JP7451932B2 - Thermoelectric conversion materials and thermoelectric conversion elements using the same - Google Patents

Thermoelectric conversion materials and thermoelectric conversion elements using the same Download PDF

Info

Publication number
JP7451932B2
JP7451932B2 JP2019190190A JP2019190190A JP7451932B2 JP 7451932 B2 JP7451932 B2 JP 7451932B2 JP 2019190190 A JP2019190190 A JP 2019190190A JP 2019190190 A JP2019190190 A JP 2019190190A JP 7451932 B2 JP7451932 B2 JP 7451932B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
organic compound
conductive material
homo
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019190190A
Other languages
Japanese (ja)
Other versions
JP2021064766A (en
Inventor
類 安藤
貫 岩田
啓輔 倉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Artience Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Artience Co Ltd filed Critical Artience Co Ltd
Priority to JP2019190190A priority Critical patent/JP7451932B2/en
Priority to PCT/JP2019/048905 priority patent/WO2020129836A1/en
Priority to EP19899765.2A priority patent/EP3902021A4/en
Priority to CN201980082846.5A priority patent/CN113228318A/en
Priority to US17/413,711 priority patent/US20230050869A1/en
Priority to TW108146224A priority patent/TW202033724A/en
Publication of JP2021064766A publication Critical patent/JP2021064766A/en
Application granted granted Critical
Publication of JP7451932B2 publication Critical patent/JP7451932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、熱電変換材料及びそれを用いた熱電変換素子に関する。 The present invention relates to a thermoelectric conversion material and a thermoelectric conversion element using the same.

熱エネルギーと電気エネルギーを相互に変換できる熱電変換材料は、熱電発電素子やペルチェ素子のような熱電変換素子に用いられている。熱電変換素子は、熱を電力に変換する素子であり、半導体や金属の組合せによって構成される。代表的な熱電変換素子としては、p型半導体単独、n型半導体単独、又はp型半導体とn型半導体との組合せ、に分類される。熱電変換素子では、半導体の両端に温度差が生じるように熱を加えると起電力が生じるゼーベック効果を利用する。より大きな電位差を得るために、熱電変換素子では、一般的に、材料としてp型半導体とn型半導体とを組合せて使用する。 Thermoelectric conversion materials that can mutually convert thermal energy and electrical energy are used in thermoelectric conversion elements such as thermoelectric generation elements and Peltier elements. A thermoelectric conversion element is an element that converts heat into electric power, and is constructed from a combination of semiconductors and metals. Typical thermoelectric conversion elements are classified into p-type semiconductor alone, n-type semiconductor alone, or a combination of p-type semiconductor and n-type semiconductor. Thermoelectric conversion elements utilize the Seebeck effect, which generates an electromotive force when heat is applied to create a temperature difference between both ends of a semiconductor. In order to obtain a larger potential difference, thermoelectric conversion elements generally use a combination of p-type semiconductor and n-type semiconductor as materials.

また、熱電変換素子は、多数の素子を板状、又は円筒状に組合せてなる熱電モジュールとして使用される。熱エネルギーを直接電力に変換することが出来、例えば、体温で作動する腕時計、地上用発電及び人工衛星用発電における電源として利用できる。熱電変換素子の性能は、熱電変換材料の性能、及びモジュールの耐久性等に依存する。 Further, the thermoelectric conversion element is used as a thermoelectric module formed by combining a large number of elements into a plate shape or a cylindrical shape. Thermal energy can be directly converted into electricity, and can be used, for example, as a power source for wristwatches powered by body temperature, terrestrial power generation, and satellite power generation. The performance of the thermoelectric conversion element depends on the performance of the thermoelectric conversion material, the durability of the module, and the like.

非特許文献1に記載されているとおり、熱電変換材料の性能を表す指標として、無次元熱電性能指数(ZT)が用いられる。また、熱電変換材料の性能を表す指標として、パワーファクターPF(=S2・σ)を用いる場合もある。
上記無次元熱電性能指数「ZT」は、下式(6)により表される。
ZT=(S2・σ・T)/κ 式(6)
ここで、Sはゼーベック係数(V/K)、σは導電率(S・m)、Tは絶対温度(K)、κは熱伝導率(W/(m・K))である。熱伝導率κは下式(7)で表される。
κ=α・ρ・C 式(7)
ここで、αは熱拡散率(m2/s)、ρは密度(kg/m3)、及びCは比熱容量(J/(kg・K))である。
すなわち、熱電変換の性能(以下、熱電特性とも称す)を向上させるには、ゼーベック係数又は導電率を向上させ、その一方で熱伝導率を低下させることが重要である。
As described in Non-Patent Document 1, a dimensionless thermoelectric figure of merit (ZT) is used as an index representing the performance of thermoelectric conversion materials. Moreover, a power factor PF (=S 2 ·σ) may be used as an index representing the performance of a thermoelectric conversion material.
The dimensionless thermoelectric figure of merit "ZT" is expressed by the following formula (6).
ZT=(S 2・σ・T)/κ Formula (6)
Here, S is the Seebeck coefficient (V/K), σ is the electrical conductivity (S·m), T is the absolute temperature (K), and κ is the thermal conductivity (W/(m·K)). The thermal conductivity κ is expressed by the following formula (7).
κ=α・ρ・C Formula (7)
Here, α is the thermal diffusivity (m 2 /s), ρ is the density (kg/m 3 ), and C is the specific heat capacity (J/(kg·K)).
That is, in order to improve thermoelectric conversion performance (hereinafter also referred to as thermoelectric characteristics), it is important to improve the Seebeck coefficient or electrical conductivity while decreasing the thermal conductivity.

代表的な熱電変換材料として、例えば、常温から500Kまではビスマス・テルル系(Bi-Te系)、常温から800Kまでは鉛・テルル系(Pb-Te系)、及び常温から1000Kまではシリコン・ゲルマニウム系(Si-Ge系)などの無機材料が知られている。 しかし、無機材料は一般的に加工性に乏しいため、様々な形状、フルキシブル性を有する熱電変換素子を作成することは困難である。 Typical thermoelectric conversion materials include, for example, bismuth/tellurium (Bi-Te) from room temperature to 500K, lead/tellurium (Pb-Te) from room temperature to 800K, and silicon/tellurium (Pb-Te) from room temperature to 1000K. Inorganic materials such as germanium (Si--Ge) are known. However, since inorganic materials generally have poor processability, it is difficult to create thermoelectric conversion elements having various shapes and flexibility.

そこで近年、有機材料からなる熱電変換素子に関する検討が進められている。有機材料は、優れた成形性を有し、印刷技術等による製造方法を利用することができるという長所を有する。例えば、特許文献1には、特定構造の繰り返し単位を含む分散剤とカーボンナノチューブ(以下「CNT」と略記することがある)とを含有する熱電変換材料およびそれを用いた熱電変換素子が開示されている。しかしながら、特許文献1に開示されている熱電変換素子では、熱電変換素子として十分な起電力が得られてはいなかった。 Therefore, in recent years, studies have been progressing on thermoelectric conversion elements made of organic materials. Organic materials have the advantage that they have excellent moldability and can be manufactured using printing techniques and the like. For example, Patent Document 1 discloses a thermoelectric conversion material containing a dispersant containing a repeating unit with a specific structure and carbon nanotubes (hereinafter sometimes abbreviated as "CNT"), and a thermoelectric conversion element using the same. ing. However, in the thermoelectric conversion element disclosed in Patent Document 1, sufficient electromotive force was not obtained as a thermoelectric conversion element.

国際公開第2015/050113号International Publication No. 2015/050113

梶川武信著、「熱電変換技術ハンドブック(初版)」、エヌ・ティー・エス出版、19頁(2008年)。Takenobu Kajikawa, "Thermoelectric Conversion Technology Handbook (First Edition)", NTS Publishing, 19 pages (2008).

本発明が解決しようとする課題は、高い起電力を得ることができる熱電変換素子と、そのような熱電変換素子を作製することができる熱電変換材料を提供することである。 The problem to be solved by the present invention is to provide a thermoelectric conversion element that can obtain a high electromotive force and a thermoelectric conversion material that can produce such a thermoelectric conversion element.

