JP7353319B2 - Storage battery system, remote monitoring system, and control method for remote monitoring system - Google Patents

Storage battery system, remote monitoring system, and control method for remote monitoring system Download PDF

Info

Publication number
JP7353319B2
JP7353319B2 JP2021059530A JP2021059530A JP7353319B2 JP 7353319 B2 JP7353319 B2 JP 7353319B2 JP 2021059530 A JP2021059530 A JP 2021059530A JP 2021059530 A JP2021059530 A JP 2021059530A JP 7353319 B2 JP7353319 B2 JP 7353319B2
Authority
JP
Japan
Prior art keywords
storage battery
battery
state
remote monitoring
management device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021059530A
Other languages
Japanese (ja)
Other versions
JP2022156037A (en
Inventor
雅浩 米元
穂南 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2021059530A priority Critical patent/JP7353319B2/en
Priority to PCT/JP2022/000879 priority patent/WO2022209127A1/en
Publication of JP2022156037A publication Critical patent/JP2022156037A/en
Application granted granted Critical
Publication of JP7353319B2 publication Critical patent/JP7353319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/20Information sensed or collected by the things relating to the thing itself
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/20Analytics; Diagnosis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computing Systems (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Development Economics (AREA)
  • Electrochemistry (AREA)
  • Economics (AREA)
  • Accounting & Taxation (AREA)
  • Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Business, Economics & Management (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、蓄電池システム、遠隔監視システムおよび遠隔監視システムの制御方法に関する。 The present invention relates to a storage battery system, a remote monitoring system, and a method of controlling a remote monitoring system.

リチウムイオン電池などの蓄電池は、温度、充電率、電流などの負荷条件によって劣化進行速度が大きく異なる。また、車両に搭載される蓄電池システムのように大量の電池セルを組合わせた蓄電池システムの場合、電池セルの配置に起因する冷却条件の違いにより運行中の電池セルの温度推移が変化することがある。そのため、所定の電池寿命を得ることができるように蓄電池システムの設計を行おうとしても、事前試験により負荷条件と劣化進行速度の相関関係を網羅的に評価することは難しい。結果的に、所定の電池寿命を確保するために、蓄電池搭載量を増やしたり、電流制限値を下げたりして、蓄電池システムの設計におけるマージンを大きくする必要がある。 The rate of deterioration of storage batteries such as lithium ion batteries varies greatly depending on load conditions such as temperature, charging rate, and current. In addition, in the case of a storage battery system that combines a large number of battery cells, such as a storage battery system installed in a vehicle, the temperature transition of the battery cells during operation may change due to differences in cooling conditions caused by the arrangement of the battery cells. be. Therefore, even if an attempt is made to design a storage battery system so that a predetermined battery life can be obtained, it is difficult to comprehensively evaluate the correlation between load conditions and deterioration progress speed through preliminary tests. As a result, in order to ensure a predetermined battery life, it is necessary to increase the margin in the design of the storage battery system by increasing the amount of storage batteries installed or lowering the current limit value.

そこで、特許文献1と特許文献2に開示された技術では、実際の劣化進行度を加味して劣化進行度を定期的に予測し直し、電流制限値などを上下させて実際の電池寿命を目標寿命に近づけている。 Therefore, in the technology disclosed in Patent Document 1 and Patent Document 2, the actual degree of deterioration progress is taken into account and the deterioration progress is periodically re-predicted, and the current limit value etc. are increased or decreased to achieve the actual battery life. It is nearing the end of its lifespan.

特開2020-174489号公報Japanese Patent Application Publication No. 2020-174489 特開2020-174490号公報Japanese Patent Application Publication No. 2020-174490

特許文献1と特許文献2に開示された技術では、実際の蓄電池の負荷条件を反映することはできるものの、劣化予測モデルの精度が十分でない場合には、制限値を適切に変更することができない。 Although the techniques disclosed in Patent Document 1 and Patent Document 2 can reflect the actual load conditions of the storage battery, if the accuracy of the deterioration prediction model is not sufficient, the limit value cannot be changed appropriately. .

劣化予測モデルを高精度化し、制限値を適切に変更するため、遠隔監視システムにより実際の車両における運行中の稼働履歴データを収集して解析し、負荷条件と劣化進行速度の相関関係を更新することが考えられる。遠隔監視システムで得られる稼働履歴データを基に、電池セルごとの実際の負荷と劣化進行速度の相関関係を抽出するためには、長時間、途切れなく、継続的に電池状態と負荷のデータを取得・蓄積する必要がある。 In order to improve the accuracy of the deterioration prediction model and change limit values appropriately, a remote monitoring system collects and analyzes operational history data of actual vehicles during operation, and updates the correlation between load conditions and deterioration progress speed. It is possible that In order to extract the correlation between the actual load of each battery cell and the rate of deterioration based on operation history data obtained from a remote monitoring system, it is necessary to continuously collect battery status and load data for a long period of time without interruption. It is necessary to acquire and accumulate it.

しかし、車両のメインスイッチが切れている車両休止中は、電池状態を測定する装置にも電力が供給されない。そのため、継続的に電池状態を測定するには、車両休止中は、電池状態を測定する装置に、別途、電力を供給する必要がある。 However, when the main switch of the vehicle is turned off and the vehicle is at rest, power is not supplied to the device that measures the battery status. Therefore, in order to continuously measure the battery condition, it is necessary to separately supply power to the device that measures the battery condition while the vehicle is not in use.

