JP7322566B2 - Modular multilevel cascade converter - Google Patents

Modular multilevel cascade converter Download PDF

Info

Publication number
JP7322566B2
JP7322566B2 JP2019135767A JP2019135767A JP7322566B2 JP 7322566 B2 JP7322566 B2 JP 7322566B2 JP 2019135767 A JP2019135767 A JP 2019135767A JP 2019135767 A JP2019135767 A JP 2019135767A JP 7322566 B2 JP7322566 B2 JP 7322566B2
Authority
JP
Japan
Prior art keywords
phase
voltage
current
zero
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019135767A
Other languages
Japanese (ja)
Other versions
JP2021019481A (en
Inventor
一伸 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2019135767A priority Critical patent/JP7322566B2/en
Publication of JP2021019481A publication Critical patent/JP2021019481A/en
Application granted granted Critical
Publication of JP7322566B2 publication Critical patent/JP7322566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Description

本発明は、三相交流の系統に連系するシングルスター・ブリッジセル(SSBC)のモジュラー・マルチレベル・カスケード変換器(MMCC)の技術に関する。 The present invention relates to a single star bridge cell (SSBC) modular multi-level cascade converter (MMCC) technology interconnected to a three-phase AC system.

図1にシングルスター・ブリッジセル(SSBC)のモジュラー・マルチレベル・カスケード変換器(MMCC)の構成を示す。この回路の特徴は図2に示すブリッジセルBをカスケード接続したモジュールで各アームを構成する点にあり、ブリッジセルBの接続台数を増加することでより高い電圧を扱うことができる。MMCC-SSBCはトランスレスで高圧系統に連系することができ、無効電力補償装置としての応用が想定されている。 FIG. 1 shows the configuration of a single star bridge cell (SSBC) modular multilevel cascade converter (MMCC). A feature of this circuit is that each arm is configured by a module in which the bridge cells B shown in FIG. The MMCC-SSBC can be connected to a high-voltage system without a transformer, and is expected to be used as a reactive power compensator.

しかし、MMCC-SSBCには不平衡電圧系統に連系したり逆相電流を出力したりする場合、すなわち逆相電力を出力すると相間セルコンデンサ電圧のバランスが崩れるという問題点がある。このアンバランスは、スイッチング素子やセルコンデンサに印加される電圧が過大になる、MMCC-SSBCから出力する電圧波形・電流波形にひずみが生じトランスの焼損、力率改善用コンデンサの過熱や絶縁破壊、電動機のうなりや遮断器の誤動作など他の機器への悪影響といった問題を引き起こす。このアンバランスを改善する方法として、特許文献1が開示されている。 However, MMCC-SSBC has a problem that interphase cell capacitor voltage balance is lost when connecting to an unbalanced voltage system or outputting reversed-phase current, that is, outputting reversed-phase power. This imbalance causes excessive voltage applied to switching elements and cell capacitors, distorted voltage and current waveforms output from MMCC-SSBC, burnout of transformers, overheating and breakdown of power factor improvement capacitors, It causes problems such as motor hum and circuit breaker malfunction, which adversely affect other devices. Patent Document 1 discloses a method for improving this imbalance.

特開2013-5694号公報JP 2013-5694 A

石塚智嗣,根津一嘉,佐藤之彦,山口浩,片岡昭雄、「無損失共振器を適用した電圧形PWM整流回路の電源電流制御」、平成8年、電学論D、116巻、8号、p.883-884Satoshi Ishizuka, Kazuyoshi Nezu, Yukihiko Sato, Hiroshi Yamaguchi, Akio Kataoka, "Power supply current control of voltage source PWM rectifier circuit applying lossless resonator", 1996, Theory of Electrical Engineering D, Vol.116, No.8 , p. 883-884

相間セルコンデンサ電圧のアンバランスを検出して零相電圧を重畳することでアンバランスを改善するフィードバック制御が知られている。しかし、フィードバック制御はアンバランスが発生して初めて零相電圧の重畳が開始されるため、一時的なアンバランスが必ず発生してしまう。 Feedback control is known to improve the unbalance by detecting the unbalance of the interphase cell capacitor voltage and superimposing the zero-phase voltage. However, in feedback control, superposition of the zero-phase voltage is started only after an imbalance occurs, so a temporary imbalance always occurs.

そのため、特に逆相電流を急変させた場合や短絡などにより系統電圧が急に不平衡になった場合にスイッチング素子やセルコンデンサに過大な電圧が印加される恐れが生じる。フィードバックゲインを増加すればアンバランスを小さくすることができる反面、制御が不安定になりセルコンデンサ電圧や出力電流に大きな振動が重畳する恐れが大きくなり、運転を継続できなくなる場合もある。 Therefore, especially when the reverse-phase current is suddenly changed or when the system voltage suddenly becomes unbalanced due to a short circuit or the like, an excessive voltage may be applied to the switching element or the cell capacitor. If the feedback gain is increased, the imbalance can be reduced, but on the other hand, the control becomes unstable, and there is a greater possibility that large vibrations will be superimposed on the cell capacitor voltage and output current, making it impossible to continue operation in some cases.

特許文献1には、逆相電圧・逆相電流を検出してセルコンデンサ電圧バランス維持に最適な零相電圧を計算し重畳するフィードフォワード制御が開示されている。フィードフォワード制御はアンバランスが発生する前から零相電圧を重畳できるため、フィードバック制御とは異なりアンバランスを小さくすることができる。特許文献1の零相電圧は(1)式で与えられている。 Patent Literature 1 discloses feedforward control that detects the negative-sequence voltage/current and calculates and superimposes the optimum zero-sequence voltage for maintaining the cell capacitor voltage balance. Since the feedforward control can superimpose the zero-phase voltage before the imbalance occurs, unlike the feedback control, the imbalance can be reduced. The zero-phase voltage of Patent Document 1 is given by equation (1).

Figure 0007322566000001
Figure 0007322566000001

(1)式は複素ベクトルで表現されている。各相の電圧Vu,Vv,Vwを(2)式,各相の電流Iu,Iv,Iwを(3)式で表し零相電圧を求め直す。 Equation (1) is represented by a complex vector. The phase voltages Vu, Vv, and Vw are represented by the equation (2), and the phase currents Iu, Iv, and Iw are represented by the equation (3), and the zero-phase voltage is obtained again.

Figure 0007322566000002
Figure 0007322566000002

Figure 0007322566000003
Figure 0007322566000003

V1dは正相d軸電圧である。PLLが有効で制御システムが系統電圧の位相に同期しているならば、正相q軸電圧は零である。V2d,V2q,V0d,V0qはそれぞれ逆相d軸電圧、逆相q軸電圧、零相d軸電圧、零相q軸電圧である。電流についても同様であり、I1q,I2d,I2qはそれぞれ正相q軸電流、逆相d軸電流、逆相q軸電流である。各相の基本波1周期あたりの有効電力は(4)式となる。各相の基本波1周期あたりの有効電力はそれぞれ等しい値とする。 V1d is the positive phase d-axis voltage. If the PLL is enabled and the control system is locked to the phase of the grid voltage, the positive phase q-axis voltage is zero. V2d, V2q, V0d, and V0q are the anti-phase d-axis voltage, anti-phase q-axis voltage, zero-phase d-axis voltage, and zero-phase q-axis voltage, respectively. The same applies to currents, and I1q, I2d, and I2q are positive-phase q-axis current, negative-phase d-axis current, and negative-phase q-axis current, respectively. The active power per cycle of the fundamental wave of each phase is given by equation (4). It is assumed that the active power per cycle of the fundamental wave of each phase is the same value.

Figure 0007322566000004
Figure 0007322566000004

上記(4)式を解くと、以下の(5)式が得られる。(5)式は(1)式と等価である。 Solving the above equation (4) yields the following equation (5). Equation (5) is equivalent to Equation (1).

Figure 0007322566000005
Figure 0007322566000005

しかし、(1)式や(5)式では正相電流と逆相電流の振幅が等しいときは分母が零になり適切な零相電圧を求めることができない。特許文献1の段落[0052],[0056]においても正相電流と逆相電流の振幅を等しくしてはならない旨の記述がある。 However, in the equations (1) and (5), when the amplitudes of the positive-sequence current and the negative-sequence current are equal, the denominator becomes zero, and an appropriate zero-sequence voltage cannot be obtained. Paragraphs [0052] and [0056] of Patent Document 1 also describe that the amplitudes of the positive-phase current and the negative-phase current should not be equal.

以上示したようなことから、モジュラー・マルチレベル・カスケード変換器において、正相電流と逆相電流の振幅が等しい場合でのフィードフォワードによるセルコンデンサ電圧バランス制御を実現し、より大きな逆相電流を出力できるようにすることが課題となる。 Based on the above, in the modular multi-level cascade converter, we realized the cell capacitor voltage balance control by feedforward when the amplitude of the positive sequence current and the negative sequence current are equal, and increased the negative sequence current. The problem is getting it to output.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、複数台のブリッジセルを直列接続して1相のモジュールを構成し、このモジュールを3台有する3相のモジュラー・マルチレベル・カスケード変換器であって、系統電圧検出信号に基づいて正相d軸電圧を算出し、正相電流と逆相電流の振幅比および正相電流と逆相電流の位相差に基づいて補正振幅比を算出し、前記正相d軸電圧と前記補正振幅比に基づいて零相d軸電圧と零相q軸電圧を演算し、前記零相d軸電圧と前記系統電圧検出信号の位相に対応した余弦値との積と、前記零相q軸電圧と前記系統電圧検出信号の位相に対応した正弦値との積と、を足し合わせて零相電圧を算出する零相電圧演算部と、正相q軸電流指令値と前記振幅比と前記位相差に基づいて逆相電流指令値を求め、前記逆相電流指令値を重畳した電流指令値を算出する電流指令値演算部と、前記零相電圧および前記電流指令値に基づいてゲート信号を生成する電流制御部と、備えたことを特徴とする。 The present invention has been devised in view of the above-described conventional problems, and one aspect thereof is a three-phase module in which a plurality of bridge cells are connected in series to constitute a one-phase module, and three such modules are included in the three-phase module. A modular multi-level cascade converter that calculates the positive-phase d-axis voltage based on the system voltage detection signal, A corrected amplitude ratio is calculated based on, a zero-phase d-axis voltage and a zero-phase q-axis voltage are calculated based on the positive-phase d-axis voltage and the corrected amplitude ratio, and the zero-phase d-axis voltage and the system voltage detection signal are calculated. and the product of the zero-phase q-axis voltage and the sine value corresponding to the phase of the system voltage detection signal are added together to calculate the zero-phase voltage. and a current command value calculation unit that obtains a negative phase current command value based on the positive phase q-axis current command value, the amplitude ratio, and the phase difference, and calculates a current command value by superimposing the negative phase current command value. , and a current control unit that generates a gate signal based on the zero-phase voltage and the current command value.

また、その一態様として、前記モジュラー・マルチレベル・カスケード変換器の出力電圧、出力電流が(2)式,(3)式,(15)式で定義されるとき、前記零相電圧演算部は、前記位相差は0deg,60deg,120deg,180deg,240deg,300degから最も近い位相差を選択した値とし、前記位相差が0deg,180degの時(10-1)式、前記位相差が120deg,300degの時(10-2)式、前記位相差が240deg,60degの時(10-3)式に基づいて前記零相d軸電圧,前記零相q軸電圧を算出することを特徴とする。 Further, as one aspect thereof, when the output voltage and the output current of the modular multi-level cascade converter are defined by equations (2), (3), and (15), the zero-phase voltage calculation unit is , the phase difference is a value selected from 0 deg, 60 deg, 120 deg, 180 deg, 240 deg, and 300 deg, and when the phase difference is 0 deg and 180 deg, formula (10-1), the phase difference is 120 deg and 300 deg The zero-phase d-axis voltage and the zero-phase q-axis voltage are calculated based on equation (10-2) when the phase difference is 240 degrees and equation (10-3) when the phase difference is 240 degrees and 60 degrees.