本発明者らは上記課題を解決するため、鋭意検討した結果、本発明を完成するに至った。
すなわち、本発明は、導電材料(A)、有機化合物(B)(但し、導電材料(A)を除く)及び有機化合物(C)(但し、導電材料(A)かつ有機化合物(B)を除く)を含有してなり、下記(1)~(3)をすべて満たす熱電変換材料に関する。
(1) 0<((有機化合物(B)のHOMO)―(導電材料(A)のHOMO))×((有機化合物(C)のHOMO)―(導電材料(A)のHOMO))
(2) |(有機化合物(B)のHOMO)-(導電材料(A)のHOMO)|<|(有機化合物(C)のHOMO)-(導電材料(A)のHOMO)|
(3) 有機化合物(B)の導電材料(A)に対する吸着性が、有機化合物(C)の導電材料(A)に対する吸着性より大きい。
(但し、HOMOは最高被占軌道のエネルギー準位を表す。また、導電材料(A)が金属材料である場合は、導電材料(A)のHOMOは、導電材料(A)のフェルミ準位を表す。)
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and have completed the present invention.
That is, the present invention provides a conductive material (A), an organic compound (B) (excluding the conductive material (A)), and an organic compound (C) (excluding the conductive material (A) and the organic compound (B)). ), and relates to a thermoelectric conversion material that satisfies all of the following (1) to (3).
(1) 0<((HOMO of organic compound (B)) - (HOMO of conductive material (A))) x ((HOMO of organic compound (C)) - (HOMO of conductive material (A)))
(2) |(HOMO of organic compound (B)) - (HOMO of conductive material (A)) | < | (HOMO of organic compound (C)) - (HOMO of conductive material (A)) |
(3) The adsorption of the organic compound (B) to the conductive material (A) is greater than the adsorption of the organic compound (C) to the conductive material (A).
(However, HOMO represents the energy level of the highest occupied orbital. Also, when the conductive material (A) is a metal material, the HOMO of the conductive material (A) is the Fermi level of the conductive material (A). represent.)

また、本発明は、導電材料(A)が、炭素材料を含んでなる上記熱電変換材料に関する。 Further, the present invention relates to the thermoelectric conversion material described above, in which the conductive material (A) contains a carbon material.

また、本発明は、炭素材料が、カーボンナノチューブを含んでなる上記熱電変換材料に関する。 The present invention also relates to the thermoelectric conversion material described above, in which the carbon material includes carbon nanotubes.

また、本発明は、上記熱電変換材料を含んでなる熱電変換膜と、電極とを有し、熱電変換膜及び電極が互いに電気的に接続されている熱電変換素子に関する。 The present invention also relates to a thermoelectric conversion element having a thermoelectric conversion film containing the above thermoelectric conversion material and an electrode, the thermoelectric conversion film and the electrode being electrically connected to each other.

本発明によって、高い起電力を得ることができる熱電変換素子を作製することができるようになった。 According to the present invention, it has become possible to produce a thermoelectric conversion element that can obtain a high electromotive force.

(a)は、本発明の実施形態である熱電変換素子の上面図を表し、(b)は、熱電変換素子の起電力の測定方法を説明する模式図を表す。(a) represents a top view of a thermoelectric conversion element that is an embodiment of the present invention, and (b) represents a schematic diagram illustrating a method for measuring the electromotive force of the thermoelectric conversion element.

以下、本発明の実施形態について詳細に説明する。
<導電材料(A)>
導電材料(A)とは、電気を通じる材料を指す。熱電変換材料中の導電材料(A)の含有量を増やすことで導電性を向上させることができる。
導電材料(A)は、導電性を有する材料(炭素材料、金属材料、導電性高分子等)であれば、特に制限されず、例えば、炭素材料としては、黒鉛、カーボンナノチューブ、カーボンブラック、グラフェン(グラフェンナノプレートを含む)等が挙げられる。また、金属材料としては、金、銀、銅、ニッケル、クロム、パラジウム、ロジウム、ルテニウム、インジウム、ケイ素、アルミニウム、タングステン、モリブデン、ゲルマニウム、ガリウム及び白金等の金属粉、並びに ZnSe、CdS、InP、GaN、SiC、SiGeこれらの合金、並びにこれらの複合粉が挙げられる。また、核体と、前記核体物質とは異なる物質で被覆した微粒子、具体的には、例えば、銅を核体とし、その表面を銀で被覆した銀コート銅粉等が挙げられる。また、例えば酸化銀、酸化インジウム、酸化スズ、酸化亜鉛、酸化ルテニウム、ITO(スズドープ酸化インジウム)、AZO(アルミドープ酸化亜鉛)、及びGZO(ガリウムドープ酸化亜鉛)等の金属酸化物の粉末、並びにこれらの金属酸化物で表面被覆した粉末等が挙げられる。導電性高分子としては、PEDOT/PSS(ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸から成る複合物)、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン、ポリパラフェニレン等が挙げられる。
Embodiments of the present invention will be described in detail below.
<Conductive material (A)>
The conductive material (A) refers to a material that conducts electricity. Conductivity can be improved by increasing the content of the conductive material (A) in the thermoelectric conversion material.
The conductive material (A) is not particularly limited as long as it is a material having conductivity (carbon material, metal material, conductive polymer, etc.). For example, carbon materials include graphite, carbon nanotubes, carbon black, and graphene. (including graphene nanoplates), etc. In addition, metal materials include metal powders such as gold, silver, copper, nickel, chromium, palladium, rhodium, ruthenium, indium, silicon, aluminum, tungsten, molybdenum, germanium, gallium, and platinum, as well as ZnSe, CdS, InP, Examples include GaN, SiC, SiGe, alloys thereof, and composite powders thereof. Further, fine particles having a nucleus and a substance different from the nucleus substance coated therein, specifically, for example, silver-coated copper powder having a copper nucleus and coating the surface with silver may be mentioned. In addition, powders of metal oxides such as silver oxide, indium oxide, tin oxide, zinc oxide, ruthenium oxide, ITO (tin-doped indium oxide), AZO (aluminum-doped zinc oxide), and GZO (gallium-doped zinc oxide), Examples include powder whose surface is coated with these metal oxides. Examples of the conductive polymer include PEDOT/PSS (composite of poly(3,4-ethylenedioxythiophene) and polystyrene sulfonic acid), polyaniline, polyacetylene, polypyrrole, polythiophene, polyparaphenylene, and the like.

黒鉛としては、薄片状黒鉛として、日本黒鉛工業社製のCMX、UP-5、UP-10、UP-20、UP-35N、CSSP、CSPE、CSP、CP、CB-150、CB-100、ACP、ACP-1000、ACB-50、ACB-100、ACB-150、SP-10、SP-20、J-SP、SP-270、HOP、GR-60、LEP、F#1、F#2、F#3、中越黒鉛工業所社製のBF-3AK、FBF、BF-15AK、CBR、CPB-6S、CPB-3、96L、96L-3、K-3、SC-120、SC-60、HLP、CP-150、SB-1、伊藤黒鉛工業社製のEC1500、EC1000、EC500、EC300、EC100、EC50、西村黒鉛社製の10099M、PB-99等が挙げられる。球状天然黒鉛としては、日本黒鉛工業社製のCGC-20、CGC-50、CGB-20、CGB-50等が挙げられる。土状黒鉛としては、日本黒鉛工業社製の青P、AP、AOP、P#1、中越黒鉛社製のAPR、K-5、AP-2000、AP-6、300F、150F等が挙げられる。人造黒鉛としては、日本黒鉛工業社製のPAG-60、PAG-80、PAG-120、PAG-5、HAG-10W、HAG-150、中越黒鉛社製のG-4AK、G-6S、G-3G-150、G-30、G-80、G-50、SMF、EMF、SFF、SFF-80B、SS-100、BSP-15AK、BSP-100AK、WF-15C、SECカーボン社製のSGP-100、SGP-50、SGP-25、SGP-15、SGP-5、SGP-1、SGO-100、SGO-50、SGO-25、SGO-15、SGO-5、SGO-1、SGX-100、SGX-50、SGX-25、SGX-15、SGX-5、SGX-1等が挙げられる。 Examples of flaky graphite include CMX, UP-5, UP-10, UP-20, UP-35N, CSSP, CSPE, CSP, CP, CB-150, CB-100, and ACP manufactured by Nippon Graphite Industries. , ACP-1000, ACB-50, ACB-100, ACB-150, SP-10, SP-20, J-SP, SP-270, HOP, GR-60, LEP, F#1, F#2, F #3, BF-3AK, FBF, BF-15AK, CBR, CPB-6S, CPB-3, 96L, 96L-3, K-3, SC-120, SC-60, HLP, manufactured by Chuetsu Graphite Industries Co., Ltd. Examples include CP-150, SB-1, EC1500, EC1000, EC500, EC300, EC100, EC50 manufactured by Ito Graphite Industries, and 10099M and PB-99 manufactured by Nishimura Graphite Co., Ltd. Examples of the spherical natural graphite include CGC-20, CGC-50, CGB-20, and CGB-50 manufactured by Nippon Graphite Industries. Examples of the earthy graphite include Blue P, AP, AOP, and P#1 manufactured by Nippon Graphite Industries Co., Ltd., and APR, K-5, AP-2000, AP-6, 300F, and 150F manufactured by Chuetsu Graphite Co., Ltd. Examples of artificial graphite include PAG-60, PAG-80, PAG-120, PAG-5, HAG-10W, and HAG-150 manufactured by Nippon Graphite Industries, and G-4AK, G-6S, and G- manufactured by Chuetsu Graphite Co., Ltd. 3G-150, G-30, G-80, G-50, SMF, EMF, SFF, SFF-80B, SS-100, BSP-15AK, BSP-100AK, WF-15C, SGP-100 manufactured by SEC Carbon , SGP-50, SGP-25, SGP-15, SGP-5, SGP-1, SGO-100, SGO-50, SGO-25, SGO-15, SGO-5, SGO-1, SGX-100, SGX -50, SGX-25, SGX-15, SGX-5, SGX-1, etc.