また、車両休止中に、電池状態を測定する時間間隔を短くすると、電池状態を測定する装置に供給する電力が底をついて、電池状態のデータに欠損が生じる可能性がある。 Furthermore, if the time interval for measuring the battery status is shortened while the vehicle is not in use, the power supplied to the device that measures the battery status may run out, and data on the battery status may be missing.

一方、電池状態を測定する時間間隔を長くすると、測定値の変動が大きい車両休止直後の電池状態のデータを十分取ることができず、データ品質が低下してしまう。 On the other hand, if the time interval for measuring the battery state is lengthened, sufficient data on the battery state immediately after the vehicle is stopped, where fluctuations in measured values are large, cannot be obtained, resulting in a decrease in data quality.

そこで、本発明は、電池状態を測定する装置に供給する電力が底をつくのを避けつつ、電池状態のデータ品質を保持することが可能な技術を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a technique that can maintain data quality of battery status while avoiding running out of power supplied to a device that measures battery status.

上記の課題を解決するために、代表的な本発明の蓄電池システムの一つは、蓄電池と、電池管理装置とを備えている。そして、電池管理装置は、測定用蓄電池を備え、蓄電池システムを搭載する装置の休止中に、休止からの経過時間または測定用蓄電池の残容量に基づいた時間間隔で、蓄電池の状態を測定する。 In order to solve the above problems, one of the typical storage battery systems of the present invention includes a storage battery and a battery management device. The battery management device includes a storage battery for measurement and measures the state of the storage battery at time intervals based on the elapsed time from the suspension or the remaining capacity of the storage battery for measurement while the device equipped with the storage battery system is inactive.

本発明によれば、電池状態を測定する装置に供給する電力が底をつくのを避けつつ、電池状態のデータ品質を保持することが可能となる。 According to the present invention, it is possible to maintain data quality of battery status while avoiding running out of power supplied to a device that measures battery status.

上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be made clear by the following description of the embodiments.

実施例に係る遠隔監視システムの構成を示す図である。1 is a diagram showing the configuration of a remote monitoring system according to an embodiment. 実施例に係る外部サーバーの処理を示すフローチャートである。It is a flowchart which shows the process of the external server based on an Example. 実施例に係る電池管理装置による車両休止中の蓄電池の状態の測定・保存を示す図である。FIG. 3 is a diagram showing measurement and storage of the state of a storage battery while the vehicle is at rest by the battery management device according to the embodiment. 実施例における、車両休止中に蓄電池の状態を測定・保存する時間間隔を決定する条件を示す図である。FIG. 7 is a diagram illustrating conditions for determining a time interval for measuring and storing the state of a storage battery while the vehicle is at rest in an embodiment.

以下、図面を参照して本発明の実施形態について説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。 Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to this embodiment. In addition, in the description of the drawings, the same parts are denoted by the same reference numerals.

図1を参照して、遠隔監視システムを車両に搭載される蓄電池の遠隔監視に適用した場合の構成について説明する。図1は、実施例に係る遠隔監視システムの構成を示す図である。 Referring to FIG. 1, a configuration in which a remote monitoring system is applied to remote monitoring of a storage battery mounted on a vehicle will be described. FIG. 1 is a diagram showing the configuration of a remote monitoring system according to an embodiment.

遠隔監視システムは、複数の蓄電池システム100と外部サーバー200から構成される。蓄電池システム100の数は、複数であればよく、特段限定されるものではない。 The remote monitoring system includes a plurality of storage battery systems 100 and an external server 200. The number of storage battery systems 100 is not particularly limited as long as it is plural.

蓄電池システム100は、基本的に、蓄電池101、電池管理装置102、充放電制御装置103、無線通信装置104から構成される。電池管理装置102は、測定用蓄電池105を備える。 The storage battery system 100 basically includes a storage battery 101, a battery management device 102, a charge/discharge control device 103, and a wireless communication device 104. The battery management device 102 includes a measurement storage battery 105.

蓄電池101および測定用蓄電池105は、例えば、リチウムイオン電池、鉛蓄電池、ニッケル水素電池、ニッケルカドミウム電池などから構成されるが、蓄電池の種類はこれらに限定されるものではない。また、蓄電池101は、主に駆動用モータなどに電力を供給することができるのに対し、測定用蓄電池105は、車両休止中に、電池管理装置102が蓄電池101の状態を測定・保存するための電力を供給することができる。 The storage battery 101 and the measurement storage battery 105 are comprised of, for example, a lithium-ion battery, a lead-acid battery, a nickel-hydrogen battery, a nickel-cadmium battery, etc., but the types of storage batteries are not limited to these. In addition, the storage battery 101 can mainly supply power to the drive motor, etc., whereas the measurement storage battery 105 is used for the battery management device 102 to measure and save the state of the storage battery 101 while the vehicle is not in use. power can be supplied.