Figure 0007322566000006
Figure 0007322566000006

Figure 0007322566000007
Figure 0007322566000007

Figure 0007322566000008
Figure 0007322566000008

Figure 0007322566000009
Figure 0007322566000009

Vu,Vv,Vw:U相の出力電圧,V相の出力電圧,W相の出力電圧
V1d:正相d軸電圧
V2d:逆相d軸電圧
V2q:逆相q軸電圧
V0d:零相d軸電圧
V0q:零相q軸電圧
ωt:系統電圧の位相
φ:正相電流と逆相電流の位相差
a’:正相電流の振幅に対する逆相電流の振幅の比(a’=√(I2d* +I2q* )/|I1q*|、ただし、I1d*=0)
a:補正振幅比
ただし、a=a’(φ=0deg,120deg,240deg)
a=-a’(φ=60deg,180deg,300deg)
Iu,Iv,Iw:U相の出力電流,V相の出力電流,W相の出力電流
I1q:正相q軸電流
I2d:逆相d軸電流
I2q:逆相q軸電流
I2d*:逆相d軸電流指令値
I2q*:逆相q軸電流指令値
I1d*:正相d軸電流指令値
I1q*:正相q軸電流指令値
Vu, Vv, Vw: U-phase output voltage, V-phase output voltage, W-phase output voltage V1d: Positive phase d-axis voltage V2d: Negative phase d-axis voltage V2q: Negative phase q-axis voltage V0d: Zero phase d-axis Voltage V0q: Zero-phase q-axis voltage ωt: System voltage phase φ: Phase difference between positive-phase current and negative-phase current
a': Ratio of negative-sequence current amplitude to positive-sequence current amplitude (a'=√(I2d* 2 +I2q* 2 )/|I1q*|, where I1d*=0)
a: corrected amplitude ratio where a=a' (φ=0deg, 120deg, 240deg)
a = -a' (φ = 60deg, 180deg, 300deg)
Iu, Iv, Iw : U-phase output current, V-phase output current, W-phase output current I1q: Positive phase q-axis current I2d: Negative phase d-axis current I2q: Negative phase q-axis current
I2d*: Negative phase d-axis current command value
I2q*: Anti-phase q-axis current command value
I1d*: positive phase d-axis current command value
I1q*: Positive phase q-axis current command value .

また、他の態様として、前記モジュラー・マルチレベル・カスケード変換器の出力電圧,出力電流が(2)式,(3)式,(15)式で定義されるとき、前記零相電圧演算部は、前記位相差は0deg,60deg,120deg,180deg,240deg,300degから最も近い位相差を選択した値とし、前記位相差が0deg,180degの時(14-1)式、前記位相差が120deg,300degの時(14-2)式、前記位相差が240deg,60degの時(14-3)式に基づいて前記零相d軸電圧,前記零相q軸電圧を算出することを特徴とする。 Further, as another aspect, when the output voltage and output current of the modular multilevel cascade converter are defined by equations (2), (3), and (15), the zero-phase voltage calculator is , the phase difference is a value selected from 0 deg, 60 deg, 120 deg, 180 deg, 240 deg, and 300 deg, and when the phase difference is 0 deg and 180 deg, formula (14-1), the phase difference is 120 deg and 300 deg The zero-phase d-axis voltage and the zero-phase q-axis voltage are calculated based on equation (14-2) when the phase difference is 240 degrees and equation (14-3) when the phase difference is 240 degrees and 60 degrees.

Figure 0007322566000010
Figure 0007322566000010

Figure 0007322566000011
Figure 0007322566000011

Figure 0007322566000012
Figure 0007322566000012

Figure 0007322566000013
Figure 0007322566000013

Vu,Vv,Vw:U相の出力電圧,V相の出力電圧,W相の出力電圧
V1d:正相d軸電圧
V2d:逆相d軸電圧
V2q:逆相q軸電圧
V0d:零相d軸電圧
V0q:零相q軸電圧
ωt:系統電圧の位相
φ:正相電流と逆相電流の位相差
a’:正相電流の振幅に対する逆相電流の振幅の比(a’=√(I2d* +I2q* )/|I1q*|、ただし、I1d*=0)
a:補正振幅比
ただし、a=a’(φ=0deg,120deg,240deg)
a=-a’(φ=60deg,180deg,300deg)
Iu,Iv,Iw:U相の出力電流,V相の出力電流,W相の出力電流
I1q:正相q軸電流
I2d:逆相d軸電流
I2q:逆相q軸電流
I2d*:逆相d軸電流指令値
I2q*:逆相q軸電流指令値
I1d*:正相d軸電流指令値
I1q*:正相q軸電流指令値
Vu, Vv, Vw: U-phase output voltage, V-phase output voltage, W-phase output voltage V1d: Positive phase d-axis voltage V2d: Negative phase d-axis voltage V2q: Negative phase q-axis voltage V0d: Zero phase d-axis Voltage V0q: Zero-phase q-axis voltage ωt: System voltage phase φ: Phase difference between positive-phase current and negative-phase current
a': Ratio of negative-sequence current amplitude to positive-sequence current amplitude (a'=√(I2d* 2 +I2q* 2 )/|I1q*|, where I1d*=0)
a: corrected amplitude ratio where a=a' (φ=0deg, 120deg, 240deg)
a = -a' (φ = 60deg, 180deg, 300deg)
Iu, Iv, Iw : U-phase output current, V-phase output current, W-phase output current I1q: Positive phase q-axis current I2d: Negative phase d-axis current I2q: Negative phase q-axis current
I2d*: Negative phase d-axis current command value
I2q*: Anti-phase q-axis current command value
I1d*: positive phase d-axis current command value
I1q*: Positive phase q-axis current command value .

また、他の態様として、前記モジュラー・マルチレベル・カスケード変換器の出力電圧,出力電流が(2)式,(3)式,(15)式で定義されるとき、前記零相電圧演算部は、前記位相差が0deg,180degの時(14-1)式、前記位相差が120deg,300degの時(14-2)式、前記位相差が240deg,60degの時(14-3)式に基づいて前記零相d軸電圧,前記零相q軸電圧を算出し、前記位相差が0deg,60deg,120deg,180deg,240deg,300degでない場合、最も近い2つの前記位相差から(14-1)式,(14-2)式,(14-3)式により2つの前記零相d軸電圧,前記零相q軸電圧を求め、その2つの前記零相d軸電圧,前記零相q軸電圧の補間により前記零相d軸電圧,前記零相q軸電圧を決定することを特徴とする。 Further, as another aspect, when the output voltage and output current of the modular multilevel cascade converter are defined by equations (2), (3), and (15), the zero-phase voltage calculator is , when the phase difference is 0 deg, 180 deg, (14-1) formula, when the phase difference is 120 deg, 300 deg, (14-2) formula, when the phase difference is 240 deg, 60 deg, based on the formula (14-3) If the phase difference is not 0 deg, 60 deg, 120 deg, 180 deg, 240 deg, or 300 deg, the two closest phase differences are calculated by formula (14-1) , (14-2) and (14-3), the two zero-phase d-axis voltages and the zero-phase q-axis voltage are obtained, and the two zero-phase d-axis voltages and the zero-phase q-axis voltage are The zero-phase d-axis voltage and the zero-phase q-axis voltage are determined by interpolation.

Figure 0007322566000014
Figure 0007322566000014

Figure 0007322566000015
Figure 0007322566000015

Figure 0007322566000016
Figure 0007322566000016

Figure 0007322566000017
Figure 0007322566000017

Vu,Vv,Vw:U相の出力電圧,V相の出力電圧,W相の出力電圧
V1d:正相d軸電圧
V2d:逆相d軸電圧
V2q:逆相q軸電圧
V0d:零相d軸電圧
V0q:零相q軸電圧
ωt:系統電圧の位相
φ:正相電流と逆相電流の位相差
a’:正相電流の振幅に対する逆相電流の振幅の比(a’=√(I2d* +I2q* )/|I1q*|、ただし、I1d*=0)
a:補正振幅比
ただし、(14-1)式では、a=a’(φ<90deg,270deg<φ)
a=-a’(90deg<φ<270deg)
(14-2)式では、a=a’(30deg<φ<210deg)
a=-a’(φ<30deg,210deg<φ)
(14-3)式では、a=a’(150deg<φ<330deg)
a=-a’(φ<150deg,330deg<φ)
Iu,Iv,Iw:U相の出力電流,V相の出力電流,W相の出力電流
I1q:正相q軸電流
I2d:逆相d軸電流
I2q:逆相q軸電流
I2d*:逆相d軸電流指令値
I2q*:逆相q軸電流指令値
I1d*:正相d軸電流指令値
I1q*:正相q軸電流指令値
Vu, Vv, Vw: U-phase output voltage, V-phase output voltage, W-phase output voltage V1d: Positive phase d-axis voltage V2d: Negative phase d-axis voltage V2q: Negative phase q-axis voltage V0d: Zero phase d-axis Voltage V0q: Zero-phase q-axis voltage ωt: System voltage phase φ: Phase difference between positive-phase current and negative-phase current
a': Ratio of negative-sequence current amplitude to positive-sequence current amplitude (a'=√(I2d* 2 +I2q* 2 )/|I1q*|, where I1d*=0)
a: corrected amplitude ratio However, in the formula (14-1), a = a'(φ<90deg,270deg<φ)
a=-a'(90deg<φ<270deg)
(14-2), a=a'(30deg<φ<210deg)
a=-a'(φ<30deg,210deg<φ)
(14-3), a=a'(150deg<φ<330deg)
a=-a'(φ<150deg,330deg<φ)
Iu, Iv, Iw : U-phase output current, V-phase output current, W-phase output current I1q: Positive phase q-axis current I2d: Negative phase d-axis current I2q: Negative phase q-axis current
I2d*: Negative phase d-axis current command value
I2q*: Anti-phase q-axis current command value
I1d*: positive phase d-axis current command value
I1q*: Positive phase q-axis current command value .

また、その一態様として、前記零相電圧演算部は、前記位相差が30deg,90deg,150deg,210deg,270deg,330degの時に補正係数を2/√3とし、前記位相差が0deg,60deg,120deg,180deg,240deg,300degの時に補正係数を1とし、間の前記位相差においては補正係数を補間により求めたゲインGiを(14-1)式,(14-2)式,(14-3)式の前記正相d軸電圧に依存する項に乗算することを特徴とする。 Further, as one aspect thereof, the zero-phase voltage calculation unit sets the correction coefficient to 2/√3 when the phase difference is 30 deg, 90 deg, 150 deg, 210 deg, 270 deg, and 330 deg, and the phase difference is 0 deg, 60 deg, 120 deg. , 180 deg, 240 deg, and 300 deg, the correction coefficient is set to 1, and the gain Gi obtained by interpolating the correction coefficient for the phase difference between them is expressed by equations (14-1), (14-2), and (14-3). A term dependent on the positive phase d-axis voltage in the equation is multiplied.

本発明によれば、モジュラー・マルチレベル・カスケード変換器において、正相電流と逆相電流の振幅が等しい場合でのフィードフォワードによるセルコンデンサ電圧バランス制御を実現し、より大きな逆相電流を出力できるようにすることが可能となる。 According to the present invention, in a modular multi-level cascade converter, feedforward cell capacitor voltage balance control is realized when the amplitudes of the positive-sequence current and the negative-sequence current are equal, and a larger negative-sequence current can be output. It becomes possible to do so.

MMCC-SSBCの構成を示す概略図。Schematic diagram showing the configuration of MMCC-SSBC. ブリッジセルの構成を示す概略図。Schematic which shows the structure of a bridge cell. 実施形態1~4における電流制御部を示すブロック図。FIG. 4 is a block diagram showing a current control unit according to Embodiments 1 to 4; 実施形態1の零相電圧演算部と電流指令値演算部を示すブロック図。4 is a block diagram showing a zero-phase voltage calculator and a current command value calculator according to the first embodiment; FIG. 実施形態2の零相電圧演算部と電流指令値演算部を示すブロック図。FIG. 8 is a block diagram showing a zero-phase voltage calculator and a current command value calculator according to the second embodiment; 実施形態3の零相電圧演算部を示すブロック図。The block diagram which shows the zero sequence voltage calculating part of Embodiment 3. FIG. 実施形態4の零相電圧演算部を示すブロック図。The block diagram which shows the zero sequence voltage calculating part of Embodiment 4. FIG. 三相平衡系統において正相電流のみ(無効電力)を出力している時のフェーザー図。A phasor diagram when only positive phase current (reactive power) is output in a three-phase balanced system. 三相平衡系統において正相電流と微量の逆相電流を出力している時のフェーザー図。A phasor diagram when a positive-sequence current and a small amount of negative-sequence current are output in a three-phase balanced system. 正相電流と逆相電流の振幅が等しくセルコンデンサ電圧バランスを維持できない時のフェーザー図。A phasor diagram when the amplitudes of the positive-sequence current and the negative-sequence current are equal and the cell capacitor voltage balance cannot be maintained. 正相電流と逆相電流の振幅が等しいがセルコンデンサ電圧バランスを維持できる時のフェーザー図。A phasor diagram when the amplitudes of the positive and negative sequence currents are equal but the cell capacitor voltage balance can be maintained. I2d=0,I2q=I1qで正相電流と同じ振幅の逆相電流を出力したときのシミュレーション波形。A simulation waveform when outputting a negative-phase current having the same amplitude as the positive-phase current with I2d=0 and I2q=I1q. U相地絡を発生させたときのシミュレーション波形。A simulation waveform when a U-phase ground fault is generated. VW線間地絡を発生させたときのシミュレーション波形。Simulation waveform when a VW line-to-ground fault is generated.