導電性炭素繊維やカーボンナノチューブとしては、昭和電工社製のVGCF等の気相法炭素繊維、名城ナノカーボン社製のEC1.5,EC1.5-P、楠本化成社製のTUBALL、ゼオンナノテクノロジー社製のZEONANO等の単層カーボンナノチューブ、CNano社製のFloTube9000、FloTube7000、FloTube2000、Nanocyl社製のNC7000、Knano社製の100T、200P等が挙げられる。 Examples of conductive carbon fibers and carbon nanotubes include vapor grown carbon fibers such as VGCF manufactured by Showa Denko Co., Ltd., EC1.5 and EC1.5-P manufactured by Meijo Nano Carbon Co., Ltd., TUBALL manufactured by Kusumoto Kasei Co., Ltd., and Zeon Nanotechnology. Examples include single-walled carbon nanotubes such as ZEONANO manufactured by CNano, FloTube9000, FloTube7000, FloTube2000 manufactured by CNano, NC7000 manufactured by Nanocyl, and 100T and 200P manufactured by Knano.

カーボンブラックとしては、東海カーボン社製のトーカブラック#4300、#4400、#4500、#5500、デグサ社製のプリンテックスL、コロンビヤン社製のRaven7000、5750、5250、5000ULTRAIII、5000ULTRA、Conductex SC ULTRA、Conductex 975 ULTRA、PUERBLACK100、115、205、三菱化学社製の#2350、#2400B、#2600B、#3050B、#3030B、#3230B、#3350B、#3400B、#5400B、キャボット社製のMONARCH1400、1300、900、VulcanXC-72R、BlackPearls2000、TIMCAL社製のEnsaco250G、Ensaco260G、Ensaco350G、SuperP-Li等のファーネスブラック)、ライオン社製のEC-300J、EC-600JD等のケッチェンブラック、電気化学工業社製のデンカブラック、デンカブラックHS-100、FX-35等のアセチレンブラックが挙げられる。 Examples of carbon black include Toka Black #4300, #4400, #4500, #5500 manufactured by Tokai Carbon, Printex L manufactured by Degussa, Raven7000, 5750, 5250, 5000ULTRAIII, 5000ULTRA, and Conductex SC ULTRA manufactured by Columbian. Conductex 975 ULTRA, PUERBLACK100, 115, 205, Mitsubishi Chemical Corporation #2350, #2400B, #2600B, #3050B, #3030B, #3230B, #3350B, #3400B, #5400B, Cabot Corporation MONARCH14 00, 1300, Furnace black such as 900, Vulcan of Examples include acetylene black such as Denka Black, Denka Black HS-100, and FX-35.

上記導電材料(A)の内、ゼーベック係数と導電率との両立の観点で、導電材料(A)は炭素材料を含んでなることが好ましい。また、炭素材料は、カーボンナノチューブ、カーボンブラック、グラフェンを含んでなることが好ましく、カーボンナノチューブを含んでなることがより好ましい。また、カーボンナノチューブは、単層カーボンナノチューブを含んでなることが好ましい。 Among the above-mentioned conductive materials (A), it is preferable that the conductive materials (A) contain a carbon material from the viewpoint of achieving both Seebeck coefficient and electrical conductivity. Further, the carbon material preferably contains carbon nanotubes, carbon black, and graphene, and more preferably contains carbon nanotubes. Further, the carbon nanotubes preferably include single-walled carbon nanotubes.

導電材料(A)の形状は、特に限定されず、不定形、凝集状、鱗片状、微結晶状、球状、フレーク状、ワイヤー状等を適宜用いることができる。また、導電材料(A)は1種のみでもよいし、2種以上を含んでいても良い。 The shape of the conductive material (A) is not particularly limited, and amorphous shapes, aggregate shapes, scale shapes, microcrystal shapes, spherical shapes, flake shapes, wire shapes, etc. can be used as appropriate. Moreover, the number of conductive materials (A) may be one type, or two or more types may be included.

<有機化合物>
次に、有機化合物(B)および有機化合物(C)について説明する。有機化合物(B)と有機化合物(C)は、各々固有の物性によって決まるものではなく、導電材料(A)を含めた相対的な物性の違いによって決まるものである。具体的には、上記(1)~(3)の要件を満たすものである。(1)および(2)は、更に下記(4)および(5)に大別することができる。
(4) 導電材料(A)のHOMOが、有機化合物(B)のHOMOより大きく、かつ有機化合物(B)のHOMOが、有機化合物(C)のHOMOより大きい場合。
(5) 導電材料(A)のHOMOが、有機化合物(B)のHOMOより小さく、かつ有機化合物(B)のHOMOが、有機化合物(C)のHOMOより小さい場合。
<Organic compounds>
Next, the organic compound (B) and the organic compound (C) will be explained. The organic compound (B) and the organic compound (C) are not determined by their respective physical properties, but are determined by the relative difference in physical properties including the conductive material (A). Specifically, it satisfies the requirements (1) to (3) above. (1) and (2) can be further broadly classified into (4) and (5) below.
(4) When the HOMO of the conductive material (A) is larger than the HOMO of the organic compound (B), and the HOMO of the organic compound (B) is larger than the HOMO of the organic compound (C).
(5) When the HOMO of the conductive material (A) is smaller than the HOMO of the organic compound (B), and the HOMO of the organic compound (B) is smaller than the HOMO of the organic compound (C).

本発明における熱電変換のメカニズムは以下のように考えられる。導電材料(A)に対する吸着性が、有機化合物(C)よりも有機化合物(B)の方が大きいと、導電材料(A)の表面には有機化合物(C)よりも有機化合物(B)が優先的に吸着されると考えられる。熱電変換が生じるには、導電材料(A)、有機化合物(B)、有機化合物(C)間でキャリア移動が生じる必要があるが、その際、有機化合物(C)のHOMOよりも有機化合物(B)のHOMOが導電材料(A)のHOMOに近いと、導電材料(A)と表面近傍に存在する有機化合物(B)間のキャリア移動が円滑になり、有機化合物(B)と有機化合物(C)間のキャリア移動も円滑になるため、導電材料(A)、有機化合物(B)、有機化合物(C)間でのキャリア移動が効率よく行われ、熱電変換効率が高まるものと考えられる。 The mechanism of thermoelectric conversion in the present invention is considered as follows. If the organic compound (B) has greater adsorption to the conductive material (A) than the organic compound (C), the organic compound (B) will be more present on the surface of the conductive material (A) than the organic compound (C). It is thought that it is preferentially adsorbed. In order for thermoelectric conversion to occur, carrier movement must occur between the conductive material (A), the organic compound (B), and the organic compound (C). When the HOMO of B) is close to the HOMO of the conductive material (A), carrier movement between the conductive material (A) and the organic compound (B) existing near the surface becomes smooth, and the organic compound (B) and the organic compound ( Since the carrier movement between C) also becomes smooth, carrier movement between the conductive material (A), the organic compound (B), and the organic compound (C) is performed efficiently, and it is considered that the thermoelectric conversion efficiency is increased.