電池管理装置102は、センサなどによって得られる情報から蓄電池101の状態を監視することができる装置であり、車両休止中は、測定用蓄電池105から供給される電力により、蓄電池101の状態を測定・保存することができる。電池管理装置102は、無線通信装置104に、車両休止中に測定された蓄電池101の状態を含む、蓄電池101の稼働履歴データ(以下、「稼働履歴データ」は、車両休止中に測定された蓄電池101の状態を含む。)等を送ることができる。また、電池管理装置102は、無線通信装置104から蓄電池101の制限値等を受け取り、充放電制御装置103に充放電制御に必要な情報を送ることができる。 The battery management device 102 is a device that can monitor the state of the storage battery 101 from information obtained by sensors, etc. When the vehicle is not in operation, the battery management device 102 measures and monitors the state of the storage battery 101 using electric power supplied from the measurement storage battery 105. Can be saved. The battery management device 102 sends, to the wireless communication device 104, operation history data of the storage battery 101 including the state of the storage battery 101 measured while the vehicle is not in use (hereinafter, "operation history data" refers to operation history data of the storage battery 101 measured while the vehicle is not in use). 101 status.) etc. can be sent. Further, the battery management device 102 can receive the limit value of the storage battery 101 from the wireless communication device 104, and can send information necessary for charge/discharge control to the charge/discharge control device 103.

電池管理装置102が車両休止中に測定・保存する蓄電池101の状態としては、電圧、温度などが挙げられるが、これらに限定されるものではない。 The state of the storage battery 101 that is measured and stored by the battery management device 102 while the vehicle is at rest includes, but is not limited to, voltage, temperature, and the like.

なお、本開示において、蓄電池の制限値とは、電流上限値、充電率範囲などの蓄電池の使用制限に関する数値を意味するが、これらに限定されるものではない。 Note that in the present disclosure, the limit value of a storage battery means a numerical value related to a usage limit of a storage battery, such as an upper current limit value and a charging rate range, but is not limited thereto.

充放電制御装置103は、蓄電池101の充放電を制御することができる装置であり、電池管理装置102から充放電制御に必要な情報を受け取ることができる。 The charging and discharging control device 103 is a device that can control charging and discharging of the storage battery 101, and can receive information necessary for charging and discharging control from the battery management device 102.

無線通信装置104としては、IoTゲートウェイなどが挙げられるが、これに限定されるものではない。無線通信装置104は、電池管理装置102から受け取った蓄電池101の稼働履歴データを蓄積し、無線通信により稼働履歴データを外部サーバー200に送信することができる。また、無線通信装置104は、無線通信により蓄電池101の制限値を外部サーバー200から受信し、制限値を電池管理装置102に送ることができる。 Examples of the wireless communication device 104 include, but are not limited to, an IoT gateway. The wireless communication device 104 can accumulate operation history data of the storage battery 101 received from the battery management device 102, and can transmit the operation history data to the external server 200 by wireless communication. Furthermore, the wireless communication device 104 can receive the limit value of the storage battery 101 from the external server 200 through wireless communication, and can send the limit value to the battery management device 102.

なお、無線通信装置104と電池管理装置102は1つの装置として構成してもよいし、それぞれ単独の装置として構成してもよい。 Note that the wireless communication device 104 and the battery management device 102 may be configured as one device, or each may be configured as a separate device.

無線通信装置104が外部サーバー200に送信する稼働履歴データとしては、電流、電力、電圧、充電率、温度、気温、容量維持率、抵抗上昇率、ダイヤグラム、位置情報、車両重量、乗車率、乗車人員などが挙げられるが、これらに限定されるものではない。 The operation history data that the wireless communication device 104 sends to the external server 200 includes current, power, voltage, charging rate, temperature, air temperature, capacity maintenance rate, resistance increase rate, diagram, position information, vehicle weight, occupancy rate, and occupancy rate. Examples include, but are not limited to, personnel.

外部サーバー200は、データストレージ部201、稼働履歴データ解析部202、寿命予測判定部203、制限値決定部204から構成されるが、これら以外の要素を含んでいてもよい。 The external server 200 includes a data storage section 201, an operation history data analysis section 202, a life prediction determination section 203, and a limit value determination section 204, but may include elements other than these.

データストレージ部201は、複数の蓄電池システム100から受信した蓄電池101の稼働履歴データを集約し、記憶することができる。 The data storage unit 201 can aggregate and store operation history data of the storage battery 101 received from the plurality of storage battery systems 100.

稼働履歴データ解析部202は、データストレージ部201に記憶された稼働履歴データを統計的に解析し、蓄電池101の劣化予測に必要なパラメータを更新することができる。 The operation history data analysis unit 202 can statistically analyze the operation history data stored in the data storage unit 201 and update parameters necessary for predicting deterioration of the storage battery 101.

パラメータの算定方法としては、所定の計算式により算出する方法、予め計算した結果を集積したテーブルを用いる方法などが挙げられるが、これらに限定されるものではない。 Methods for calculating the parameters include, but are not limited to, a method of calculating using a predetermined calculation formula, a method of using a table in which pre-calculated results are accumulated, and the like.

また、蓄電池システム100の数を増加させることにより、稼働履歴データの統計的な解析の正確性を高め、蓄電池101の劣化予測に必要なパラメータを高精度化することができる。 Furthermore, by increasing the number of storage battery systems 100, the accuracy of statistical analysis of operation history data can be increased, and the parameters required for predicting deterioration of storage batteries 101 can be made more accurate.

寿命予測判定部203は、稼働履歴データ解析部202が算定したパラメータと、各々の蓄電池システム100から受信した稼働履歴データを用いて各々の蓄電池システム100の蓄電池101の寿命を予測し、予測寿命と目標寿命との大小関係を判定することができる。 The life prediction determination unit 203 predicts the life of the storage battery 101 of each storage battery system 100 using the parameters calculated by the operation history data analysis unit 202 and the operation history data received from each storage battery system 100, and determines the predicted lifespan. The magnitude relationship with the target life can be determined.