以下、本願発明におけるモジュラー・マルチレベル・カスケード変換器の実施形態1~4を図1~図14に基づいて詳述する。 Embodiments 1 to 4 of the modular multilevel cascade converter according to the present invention will be described in detail below with reference to FIGS. 1 to 14. FIG.

[実施形態1]
本実施形態1のモジュラー・マルチレベル・カスケード変換器(直列多重インバータ装置)は、例えば、図1に示す回路に適用することを想定している。図1において、符号25は三相交流の系統電源であり、系統電圧はVsである。複数台のブリッジセルBのユニットが直列接続されて1相のモジュールを構成する。このモジュールを3台有し、系統の各相にリアクトルを介して接続される。すなわち、各相(3相)に1相あたりn台のブリッジセルが接続され、3相合計では3n台のブリッジセルBが接続される。
[Embodiment 1]
The modular multi-level cascade converter (serial multiple inverter device) of the first embodiment is assumed to be applied to the circuit shown in FIG. 1, for example. In FIG. 1, reference numeral 25 denotes a three-phase alternating current system power supply, and the system voltage is Vs. A plurality of bridge cell B units are connected in series to form a one-phase module. It has three modules and is connected to each phase of the system via a reactor. That is, n bridge cells are connected to each phase (three phases), and 3n bridge cells B are connected in total for the three phases.

図2に示すように、ブリッジセルBは、第1半導体スイッチング素子S1の一端が、一方の接続端子に接続される。第2半導体スイッチング素子S2の一端は第1半導体スイッチング素子S1の一端に接続される。第3半導体スイッチング素子S3は、第1半導体スイッチング素子S1の他端と他方の接続端子との間に接続される。第4半導体スイッチング素子S4は、第2半導体スイッチング素子S2の他端と他方の接続端子との間に接続される。セルコンデンサCは、第1,第3半導体スイッチング素子S1,S3の接続点と第2,第4半導体スイッチング素子S2,S4の接続点との間に接続される。 As shown in FIG. 2, in the bridge cell B, one end of the first semiconductor switching element S1 is connected to one connection terminal. One end of the second semiconductor switching element S2 is connected to one end of the first semiconductor switching element S1. The third semiconductor switching element S3 is connected between the other end of the first semiconductor switching element S1 and the other connection terminal. The fourth semiconductor switching element S4 is connected between the other end of the second semiconductor switching element S2 and the other connection terminal. The cell capacitor C is connected between the connection point of the first and third semiconductor switching elements S1 and S3 and the connection point of the second and fourth semiconductor switching elements S2 and S4.

図3にMMCC-SSBCの電流制御部のブロック図を示す。ローパスフィルタLPFは、各相の出力電流検出信号Iu,Iv,Iwからノイズやスイッチングリプルなどを除去する。3相2相変換器1は、ローパスフィルタLPFの出力結果を3相2相変換し、2相の出力電流検出信号Ia,Ibを出力する。 FIG. 3 shows a block diagram of the current controller of the MMCC-SSBC. The low-pass filter LPF removes noise, switching ripples, and the like from the output current detection signals Iu, Iv, and Iw of each phase. A three-to-two phase converter 1 converts the output result of the low-pass filter LPF into three-to-two phases and outputs two-phase output current detection signals Ia and Ib.

減算器2a,2bは、後述する3相2相変換された固定座標上の電流指令値Ia*,Ib*と2相の出力電流検出信号Ia,Ibとの偏差を演算する。P(比例)R(共振)アンプPRは、減算器2a,2bの出力を増幅する。Rアンプは非特許文献1に記述があり、特定の周波数に対してゲインが無限大となる。この周波数を系統電源周波数とすることにより、正相電流および逆相電流両方の偏差を零にすることができる。2相3相変換器3は、PRアンプPRの出力を2相3相変換し、各相の出力電圧指令値を出力する。 Subtractors 2a and 2b calculate deviations between current command values Ia* and Ib* on fixed coordinates after three-phase to two-phase conversion and two-phase output current detection signals Ia and Ib, which will be described later. A P (proportional) R (resonant) amplifier PR amplifies the outputs of the subtractors 2a and 2b. The R amplifier is described in Non-Patent Document 1 and has an infinite gain with respect to a specific frequency. By using this frequency as the system power supply frequency, the deviation of both the positive-sequence current and the negative-sequence current can be made zero. A two-to-three-phase converter 3 converts the output of the PR amplifier PR into two-to-three phases and outputs an output voltage command value for each phase.

加算器4は、後述するV0dcosωtとV0qsinωtを足し合わせて、零相電圧を出力する。加算器5u,5v,5wは、2相3相変換器3から出力された各相の出力電圧指令値に、加算器4の出力である零相電圧をそれぞれ加算する。このほか、セルコンデンサ電圧バランスフィードバック制御によって得られた零相電圧を加算する場合もある。 The adder 4 adds V0dcosωt and V0qsinωt, which will be described later, and outputs a zero-phase voltage. The adders 5u, 5v, and 5w add the zero-phase voltage, which is the output of the adder 4, to the output voltage command value of each phase output from the two-to-three-phase converter 3, respectively. In addition, the zero-phase voltage obtained by cell capacitor voltage balance feedback control may be added.

PWM変調器PWMは、零相電圧を重畳した各相の出力電圧指令値と、各セルに対応したキャリア三角波とを比較し、各ブリッジセルBのゲート信号を得る。得られたゲート信号は、図1の各ブリッジセルBに入力される。 The PWM modulator PWM compares the output voltage command value of each phase superimposed with the zero-phase voltage and the carrier triangular wave corresponding to each cell, and obtains the gate signal of each bridge cell B. FIG. The obtained gate signal is input to each bridge cell B in FIG.

図4に本実施形態1における零相電圧演算部および電流指令値演算部のブロック図を示す。電流指令値Ia*,Ib*は電流指令値演算部27により演算される。 FIG. 4 shows a block diagram of the zero-phase voltage calculator and the current command value calculator in the first embodiment. Current command values Ia* and Ib* are calculated by a current command value calculator 27 .

PLL(Phase Locked Loop)は、系統電圧検出信号Vsから位相ωtを求める。 A PLL (Phase Locked Loop) obtains the phase ωt from the system voltage detection signal Vs.

正相d軸電流指令値I1d*は有効電力に相当し、無効電力補償装置では零である。ただし、セルコンデンサ電圧バランスフィードバック制御によって装置の定常損失分が入る場合がある。本実施形態1の場合も正相d軸電流指令値I1d*はほぼ零である。 The positive phase d-axis current command value I1d* corresponds to active power and is zero in the reactive power compensator. However, the steady-state loss of the device may be included due to the cell capacitor voltage balance feedback control. Also in the case of the first embodiment, the positive phase d-axis current command value I1d* is substantially zero.

dq逆変換器6は、正相d軸電流指令値I1d*,正相q軸電流指令値I1q*を位相ωtに基づいてdq逆変換を行い、固定座標上の電流指令値に変換する。 The dq inverse converter 6 performs dq inverse conversion on the positive phase d-axis current command value I1d* and the positive phase q-axis current command value I1q* based on the phase ωt to convert them into current command values on fixed coordinates.

a’は、正相電流に対する逆相電流の振幅比である。すなわち、a’=√(I2d* +I2q* )/|I1q*|(ただし、I1d*=0)である。ただし、a’>0である。乗算器7は、正相q軸電流指令値I1q*と振幅比a’との積を演算し、逆相電流の振幅a’I1q*を求める。 a' is the amplitude ratio of the negative sequence current to the positive sequence current. That is, a′=√(I2d* 2 +I2q* 2 )/|I1q*| (where I1d*=0). However, a'>0. The multiplier 7 calculates the product of the positive phase q-axis current command value I1q* and the amplitude ratio a' to obtain the amplitude a'I1q* of the negative phase current.

φは、正相電流に対する逆相電流の位相差である。ただし、位相差φは0deg,60deg,120deg,180deg,240deg,300degの6通りの値に限定される。スイッチ17は、0deg,60deg,120deg,180deg,240deg,300degから最も近い位相パターンを選択して出力する。 φ is the phase difference of the negative sequence current with respect to the positive sequence current. However, the phase difference φ is limited to six values of 0deg, 60deg, 120deg, 180deg, 240deg and 300deg. The switch 17 selects and outputs the closest phase pattern from 0deg, 60deg, 120deg, 180deg, 240deg and 300deg.

乗算器cosは、位相差φと逆相電流の振幅a’I1q*を入力し、位相差φに対応する余弦値と逆相電流の振幅a’I1q*との積を出力する。乗算器cosの出力が逆相q軸電流指令値I2q*となる。 The multiplier cos inputs the phase difference φ and the amplitude a′I1q* of the negative-sequence current, and outputs the product of the cosine value corresponding to the phase difference φ and the amplitude a′I1q* of the negative-sequence current. The output of the multiplier cos is the anti-phase q-axis current command value I2q*.

乗算器sinは、位相差φと逆相電流の振幅a’I1q*を入力し、位相差φに対応する正弦値と逆相電流の振幅a’I1q*との積を出力する。乗算器8は、乗算器sinの出力に-1を乗算する。乗算器8の出力が逆相d軸電流指令値I2d*となる。 The multiplier sin receives the phase difference φ and the amplitude a′I1q* of the negative-sequence current, and outputs the product of the sine value corresponding to the phase difference φ and the amplitude a′I1q* of the negative-sequence current. A multiplier 8 multiplies the output of the multiplier sin by -1. The output of the multiplier 8 becomes the anti-phase d-axis current command value I2d*.

乗算器9は、位相ωtに-1をかける。dq逆変換器10は、逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*を、位相-ωtに基づいてdq逆変換を行い、固定座標上の値に変換する。加算器11a,11bは、dq逆変換器6,10の出力を足し合わせる。加算器11a,11bの出力が固定座標上の電流指令値Ia*,Ib*となる。 A multiplier 9 multiplies the phase ωt by -1. The dq inverse converter 10 performs dq inverse transformation on the anti-phase d-axis current command value I2d* and the anti-phase q-axis current command value I2q* based on the phase -ωt to convert them into values on fixed coordinates. Adders 11a and 11b add the outputs of the dq inverse transformers 6 and 10 together. The outputs of the adders 11a and 11b are current command values Ia* and Ib* on fixed coordinates.

次に、零相電圧演算部26について説明する。ローパスフィルタLPFは、系統電圧検出信号Vsからノイズやスイッチングリプルなどを除去する。dq変換器12は、系統電圧検出信号Vsを位相ωtに基づいてdq変換を行う。移動平均フィルタMAVE1,MAVE2は、dq変換器12の出力から、電圧不平衡に起因する基本波周波数の2倍の脈動を除去する。移動平均フィルタMAVE1,MAVE2を適用した後は、正相d軸電圧V1d,正相q軸電圧V1qとなる。正相q軸電圧V1qはPLLが正常に動作している限り通常零となり、ここでは使用しない。 Next, the zero-phase voltage calculator 26 will be described. The low-pass filter LPF removes noise, switching ripples, etc. from the system voltage detection signal Vs. The dq converter 12 dq-converts the system voltage detection signal Vs based on the phase ωt. The moving average filters MAVE1 and MAVE2 remove pulsations at twice the fundamental frequency caused by voltage imbalance from the output of the dq converter 12 . After applying the moving average filters MAVE1 and MAVE2, the positive phase d-axis voltage V1d and the positive phase q-axis voltage V1q are obtained. The positive phase q-axis voltage V1q is normally zero as long as the PLL operates normally, and is not used here.