有機化合物(B)のHOMOと導電材料(A)のHOMOは0.1~2.0eV離れていることが好ましく、0.1~1.5eV離れていることがより好ましい。また、有機化合物(C)のHOMOと有機化合物(B)のHOMOは0.1~2.0eV離れていることが好ましく、0.1~1.5eV離れていることがより好ましい。例えば、導電材料(A)のHOMOが、-5.1eVである場合、有機化合物(B)のHOMOは、-7.1~-5.2または-5.0~-3.0であることが好ましい。導電材料(A)のHOMOが、-5.1eVであり、有機化合物(B)のHOMOが、-5.4eVである場合、有機化合物(C)のHOMOは、-7.5~-5.5eVであることが好ましい。導電材料(A)のHOMOが、-5.1eVであり有機化合物(B)のHOMOが-5.0eVである場合、有機化合物(C)のHOMOは、-4.9~-2.9eVであることが好ましい。 The HOMO of the organic compound (B) and the HOMO of the conductive material (A) are preferably separated by 0.1 to 2.0 eV, more preferably 0.1 to 1.5 eV. Further, the HOMO of the organic compound (C) and the HOMO of the organic compound (B) are preferably separated by 0.1 to 2.0 eV, and more preferably separated by 0.1 to 1.5 eV. For example, when the HOMO of the conductive material (A) is -5.1 eV, the HOMO of the organic compound (B) is -7.1 to -5.2 or -5.0 to -3.0. is preferred. When the HOMO of the conductive material (A) is -5.1 eV and the HOMO of the organic compound (B) is -5.4 eV, the HOMO of the organic compound (C) is -7.5 to -5. Preferably it is 5 eV. When the HOMO of the conductive material (A) is -5.1 eV and the HOMO of the organic compound (B) is -5.0 eV, the HOMO of the organic compound (C) is -4.9 to -2.9 eV. It is preferable that there be.

また、導電材料(A)に対する表面吸着及び均一化を促進し、さらに分子割合を増加させるために、有機化合物(B)の分子量は、小さいほうが好ましく、分子量または質量平均分子量(Mw)は、好ましくは5,000以下であり、より好ましくは3,000以下である。有機化合物(B)および有機化合物(C)は、いずれも有機半導体であることが好ましい。 Further, in order to promote surface adsorption and uniformity to the conductive material (A) and further increase the molecular proportion, the molecular weight of the organic compound (B) is preferably small, and the molecular weight or mass average molecular weight (Mw) is preferably is 5,000 or less, more preferably 3,000 or less. It is preferable that the organic compound (B) and the organic compound (C) are both organic semiconductors.

上記の条件を満たす、有機化合物(B)および有機化合物(C)としては、ペリレン骨格、ピロロピロール骨格、フェノチアジン骨格、チアゾロチアゾール骨格、オキサゾロチアゾール骨格、オキサゾロオキサゾール骨格、ベンゾビスチアゾール骨格、ベンゾビスオキサゾール骨格、チアゾロベンゾオキサゾール骨格、チオキサントン骨格、フルオレン骨格、オキサゾール骨格、フタロシアニン骨格のいずれかの骨格を有する化合物であることが好ましい。好ましい態様の例を挙げると、導電材料(A)がカーボンナノチューブである場合、有機化合物(B)としては、ピロロピロール骨格またはフェノチアジン骨格を有する化合物であることが好ましく、有機化合物(C)としては、チオキサントン骨格、フルオレン骨格またはオキサゾール骨格を有する化合物であることが好ましい。 Examples of the organic compound (B) and organic compound (C) that satisfy the above conditions include a perylene skeleton, a pyrrolopyrrole skeleton, a phenothiazine skeleton, a thiazolothiazole skeleton, an oxazolothiazole skeleton, an oxazolooxazole skeleton, a benzobisthiazole skeleton, The compound is preferably a compound having any one of a benzobisoxazole skeleton, a thiazolobenzoxazole skeleton, a thioxanthone skeleton, a fluorene skeleton, an oxazole skeleton, and a phthalocyanine skeleton. To give an example of a preferred embodiment, when the conductive material (A) is a carbon nanotube, the organic compound (B) is preferably a compound having a pyrrolopyrrole skeleton or a phenothiazine skeleton, and the organic compound (C) is a compound having a pyrrolopyrrole skeleton or a phenothiazine skeleton. , a thioxanthone skeleton, a fluorene skeleton, or an oxazole skeleton.

また、前記有機化合物(B)、有機化合物(C)は、熱電変換材料中でゼーベック係数の向上に寄与する。有機化合物(B)、有機化合物(C)の含有量を増やすことでゼーベック係数を向上させることができるが、導電性が低下するため、ゼーベック係数と導電率との両立の観点から、有機化合物(B)および有機化合物(C)の合計は、導電材料(A)の全量に対して、上限値が、300質量%以下が好ましく、200質量%以下がより好ましい。また、下限値は、10質量%以上が好ましく、20質量%以上がより好ましい。 Further, the organic compound (B) and the organic compound (C) contribute to improving the Seebeck coefficient in the thermoelectric conversion material. The Seebeck coefficient can be improved by increasing the content of the organic compound (B) and the organic compound (C), but the conductivity decreases. The upper limit of the total amount of B) and the organic compound (C) is preferably 300% by mass or less, more preferably 200% by mass or less, based on the total amount of the conductive material (A). Moreover, the lower limit is preferably 10% by mass or more, more preferably 20% by mass or more.

(溶剤)
溶剤は、前記導電材料(A)と有機化合物(B)と有機化合物(C)の混合する際の媒体として使用され、インキ化による塗工性向上が可能とする。使用できる溶剤としては、導電材料(A)と有機化合物(B)と有機化合物(C)とを溶解又は良分散できれば特に限定されず、有機溶剤や水を挙げることができ、2種以上を組み合わせて用いてもよい。但し、本明細書でいう有機溶剤とは、有機化合物(B)および有機化合物(C)以外のものを指す。有機溶剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールメチルエーテル、ジエチレングリコールメチルエーテル、ターピネオール、ジヒドロターピネオール、2,4-ジエチル-1,5-ペンタンジオール、1、3-ブチレングリコール、イソボルニルシクロヘキサノール、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ジエチレングリコール、トリエチレングリコール、グリセリン、ポリエチレングリコール、ポリプロピレングリコール、トリフルオロエタノール、m-クレゾール、及びチオジグリコール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、ヘキサン、ヘプタン、オクタン等の炭化水素類、ベンゼン、トルエン、キシレン、クメン等の芳香族類、酢酸エチル、酢酸ブチル等のエステル類、N-メチルピロリドン等から、必要に応じて適宜選択することができる。
溶剤としては、N-メチルピロリドンが好ましい。
(solvent)
The solvent is used as a medium when mixing the conductive material (A), the organic compound (B), and the organic compound (C), and makes it possible to improve coating properties by forming an ink. The solvent that can be used is not particularly limited as long as it can dissolve or disperse the conductive material (A), organic compound (B), and organic compound (C) well, and examples include organic solvents and water, and two or more types can be used in combination. It may also be used. However, the organic solvent as used herein refers to something other than the organic compound (B) and the organic compound (C). Examples of organic solvents include methanol, ethanol, propanol, butanol, ethylene glycol methyl ether, diethylene glycol methyl ether, terpineol, dihydroterpineol, 2,4-diethyl-1,5-pentanediol, 1,3-butylene glycol, iso Bornylcyclohexanol, ethylene glycol, 1,3-propanediol, 1,4-butanediol, diethylene glycol, triethylene glycol, glycerin, polyethylene glycol, polypropylene glycol, trifluoroethanol, m-cresol, and thiodiglycol, etc. Alcohols, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethers such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, hydrocarbons such as hexane, heptane, octane, benzene, toluene, xylene, cumene It can be appropriately selected from aromatics such as ethyl acetate, esters such as ethyl acetate, butyl acetate, N-methylpyrrolidone, etc., as required.
As the solvent, N-methylpyrrolidone is preferred.

(無機熱電変換材料)
本発明の熱電変換材料は、熱電変換効率を高めるために、必要に応じて、無機熱電変換材料を含んでもよい。無機熱電材料の一例として、Bi-(Te、Se)系、Si-Ge系、Mg-Si系、Pb-Te系、GeTe-AgSbTe系、(Co、Ir、Ru)-Sb系、(Ca、Sr、Bi)Co25系等を挙げることができる。より具体的には、Bi2Te3、PbTe、AgSbTe2、GeTe、Sb2Te3、NaCo24、CaCoO3、SrTiO3、ZnO、SiGe、Mg2Si、FeSi2、Ba8Si46、MnSi1.73、ZnSb、Zn4Sb3、GeFe3CoSb12、及びLaFe3CoSb12からなる群から選択される少なくとも1種を使用することができる。このとき、上記無機熱電変換材料に不純物を加えて極性(p型、n型)や導電率を制御して利用してもよい。無機熱電変換材料を使用する場合、その使用量は、成膜性や膜強度に影響しない範囲で調整する。
(Inorganic thermoelectric conversion material)
The thermoelectric conversion material of the present invention may contain an inorganic thermoelectric conversion material, if necessary, in order to improve thermoelectric conversion efficiency. Examples of inorganic thermoelectric materials include Bi-(Te, Se) based, Si-Ge based, Mg-Si based, Pb-Te based, GeTe-AgSbTe based, (Co, Ir, Ru)-Sb based, (Ca, Examples include Sr, Bi)Co 2 O 5 systems, and the like. More specifically, Bi2Te3 , PbTe , AgSbTe2 , GeTe, Sb2Te3 , NaCo2O4 , CaCoO3 , SrTiO3 , ZnO, SiGe, Mg2Si , FeSi2 , Ba8Si46 , At least one selected from the group consisting of MnSi 1.73 , ZnSb, Zn 4 Sb 3 , GeFe 3 CoSb 12 , and LaFe 3 CoSb 12 can be used. At this time, impurities may be added to the inorganic thermoelectric conversion material to control the polarity (p-type, n-type) and conductivity. When using an inorganic thermoelectric conversion material, the amount used is adjusted within a range that does not affect film formability or film strength.