蓄電池101の劣化予測に必要なパラメータを高精度化することにより、各々の蓄電池システム100の蓄電池101の予測寿命を高精度化することができる。 By increasing the accuracy of the parameters necessary for predicting the deterioration of the storage battery 101, it is possible to increase the accuracy of the predicted life of the storage battery 101 of each storage battery system 100.

なお、本開示において、目標寿命とは、蓄電池101の交換周期のような、実際の電池寿命を近づけるべき目標値を意味する。 Note that in the present disclosure, the target lifespan means a target value to which the actual battery life should be brought closer, such as the replacement cycle of the storage battery 101.

制限値決定部204は、予測寿命と目標寿命との大小関係に基づいて各々の蓄電池システム100に送信する蓄電池101の制限値を決定することができる。具体的には、予測寿命が目標寿命を上回る場合は、制限を緩和し、予測寿命が目標寿命を下回る場合は、制限を強化する。 The limit value determination unit 204 can determine the limit value of the storage battery 101 to be transmitted to each storage battery system 100 based on the magnitude relationship between the predicted lifespan and the target lifespan. Specifically, if the predicted lifespan exceeds the target lifespan, the restrictions are relaxed, and if the predicted lifespan is less than the target lifespan, the restrictions are tightened.

各々の蓄電池システム100の蓄電池101の予測寿命を高精度化することにより、各々の蓄電池システム100に送信する蓄電池101の制限値を適切に変更することができる。 By increasing the accuracy of the predicted lifespan of the storage battery 101 of each storage battery system 100, the limit value of the storage battery 101 transmitted to each storage battery system 100 can be appropriately changed.

図2を参照して、実施例に係る外部サーバー200の処理について説明する。図2は、実施例に係る外部サーバー200の処理を示すフローチャートである。 With reference to FIG. 2, processing of the external server 200 according to the embodiment will be described. FIG. 2 is a flowchart showing the processing of the external server 200 according to the embodiment.

まず、ステップ301では、データストレージ部201が、複数の蓄電池システム100から受信した蓄電池101の稼働履歴データを集約し、記憶する。 First, in step 301, the data storage unit 201 aggregates and stores operation history data of the storage battery 101 received from a plurality of storage battery systems 100.

次に、ステップ302では、稼働履歴データ解析部202が、データストレージ部201に記憶された稼働履歴データを統計的に解析し、蓄電池101の劣化予測に必要なパラメータを更新する。 Next, in step 302, the operation history data analysis unit 202 statistically analyzes the operation history data stored in the data storage unit 201, and updates parameters necessary for predicting deterioration of the storage battery 101.

次に、ステップ303では、寿命予測判定部203が、稼働履歴データ解析部202が算出したパラメータと、各々の蓄電池システム100から受信した稼働履歴データを用いて各々の蓄電池システム100の蓄電池101の寿命を予測し、予測寿命と目標寿命との大小関係を判定する。 Next, in step 303, the life prediction determination unit 203 determines the lifespan of the storage battery 101 of each storage battery system 100 using the parameters calculated by the operation history data analysis unit 202 and the operation history data received from each storage battery system 100. is predicted and the magnitude relationship between the predicted life and the target life is determined.

次に、ステップ304では、制限値決定部204が、予測寿命と目標寿命との大小関係に基づいて各々の蓄電池システム100に送信する蓄電池101の制限値を決定する。 Next, in step 304, the limit value determination unit 204 determines the limit value of the storage battery 101 to be transmitted to each storage battery system 100 based on the magnitude relationship between the predicted lifespan and the target lifespan.

このように、複数の蓄電池システム100の稼働履歴データを外部サーバー200のデータストレージ部201に集約し、それらの稼働履歴データを稼働履歴データ解析部202にて統計的に解析して、蓄電池101の劣化予測に必要なパラメータを更新する。その後、寿命予測判定部203にて各々の蓄電池システム100の蓄電池101の寿命を予測し、目標寿命との大小関係を判定して、その結果に基づいて、制限値決定部204にて各々の蓄電池システム100の蓄電池101の制限値を決定する。制限値は、各々の蓄電池システム100にフィードバックされる。これにより、劣化予測モデルを高精度化し、制限値を適切に変更することが可能となる。 In this way, the operation history data of a plurality of storage battery systems 100 is aggregated in the data storage unit 201 of the external server 200, and the operation history data is statistically analyzed by the operation history data analysis unit 202, and the operation history data of the storage battery 101 is analyzed statistically. Update parameters necessary for deterioration prediction. After that, the life prediction determination unit 203 predicts the life of the storage battery 101 of each storage battery system 100, determines the magnitude relationship with the target life, and based on the result, the limit value determination unit 204 predicts the life of each storage battery 101. A limit value of the storage battery 101 of the system 100 is determined. The limit value is fed back to each storage battery system 100. This makes it possible to improve the accuracy of the deterioration prediction model and change the limit value appropriately.

<電池管理装置による車両休止中の蓄電池の状態の測定・保存>
図3を参照して、実施例に係る電池管理装置102による車両休止中の蓄電池101の状態の測定・保存について説明する。
<Measurement and storage of storage battery status using battery management device while vehicle is idle>
With reference to FIG. 3, measurement and storage of the state of the storage battery 101 while the vehicle is at rest by the battery management device 102 according to the embodiment will be described.