スイッチ13は、位相差φが0deg,120deg,240degならば1を、60deg,180deg,300degならば-1を出力する。乗算器14は、スイッチ13の出力と振幅比a’との積を求める。乗算器14の出力が、後述する(9)式の補正振幅比aとなる。 The switch 13 outputs 1 when the phase difference φ is 0 deg, 120 deg, and 240 deg, and -1 when it is 60 deg, 180 deg, and 300 deg. A multiplier 14 obtains the product of the output of the switch 13 and the amplitude ratio a'. The output of the multiplier 14 becomes the correction amplitude ratio a of equation (9), which will be described later.

演算器15は、補正振幅比a,正相d軸電圧V1dから後述する(10-1)式,(10-2)式,(10-3)式により3パターンの零相d軸電圧(振幅)V0d,零相q軸電圧(振幅)V0qを求める。スイッチ16は、3パターンの零相d軸電圧(振幅)V0d,零相q軸電圧(振幅)V0qから位相差φに基づき適切な零相d軸電圧(振幅)V0d,零相q軸電圧(振幅)V0qを出力する。0deg,180degの場合は(10-1)式、120deg,300degの場合は(10-2)式、240deg,60degの場合は(10-3)式とする。 The calculator 15 calculates three patterns of zero-phase d-axis voltage (amplitude ) V0d and the zero-phase q-axis voltage (amplitude) V0q are obtained. The switch 16 selects an appropriate zero-phase d-axis voltage (amplitude) V0d, zero-phase q-axis voltage (amplitude) V0d, zero-phase q-axis voltage ( amplitude) V0q is output. Formula (10-1) for 0deg and 180deg, formula (10-2) for 120deg and 300deg, and formula (10-3) for 240deg and 60deg.

乗算器cosは、スイッチ16の出力する零相d軸電圧(振幅)V0dと位相ωtを入力し、位相ωtに対応する余弦値と零相d軸電圧(振幅)V0dとの積V0dcosωtを出力する。乗算器sinは、スイッチ16の出力する零相q軸電圧(振幅)V0qと位相ωtを入力し、位相ωtに対応する正弦値と零相q軸電圧(振幅)V0qとの積V0qsinωtを出力する。この積V0dcosωt,V0qsinωtは、図3の加算器4で足し合わされ、加算器5u,5v,5wで零相電圧として電圧指令値に加算される。加算器4も零相電圧演算部26に含まれるものとする。 The multiplier cos receives the zero-phase d-axis voltage (amplitude) V0d output from the switch 16 and the phase ωt, and outputs the product V0dcosωt of the cosine value corresponding to the phase ωt and the zero-phase d-axis voltage (amplitude) V0d. . The multiplier sin receives the zero-phase q-axis voltage (amplitude) V0q output from the switch 16 and the phase ωt, and outputs the product V0qsinωt of the sine value corresponding to the phase ωt and the zero-phase q-axis voltage (amplitude) V0q. . The products V0dcosωt and V0qsinωt are added by the adder 4 in FIG. 3, and added to the voltage command value as zero-phase voltages by the adders 5u, 5v and 5w. It is assumed that the adder 4 is also included in the zero-phase voltage calculator 26 .

本実施形態1は、系統電圧が三相平衡(V2d=V2q=0)かつ正相電流に対する逆相電流の位相条件を限定することで正相電流に等しい振幅の逆相電流を出力できるようにした。 In the first embodiment, the system voltage is three-phase balanced (V2d = V2q = 0) and the phase condition of the negative-sequence current with respect to the positive-sequence current is limited so that the negative-sequence current having the same amplitude as the positive-sequence current can be output. bottom.

(5)式にV2d=V2q=0を代入すると、以下の(6)式が得られる。 By substituting V2d=V2q=0 into the equation (5), the following equation (6) is obtained.

Figure 0007322566000018
Figure 0007322566000018

ここで、正相電流と逆相電流の振幅が等しくても、(6)式の分子も零ならば(4)式を満たす零相電圧が存在する可能性が考えられる。正相電流と逆相電流の振幅が等しく(6)式の分子と分母が両方とも零になる条件は、(7)式に示すように3通りある。 Here, even if the amplitudes of the positive-sequence current and the negative-sequence current are equal, if the numerator of the equation (6) is also zero, it is conceivable that a zero-sequence voltage that satisfies the equation (4) exists. As shown in Equation (7), there are three conditions under which the amplitudes of the positive-sequence current and the negative-sequence current are equal and both the numerator and denominator of Equation (6) are zero.

Figure 0007322566000019
Figure 0007322566000019

(7)式を(3)式に代入し、V2d=V2q=0の条件において改めて(4)式を解くと、(8)式が得られる。 Substituting the expression (7) into the expression (3) and solving the expression (4) under the condition of V2d=V2q=0, the expression (8) is obtained.

Figure 0007322566000020
Figure 0007322566000020

これにより、正相電流と逆相電流の振幅が等しくても(6)式の分子が零ならば、セルコンデンサ電圧バランスを維持できる零相電圧が確かに存在することを確認した。(7)式では逆相電流の振幅も限定されてしまうため、補正振幅比aを正相電流に対する逆相電流の振幅比と定義して逆相電流を(9)式で表す。補正振幅比aと振幅比a’はa’=|a|の関係にあり、補正振幅比aはマイナスの値とすることができる。 From this, it was confirmed that even if the amplitudes of the positive-phase current and the negative-phase current are equal, if the numerator of the equation (6) is zero, then there certainly exists a zero-phase voltage that can maintain the cell capacitor voltage balance. Since the amplitude of the negative-sequence current is also limited in the equation (7), the corrected amplitude ratio a is defined as the amplitude ratio of the negative-sequence current to the positive-sequence current, and the negative-sequence current is expressed by the equation (9). The correction amplitude ratio a and the amplitude ratio a' have a relationship of a'=|a|, and the correction amplitude ratio a can be a negative value.

Figure 0007322566000021
Figure 0007322566000021

(9)式を(3)式に代入し、V2d=V2q=0の条件において改めて(4)式を解くと、(10-1)式,(10-2)式,(10-3)式が得られる。 By substituting the formula (9) into the formula (3) and solving the formula (4) under the condition of V2d=V2q=0, the formulas (10-1), (10-2) and (10-3) are obtained. is obtained.

Figure 0007322566000022
Figure 0007322566000022

以上により得られた(10-1)式,(10-2)式,(10-3)式を(1)式の代わりに用いて零相電圧を計算し電圧指令値に重畳することにより、逆相電流を出力してもセルコンデンサ電圧をバランスさせることができる。(10-1)式,(10-2)式,(10-3)式はa=1においても零相電圧を求めることができる。正相電流と逆相電流の位相関係は3パターンに限定されるが、正相電流に等しい振幅の逆相電流を出力してもセルコンデンサ電圧をバランスさせることができる。 By using the equations (10-1), (10-2), and (10-3) obtained above instead of equation (1) to calculate the zero-phase voltage and superimpose it on the voltage command value, The cell capacitor voltage can be balanced even if the reversed-phase current is output. Equations (10-1), (10-2) and (10-3) can obtain the zero-phase voltage even when a=1. Although the phase relationship between the positive phase current and the negative phase current is limited to three patterns, the cell capacitor voltage can be balanced even if the negative phase current having the same amplitude as the positive phase current is output.

本実施形態1では、系統電圧検出信号Vsから正相d軸電圧V1dを、振幅比a’,位相差φから補正振幅比aを求め、(10-1)式,(10-2)式,(10-3)式を用いてセルコンデンサ電圧バランスに必要な零相電圧を求める。 In the first embodiment, the positive phase d-axis voltage V1d is obtained from the system voltage detection signal Vs, the corrected amplitude ratio a is obtained from the amplitude ratio a′ and the phase difference φ, and the following equations (10-1), (10-2), (10-3) is used to find the zero-phase voltage required for cell capacitor voltage balance.

また、正相q軸電流指令値I1q*,振幅比a’,位相差φから逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*、および、固定座標上における電流指令値Ia*,Ib*を求めて電流制御部に出力する。 Also, from the positive phase q-axis current command value I1q*, the amplitude ratio a′, and the phase difference φ, the negative phase d-axis current command value I2d*, the negative phase q-axis current command value I2q*, and the current command value on the fixed coordinates Ia* and Ib* are obtained and output to the current controller.

本実施形態1では正相電流と逆相電流の位相関係はa<0を含めて60deg刻みの6パターンに限定される。そのため上位コントローラなどで本来の逆相電流指令に対し、最も近い位相パターンを選択して図4の制御ブロックに入力する。 In Embodiment 1, the phase relationship between the positive-phase current and the negative-phase current is limited to six patterns in increments of 60 degrees including a<0. Therefore, a host controller or the like selects the phase pattern closest to the original reverse-phase current command and inputs it to the control block of FIG.

装置が出力できる正相電流に対する逆相電流の振幅比a’は、装置に重畳できる零相電圧の振幅に依存する。すなわち装置のセル数が多いほど、セルコンデンサ電圧が大きいほどより大きな逆相電流を出力できる。例えば、装置が定格(最大)電圧の1.5倍の振幅の電圧を出力できるならば、位相差φが0deg,120deg,240degでは0≦a’≦1、60deg,180deg,300degでは0≦a’≦1/3の範囲内で振幅比a’を指定することができる。 The amplitude ratio a' of the negative-sequence current to the positive-sequence current that the device can output depends on the amplitude of the zero-sequence voltage that can be superimposed on the device. That is, the larger the number of cells in the device and the larger the cell capacitor voltage, the larger the negative-sequence current that can be output. For example, if the device can output a voltage with an amplitude 1.5 times the rated (maximum) voltage, the phase difference φ is 0 ≤ a' ≤ 1 at 0 deg, 120 deg, and 240 deg, and 0 ≤ a at 60 deg, 180 deg, and 300 deg. The amplitude ratio a' can be specified within the range of '≦1/3.

本実施形態1により、正相電流に対する逆相電流の位相は3パターンに限定されるが、SSBC-MMCCにおいて正相電流に等しい振幅の逆相電流を出力した状態で各セルコンデンサの電圧バランスを一定に保つことができる。 According to the first embodiment, the phase of the negative-sequence current with respect to the positive-sequence current is limited to three patterns. can be kept constant.

なお、本実施形態1は、系統電圧が三相平衡の場合のみ適用することができる。また、本実施形態1は、逆相電流の位相は6パターンに限定されるが、正相電流に対して小さい振幅比の逆相電流を出力することができる。出力できる逆相電流の振幅比は、装置が出力できる電圧振幅の大きさ、すなわちセル台数やセルコンデンサ電圧の大きさに依存する。 The first embodiment can be applied only when the system voltage is three-phase balanced. Further, in the first embodiment, the phase of the negative-phase current is limited to six patterns, but the negative-phase current having a small amplitude ratio with respect to the positive-phase current can be output. The amplitude ratio of the negative-sequence current that can be output depends on the magnitude of the voltage amplitude that the device can output, that is, the number of cells and the magnitude of the cell capacitor voltage.

[実施形態2]
図5に本実施形態2の零相電圧演算部26および電流指令値演算部27のブロック図を示す。本実施形態2は実施形態1に対して以下の点が異なる。
[Embodiment 2]
FIG. 5 shows a block diagram of the zero-phase voltage calculator 26 and current command value calculator 27 of the second embodiment. The second embodiment differs from the first embodiment in the following points.

乗算器18は位相ωtを-1倍する。dq変換器19は、ローパスフィルタLPFを適用した系統電圧検出信号Vsを位相-ωtに基づいてdq変換を行う。移動平均フィルタMAVE3,MAVE4はdq変換器19の出力から、正相電圧に起因する基本波周波数の2倍の脈動を除去する。移動平均を適用した結果が、逆相d軸電圧V2d,逆相q軸電圧V2qとなる。 A multiplier 18 multiplies the phase ωt by -1. The dq converter 19 dq-converts the system voltage detection signal Vs to which the low-pass filter LPF is applied based on the phase -ωt. The moving average filters MAVE3 and MAVE4 remove from the output of the dq converter 19 the pulsation twice the fundamental frequency caused by the positive phase voltage. The result of applying the moving average is the anti-phase d-axis voltage V2d and the anti-phase q-axis voltage V2q.

