成する。そして通常の工程に従
って、島状に分離された各活性層に所望の素子を形成す
る。例えば、ng層、p型層を順次拡散形成してpnp
 トランジスタを得る。
Next, thermal oxidation is performed to form a 1 μm oxide film (third insulating film).
28 is formed on the side surface of the V-shaped groove and the surface of the active layer ((e
) ). After this, although not shown, a polycrystalline silicon film is buried in the V-shaped groove 26, and a planarization process is performed as necessary to complete the dielectric isolation substrate. Desired elements are then formed in each of the island-shaped active layers according to a normal process. For example, by sequentially diffusing an NG layer and a p-type layer to form a pnp
Get a transistor.

この実施例によれば、誘電体分離基板の素子分離溝底部
に分離絶縁膜の薄い部分ができることはなく、また従来
のように多結晶シリコン膜埋込み後に溝底部に空洞が残
されることもない。従来の方法では活性層と7字溝内の
多結晶シリコン膜間の絶縁耐圧が、1μmの酸化膜でも
400Vであったのに対し、実施例では5oovの耐圧
が得られている。また、基板を切断して観察した結果、
この実施例による基板では7字溝内に空洞が認められな
かった。
According to this embodiment, a thin portion of the isolation insulating film is not formed at the bottom of the element isolation groove of the dielectric isolation substrate, and no cavity is left at the bottom of the groove after filling the polycrystalline silicon film as in the conventional case. In the conventional method, the dielectric breakdown voltage between the active layer and the polycrystalline silicon film in the figure 7 groove was 400 V even with a 1 μm oxide film, whereas in the example, a breakdown voltage of 5 oov was obtained. In addition, as a result of cutting and observing the board,
In the substrate according to this example, no cavity was observed within the 7-shaped groove.

また窒化ケイ素膜以外に素子分離溝のエツチング用マス
クとして、弗酸系エッチャントに侵れない金属膜を使用
した場合も、窒化ケイ素膜と同様の効果が得られる。
In addition to the silicon nitride film, when a metal film that is not eroded by a hydrofluoric acid etchant is used as an etching mask for the element isolation trench, the same effect as that of the silicon nitride film can be obtained.

以上では、直接接着による誘電体分離基板の実施例を説
明したが、本発明は他の接着法、例えば静電接着法やス
ピンオングラス接着法等を用いた誘電体分離基板を用い
た場合に同様に適用することが可能である。
Although the embodiments of dielectrically separated substrates using direct adhesion have been described above, the present invention is applicable to dielectrically separated substrates using other adhesion methods, such as electrostatic adhesion or spin-on glass adhesion. It is possible to apply it to

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、接着技術による誘電
体分離基板の分離溝底部のサイドエツチングを効果的に
防止し、分離耐圧が高く信頼性の高い半導体装置を得る
ことができる。
As described above, according to the present invention, it is possible to effectively prevent side etching of the bottom of the isolation trench of a dielectric isolation substrate due to adhesive technology, and to obtain a highly reliable semiconductor device with a high isolation breakdown voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は、本発明の一実施例の誘電体分
離基板の製造工程を示す図、第2図(a)〜(h)は従
来の製造工程を説明するだめの図、第3図は誘電体分離
基板にトランジスタを形成した様子を示す図、第4図(
a)〜(d)は従来法の問題点を説明するための要部工
程を示す図である。 21・・・第1のシリコン・ウェハ、22・・・第2の
シリコン・ウェハ、23・・・酸化膜(第1の絶縁膜)
、24・・・p+型層、25・・・窒化ケイ素膜(第2
の膜)、26・・・7字溝、27・・・ボロンガラス、
28・・・酸化膜(第3の膜)。 代理人 弁理士  則 近 憲 佑 同  松山光速 第 図 第 図 第 図 第 図 〜才 C’J
FIGS. 1(a) to (e) are diagrams showing the manufacturing process of a dielectric isolation substrate according to an embodiment of the present invention, and FIGS. 2(a) to (h) are diagrams illustrating the conventional manufacturing process. Figure 3 shows how a transistor is formed on a dielectric isolation substrate, and Figure 4 shows how a transistor is formed on a dielectric isolation substrate.
a) to (d) are diagrams showing main steps for explaining the problems of the conventional method. 21... First silicon wafer, 22... Second silicon wafer, 23... Oxide film (first insulating film)
, 24... p+ type layer, 25... silicon nitride film (second
film), 26... figure 7 groove, 27... boron glass,
28... Oxide film (third film). Agent Patent Attorney Yudo Nori Chika Matsuyama Speed of Light Figure Figure Figure Figure Figure ~ Sai C'J