図3は、実施例に係る電池管理装置102による車両休止中の蓄電池101の状態の測定・保存を示す図である。 FIG. 3 is a diagram showing how the battery management device 102 according to the embodiment measures and stores the state of the storage battery 101 while the vehicle is at rest.

図3において、矢印は、時間の経過を示し、丸印は、車両休止中に測定・保存された電池状態のデータを示している。左側の丸印は、右側の丸印よりも先に測定・保存された電池状態のデータを示し、縦の点線は、蓄電池101の状態を測定・保存する時間間隔が変更された時点を示している。点線の左側の丸印は、短い時間間隔(t間隔)で測定・保存された電池状態のデータを示し、点線の右側の丸印は、長い時間間隔(t間隔)で測定・保存された電池状態のデータを示している。つまり、t<tの場合の測定・保存された電池状態のデータの例を示している。 In FIG. 3, arrows indicate the passage of time, and circles indicate data on the battery state measured and saved while the vehicle is at rest. The circle mark on the left side indicates data on the battery condition that was measured and saved before the circle mark on the right side, and the vertical dotted line indicates the point in time when the time interval for measuring and saving the condition of the storage battery 101 is changed. There is. The circles to the left of the dotted line indicate battery condition data measured and saved at short time intervals (t 1 interval), and the circles to the right of the dotted line indicate data measured and saved at long time intervals (t 2 intervals). It shows the battery condition data. In other words, an example of measured and stored battery state data in the case of t 1 <t 2 is shown.

図3に示すように、2種類の時間間隔で蓄電池101の状態を測定・保存する場合、車両休止直後は、短い時間間隔(t間隔)で蓄電池101の状態を測定・保存するが、所定の条件が満たされた後は、長い時間間隔(t間隔)で蓄電池101の状態を測定・保存する。これにより、測定値の変動が大きい車両休止直後の電池状態のデータを十分取得しつつ、測定用蓄電池105が供給する電力を抑えた運用を可能とする。 As shown in FIG. 3, when measuring and storing the state of the storage battery 101 at two types of time intervals, immediately after the vehicle stops, the state of the storage battery 101 is measured and stored at short time intervals (t 1 interval). After the condition is satisfied, the state of the storage battery 101 is measured and stored at long time intervals ( t2 intervals). This makes it possible to obtain sufficient battery state data immediately after the vehicle is stopped, where fluctuations in measured values are large, while reducing the amount of power supplied by the measurement storage battery 105.

電池管理装置102に保存された電池状態のデータは、瞬時値、平均値、二乗平均の根(Root Mean Square)のいずれか1つ以上としてもよい。これにより、短い時間間隔で保存された電池状態のデータだけでなく、長い時間間隔で保存された電池状態のデータも、稼働履歴データの解析に適したデータ品質で保存することができる。 The battery status data stored in the battery management device 102 may be any one or more of an instantaneous value, an average value, and a root mean square. As a result, not only battery status data saved at short time intervals, but also battery status data saved at long time intervals can be saved with data quality suitable for analysis of operating history data.

図4を参照して、車両休止中に蓄電池101の状態を測定・保存する時間間隔を決定する条件について説明する。図4は、実施例における、車両休止中に蓄電池101の状態を測定・保存する時間間隔を決定する条件を示す図である。 With reference to FIG. 4, conditions for determining the time interval for measuring and storing the state of the storage battery 101 while the vehicle is not in operation will be described. FIG. 4 is a diagram showing conditions for determining the time interval at which the state of the storage battery 101 is measured and stored while the vehicle is stopped, in the embodiment.

図4に示すように、車両休止直後は車両稼働中と同じように短い時間間隔で蓄電池101の状態を測定・保存し、車両休止からの経過時間または測定用蓄電池105の残容量、例えば充電率(SOC:State of Charge)に基づいて蓄電池101の状態を測定・保存する時間間隔を変更する。具体的には、車両休止からの経過時間が長いほど、長い時間間隔で、蓄電池101の状態を測定・保存する。または、測定用蓄電池105の残容量が少ないほど、長い時間間隔で、蓄電池101の状態を測定・保存する。 As shown in FIG. 4, immediately after the vehicle is stopped, the state of the storage battery 101 is measured and saved at short time intervals in the same way as when the vehicle is in operation, and the state of the storage battery 101 is measured and stored at short time intervals, and the state of the storage battery 105 is measured and stored, such as the elapsed time since the vehicle was stopped, or the remaining capacity of the measurement storage battery 105, for example, the charging rate. The time interval at which the state of the storage battery 101 is measured and stored is changed based on the state of charge (SOC). Specifically, the longer the time that has passed since the vehicle stopped, the longer the time interval is measured and stored the state of the storage battery 101. Alternatively, the smaller the remaining capacity of the measurement storage battery 105, the longer the time interval is the measurement and storage of the state of the storage battery 101.

つまり、車両休止からの経過時間が長くなるにしたがって、長い時間間隔で蓄電池101の状態を測定・保存しても、データの品質への影響が少なく、測定用蓄電池105の残容量が少なくなるにしたがって、長い時間間隔で蓄電池101の状態を測定・保存することによって、測定用蓄電池105が供給する電力を抑え、安定的にデータを確保することができる。 In other words, as the time elapses since the vehicle stopped, measuring and saving the state of the storage battery 101 at long time intervals has less impact on the quality of the data, and the remaining capacity of the measurement storage battery 105 decreases. Therefore, by measuring and storing the state of the storage battery 101 at long time intervals, it is possible to suppress the power supplied by the measurement storage battery 105 and to stably secure data.