演算器15には、正相d軸電圧V1d,補正振幅比aの他に逆相d軸電圧V2d,逆相q軸電圧V2qも入力する。また、演算器15の演算式を、後述する(14-1),(14-2),(14-3)式に変更する。 In addition to the positive-phase d-axis voltage V1d and the corrected amplitude ratio a, the calculator 15 also receives the negative-phase d-axis voltage V2d and the negative-phase q-axis voltage V2q. Also, the arithmetic expressions of the calculator 15 are changed to the expressions (14-1), (14-2), and (14-3) described later.

本実施形態2は、実施形態1を不平衡系統にも対応できるようにしたものである。(9)式を(3)式に代入し、V2d≠0,V2q≠0の条件下で(4)式を解き直すと、以下の(11)式となる。 The second embodiment is obtained by modifying the first embodiment so that it can also be applied to an unbalanced system. Substituting the equation (9) into the equation (3) and resolving the equation (4) under the condition that V2d≠0 and V2q≠0 yields the following equation (11).

Figure 0007322566000023
Figure 0007322566000023

(11)式において、(12)式を満たす時には1/(a-1)の項が零になる。すなわち、a=1においてもセルコンデンサ電圧バランスを維持できる零相電圧が存在する可能性が考えられる。 In the expression (11), the term 1/(a-1) becomes zero when the expression (12) is satisfied. That is, it is conceivable that there is a zero-phase voltage that can maintain the cell capacitor voltage balance even when a=1.

Figure 0007322566000024
Figure 0007322566000024

(12)式を(2)式,(3)式に代入し、改めて(4)式を解き直すと(13)式が得られ、a=1においてセルコンデンサ電圧バランスを維持できる零相電圧が確かに存在することを確認した。 Substituting equation (12) into equations (2) and (3) and resolving equation (4) yields equation (13). I have confirmed that it does exist.

Figure 0007322566000025
Figure 0007322566000025

しかし、(13)式を適用するには(12)式の条件を満たす必要があり、零相電圧を求めるには逆相電流だけでなく逆相電圧についても位相関係が大きく制限されてしまう。 However, in order to apply the formula (13), it is necessary to satisfy the condition of the formula (12), and the phase relationship of not only the negative-sequence current but also the negative-sequence voltage is greatly restricted in obtaining the zero-sequence voltage.

ここで、任意の電圧不平衡において微量の逆相電流を出力し、特定の電圧不平衡条件下においてある程度の逆相電流を出力することを考える。このためには、a≒0において(11)式にほぼ等しい結果が得られ、(12)式を満たす場合にa>-1において(13)式にほぼ等しくa=1での零除算を回避できる近似式が必要となる。これらを2つの条件を満たす式として、例えば(11)式の1/(a-1)項を一次のマクローリン展開で近似した(14-1)式,(14-2)式,(14-3)式がある。 Now consider outputting a small amount of negative-sequence current at an arbitrary voltage unbalance, and outputting a certain amount of negative-sequence current under a specific voltage unbalance condition. For this, we obtain a result approximately equal to equation (11) for a≈0, and approximately equal to equation (13) for a>−1 when equation (12) is satisfied, avoiding division by zero at a=1. An approximation formula is required. Using these as equations that satisfy two conditions, for example, equations (14-1), (14-2), and (14-3) in which the 1/(a-1) term in equation (11) is approximated by the first-order Maclaurin expansion. ) expression.

Figure 0007322566000026
Figure 0007322566000026

以上により得られた(14-1)式,(14-2)式,(14-3)式を(10-1)式,(10-2)式,(10-3)式の代わりに用いて零相電圧を計算し電圧指令値に重畳することにより、任意の不平衡電圧系統において微量の逆相電流を出力してもセルコンデンサ電圧をバランスさせることができる。 Formulas (14-1), (14-2) and (14-3) obtained above are used instead of formulas (10-1), (10-2) and (10-3). By calculating the zero-sequence voltage and superimposing it on the voltage command value, it is possible to balance the cell capacitor voltages even if a small amount of negative-sequence current is output in an arbitrary unbalanced voltage system.

さらに、正相電流と逆相電流の位相関係は3パターンに限定され、逆相電圧の位相も限定されるが、不平衡電圧系統において正相電流に等しい振幅の逆相電流を出力してもセルコンデンサ電圧をバランスさせることができる。 Furthermore, the phase relationship between the positive-sequence current and the negative-sequence current is limited to three patterns, and the phase of the negative-sequence voltage is also limited. Cell capacitor voltages can be balanced.

例えば、I2d=0,I2q=I1qの正相電流に等しい振幅の逆相電流を出力する場合(U相電流が零で、V相電流・W相電流のどちらかがU相電圧に同位相)、逆相電圧はV2q=0でなければならない。短絡事故を例にするとU相地絡とVW線間短絡がV2q=0を満たし、この場合は運転を継続することができる。他の相が短絡した場合は逆相電流の絞り込みが必要となる。 For example, when outputting a negative-phase current with an amplitude equal to the positive-phase current of I2d = 0 and I2q = I1q (when the U-phase current is zero, either the V-phase current or the W-phase current is in phase with the U-phase voltage). , the negative sequence voltage must be V2q=0. Taking a short-circuit accident as an example, a U-phase ground fault and a VW line-to-line short circuit satisfy V2q=0, and in this case the operation can be continued. If the other phase is short-circuited, it is necessary to throttle the negative phase current.

本実施形態2では、実施形態1に対して追加で系統電圧検出信号Vsから逆相d軸電圧V2d,逆相q軸電圧V2qを求め、(14-1)式,(14-2)式,(14-3)式を用いてセルコンデンサ電圧バランスに必要な零相電圧を求める。本実施形態2も実施形態1同様、正相電流と逆相電流の位相関係はa<0を含め60deg刻みの6パターンに限定される。そのため上位コントローラなどで本来の逆相電流指令に対し、最も近い位相パターンを選択して図4に入力する。 In the second embodiment, in addition to the first embodiment, the anti-phase d-axis voltage V2d and the anti-phase q-axis voltage V2q are obtained from the system voltage detection signal Vs. (14-3) is used to find the zero-phase voltage required for cell capacitor voltage balance. In the second embodiment, as in the first embodiment, the phase relationship between the positive-sequence current and the negative-sequence current is limited to 6 patterns in increments of 60 degrees including a<0. Therefore, a host controller or the like selects the phase pattern closest to the original reverse-phase current command and inputs it to FIG.

本実施形態2は、実施形態1と同様の作用効果を奏する。また、実施形態1の作用効果に加えて、本実施形態2は、正相電流に対する逆相電流の振幅比が小さければ、任意の不平衡電圧系統に適用することができる。また、三相平衡系統と特定条件の不平衡電圧系統に限定されるが、正相電流に等しい振幅の逆相電流を出力することができる。例えば、逆相q軸電圧V2qが零で任意の逆相d軸電圧V2dが重畳された系統電圧において、U相電流が零、V相電流とW相電流のどちらかの位相がU相電圧位相に等しければ、セルコンデンサ電圧バランスを保つことができる。これは、例としてU相地絡、VW線間短絡がある。 The second embodiment has the same effect as the first embodiment. In addition to the effects of the first embodiment, the second embodiment can be applied to any unbalanced voltage system as long as the amplitude ratio of the negative-phase current to the positive-phase current is small. In addition, although limited to a three-phase balanced system and an unbalanced voltage system under specific conditions, it is possible to output a negative-sequence current with an amplitude equal to the positive-sequence current. For example, in a system voltage in which the anti-phase q-axis voltage V2q is zero and an arbitrary anti-phase d-axis voltage V2d is superimposed, the U-phase current is zero, and the phase of either the V-phase current or the W-phase current is the U-phase voltage phase. , the cell capacitor voltage balance can be maintained. Examples of this include a U-phase ground fault and a VW line-to-line short circuit.

[実施形態3]
図6に本実施形態3における零相電圧演算部26のブロック図を示す。電流指令値演算部27は、実施形態2と同様であるため、省略する。本実施形態3は実施形態2に対して以下の点が異なる。実施形態1,2とは異なり、位相差φには0degから360degまでの任意の位相を指定することができる。
[Embodiment 3]
FIG. 6 shows a block diagram of the zero-phase voltage calculator 26 in the third embodiment. The current command value calculation unit 27 is the same as that of the second embodiment, so its description is omitted. The third embodiment differs from the second embodiment in the following points. Unlike the first and second embodiments, any phase from 0deg to 360deg can be specified for the phase difference φ.

スイッチ20aは、φ<90deg,270deg<φならば1、90deg<φ<270degならば-1を出力する。乗算器21aは、振幅比a’にスイッチ20aの出力を乗算する。乗算器21aの出力が補正振幅比a1となる。すなわち、φ<90deg,270deg<φならばa1=a’となり、90deg<φ<270degならばa1=-a’となる。演算器15aは、(14-1)式の補正振幅比aの代わりに補正振幅比a1を用いて演算する。 The switch 20a outputs 1 if φ<90deg and 270deg<φ, and -1 if 90deg<φ<270deg. The multiplier 21a multiplies the amplitude ratio a' by the output of the switch 20a. The output of the multiplier 21a becomes the correction amplitude ratio a1. That is, if φ<90deg and 270deg<φ, a1=a', and if 90deg<φ<270deg, a1=-a'. The calculator 15a performs calculation using the corrected amplitude ratio a1 instead of the corrected amplitude ratio a in the equation (14-1).

ゲイン出力部22aは、0deg<φ<60degの範囲で1から0に直線的に減少し、60deg<φ<120degの範囲で0一定、120deg<φ<180degの範囲で0から1に直線的に増加、180deg<φ<360degの範囲では0deg<φ<180degと同じ値を出力するゲインG1を出力する。乗算器23aにより、演算器15aの演算結果(零相d軸電圧V0d)にゲインG1をかける。 The gain output unit 22a linearly decreases from 1 to 0 in the range of 0deg<φ<60deg, is constant at 0 in the range of 60deg<φ<120deg, and linearly from 0 to 1 in the range of 120deg<φ<180deg. In the range of increasing, 180deg<φ<360deg, the gain G1 that outputs the same value as 0deg<φ<180deg is output. The multiplier 23a multiplies the calculation result (zero-phase d-axis voltage V0d) of the calculator 15a by the gain G1.

スイッチ20bは、30deg<φ<210degならば1,φ<30deg,210deg<φならば-1を出力する。乗算器21bは、振幅比a’にスイッチ20bの出力を乗算する。乗算器21bの出力が補正振幅比a2となる。すなわち、30deg<φ<210degならばa2=a’となり、φ<30deg,210deg<φならばa2=-a’となる。演算器15bは、(14-2)式の補正振幅比aの代わりに補正振幅比a2を用いて演算する。 The switch 20b outputs 1 if 30deg<φ<210deg, and -1 if φ<30deg and 210deg<φ. The multiplier 21b multiplies the amplitude ratio a' by the output of the switch 20b. The output of the multiplier 21b becomes the correction amplitude ratio a2. That is, if 30deg<φ<210deg, a2=a', and if φ<30deg and 210deg<φ, a2=-a'. The calculator 15b performs calculation using the corrected amplitude ratio a2 instead of the corrected amplitude ratio a in the equation (14-2).

ゲイン出力部22bは、0deg<φ<60degの範囲で0一定、60deg<φ<120degの範囲で0から1に直線的に増加、120deg<φ<180degの範囲で1から0に直線的に減少、180deg<φ<360degの範囲では0deg<φ<180degと同じ値を出力するゲインG2を出力する。乗算器23bにより、演算器15bの演算結果(零相d軸電圧V0d)にゲインG2をかける。 The gain output unit 22b is constant at 0 in the range of 0deg<φ<60deg, increases linearly from 0 to 1 in the range of 60deg<φ<120deg, and decreases linearly from 1 to 0 in the range of 120deg<φ<180deg. , 180deg<φ<360deg, a gain G2 that outputs the same value as 0deg<φ<180deg is output. The multiplier 23b multiplies the calculation result (zero-phase d-axis voltage V0d) of the calculator 15b by the gain G2.