熱電変換材料を含む分散液を製造する場合には、例えば、熱電変換材料と溶剤と必要に 応じてその他成分とを混合した後、分散機や超音波を用いて分散することで得ることが できる。 When producing a dispersion containing a thermoelectric conversion material, for example, it can be obtained by mixing the thermoelectric conversion material, a solvent, and other components as necessary, and then dispersing the mixture using a disperser or ultrasonic waves. .

分散機としては、特に制限はなく、例えば、ニーダー、アトライター、ボールミル、ガラスビーズやジルコニアビーズ等を使用したサンドミル、スキャンデックス、アイガーミル、ペイントコンディショナー、ペイントシェイカー等のメディア分散機、コロイドミル等を使用することができる。
<熱電変換素子>
本発明の熱電変換素子は、上記熱電変換材料を含んでなる熱電変換膜と、電極とを有し、上記熱電変換膜及び上記電極は互いに電気的に接続されているものである。熱電変換膜は、導電性及び熱電特性に加えて、耐熱性及び可撓性の点でも優れる。そのため、高品質な熱電変換素子を容易に作製することができる。
There are no particular restrictions on the dispersion machine, and examples include kneaders, attritors, ball mills, sand mills using glass beads or zirconia beads, media dispersion machines such as Scandex, Eiger mills, paint conditioners, paint shakers, colloid mills, etc. can be used.
<Thermoelectric conversion element>
The thermoelectric conversion element of the present invention includes a thermoelectric conversion film containing the thermoelectric conversion material described above and an electrode, and the thermoelectric conversion film and the electrode are electrically connected to each other. Thermoelectric conversion films have excellent heat resistance and flexibility in addition to conductivity and thermoelectric properties. Therefore, a high quality thermoelectric conversion element can be easily manufactured.

熱電変換膜は、基材上に熱電変換材料を塗布して得られる膜であってもよい。熱電変換材料は優れた成形性を有するため、塗布法によって良好な膜を得ることが容易である。熱電変換膜の形成には、主に湿式製膜法が用いられる。具体的には、スピンコート法、スプレー法、ローラーコート法、グラビアコート法、ダイコート法、コンマコート法、ロールコート法、カーテンコート法、バーコート法、インクジェット法、ディスペンサー法、シルクスクリーン印刷、フレキソ印刷等の各種手段を用いた方法が挙げられる。塗布する厚み、及び材料の粘度等に応じて、上記方法から適宜選択することができる。 The thermoelectric conversion film may be a film obtained by applying a thermoelectric conversion material onto a base material. Since the thermoelectric conversion material has excellent moldability, it is easy to obtain a good film by a coating method. A wet film forming method is mainly used to form a thermoelectric conversion film. Specifically, spin coat method, spray method, roller coat method, gravure coat method, die coat method, comma coat method, roll coat method, curtain coat method, bar coat method, inkjet method, dispenser method, silk screen printing, flexographic method. Examples include methods using various means such as printing. The method can be appropriately selected from the above methods depending on the thickness to be applied, the viscosity of the material, etc.

熱電変換膜の膜厚は、特に限定されるものではないが、後述するように、熱電変換膜の厚さ方向又は面方向に温度差を生じ、かつ伝達できるように、一定以上の厚みを有するように形成されることが好ましい。熱電特性の点から、熱電変換膜の膜厚は、0.1~500μmの範囲が好ましく、1~300μmの範囲が好ましく、1~200μmの範囲がさらに好ましい。 The thickness of the thermoelectric conversion film is not particularly limited, but as described later, it has a thickness of at least a certain level so that a temperature difference can be generated and transmitted in the thickness direction or surface direction of the thermoelectric conversion film. It is preferable that it be formed as follows. From the viewpoint of thermoelectric properties, the thickness of the thermoelectric conversion film is preferably in the range of 0.1 to 500 μm, preferably in the range of 1 to 300 μm, and more preferably in the range of 1 to 200 μm.

基材の材料としては、特に制限はないが、不織布、紙、ポリエチレン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリプロピレン、ポリイミド、ボリカーボネート、セルローストリアセテート等のプラスチックフィルム、又はガラス等を用いることができる。 The material for the base material is not particularly limited, but may include nonwoven fabric, paper, plastic films such as polyethylene, polyethylene terephthalate (PET), polyethylene naphthalate, polyether sulfone, polypropylene, polyimide, polycarbonate, cellulose triacetate, or glass. etc. can be used.

基材と熱電変換膜との密着性を向上させる目的で、基材表面に様々な処理を行うことができる。具体的には、熱電変換材料の塗布に先立ち、UVオゾン処理、コロナ処理、プラズマ処理、又は易接着処理を行ってもよい。 Various treatments can be performed on the surface of the base material for the purpose of improving the adhesion between the base material and the thermoelectric conversion film. Specifically, prior to applying the thermoelectric conversion material, UV ozone treatment, corona treatment, plasma treatment, or adhesion promoting treatment may be performed.

電極の材料は、金属、合金、及び半導体から選択することができる。一実施形態において、導電率が高く、熱電変換膜の接触抵抗が低いことが好ましいことから、金属及び合金が好ましい。具体例として、電極は、金、銀、銅、及びアルミニウムからなる群から選択される少なくとも1種を含むことが好ましい。電極は、銀を含むことがさらに好ましい。 The material of the electrode can be selected from metals, alloys, and semiconductors. In one embodiment, metals and alloys are preferable because it is preferable that the conductivity is high and the contact resistance of the thermoelectric conversion film is low. As a specific example, the electrode preferably contains at least one member selected from the group consisting of gold, silver, copper, and aluminum. More preferably, the electrode contains silver.

電極は、真空蒸着法、電極材料箔や電極材料膜を有するフィルムの熱圧着、電極材料の微粒子を分散したペーストの塗布等の方法によって形成することができる。プロセスが簡便な観点で、電極材料箔や電極材料膜を有するフィルムの熱圧着、電極材料を分散したペーストの塗布による方法が好ましい。 The electrode can be formed by a method such as a vacuum evaporation method, thermocompression bonding of an electrode material foil or a film having an electrode material film, or application of a paste in which fine particles of the electrode material are dispersed. From the viewpoint of a simple process, a method using thermocompression bonding of an electrode material foil or a film having an electrode material film, or a method using a paste in which the electrode material is dispersed is preferable.

以下、実験例により、本発明をより具体的に説明する。なお、例中、「部」とあるのは「質量部」を、「%」とあるのは「質量%」をそれぞれ意味するものとする。また、「NMP」とは、N-メチルピロリドンを示す。 Hereinafter, the present invention will be explained in more detail with reference to experimental examples. In addition, in the examples, "part" means "part by mass" and "%" means "% by mass", respectively. Further, "NMP" refers to N-methylpyrrolidone.