そして、車両休止からの経過時間の状況と、測定用蓄電池105の残容量の状況を組み合わせて蓄電池101の状態を測定・保存する時間間隔を設定することによって、電池状態のデータ品質を安定して保持することが可能となる。 By setting the time interval for measuring and saving the state of the storage battery 101 by combining the elapsed time since the vehicle stopped and the remaining capacity of the measurement storage battery 105, the data quality of the battery state can be stabilized. It becomes possible to hold the

なお、蓄電池101の状態を測定・保存する時間間隔は、図4においては3種類であるが、複数であればよく、特段限定されるものではない。 Note that although there are three types of time intervals for measuring and storing the state of the storage battery 101 in FIG. 4, there may be a plurality of time intervals, and there is no particular limitation.

また、蓄電池101の状態を測定・保存する時間間隔が長い場合、蓄電池101の状態を測定・保存する度に、電池管理装置102を休止・再起動させてもよい。これにより、測定用蓄電池105が供給する電力をさらに抑えることができる。 Furthermore, if the time interval between measuring and saving the state of the storage battery 101 is long, the battery management device 102 may be paused and restarted each time the state of the storage battery 101 is measured and saved. Thereby, the power supplied by the measurement storage battery 105 can be further suppressed.

なお、上述した実施形態では、遠隔監視システムを車両に搭載される蓄電池の遠隔監視に適用した場合について説明した。しかし、本発明の適用分野はこれに限定されない。本発明は、蓄電池一般の遠隔監視に適用可能である。 In addition, in the embodiment mentioned above, the case where the remote monitoring system was applied to remote monitoring of a storage battery mounted on a vehicle was explained. However, the field of application of the present invention is not limited to this. The present invention is applicable to remote monitoring of storage batteries in general.

本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 The present invention is not limited to the embodiments described above, and includes various modifications. For example, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to add, delete, or replace some of the configurations of the embodiments with other configurations. Further, each of the above-mentioned configurations, functions, processing units, processing means, etc. may be partially or entirely realized in hardware by designing, for example, an integrated circuit. Furthermore, each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function. Information such as programs, tables, files, etc. that realize each function can be stored in a memory, a recording device such as a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.

100…蓄電池システム、101…蓄電池、102…電池管理装置、103…充放電制御装置、104…無線通信装置、105…測定用蓄電池、200…外部サーバー、201…データストレージ部、202…稼働履歴データ解析部、203…寿命予測判定部、204…制限値決定部 100...Storage battery system, 101...Storage battery, 102...Battery management device, 103...Charge/discharge control device, 104...Wireless communication device, 105...Storage battery for measurement, 200...External server, 201...Data storage unit, 202...Operation history data Analysis section, 203...Life prediction determination section, 204...Limit value determination section

Claims (9)