スイッチ20cは、150deg<φ<330degならば1、φ<150deg,330deg<φならば-1を出力する。乗算器21cは、振幅比a’にスイッチ20cの出力を乗算する。乗算器21cの出力が補正振幅比a3となる。すなわち、150deg<φ<330degならばa3=a’となり、φ<150deg,330deg<φならばa3=-a’となる。演算器15cは、(14-3)式の補正振幅比aの代わりに補正振幅比a3を用いて演算する。 The switch 20c outputs 1 if 150deg<φ<330deg and -1 if φ<150deg and 330deg<φ. The multiplier 21c multiplies the amplitude ratio a' by the output of the switch 20c. The output of the multiplier 21c becomes the correction amplitude ratio a3. That is, if 150deg<φ<330deg, a3=a', and if φ<150deg and 330deg<φ, a3=-a'. The calculator 15c performs calculation using the corrected amplitude ratio a3 instead of the corrected amplitude ratio a in the equation (14-3).

ゲイン出力部22cは、0deg<φ<60degの範囲で0から1に直線的に増加し、60deg<φ<120degの範囲で1から0に直線的に減少し、120deg<φ<180degの範囲で0一定、180deg<φ<360degの範囲では0deg<φ<180degと同じ値を出力するゲインG3を出力する。乗算器23cにより、演算器15cの演算結果(零相d軸電圧V0d)にゲインG3をかける。 The gain output unit 22c linearly increases from 0 to 1 in the range of 0deg<φ<60deg, decreases linearly from 1 to 0 in the range of 60deg<φ<120deg, and decreases linearly from 1 to 0 in the range of 120deg<φ<180deg. In the range of 0 constant and 180deg<φ<360deg, a gain G3 that outputs the same value as 0deg<φ<180deg is output. The multiplier 23c multiplies the calculation result (zero-phase d-axis voltage V0d) of the calculator 15c by a gain G3.

加算器24は、3つの乗算器23a,23b,23cの出力を足し合わせ、実施形態3の零相d軸電圧V0dとする。零相q軸電圧V0qについても同様の演算を行う。 The adder 24 adds the outputs of the three multipliers 23a, 23b, and 23c to obtain the zero-phase d-axis voltage V0d of the third embodiment. A similar calculation is performed for the zero-phase q-axis voltage V0q.

すなわち、本実施形態3では、位相差φが0deg,180degの時(14-1)式、位相差φが120deg,300degの時(14-2)式、位相差φが240deg,60degの時(14-3)式に基づいて零相d軸電圧V0d,零相q軸電圧V0qを算出する。位相差φが0deg,60deg,120deg,180deg,240deg,300degでない場合、最も近い2つの位相差φから(14-1)式,(14-2)式,(14-3)式により2つの零相d軸電圧V0d,零相q軸電圧V0qを求め、その2つの零相d軸電圧V0d,零相q軸電圧V0qの線形補間により零相電圧を決定する。 That is, in the third embodiment, when the phase difference φ is 0 deg and 180 deg, the formula (14-1), when the phase difference φ is 120 deg and 300 deg, the formula (14-2), and when the phase difference φ is 240 deg and 60 deg ( 14-3) Calculate the zero-phase d-axis voltage V0d and the zero-phase q-axis voltage V0q based on the equations. If the phase difference φ is not 0 deg, 60 deg, 120 deg, 180 deg, 240 deg, or 300 deg, two zeros are obtained from the two closest phase differences φ by formulas (14-1), (14-2) and (14-3). A phase d-axis voltage V0d and a zero-phase q-axis voltage V0q are obtained, and the zero-phase voltage is determined by linear interpolation of the two zero-phase d-axis voltage V0d and zero-phase q-axis voltage V0q.

後段で零相d軸電圧V0dとcosωtをかけ、零相q軸電圧V0qとsinωtをかけ、合計を零相電圧として電圧指令値に加算する。 In the subsequent stage, the zero-phase d-axis voltage V0d and cosωt are multiplied, the zero-phase q-axis voltage V0q and sinωt are multiplied, and the sum is added to the voltage command value as the zero-phase voltage.

本実施形態3は、実施形態2に対して逆相電流の位相を60deg刻みの6パターンではなく、任意の位相に対応できるようにしたものである。(14-1)式,(14-2)式,(14-3)式では60deg刻みの零相電圧しか演算できないため、間の位相における適切な零相電圧は補間により推定する。本実施形態3は補間の一例として線形補間を適用した。 The third embodiment is different from the second embodiment in that the phase of the reversed-phase current is not limited to six patterns of 60-degree increments, but can be adapted to an arbitrary phase. Since the formulas (14-1), (14-2), and (14-3) can only calculate the zero-phase voltage in increments of 60 degrees, the appropriate zero-phase voltage in the intervening phase is estimated by interpolation. In the third embodiment, linear interpolation is applied as an example of interpolation.

演算器15aの(14-1)式は、φ=0deg,180degに対応する。演算器15bの(14-2)式はφ=120deg,300degに対応する。演算器15cの(14-3)式はφ=240deg,60degに対応する。例えばφ=30degが指定された場合、演算器15aの(14-1)式と演算器15bの(14-3)式の平均を零相d軸電圧V0dとして出力する。位相差φ=75degならば、演算器15bの(14-2)式と演算器15cの(14-3)式を1:3の比で加算して出力する。 Equation (14-1) of calculator 15a corresponds to φ=0deg and 180deg. Equation (14-2) of calculator 15b corresponds to φ=120deg and 300deg. Equation (14-3) of calculator 15c corresponds to φ=240deg and 60deg. For example, when φ=30 deg is specified, the average of the equation (14-1) of the calculator 15a and the equation (14-3) of the calculator 15b is output as the zero-phase d-axis voltage V0d. If the phase difference φ=75 deg, the equation (14-2) of the calculator 15b and the equation (14-3) of the calculator 15c are added at a ratio of 1:3 and output.

本実施形態3により、実施形態2に加えて任意の不平衡電圧系統において、振幅が小さく任意の位相の逆相電流を出力してもセルコンデンサ電圧をバランスさせることができる。不平衡電圧系統において正相電流に等しい振幅の逆相電流を出力する場合は、実施形態2同様に逆相電圧と逆相電流の位相に制限が生じる。 According to the third embodiment, in addition to the second embodiment, in an arbitrary unbalanced voltage system, the cell capacitor voltages can be balanced even if a negative-phase current having a small amplitude and an arbitrary phase is output. When outputting a negative-sequence current with an amplitude equal to the positive-sequence current in an unbalanced voltage system, the phases of the negative-sequence voltage and the negative-sequence current are limited as in the second embodiment.

本実施形態3は、実施形態2と同様の作用効果を奏する。また、実施形態2の作用効果に加えて、正相電流に対して小さい振幅比・任意の位相の逆相電流を出力することができる。 The third embodiment has the same effect as the second embodiment. In addition to the effects of the second embodiment, it is possible to output a negative-phase current with a small amplitude ratio and an arbitrary phase with respect to the positive-phase current.

[実施形態4]
図7に本実施形態4における零相電圧演算部26のブロック図を示す。本実施形態4は実施形態3に対して以下の点が異なる。
[Embodiment 4]
FIG. 7 shows a block diagram of the zero-phase voltage calculator 26 in the fourth embodiment. The fourth embodiment differs from the third embodiment in the following points.

ゲイン出力部22は、0deg<φ<30degの範囲で1から2/√3に直線的に増加し、30deg<φ<60degの範囲で2/√3から1に直線的に減少し、後はこれの繰り返しで位相差φに対応するゲインGiを出力する。 The gain output unit 22 linearly increases from 1 to 2/√3 in the range of 0deg<φ<30deg, linearly decreases from 2/√3 to 1 in the range of 30deg<φ<60deg, and then By repeating this, a gain Gi corresponding to the phase difference φ is output.

すなわち、位相差φが30deg,90deg,150deg,210deg,270deg,330degの時に補正係数を2/√3とし、位相差φが0deg,60deg,120deg,180deg,240deg,300degの時に補正係数を1とし、間の位相差φにおいては補正係数を線形補間により求めたゲインGiを(14-1)式,(14-2)式,(14-3)式の正相d軸電圧V1dに依存する項に乗算する。 That is, the correction coefficient is set to 2/√3 when the phase difference φ is 30deg, 90deg, 150deg, 210deg, 270deg, and 330deg, and the correction coefficient is set to 1 when the phase difference φ is 0deg, 60deg, 120deg, 180deg, 240deg, and 300deg. , the gain Gi obtained by linear interpolation of the correction coefficient in the phase difference φ between the Multiply by .

演算器15a,15b,15cには、ゲインGiも入力する。演算器15a,15b,15cの演算式は、(19-1)式,(19-2)式,(19-3)式に変更する。(19-1)式,(19-2)式,(19-3)式は、(14-1)式,(14-2)式,(14-3)式の正相d軸電圧V1dの項にゲインGiをかけたものである。 A gain Gi is also input to the calculators 15a, 15b, and 15c. The arithmetic expressions of the calculators 15a, 15b and 15c are changed to the expressions (19-1), (19-2) and (19-3). Expressions (19-1), (19-2), and (19-3) are the positive phase d-axis voltage V1d of expressions (14-1), (14-2), and (14-3). term is multiplied by the gain Gi.

零相d軸電圧V0dの演算結果は、実施形態3と同様にゲインG1,G2,G3をかけて足し合わせる。零相q軸電圧V0qを求める演算式も同様に変更する。 The calculation results of the zero-phase d-axis voltage V0d are multiplied by the gains G1, G2, and G3 and added together as in the third embodiment. The arithmetic expression for obtaining the zero-phase q-axis voltage V0q is similarly changed.

本実施形態4は、実施形態3における補間の誤差をより小さく低減した方式である。補間の誤差を評価するため、位相差φを用いて逆相d軸電流I2d,逆相q軸電流I2qを(15)式で表す。 The fourth embodiment is a method in which the interpolation error in the third embodiment is further reduced. In order to evaluate the interpolation error, the phase difference φ is used to express the anti-phase d-axis current I2d and the anti-phase q-axis current I2q by equation (15).

Figure 0007322566000027
Figure 0007322566000027

(15)式を(5)式に代入すると、(16)式が得られる。 Substituting equation (15) into equation (5) yields equation (16).

Figure 0007322566000028
Figure 0007322566000028

(16)式は(5)式と等価であり、a=1における零相電圧を求めることはできない。ここではa≒0の場合において線形補間の影響を考える。(16)式は、a2を零と見なして(17)式に近似することができる。 Equation (16) is equivalent to Equation (5), and the zero-phase voltage at a=1 cannot be obtained. Here, consider the influence of linear interpolation when a≈0. Equation (16) can be approximated to Equation (17) by regarding a 2 as zero.

Figure 0007322566000029
Figure 0007322566000029

零相電圧は、正相d軸電圧V1dと逆相d軸電圧V2d,逆相q軸電圧V2qの他に、補正振幅比a,位相差φによって求められる。零相d軸電圧V0dについては、a≒0なので逆相d軸電圧V2dの係数(1-a*cosφ)がほぼ1とみなせ、補正振幅比aにも位相差φにもほぼ依存しない。 零相q軸電圧V0qでは、逆相q軸電圧V2qが補正振幅比aと位相差φに対してほぼ独立である。よってa≒0においては、逆相電圧の項は補正振幅比aと位相差φの影響をほとんど受けず、補間による誤差の影響は非常に小さく無視できる。 The zero-phase voltage is obtained from the positive-phase d-axis voltage V1d, the negative-phase d-axis voltage V2d, the negative-phase q-axis voltage V2q, as well as the corrected amplitude ratio a and the phase difference φ. For the zero-phase d-axis voltage V0d, since a≈0, the coefficient (1−a * cosφ) of the anti-phase d-axis voltage V2d can be regarded as approximately 1, and it is almost independent of the corrected amplitude ratio a and the phase difference φ. In the zero-phase q-axis voltage V0q, the anti-phase q-axis voltage V2q is almost independent of the corrected amplitude ratio a and the phase difference φ. Therefore, when a≈0, the anti-phase voltage term is hardly affected by the correction amplitude ratio a and the phase difference φ, and the influence of the error due to interpolation is very small and can be ignored.