<吸着性の測定方法>
導電材料(A)に対する吸着性は、以下の方法によって測定した。NMP55部、有機化合物(B)(または有機化合物(C))0.001部を秤量して混合し完全に溶解させた(「液a」とする)。さらに導電材料(A)0.0025部を加えて24時間撹拌し、フィルターで導電材料(A)を除いたろ液を得た(「液b」とする)。液a、液bそれぞれについて、分光光度計(U-4100 日立ハイテクノロジーズ社製)を用いて25℃において300~800nmの波長範囲の吸収スペクトルを測定した。下記の式に従って有機化合物(B)(または有機化合物(C))の導電材料(A)に対する吸着率を算出し、吸着性を下記のとおり分類した。
・式:有機化合物(B)(または有機化合物(C))の導電材料(A)に対する吸着率(%)=((液aの極大吸収波長における吸光度-液bの極大吸収波長における吸光度)÷液aの極大吸収波長における吸光度)×100
AD1:吸着率が0%以上25%未満である。
AD2:吸着率が25%以上50%未満である。
AD3:吸着率が50%以上75%未満である。
AD4:吸着率が75%以上である。
(測定条件)
溶媒:NMP
セル:石英セル
光路長:10mm
<Method for measuring adsorption>
Adsorption to the conductive material (A) was measured by the following method. 55 parts of NMP and 0.001 part of organic compound (B) (or organic compound (C)) were weighed and mixed and completely dissolved (referred to as "liquid a"). Furthermore, 0.0025 part of the conductive material (A) was added and stirred for 24 hours, and a filtrate was obtained by removing the conductive material (A) with a filter (referred to as "liquid b"). The absorption spectra of each of liquids a and b were measured in the wavelength range of 300 to 800 nm at 25° C. using a spectrophotometer (U-4100 manufactured by Hitachi High-Technologies). The adsorption rate of the organic compound (B) (or organic compound (C)) to the conductive material (A) was calculated according to the following formula, and the adsorptivity was classified as follows.
・Formula: Adsorption rate (%) of organic compound (B) (or organic compound (C)) on conductive material (A) = ((Absorbance at maximum absorption wavelength of liquid a - Absorbance at maximum absorption wavelength of liquid B) ÷ Absorbance at maximum absorption wavelength of liquid a) x 100
AD1: Adsorption rate is 0% or more and less than 25%.
AD2: Adsorption rate is 25% or more and less than 50%.
AD3: Adsorption rate is 50% or more and less than 75%.
AD4: Adsorption rate is 75% or more.
(Measurement condition)
Solvent: NMP
Cell: Quartz cell Optical path length: 10mm

<HOMO、フェルミ準位の測定方法>
導電材料(A)、有機化合物(B)および有機化合物(C)のHOMOの測定は、単一の各成分をITOガラス基板上に張った導電テープの上に固着させ、測定サンプルとした後、光電子分光法(理研計器社製:AC-2)により測定した。測定値を表1に記載した。
<HOMO, Fermi level measurement method>
To measure the HOMO of the conductive material (A), organic compound (B), and organic compound (C), each single component was fixed on a conductive tape stretched on an ITO glass substrate to form a measurement sample. It was measured by photoelectron spectroscopy (manufactured by Riken Keiki Co., Ltd.: AC-2). The measured values are listed in Table 1.

<熱電変換材料の製造>
[実施例1]
(分散液1)
ピグメントレッド255(東京化成工業社製)0.2部、2-イソプロピルチオキサントン (東京化成工業社製)0.2部、SWCNT(OCSiAl社製)0.4部、NMP79.2部をそれぞれ秤量して混合し、熱電変換材料の分散液1を得た。
<Manufacture of thermoelectric conversion materials>
[Example 1]
(Dispersion liquid 1)
Pigment Red 255 (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 0.2 parts, 2-isopropylthioxanthone (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 0.2 parts, SWCNT (manufactured by OCSiAl Co., Ltd.) 0.4 parts, and NMP 79.2 parts were weighed. and mixed to obtain a dispersion liquid 1 of thermoelectric conversion material.

[実施例2~16、比較例1]
(分散液2~17)
材料の種類及び配合量を表1に示す内容にそれぞれ変更した以外は、分散液1の製造方法と同様にして、熱電変換材料の分散液2~17をそれぞれ得た。
[Examples 2 to 16, Comparative Example 1]
(Dispersions 2 to 17)
Dispersions 2 to 17 of thermoelectric conversion materials were obtained in the same manner as in the method for producing Dispersion 1, except that the types and amounts of the materials were changed as shown in Table 1.

Figure 0007451932000001
Figure 0007451932000001

表1に記載した材料を以下に示す。
導電材料(A)
GNP:XG Sciences社製 グラフェンナノプレートレット「xGNP M5」
黒鉛:中越黒鉛工業所社製 膨張黒鉛SMF
MWCNT:KUMHO PETROCHEMICAL社製 多層カーボンナノチューブ「K-nanos-100P」
SWCNT:OCSiAl社製 単層カーボンナノチューブ「TUBALLナノチューブ」
有機化合物(B)および(C)
B1:ピグメントレッド255(東京化成工業社製)
B2:メチレングリーン(富士フイルム和光純薬社製)
B3:2,5-ビス(2-エチルヘキシル)3,6-ジ(2-チエニル)-2,5-ジヒドロピロロ[3,4-c]ピロール-1,4-ジオン(東京化成工業社製)
B5:N,N’-ビス[4-(ジフェニルアミノ)フェニル]-N,N’-ジフェニルベンジジン(東京化成工業社製)
C1:2-イソプロピルチオキサントン(東京化成工業社製)
C2:2,2’’-ビ-9,9’スピロビ[9H-フルオレン](Aldrich社製)
C3:2,5-ジフェニル-1,3,4-オキサジアゾール(東京化成工業社製)
C4:1,4,8,11,15,18,22,25-オクタブトキシ-29H,31H-フタロシアニン(Sigma-Aldrich社製)
C6:フロキシンB(東京化成工業社製)
The materials listed in Table 1 are shown below.
Conductive material (A)
GNP: Graphene nanoplatelet “xGNP M5” manufactured by XG Sciences
Graphite: Expanded graphite SMF manufactured by Chuetsu Graphite Industries Co., Ltd.
MWCNT: Multi-wall carbon nanotube “K-nanos-100P” manufactured by KUMHO PETROCHEMICAL
SWCNT: Single-wall carbon nanotube "TUBALL nanotube" manufactured by OCSiAl
Organic compounds (B) and (C)
B1: Pigment Red 255 (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
B2: Methylene green (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
B3: 2,5-bis(2-ethylhexyl)3,6-di(2-thienyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
B5: N,N'-bis[4-(diphenylamino)phenyl]-N,N'-diphenylbenzidine (manufactured by Tokyo Chemical Industry Co., Ltd.)
C1: 2-isopropylthioxanthone (manufactured by Tokyo Chemical Industry Co., Ltd.)
C2: 2,2''-bi-9,9'spirobi[9H-fluorene] (manufactured by Aldrich)
C3: 2,5-diphenyl-1,3,4-oxadiazole (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
C4: 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (manufactured by Sigma-Aldrich)
C6: Phloxin B (manufactured by Tokyo Chemical Industry Co., Ltd.)

(合成例:有機化合物(B4))
コハク酸ジメチル20.0g、4-(ジメチルアミノ)ベンゾニトリル48.0g、水素化ナトリウム31.6gをアミルアルコール400gに溶解し、8時間還流させた 。冷却した後、沈殿物をろ過し、酢酸、メタノールで洗浄することにより、紫色固体11.8gを得た。その後、得られた固体10g、ヨードメタン15.6g、ナトリウムブトキシド10.3gをジメチルアセトアミド300gに溶解し、8時間還流させた。放冷後、上記混合物をメタノール1000mlに入れ、固体を析出させ、ろ集後、シリカゲルを用いたカラムクロマトグラフィーにより精製を行い、有機化合物(B4)8.3gを得た。
(Synthesis example: organic compound (B4))
20.0 g of dimethyl succinate, 48.0 g of 4-(dimethylamino)benzonitrile, and 31.6 g of sodium hydride were dissolved in 400 g of amyl alcohol and refluxed for 8 hours. After cooling, the precipitate was filtered and washed with acetic acid and methanol to obtain 11.8 g of a purple solid. Thereafter, 10 g of the obtained solid, 15.6 g of iodomethane, and 10.3 g of sodium butoxide were dissolved in 300 g of dimethylacetamide and refluxed for 8 hours. After cooling, the above mixture was poured into 1000 ml of methanol to precipitate a solid, which was collected by filtration and purified by column chromatography using silica gel to obtain 8.3 g of organic compound (B4).

Figure 0007451932000002
Figure 0007451932000002

<有機化合物の合成>
(合成例1:有機化合物(C5))
ニトロベンゼン20ml中に、3-アミノペリレン5.0g、3-ブロモ-9-(m-トリル)-9H-カルバゾール15.9g、水酸化ナトリウム1.5g、及び酸化銅1.0gを加え、窒素雰囲気下、200℃にて50時間加熱撹拌した。放冷後、上記混合物を500mlの水で希釈し、トルエンで抽出した。抽出液を濃縮した後、シリカゲルを用いたカラムクロマトグラフィーにより精製を行い、有機化合物(C5)7.2gを得た。

<Synthesis of organic compounds>
(Synthesis example 1: Organic compound (C5))
5.0 g of 3-aminoperylene, 15.9 g of 3-bromo-9-(m-tolyl)-9H-carbazole, 1.5 g of sodium hydroxide, and 1.0 g of copper oxide were added to 20 ml of nitrobenzene, and the mixture was placed in a nitrogen atmosphere. The mixture was heated and stirred at 200° C. for 50 hours. After cooling, the mixture was diluted with 500 ml of water and extracted with toluene. After concentrating the extract, it was purified by column chromatography using silica gel to obtain 7.2 g of organic compound (C5).