蓄電池と、
電池管理装置と、
を備える蓄電池システムであって、
前記電池管理装置は、
測定用蓄電池を備え、
前記蓄電池システムを搭載する装置の休止中に、休止からの経過時間または前記測定用蓄電池の残容量に基づいた時間間隔で、前記蓄電池の状態を測定する、
蓄電池システム。
storage battery and
a battery management device;
A storage battery system comprising:
The battery management device includes:
Equipped with a storage battery for measurement,
Measuring the state of the storage battery at time intervals based on the elapsed time since the suspension or the remaining capacity of the measurement storage battery while the device equipped with the storage battery system is at rest;
Storage battery system.
請求項1に記載の蓄電池システムであって、
前記電池管理装置は、休止からの経過時間が長いほど、長い時間間隔で、前記蓄電池の状態を測定する、
蓄電池システム。
The storage battery system according to claim 1,
The battery management device measures the state of the storage battery at longer time intervals as the time that has elapsed since the shutdown is longer.
Storage battery system.
請求項1または請求項2に記載の蓄電池システムであって、
前記電池管理装置は、前記測定用蓄電池の残容量が少ないほど、長い時間間隔で、前記蓄電池の状態を測定する、
蓄電池システム。
The storage battery system according to claim 1 or claim 2,
The battery management device measures the state of the storage battery at longer time intervals as the remaining capacity of the measurement storage battery decreases.
Storage battery system.
請求項1ないし請求項3のいずれか一項に記載の蓄電池システムであって、
前記電池管理装置は、前記蓄電池システムを搭載する装置の休止中に測定された前記蓄電池の状態を保存し、
保存された前記蓄電池の状態は、瞬時値、平均値、二乗平均の根(Root Mean Square)のいずれか1つ以上である、
蓄電池システム。
The storage battery system according to any one of claims 1 to 3,
The battery management device stores the state of the storage battery measured while the device equipped with the storage battery system is inactive,
The stored state of the storage battery is any one or more of an instantaneous value, an average value, and a root mean square.
Storage battery system.
複数の蓄電池システムと、
外部サーバーと、
を備える遠隔監視システムであって、
前記蓄電池システムは、
蓄電池と、
電池管理装置と、
を備え
前記電池管理装置は、
測定用蓄電池を備え、
前記蓄電池システムを搭載する装置の休止中に、休止からの経過時間または前記測定用蓄電池の残容量に基づいた時間間隔で、前記蓄電池の状態を測定し、
前記外部サーバーは、
複数の前記蓄電池システムから受信した、前記蓄電池システムを搭載する装置の休止中に測定された前記蓄電池の状態を含む、前記蓄電池の稼働履歴データを記憶するデータストレージ部と、
前記データストレージ部に記憶された前記稼働履歴データを解析し、前記蓄電池の劣化予測に必要なパラメータを算定する稼働履歴データ解析部と、
前記稼働履歴データ解析部が算定した前記パラメータと、各々の前記蓄電池システムから受信した前記稼働履歴データとを用いて各々の前記蓄電池システムの前記蓄電池の寿命を予測し、予測寿命と目標寿命との大小関係を判定する寿命予測判定部と、
前記予測寿命と目標寿命との大小関係に基づいて各々の前記蓄電池システムに送信する前記蓄電池の制限値を決定する制限値決定部と、
を備える、
遠隔監視システム。
multiple storage battery systems;
external server and
A remote monitoring system comprising:
The storage battery system includes:
storage battery and
a battery management device;
The battery management device comprises:
Equipped with a storage battery for measurement,
measuring the state of the storage battery at time intervals based on the elapsed time since the suspension or the remaining capacity of the measurement storage battery while the device equipped with the storage battery system is at rest;
The external server is
a data storage unit that stores operation history data of the storage battery, which is received from a plurality of the storage battery systems and includes a state of the storage battery measured while a device equipped with the storage battery system is inactive;
an operation history data analysis unit that analyzes the operation history data stored in the data storage unit and calculates parameters necessary for predicting deterioration of the storage battery;
The life of the storage battery of each of the storage battery systems is predicted using the parameters calculated by the operation history data analysis unit and the operation history data received from each of the storage battery systems, and the predicted life and target life are calculated. a lifespan prediction determination unit that determines the size relationship;
a limit value determination unit that determines a limit value of the storage battery to be transmitted to each of the storage battery systems based on a magnitude relationship between the predicted lifespan and the target lifespan;
Equipped with
Remote monitoring system.
請求項5に記載の遠隔監視システムであって、
前記電池管理装置は、休止からの経過時間が長いほど、長い時間間隔で、前記蓄電池の状態を測定する、
遠隔監視システム。
The remote monitoring system according to claim 5,
The battery management device measures the state of the storage battery at longer time intervals as the time that has elapsed since the shutdown is longer.
Remote monitoring system.
請求項5または請求項6に記載の遠隔監視システムあって、
前記電池管理装置は、前記測定用蓄電池の残容量が少ないほど、長い時間間隔で、前記蓄電池の状態を測定する、
遠隔監視システム。
The remote monitoring system according to claim 5 or 6,
The battery management device measures the state of the storage battery at longer time intervals as the remaining capacity of the measurement storage battery decreases.
Remote monitoring system.
請求項5ないし請求項7のいずれか一項に記載の遠隔監視システムであって、
前記電池管理装置は、前記蓄電池システムを搭載する装置の休止中に測定された前記蓄電池の状態を保存し、
保存された前記蓄電池の状態は、瞬時値、平均値、二乗平均の根(Root Mean Square)のいずれか1つ以上である、
遠隔監視システム。
The remote monitoring system according to any one of claims 5 to 7,
The battery management device stores the state of the storage battery measured while the device equipped with the storage battery system is inactive,
The stored state of the storage battery is any one or more of an instantaneous value, an average value, and a root mean square.
Remote monitoring system.
複数の蓄電池システムと、
外部サーバーと、
を備える遠隔監視システムの制御方法であって、
前記蓄電池システムが備える電池管理装置は、前記蓄電池システムを搭載する装置の休止中に、休止からの経過時間または前記電池管理装置が備える測定用蓄電池の残容量に基づいた時間間隔で、前記蓄電池システムが備える蓄電池の状態を測定し、
前記外部サーバーが備えるデータストレージ部が、複数の前記蓄電池システムから受信した、前記蓄電池システムを搭載する装置の休止中に測定された前記蓄電池の状態を含む、前記蓄電池の稼働履歴データを記憶するステップと、
前記外部サーバーが備える稼働履歴データ解析部が、前記データストレージ部に記憶された前記稼働履歴データを解析し、前記蓄電池の劣化予測に必要なパラメータを算定するステップと、
前記外部サーバーが備える寿命予測判定部が、前記稼働履歴データ解析部が算定した前記パラメータと、各々の前記蓄電池システムから受信した前記稼働履歴データとを用いて各々の前記蓄電池システムの前記蓄電池の寿命を予測し、予測寿命と目標寿命との大小関係を判定するステップと、
前記外部サーバーが備える制限値決定部が、前記予測寿命と目標寿命との大小関係に基づいて各々の前記蓄電池システムに送信する前記蓄電池の制限値を決定するステップと、
を有する、
遠隔監視システムの制御方法。
multiple storage battery systems;
external server and
A method for controlling a remote monitoring system comprising:
The battery management device included in the storage battery system is configured to manage the storage battery system at time intervals based on the elapsed time since the suspension or the remaining capacity of the measurement battery included in the battery management device, while the device equipped with the storage battery system is inactive. Measures the condition of the storage battery equipped with,
a step in which a data storage unit included in the external server stores operation history data of the storage battery, which is received from a plurality of storage battery systems and includes a state of the storage battery measured while a device equipped with the storage battery system is inactive; and,
a step in which an operation history data analysis unit included in the external server analyzes the operation history data stored in the data storage unit and calculates parameters necessary for predicting deterioration of the storage battery;
A lifespan prediction determination unit included in the external server determines the lifespan of the storage battery of each storage battery system using the parameters calculated by the operation history data analysis unit and the operation history data received from each storage battery system. a step of predicting and determining the magnitude relationship between the predicted life and the target life;
a limit value determination unit included in the external server determines a limit value of the storage battery to be transmitted to each of the storage battery systems based on a magnitude relationship between the predicted lifespan and the target lifespan;
has,
How to control a remote monitoring system.
JP2021059530A 2021-03-31 2021-03-31 Storage battery system, remote monitoring system, and control method for remote monitoring system Active JP7353319B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021059530A JP7353319B2 (en) 2021-03-31 2021-03-31 Storage battery system, remote monitoring system, and control method for remote monitoring system
PCT/JP2022/000879 WO2022209127A1 (en) 2021-03-31 2022-01-13 Storage battery system, remote monitoring system, and control method for remote monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021059530A JP7353319B2 (en) 2021-03-31 2021-03-31 Storage battery system, remote monitoring system, and control method for remote monitoring system