しかし、正相d軸電圧V1dについては補正振幅比aに依存しない項が存在せず、補正振幅比aの一次の項は位相差φの三角関数に依存するため、a≒0であっても位相差φによる補間の誤差を受ける。φ=30deg,90degについて、線形補間を行った際の三角関数の誤差を評価すると、以下の(18)式となる。 However, for the positive-phase d-axis voltage V1d, there is no term that does not depend on the corrected amplitude ratio a, and the first-order term of the corrected amplitude ratio a depends on the trigonometric function of the phase difference φ. Interpolation error due to phase difference φ is received. Evaluating the error of the trigonometric function when linear interpolation is performed for φ=30 deg and 90 deg results in the following equation (18).

Figure 0007322566000030
Figure 0007322566000030

本実施形態4では、φ=30deg,90deg,150deg,210deg,270deg,330degにおいて、正相d軸電圧V1dの項にゲインGi=2/√3≒1.155をかけることで、線形補間による三角関数の誤差を低減した。 In the fourth embodiment, when φ=30 deg, 90 deg, 150 deg, 210 deg, 270 deg, and 330 deg, the term of the positive phase d-axis voltage V1d is multiplied by the gain Gi=2/√3≈1.155 to obtain a triangular shape by linear interpolation. Reduced error of function.

位相差φ=0deg,60deg,120deg,180deg,240deg,300degではゲインGi=1となり補正を行わない。間の位相はゲインGiを線形で変化させ、例えば位相差φ=15degにおいては、ゲインはGi=(2/√3+1)/2≒1.077となる。 At the phase differences φ=0 deg, 60 deg, 120 deg, 180 deg, 240 deg and 300 deg, the gain Gi is 1 and no correction is performed. The phase in between linearly changes the gain Gi. For example, when the phase difference φ=15 deg, the gain becomes Gi=(2/√3+1)/2≈1.077.

これにより、任意の逆相電流の位相において、特に位相差φ=30deg,90deg,150deg,210deg,270deg,330degにおいて逆相電流を急変させた際のセルコンデンサ電圧の変動を小さく抑えることができる。本実施形態4における零相電圧の演算式を(19-1)式,(19-2)式,(19-3)式に示す。 As a result, fluctuations in the cell capacitor voltage when the negative-phase current is suddenly changed can be suppressed at any phase of the negative-phase current, especially at phase differences φ=30deg, 90deg, 150deg, 210deg, 270deg, and 330deg. Equations (19-1), (19-2), and (19-3) are expressions for calculating the zero-phase voltage in the fourth embodiment.

Figure 0007322566000031
Figure 0007322566000031

他の補間方法として、例えば(5)式と(14)式の誤差をあらかじめ計算しテーブルを作成する方法も考えられる。しかし、補正振幅比a,位相差φ,逆相d軸電圧V2d,逆相q軸電圧V2qの4つが変数となりテーブルの規模が大きくなってしまい、事前計算の手間と必要な制御装置の記憶容量が増大してしまう。しかし、本実施形態4ならば補正ゲインはG1,G2,G3,Giの4つのみであり、補正ゲインはいずれも位相差φの一次式の組み合わせで表現できるため、簡単に実現することができる。 As another interpolation method, for example, a method of pre-calculating the errors in the equations (5) and (14) and creating a table is also conceivable. However, the correction amplitude ratio a, the phase difference φ, the anti-phase d-axis voltage V2d, and the anti-phase q-axis voltage V2q become variables, and the scale of the table becomes large. increases. However, in the fourth embodiment, there are only four correction gains, G1, G2, G3, and Gi, and since all of the correction gains can be expressed by a combination of linear expressions of the phase difference φ, they can be easily realized. .

本実施形態4は実施形態3と同様の作用効果を奏する。また、本実施形態4は、実施形態3に比べて電圧・電流急変時のセルコンデンサ電圧の変動を小さく抑えることができる。 The fourth embodiment has effects similar to those of the third embodiment. Further, in the fourth embodiment, fluctuations in the cell capacitor voltage when the voltage/current suddenly changes can be suppressed as compared with the third embodiment.

以下、本願発明のセルコンデンサバランス制御の動作原理を示す。図8は三相平衡系統において正相電流のみ(無効電力)を出力している時のフェーザー図である。細い実線が相電圧を、太い点線が出力電流を表す。各相の電圧と電流は互いに直交しているため、有効電力の入出力は零でありセルコンデンサ電圧はバランスする。 The operating principle of the cell capacitor balance control of the present invention will be described below. FIG. 8 is a phasor diagram when only positive phase current (reactive power) is output in a three-phase balanced system. A thin solid line represents the phase voltage, and a thick dotted line represents the output current. Since the voltage and current of each phase are orthogonal to each other, the active power input and output are zero and the cell capacitor voltages are balanced.

図9は三相平衡系統において正相電流と、これに対して小さい振幅比の逆相電流を出力している時のフェーザー図である。零相電圧重畳前の図9(a)では、U相は電圧・電流が直交しているが、V相では有効電力を出力し、W相は有効電力を入力している。装置全体での有効電力入出力は零であるが、V相のセルコンデンサ電圧は減少、W相のセルコンデンサ電圧は増加してしまい、セルコンデンサ電圧のバランスが崩れてしまう。 FIG. 9 is a phasor diagram when a positive-sequence current and a negative-sequence current with a small amplitude ratio are output in a three-phase balanced system. In FIG. 9A before the zero-phase voltage is superimposed, the U-phase voltage and current are orthogonal, but the V-phase outputs active power and the W-phase inputs active power. Although the active power input/output in the entire device is zero, the V-phase cell capacitor voltage decreases and the W-phase cell capacitor voltage increases, resulting in an imbalance in the cell capacitor voltages.

ここで、図9(b)のような零相電圧V0を重畳すると、V相・W相の電圧・電流が直交し、有効電力を零にすることができる。これにより、セルコンデンサ電圧はバランスする。 Here, when the zero-phase voltage V0 as shown in FIG. 9B is superimposed, the V-phase and W-phase voltages and currents are orthogonal, and the active power can be made zero. This balances the cell capacitor voltages.

図10は三相平衡系統において等しい振幅の正相電流と逆相電流を出力している時のフェーザー図である。図10においても装置全体での有効電力入出力は零であるが、V相のセルコンデンサ電圧は減少、W相のセルコンデンサ電圧は増加してしまう。しかし、図10ではどんな零相電圧を重畳してもV相・W相の電圧・電流を同時に直交させることはできず、セルコンデンサ電圧のバランスが崩れてしまう。正相電流と逆相電流の振幅が等しい条件では、大半がセルコンデンサ電圧をバランスさせることができない。 FIG. 10 is a phasor diagram when a positive-sequence current and a negative-sequence current of equal amplitude are output in a three-phase balanced system. In FIG. 10 as well, the active power input/output of the entire device is zero, but the V-phase cell capacitor voltage decreases and the W-phase cell capacitor voltage increases. However, in FIG. 10, even if any zero-phase voltage is superimposed, the V-phase and W-phase voltages and currents cannot be orthogonalized at the same time, and the balance of the cell capacitor voltage is lost. Under conditions where the amplitudes of the positive and negative sequence currents are equal, most of the cell capacitor voltages cannot be balanced.

図11も三相平衡系統において等しい振幅の正相電流と逆相電流を出力している時のフェーザー図であるが、図10とは正相電流と逆相電流の位相関係が異なる。この条件では、Iu=0なのでU相有効電力は零である。図11(b)は実施形態1の場合を示している。ここで図11(b)のようなU相電圧の半分の振幅の零相電圧V0を重畳するとV相・W相の電圧・電流が直交し、3相の有効電力が零になるため各相のセルコンデンサ電圧をバランスさせることができる。 FIG. 11 is also a phasor diagram when a positive-sequence current and a negative-sequence current of equal amplitude are output in a three-phase balanced system, but the phase relationship between the positive-sequence current and the negative-sequence current is different from that in FIG. Under this condition, the U-phase active power is zero because Iu=0. FIG. 11B shows the case of the first embodiment. Here, when a zero-phase voltage V0 having half the amplitude of the U-phase voltage is superimposed as shown in FIG. cell capacitor voltages can be balanced.

図11(c),(d)は実施形態2~4の場合を示している。図11(c)のようにU相地絡が発生した場合はU相の出力電圧のみ振幅を1/3(零相電圧のみ)とすると、V相・W相の電圧・電流は直交を維持するためセルコンデンサ電圧はバランスする。図11(d)のようにVW線間短絡が発生した場合、U相の出力電圧は変化させず、V相,W相の出力電圧を零(零相電圧を含む)とすると、Vv=0,Vw=0になるため3相の有効電力は零を維持しセルコンデンサ電圧はバランスする。図11はI2d=0,I2q=I1qであり(7)式の上の式を満たす。また、(c)(d)では両方ともV2q=0を満たすため、セルコンデンサ電圧をバランスさせることができる。 FIGS. 11(c) and 11(d) show the cases of the second to fourth embodiments. When a U-phase ground fault occurs as shown in Fig. 11(c), if the amplitude of the U-phase output voltage is reduced to 1/3 (zero-phase voltage only), the V-phase and W-phase voltages and currents remain orthogonal. Therefore, the cell capacitor voltages are balanced. When a short circuit between VW lines occurs as shown in FIG. 11(d), if the U-phase output voltage is not changed and the V-phase and W-phase output voltages are set to zero (including the zero-phase voltage), then Vv=0 , Vw=0, the active power of the three phases is kept zero and the cell capacitor voltages are balanced. In FIG. 11, I2d=0 and I2q=I1q, satisfying the above equation (7). In addition, in both cases (c) and (d), since V2q=0 is satisfied, the cell capacitor voltages can be balanced.

以上の実施形態1~4の有効性をシミュレーションにて確認した。シミュレーション条件は、系統電圧6.6kV,50Hz、装置容量1MVA、容量2,200μF,定格電圧1060Vのコンデンサを搭載したブリッジセルBを1相あたり8台、合計24台を用いてSSBC型MMCCを構成した。制御には、実施形態1~4の他にフィードバック制御も併用している。 The effectiveness of the first to fourth embodiments described above was confirmed by simulation. The simulation conditions are system voltage 6.6 kV, 50 Hz, device capacity 1 MVA, capacity 2,200 μF, bridge cell B equipped with a capacitor with a rated voltage of 1060 V, 8 units per phase, a total of 24 units to configure the SSBC type MMCC. bottom. For the control, feedback control is also used in addition to Embodiments 1 to 4.

図12は三相平衡系統においてI2d=0,I2q=I1qとしたときのシミュレーション波形である。上から線間電圧・出力電流・各相のセルコンデンサ電圧平均値を表す。最下段の細線は24台あるセルコンデンサ電圧の最大値と最小値を示している。U相電流振幅がほぼ零であることから等しい振幅の正相電流と逆相電流の出力を実現でき、かつ、セルコンデンサ電圧のバランスを維持できていることがわかる。 FIG. 12 shows simulation waveforms when I2d=0 and I2q=I1q in a three-phase balanced system. Line-to-line voltage, output current, and cell capacitor voltage average value for each phase are shown from the top. Thin lines at the bottom indicate the maximum and minimum voltages of the 24 cell capacitors. Since the U-phase current amplitude is almost zero, it can be seen that the output of the positive-phase current and the negative-phase current of equal amplitude can be realized and the balance of the cell capacitor voltage can be maintained.

図13は、図12と同じ条件であるが時刻0secにおいてU相地絡を発生させたときの波形である。逆相電圧の検出に用いる移動平均フィルタでの遅延のため、一時的なセルコンデンサ電圧バランスの崩れはあるが、20V,2%程度にすぎない。時刻0.05secではバランスが元に戻り、運転を継続できている。 FIG. 13 shows waveforms when a U-phase ground fault is generated at time 0 sec under the same conditions as in FIG. Due to the delay in the moving average filter used to detect the negative phase voltage, the cell capacitor voltage balance is temporarily disturbed, but it is only about 20 V and 2%. At time 0.05 sec, the balance is restored and the operation can be continued.