Figure 0007451932000003
Figure 0007451932000003

(起電力の測定)
得られた分散液1~17を、シート状基材である厚さ50μmのポリイミドフィルム上にアプリケータを用いてそれぞれ塗布した後、120℃で30分間加熱乾燥して、ポリイミド基材上に、膜厚3μmの熱電変換膜を有する積層体を得た。得られた積層体を1cm×5cmの大きさに切り取り、銀ペーストを用いて積層体の両端に電気的に接続されるように、厚さ10μm、1cm×1cmの形状を有する電極を作製し、熱電変換素子を得た。各熱電変換素子について、熱電変換膜及び銀回路が内側になるように(図1に示すA-A’線に沿うように)折り曲げ、その状態のまま、80℃に加熱したホットプレート上に設置した。なお、折り曲げの程度は、図1のB-B’間の距離が10mmになるようにそれぞれ調整した。上記のように折り曲げたサンプルをホットプレート上に設置して5分後の塗膜間の起電力(mV)について起電力計(KEITHLEY2400 テクトロニクス社製)を用いて測定した。測定は、20℃で実施した。比較例1の起電力の絶対値を1としたとき、各実施例における起電力の絶対値との相対値を表1に示す。
(Measurement of electromotive force)
The obtained dispersions 1 to 17 were each applied onto a 50 μm thick polyimide film as a sheet-like base material using an applicator, and then heated and dried at 120° C. for 30 minutes to form a coating on the polyimide base material. A laminate having a thermoelectric conversion film with a thickness of 3 μm was obtained. The obtained laminate was cut into a size of 1 cm x 5 cm, and electrodes having a thickness of 10 μm and a shape of 1 cm x 1 cm were made using silver paste so as to be electrically connected to both ends of the laminate. A thermoelectric conversion element was obtained. For each thermoelectric conversion element, bend it so that the thermoelectric conversion film and silver circuit are on the inside (along the line AA' shown in Figure 1), and place it in that state on a hot plate heated to 80°C. did. The degree of bending was adjusted so that the distance between BB' in FIG. 1 was 10 mm. The sample bent as described above was placed on a hot plate, and after 5 minutes, the electromotive force (mV) between the coating films was measured using an electromotive force meter (KEITHLEY 2400 manufactured by Tektronix). Measurements were carried out at 20°C. When the absolute value of the electromotive force in Comparative Example 1 is set to 1, Table 1 shows the relative values to the absolute value of the electromotive force in each example.

表1が示すように、本発明の熱電変換素子は、高い起電力を示した。本発明における熱電変換のメカニズムは以下のように考えられる。導電材料(A)に対する吸着性が、有機化合物(C)よりも有機化合物(B)の方が大きいと、導電材料(A)の表面には有機化合物(C)よりも有機化合物(B)が優先的に吸着されると考えられる。熱電変換が生じるには、導電材料(A)、有機化合物(B)、有機化合物(C)間でキャリア移動が生じる必要があるが、その際、有機化合物(C)のHOMO値よりも有機化合物(B)のHOMO値が導電材料(A)のHOMO値に近いと、導電材料(A)と表面近傍に存在する有機化合物(B)間のキャリア移動が円滑になり、有機化合物(B)と有機化合物(C)間のキャリア移動も円滑になるため、導電材料(A)、有機化合物(B)、有機化合物(C)間でのキャリア移動が効率よく行われ、熱電変換効率が高まるものと考えられる。これに対して、比較例1では、有機化合物(B)の導電材料(A)に対する吸着性が、有機化合物(C)の導電材料(A)に対する吸着性より大きく、有機化合物(C)のHOMO値よりも有機化合物(B)のHOMO値が導電材料(A)のHOMO値から離れている。その結果、上記の(1)および(2)の要件は満たしているが、(3)の要件を満たしていないことになり、有機化合物(C)間のキャリア(電子または正孔)の移動効率が低くなるため、低い起電力を示したものと考えられる。 As shown in Table 1, the thermoelectric conversion element of the present invention exhibited high electromotive force. The mechanism of thermoelectric conversion in the present invention is considered as follows. If the organic compound (B) has greater adsorption to the conductive material (A) than the organic compound (C), the organic compound (B) will be more present on the surface of the conductive material (A) than the organic compound (C). It is thought that it is preferentially adsorbed. In order for thermoelectric conversion to occur, carrier movement must occur between the conductive material (A), the organic compound (B), and the organic compound (C). When the HOMO value of (B) is close to the HOMO value of the conductive material (A), carrier movement between the conductive material (A) and the organic compound (B) existing near the surface becomes smooth, and the organic compound (B) Since the carrier movement between the organic compounds (C) also becomes smooth, the carrier movement between the conductive material (A), the organic compound (B), and the organic compound (C) is performed efficiently, and the thermoelectric conversion efficiency is increased. Conceivable. On the other hand, in Comparative Example 1, the adsorption of the organic compound (B) to the conductive material (A) was greater than the adsorption of the organic compound (C) to the conductive material (A), and the HOMO of the organic compound (C) The HOMO value of the organic compound (B) is further away from the HOMO value of the conductive material (A) than the value. As a result, although requirements (1) and (2) above are met, requirement (3) is not met, and the transfer efficiency of carriers (electrons or holes) between organic compounds (C) is This is thought to indicate a low electromotive force.

本発明の実施形態である熱電変換材料は、高い起電力を得ることができるため、上記材料を使用して、高性能の熱電変換素子を提供することができる。 Since the thermoelectric conversion material according to the embodiment of the present invention can obtain a high electromotive force, the above material can be used to provide a high-performance thermoelectric conversion element.

10:熱電変換素子の試験サンプル
101:熱電変換膜
102:電極
20:ホットプレート
10: Test sample of thermoelectric conversion element 101: Thermoelectric conversion film 102: Electrode 20: Hot plate

Claims (4)

導電材料(A)、有機化合物(B)(但し、導電材料(A)を除く)及び有機化合物(C)(但し、導電材料(A)かつ有機化合物(B)を除く)を含有してなり、下記(1)~(3)をすべて満たし、且つ、有機化合物(B)のHOMOと導電材料(A)のHOMOとの差が0.1~2.0eVであり、有機化合物(C)のHOMOと有機化合物(B)のHOMOとの差が0.1~2.0eVである、p型熱電変換材料。
(1) 0<((有機化合物(B)のHOMO)―(導電材料(A)のHOMO))×((有機化合物(C)のHOMO)―(導電材料(A)のHOMO))
(2) |(有機化合物(B)のHOMO)-(導電材料(A)のHOMO)|<|(有機化合物(C)のHOMO)-(導電材料(A)のHOMO)|
(3) 有機化合物(B)の導電材料(A)に対する吸着性が、有機化合物(C)の導電材料(A)に対する吸着性より大きい。
(但し、HOMOは最高被占軌道のエネルギー準位を表す。また、導電材料(A)が金属材料である場合は、導電材料(A)のHOMOは、導電材料(A)のフェルミ準位を表す。)
Contains a conductive material (A), an organic compound (B) (excluding the conductive material (A)), and an organic compound (C) (excluding the conductive material (A) and the organic compound (B)). , satisfies all of the following (1) to (3), and the difference between the HOMO of the organic compound (B) and the HOMO of the conductive material (A) is 0.1 to 2.0 eV, and the organic compound (C) A p-type thermoelectric conversion material in which the difference between the HOMO of and the HOMO of the organic compound (B) is 0.1 to 2.0 eV .
(1) 0<((HOMO of organic compound (B)) - (HOMO of conductive material (A))) x ((HOMO of organic compound (C)) - (HOMO of conductive material (A)))
(2) |(HOMO of organic compound (B)) - (HOMO of conductive material (A)) | < | (HOMO of organic compound (C)) - (HOMO of conductive material (A)) |
(3) The adsorption of the organic compound (B) to the conductive material (A) is greater than the adsorption of the organic compound (C) to the conductive material (A).
(However, HOMO represents the energy level of the highest occupied orbital. Also, when the conductive material (A) is a metal material, the HOMO of the conductive material (A) is the Fermi level of the conductive material (A). represent.)
導電材料(A)が、炭素材料を含んでなる、請求項1に記載のp型熱電変換材料。 The p-type thermoelectric conversion material according to claim 1, wherein the conductive material (A) contains a carbon material. 炭素材料が、カーボンナノチューブを含んでなる、請求項2に記載のp型熱電変換材料。 The p-type thermoelectric conversion material according to claim 2, wherein the carbon material includes carbon nanotubes. 請求項1~3いずれか1項に記載のp型熱電変換材料を含んでなる熱電変換膜と、電極とを有し、熱電変換膜及び電極が互いに電気的に接続されている熱電変換素子。 A thermoelectric conversion element comprising a thermoelectric conversion film comprising the p-type thermoelectric conversion material according to any one of claims 1 to 3 and an electrode, the thermoelectric conversion film and the electrode being electrically connected to each other.
JP2019190190A 2018-12-18 2019-10-17 Thermoelectric conversion materials and thermoelectric conversion elements using the same Active JP7451932B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019190190A JP7451932B2 (en) 2019-10-17 2019-10-17 Thermoelectric conversion materials and thermoelectric conversion elements using the same
PCT/JP2019/048905 WO2020129836A1 (en) 2018-12-18 2019-12-13 Thermoelectric conversion material, and thermoelectric conversion element prepared therewith
EP19899765.2A EP3902021A4 (en) 2018-12-18 2019-12-13 Thermoelectric conversion material, and thermoelectric conversion element prepared therewith
CN201980082846.5A CN113228318A (en) 2018-12-18 2019-12-13 Thermoelectric conversion material and thermoelectric conversion element using same
US17/413,711 US20230050869A1 (en) 2018-12-18 2019-12-13 Thermoelectric conversion material, and thermoelectric conversion element prepared therewith
TW108146224A TW202033724A (en) 2018-12-18 2019-12-17 Thermoelectric conversion material, and thermoelectric conversion element prepared therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190190A JP7451932B2 (en) 2019-10-17 2019-10-17 Thermoelectric conversion materials and thermoelectric conversion elements using the same