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子が形成される第1のシリコン基板と、
これを保持し台となる第2のシリコン基板が酸化膜を介
して一体化しており、第1のシリコン基板が第1のシリ
コン基板の表面から酸化膜まで達する溝で複数に分離さ
れている誘電体分離基板の製造工程中、酸化膜に達する
溝を掘る工程において、第1のシリコン基板の表面に窒
化ケイ素膜を形成し、溝を掘る部分の窒化ケイ素膜を選
択的に除去し、この窒化ケイ素膜をマスクにしたエッチ
ングで酸化膜に達する溝を掘ることを特徴とする誘電体
分離半導体装置の製造方法。
(1) a first silicon substrate on which a semiconductor element is formed;
A second silicon substrate that holds and serves as a stand is integrated with an oxide film, and the first silicon substrate is separated into a plurality of dielectric parts by grooves extending from the surface of the first silicon substrate to the oxide film. During the manufacturing process of the body isolation substrate, a silicon nitride film is formed on the surface of the first silicon substrate in the step of digging a trench that reaches the oxide film, and the silicon nitride film in the part where the trench is to be dug is selectively removed. A method for manufacturing a dielectrically isolated semiconductor device, characterized by digging a trench that reaches an oxide film by etching using a silicon film as a mask.
(2)半導体素子が形成される第1のシリコン基板とこ
れを保持し、台となる第2のシリコン基板が酸化膜を介
して一体化しており、第1のシリコン基板が第1のシリ
コン基板の表面から酸化膜まで達する溝で複数に分離さ
れている誘電体分離基板において、表面にマスク膜を形
成し、パタニングしたマスク膜を利用して誘電体分離基
板に選択的にエッチングや拡散をする際に、窒化ケイ素
をマスク膜として使用することを特徴とする誘電体分離
半導体装置の製造方法。
(2) A first silicon substrate on which a semiconductor element is formed and a second silicon substrate that holds it and serves as a stand are integrated through an oxide film, and the first silicon substrate is connected to the first silicon substrate. A mask film is formed on the surface of the dielectric isolation substrate, which is separated into multiple parts by grooves reaching from the surface to the oxide film, and the patterned mask film is used to selectively etch and diffuse into the dielectric isolation substrate. A method for manufacturing a dielectrically isolated semiconductor device, comprising using silicon nitride as a mask film.
JP27930388A 1988-11-07 1988-11-07 Manufacture of dielectric isolation semiconductor device Pending JPH02126650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27930388A JPH02126650A (en) 1988-11-07 1988-11-07 Manufacture of dielectric isolation semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27930388A JPH02126650A (en) 1988-11-07 1988-11-07 Manufacture of dielectric isolation semiconductor device

Publications (1)

Publication Number Publication Date
JPH02126650A true JPH02126650A (en) 1990-05-15

Family

ID=17609287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27930388A Pending JPH02126650A (en) 1988-11-07 1988-11-07 Manufacture of dielectric isolation semiconductor device

Country Status (1)

Country Link
JP (1) JPH02126650A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166919A (en) * 1991-12-18 1993-07-02 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US5750432A (en) * 1995-06-07 1998-05-12 Harris Corporation Defect control in formation of dielectrically isolated semiconductor device regions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106165A (en) * 1983-11-15 1985-06-11 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106165A (en) * 1983-11-15 1985-06-11 Fujitsu Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166919A (en) * 1991-12-18 1993-07-02 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US5750432A (en) * 1995-06-07 1998-05-12 Harris Corporation Defect control in formation of dielectrically isolated semiconductor device regions

Similar Documents

Publication Publication Date Title
US4897362A (en) Double epitaxial method of fabricating semiconductor devices on bonded wafers
JP2980497B2 (en) Method of manufacturing dielectric-isolated bipolar transistor
JP2806277B2 (en) Semiconductor device and manufacturing method thereof
US5086011A (en) Process for producing thin single crystal silicon islands on insulator
JPH0834174B2 (en) Method for manufacturing semiconductor device
US5897362A (en) Bonding silicon wafers
JPS61292934A (en) Manufacture of semiconductor element
JP3033655B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPS6159852A (en) Manufacture of semiconductor device
JP2002083876A (en) Production method for semiconductor integrated circuit device
JPS59232437A (en) Manufacture of semiconductor device
JPH0897225A (en) Semiconductor device and its manufacture
JPH02126650A (en) Manufacture of dielectric isolation semiconductor device
JPH0687480B2 (en) Method for manufacturing semiconductor device
JPS59108325A (en) Manufacture of semiconductor device
JP2839088B2 (en) Semiconductor device
JPS61182242A (en) Manufacture of semiconductor device
JPH06302791A (en) Semiconductor substrate and manufacture thereof
JPH01302741A (en) Manufacture of dielectric isolation semiconductor device
JP2674533B2 (en) SOI substrate, semiconductor device using the same, and manufacturing method thereof
JP3136561B2 (en) Method for manufacturing semiconductor device
JPS6362252A (en) Manufacture of dielectric isolation substrate
JP2001144273A (en) Method for fabricating semiconductor device
JPH05190658A (en) Manufacture of dielectric-isolation type wafer
JPH01238033A (en) Dielectric isolation type semiconductor substrate and its manufacture