Publications (2)

Publication Number Publication Date
JP2022156037A JP2022156037A (en) 2022-10-14
JP7353319B2 true JP7353319B2 (en) 2023-09-29

Family

ID=83455970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021059530A Active JP7353319B2 (en) 2021-03-31 2021-03-31 Storage battery system, remote monitoring system, and control method for remote monitoring system

Country Status (2)

Country Link
JP (1) JP7353319B2 (en)
WO (1) WO2022209127A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292506A (en) 2000-04-05 2001-10-19 Suzuki Motor Corp Control apparatus for hybrid vehicle
JP2002345158A (en) 2001-05-15 2002-11-29 Toyo System Co Ltd Method and apparatus for confirming charging amount and deterioration condition of battery, recording medium, information processing device, and electronic equipment
JP2005147930A (en) 2003-11-18 2005-06-09 Nissan Motor Co Ltd Device and method for detecting charged state of battery
US20170070081A1 (en) 2014-03-06 2017-03-09 Robert Bosch Gmbh Hybrid storage system
JP6351170B2 (en) 2014-09-26 2018-07-04 藤森工業株式会社 Laminated film and packaging bag

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885827B2 (en) * 1989-06-08 1999-04-26 キヤノン株式会社 Electronic device and power supply monitoring method for the electronic device
JPH06351170A (en) * 1993-06-02 1994-12-22 Fujitsu Ltd Charge current detecting circuit
JPH10189058A (en) * 1996-12-20 1998-07-21 Ricoh Co Ltd Battery device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292506A (en) 2000-04-05 2001-10-19 Suzuki Motor Corp Control apparatus for hybrid vehicle
JP2002345158A (en) 2001-05-15 2002-11-29 Toyo System Co Ltd Method and apparatus for confirming charging amount and deterioration condition of battery, recording medium, information processing device, and electronic equipment
JP2005147930A (en) 2003-11-18 2005-06-09 Nissan Motor Co Ltd Device and method for detecting charged state of battery
US20170070081A1 (en) 2014-03-06 2017-03-09 Robert Bosch Gmbh Hybrid storage system
JP6351170B2 (en) 2014-09-26 2018-07-04 藤森工業株式会社 Laminated film and packaging bag

Also Published As

Publication number Publication date
JP2022156037A (en) 2022-10-14
WO2022209127A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US8143855B2 (en) Rechargeable split battery system
WO2016135913A1 (en) Storage battery, storage battery monitoring method, and monitor controller
US11067636B2 (en) Battery aging state calculation method and system
TWI443357B (en) Battery condition monitoring system
US9653759B2 (en) Method and apparatus for optimized battery life cycle management
KR102052241B1 (en) System and method for battery management using Balancing battery
JP4615439B2 (en) Secondary battery management device, secondary battery management method and program
US9112371B2 (en) Refresh charging method for an assembled battery constituted from a plurality of lead-acid storage batteries and charging apparatus
WO2013140781A1 (en) Method for monitoring storage cell, system for monitoring storage cell, and storage cell system
US9954384B2 (en) Instrumented super-cell
US11888339B2 (en) Method and control unit for monitoring an energy accumulator
JP2013059244A (en) System and method for managing charging/discharging of battery
US8143854B2 (en) Adjusting method of battery pack and adjusting method of battery pack with controller
JP2007309839A (en) Battery pack condition measuring device, degradation of battery pack discrimination method and program for the same
KR20170092984A (en) Apparatus and method for controlling temperature for battery storage
WO2024060537A1 (en) Method and system for early warning of abnormal self-discharge of battery, and electronic device and storage medium
JP7463008B2 (en) Battery cell diagnostic device and method
JP2018081796A (en) Battery control system
JP2015056354A (en) Secondary battery system, control device, control method, and program
KR101416308B1 (en) Independent cooling method for operating temperature optimizations of medium and large sized batteries electric vehicles
JP7353319B2 (en) Storage battery system, remote monitoring system, and control method for remote monitoring system
US20160104924A1 (en) Secondary Battery System
KR20210121610A (en) Vehicle and controlling method of vehicle
JP6532374B2 (en) Storage battery state analysis system, storage battery state analysis method, and storage battery state analysis program
CN111919329B (en) Power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230919

R150 Certificate of patent or registration of utility model

Ref document number: 7353319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150