Publications (2)

Publication Number Publication Date
JP2021064766A JP2021064766A (en) 2021-04-22
JP7451932B2 true JP7451932B2 (en) 2024-03-19

Family

ID=75486582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190190A Active JP7451932B2 (en) 2018-12-18 2019-10-17 Thermoelectric conversion materials and thermoelectric conversion elements using the same

Country Status (1)

Country Link
JP (1) JP7451932B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522765A (en) 2005-12-29 2009-06-11 ユニバーシティ オブ サリー Improved carbon nanotube-based semiconductor devices and methods for their manufacture
JP2013084947A (en) 2011-09-28 2013-05-09 Fujifilm Corp Thermoelectric conversion material and thermoelectric conversion element
JP2014033190A (en) 2012-07-11 2014-02-20 Fujifilm Corp Thermoelectric conversion material, article for thermoelectric power generation and thermoelectric conversion element using the same, and manufacturing method for thermoelectric conversion element
JP2014146678A (en) 2013-01-29 2014-08-14 Fujifilm Corp Thermoelectric conversion material, thermoelectric conversion device and article for thermoelectric power generation and power source for sensor using the same
WO2014133029A1 (en) 2013-02-28 2014-09-04 国立大学法人奈良先端科学技術大学院大学 Method for selecting dopant, dopant composition, method for manufacturing carbon-nanotube/dopant composite, sheet-form material, and carbon-nanotube/dopant composite
WO2014156717A1 (en) 2013-03-29 2014-10-02 富士フイルム株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric power generation article, and sensor power source
JP2014192190A (en) 2013-03-26 2014-10-06 Fujifilm Corp Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric generation employing the same, and power source for sensor
JP2015070250A (en) 2013-10-01 2015-04-13 富士フイルム株式会社 Thermoelectric conversion material and thermoelectric conversion element
JP2015092557A (en) 2013-10-03 2015-05-14 富士フイルム株式会社 Thermoelectric conversion module
WO2015129877A1 (en) 2014-02-28 2015-09-03 国立大学法人 奈良先端科学技術大学院大学 Thermoelectric conversion material and thermoelectric conversion element
US20170069814A1 (en) 2015-09-03 2017-03-09 The Regents Of The University Of California Doping preferences in conjugated polyelectrolyte/single-walled carbon nanotube composites
JP2019106410A (en) 2017-12-08 2019-06-27 株式会社東芝 Thermoelectric conversion element and method of manufacturing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522765A (en) 2005-12-29 2009-06-11 ユニバーシティ オブ サリー Improved carbon nanotube-based semiconductor devices and methods for their manufacture
JP2013084947A (en) 2011-09-28 2013-05-09 Fujifilm Corp Thermoelectric conversion material and thermoelectric conversion element
JP2014033190A (en) 2012-07-11 2014-02-20 Fujifilm Corp Thermoelectric conversion material, article for thermoelectric power generation and thermoelectric conversion element using the same, and manufacturing method for thermoelectric conversion element
JP2014146678A (en) 2013-01-29 2014-08-14 Fujifilm Corp Thermoelectric conversion material, thermoelectric conversion device and article for thermoelectric power generation and power source for sensor using the same
WO2014133029A1 (en) 2013-02-28 2014-09-04 国立大学法人奈良先端科学技術大学院大学 Method for selecting dopant, dopant composition, method for manufacturing carbon-nanotube/dopant composite, sheet-form material, and carbon-nanotube/dopant composite
JP2014192190A (en) 2013-03-26 2014-10-06 Fujifilm Corp Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric generation employing the same, and power source for sensor
WO2014156717A1 (en) 2013-03-29 2014-10-02 富士フイルム株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric power generation article, and sensor power source
JP2015070250A (en) 2013-10-01 2015-04-13 富士フイルム株式会社 Thermoelectric conversion material and thermoelectric conversion element
JP2015092557A (en) 2013-10-03 2015-05-14 富士フイルム株式会社 Thermoelectric conversion module
WO2015129877A1 (en) 2014-02-28 2015-09-03 国立大学法人 奈良先端科学技術大学院大学 Thermoelectric conversion material and thermoelectric conversion element
US20170069814A1 (en) 2015-09-03 2017-03-09 The Regents Of The University Of California Doping preferences in conjugated polyelectrolyte/single-walled carbon nanotube composites
JP2019106410A (en) 2017-12-08 2019-06-27 株式会社東芝 Thermoelectric conversion element and method of manufacturing the same

Also Published As

Publication number Publication date
JP2021064766A (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP6110818B2 (en) Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation using the same, and power source for sensor
Nayak et al. Formulation of new screen printable PANI and PANI/Graphite based inks: Printing and characterization of flexible thermoelectric generators
JP2020191468A (en) Thermoelectric conversion material, and thermoelectric conversion element prepared therewith
JP7451932B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements using the same
JP7400396B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements
JP7409038B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements
WO2020129836A1 (en) Thermoelectric conversion material, and thermoelectric conversion element prepared therewith
JP6744406B2 (en) N-type semiconductor layer, thermoelectric conversion layer, thermoelectric conversion element, thermoelectric conversion module, and composition for forming n-type semiconductor layer
WO2018159685A1 (en) Thermoelectric conversion layer, thermoelectric conversion layer forming composition, thermoelectric conversion element, thermoelectric conversion module
JPWO2019021908A1 (en) Carbon nanotube composite and method for producing the same
KR20200032881A (en) Flexible cable type thermoelectric device comprising thermoelectric printing layer and method for manufacturring the same
JP7400384B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements
KR20160048069A (en) Light power generation device and method for manufacturing same
JP2021190584A (en) Thermoelectric conversion material and thermoelectric conversion element using the same
JP2021097147A (en) Thermoelectric conversion material, its processing method and thermoelectric conversion element
CN113228318A (en) Thermoelectric conversion material and thermoelectric conversion element using same
JP2023004148A (en) Thermoelectric conversion material and thermoelectric conversion element
JP2021090038A (en) Thermoelectric conversion material and thermoelectric conversion element
JP2023093916A (en) Thermoelectric conversion material and thermoelectric conversion element
WO2017104591A1 (en) N-type thermoelectric conversion layer, thermoelectric conversion element, and composition for forming n-type thermoelectric conversion layer
JP2023062767A (en) Thermoelectric conversion material and thermoelectric conversion element
JP2023062766A (en) Thermoelectric conversion material and thermoelectric conversion element
JP2023094642A (en) Thermoelectric conversion material, thermoelectric conversion layer, and thermoelectric conversion element
JP2020205396A (en) Surface-modified carbon material, and conductive composition, conductive layer and thermoelectric conversion element which are arranged by use thereof
JP2022003658A (en) Thermoelectric conversion material and thermoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R151 Written notification of patent or utility model registration

Ref document number: 7451932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151