図14は時刻0secにおいてVW線間短絡を発生させたときの波形である。一時的にU相セルコンデンサ電圧が低下するが、時刻0sec以前の定常リプルよりも小さく、0,05sec後にはバランスし運転を継続できる。その後、全相のセルコンデンサ電圧が少しずつ低下しているが、これは線間短絡により装置の定常損失を系統側から補填できていないためである。このシミュレーションでは、FRT(Fault Ride Through)要件で求められる0.3secの運転継続が十分可能である。より長時間の運転継続が必要ならば、セルコンデンサの容量増加により対応することができる。 FIG. 14 shows waveforms when a VW line-to-line short circuit occurs at time 0 sec. Although the U-phase cell capacitor voltage drops temporarily, it is smaller than the steady ripple before time 0 sec, and after 0.05 sec, it is balanced and operation can be continued. After that, the cell capacitor voltages of all phases gradually decreased, but this is because the steady-state loss of the device cannot be compensated for by the system side due to the line-to-line short circuit. In this simulation, it is sufficiently possible to continue operation for 0.3 sec required by FRT (Fault Ride Through) requirements. If continuous operation for a longer period of time is required, it can be dealt with by increasing the capacity of the cell capacitor.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the present invention has been described in detail only with respect to the specific examples described above, it is obvious to those skilled in the art that various modifications and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are, of course, covered by the claims.

6,10…dq逆変換器
7,8,9,14…乗算器
11a,11b…加算器
12…dq変換器
13,16,17…スイッチ
15…演算器
26…零相電圧演算部
27…電流指令値演算部
MAVE1,MAVE2…移動平均フィルタ
6, 10... dq inverse transformer 7, 8, 9, 14... Multiplier 11a, 11b... Adder 12... dq converter 13, 16, 17... Switch 15... Computing unit 26... Zero phase voltage calculator 27... Current Command value calculator MAVE1, MAVE2...Moving average filter

Claims (4)

複数台のブリッジセルを直列接続して1相のモジュールを構成し、このモジュールを3台有する3相のモジュラー・マルチレベル・カスケード変換器であって、
系統電圧検出信号に基づいて正相d軸電圧を算出し、正相電流の振幅に対する逆相電流の振幅の比および正相電流と逆相電流の位相差に基づいて補正振幅比を算出し、前記正相d軸電圧と前記補正振幅比に基づいて零相d軸電圧と零相q軸電圧を演算し、前記零相d軸電圧と前記系統電圧検出信号の位相に対応した余弦値との積と、前記零相q軸電圧と前記系統電圧検出信号の位相に対応した正弦値との積と、を足し合わせて零相電圧を算出する零相電圧演算部と、
正相q軸電流指令値と前記正相電流の振幅に対する逆相電流の振幅の比と前記位相差に基づいて逆相電流指令値を求め、前記逆相電流指令値を重畳した電流指令値を算出する電流指令値演算部と、
前記電流指令値に基づいて各相の出力電圧指令値を生成し、前記各相の出力電圧指令値に前記零相電圧を加算した値と各前記ブリッジセルに対応したキャリア三角波とを比較して各前記ブリッジセルのゲート信号を生成する電流制御部と、
備え
前記モジュラー・マルチレベル・カスケード変換器の出力電圧、出力電流が(2)式,(3)式,(15)式で定義されるとき、前記零相電圧演算部は、前記位相差は0deg,60deg,120deg,180deg,240deg,300degから最も近い位相差を選択した値とし、前記位相差が0deg,180degの時(10-1)式、前記位相差が120deg,300degの時(10-2)式、前記位相差が240deg,60degの時(10-3)式に基づいて前記零相d軸電圧,前記零相q軸電圧を算出することを特徴とするモジュラー・マルチレベル・カスケード変換器。
Figure 0007322566000032

Figure 0007322566000033

Figure 0007322566000034

Figure 0007322566000035

Vu,Vv,Vw:U相の出力電圧,V相の出力電圧,W相の出力電圧
V1d:正相d軸電圧
V2d:逆相d軸電圧
V2q:逆相q軸電圧
V0d:零相d軸電圧
V0q:零相q軸電圧
ωt:系統電圧の位相
φ:正相電流と逆相電流の位相差
a’:正相電流の振幅に対する逆相電流の振幅の比(a’=√(I2d* +I2q* )/|I1q*|、ただし、I1d*=0)
a:補正振幅比
ただし、a=a’(φ=0deg,120deg,240deg)
a=-a’(φ=60deg,180deg,300deg)
Iu,Iv,Iw:U相の出力電流,V相の出力電流,W相の出力電流
I1q:正相q軸電流
I2d:逆相d軸電流
I2q:逆相q軸電流
I2d*:逆相d軸電流指令値
I2q*:逆相q軸電流指令値
I1d*:正相d軸電流指令値
I1q*:正相q軸電流指令値
A three-phase modular multilevel cascade converter having three modules, wherein a plurality of bridge cells are connected in series to form a one-phase module,
calculating a positive-sequence d-axis voltage based on the system voltage detection signal, calculating a corrected amplitude ratio based on the ratio of the amplitude of the negative-sequence current to the amplitude of the positive-sequence current and the phase difference between the positive-sequence current and the negative-sequence current; A zero-phase d-axis voltage and a zero-phase q-axis voltage are calculated based on the positive-phase d-axis voltage and the corrected amplitude ratio, and a difference between the zero-phase d-axis voltage and a cosine value corresponding to the phase of the system voltage detection signal is calculated. a zero-phase voltage calculator that calculates a zero-phase voltage by adding the product and the product of the zero-phase q-axis voltage and a sine value corresponding to the phase of the system voltage detection signal;
A negative-phase current command value is obtained based on the positive-phase q-axis current command value, the ratio of the amplitude of the negative-phase current to the amplitude of the positive-phase current, and the phase difference, and the current command value superimposed on the negative-phase current command value is obtained. A current command value calculation unit for calculating,
An output voltage command value for each phase is generated based on the current command value, and a value obtained by adding the zero-phase voltage to the output voltage command value for each phase is compared with a carrier triangular wave corresponding to each bridge cell. a current controller that generates a gate signal for each bridge cell ;
prepared ,
When the output voltage and output current of the modular multi-level cascade converter are defined by equations (2), (3), and (15), the zero-phase voltage calculation unit determines that the phase difference is 0 deg, The closest phase difference is selected from 60 deg, 120 deg, 180 deg, 240 deg, and 300 deg, and when the phase difference is 0 deg and 180 deg (10-1), when the phase difference is 120 deg and 300 deg (10-2) A modular multi-level cascade converter, wherein the zero-phase d-axis voltage and the zero-phase q-axis voltage are calculated based on the equation (10-3) when the phase difference is 240 deg and 60 deg.
Figure 0007322566000032

Figure 0007322566000033

Figure 0007322566000034

Figure 0007322566000035

Vu, Vv, Vw: U-phase output voltage, V-phase output voltage, W-phase output voltage V1d: Positive phase d-axis voltage V2d: Negative phase d-axis voltage V2q: Negative phase q-axis voltage V0d: Zero phase d-axis Voltage V0q: Zero-phase q-axis voltage ωt: System voltage phase φ: Phase difference between positive-phase current and negative-phase current
a': Ratio of negative-sequence current amplitude to positive-sequence current amplitude (a'=√(I2d* 2 +I2q* 2 )/|I1q*|, where I1d*=0)
a: corrected amplitude ratio where a=a' (φ=0deg, 120deg, 240deg)
a = -a' (φ = 60deg, 180deg, 300deg)
Iu, Iv, Iw : U-phase output current, V-phase output current, W-phase output current I1q: Positive phase q-axis current I2d: Negative phase d-axis current I2q: Negative phase q-axis current
I2d*: Negative phase d-axis current command value
I2q*: Anti-phase q-axis current command value
I1d*: positive phase d-axis current command value
I1q*: positive phase q-axis current command value
複数台のブリッジセルを直列接続して1相のモジュールを構成し、このモジュールを3台有する3相のモジュラー・マルチレベル・カスケード変換器であって、
系統電圧検出信号に基づいて正相d軸電圧を算出し、正相電流の振幅に対する逆相電流の振幅の比および正相電流と逆相電流の位相差に基づいて補正振幅比を算出し、前記正相d軸電圧と前記補正振幅比に基づいて零相d軸電圧と零相q軸電圧を演算し、前記零相d軸電圧と前記系統電圧検出信号の位相に対応した余弦値との積と、前記零相q軸電圧と前記系統電圧検出信号の位相に対応した正弦値との積と、を足し合わせて零相電圧を算出する零相電圧演算部と、
正相q軸電流指令値と前記正相電流の振幅に対する逆相電流の振幅の比と前記位相差に基づいて逆相電流指令値を求め、前記逆相電流指令値を重畳した電流指令値を算出する電流指令値演算部と、
前記電流指令値に基づいて各相の出力電圧指令値を生成し、前記各相の出力電圧指令値に前記零相電圧を加算した値と各前記ブリッジセルに対応したキャリア三角波とを比較して各前記ブリッジセルのゲート信号を生成する電流制御部と、
備え
前記モジュラー・マルチレベル・カスケード変換器の出力電圧,出力電流が(2)式,(3)式,(15)式で定義されるとき、前記零相電圧演算部は、前記位相差は0deg,60deg,120deg,180deg,240deg,300degから最も近い位相差を選択した値とし、前記位相差が0deg,180degの時(14-1)式、前記位相差が120deg,300degの時(14-2)式、前記位相差が240deg,60degの時(14-3)式に基づいて前記零相d軸電圧,前記零相q軸電圧を算出することを特徴とするモジュラー・マルチレベル・カスケード変換器。
Figure 0007322566000036

Figure 0007322566000037

Figure 0007322566000038

Figure 0007322566000039

Vu,Vv,Vw:U相の出力電圧,V相の出力電圧,W相の出力電圧
V1d:正相d軸電圧
V2d:逆相d軸電圧
V2q:逆相q軸電圧
V0d:零相d軸電圧
V0q:零相q軸電圧
ωt:系統電圧の位相
φ:正相電流と逆相電流の位相差
a’:正相電流の振幅に対する逆相電流の振幅の比(a’=√(I2d* +I2q* )/|I1q*|、ただし、I1d*=0)
a:補正振幅比
ただし、a=a’(φ=0deg,120deg,240deg)
a=-a’(φ=60deg,180deg,300deg)
Iu,Iv,Iw:U相の出力電流,V相の出力電流,W相の出力電流
I1q:正相q軸電流
I2d:逆相d軸電流
I2q:逆相q軸電流
I2d*:逆相d軸電流指令値
I2q*:逆相q軸電流指令値
I1d*:正相d軸電流指令値
I1q*:正相q軸電流指令値
A three-phase modular multilevel cascade converter having three modules, wherein a plurality of bridge cells are connected in series to form a one-phase module,
calculating a positive-sequence d-axis voltage based on the system voltage detection signal, calculating a corrected amplitude ratio based on the ratio of the amplitude of the negative-sequence current to the amplitude of the positive-sequence current and the phase difference between the positive-sequence current and the negative-sequence current; A zero-phase d-axis voltage and a zero-phase q-axis voltage are calculated based on the positive-phase d-axis voltage and the corrected amplitude ratio, and a difference between the zero-phase d-axis voltage and a cosine value corresponding to the phase of the system voltage detection signal is calculated. a zero-phase voltage calculator that calculates a zero-phase voltage by adding the product and the product of the zero-phase q-axis voltage and a sine value corresponding to the phase of the system voltage detection signal;
A negative-phase current command value is obtained based on the positive-phase q-axis current command value, the ratio of the amplitude of the negative-phase current to the amplitude of the positive-phase current, and the phase difference, and the current command value superimposed on the negative-phase current command value is obtained. A current command value calculation unit for calculating,
An output voltage command value for each phase is generated based on the current command value, and a value obtained by adding the zero-phase voltage to the output voltage command value for each phase is compared with a carrier triangular wave corresponding to each bridge cell. a current controller that generates a gate signal for each bridge cell ;
prepared ,
When the output voltage and output current of the modular multi-level cascade converter are defined by equations (2), (3), and (15), the zero-phase voltage calculation unit determines that the phase difference is 0 deg, The closest phase difference is selected from 60 deg, 120 deg, 180 deg, 240 deg, and 300 deg, and when the phase difference is 0 deg and 180 deg (14-1), when the phase difference is 120 deg and 300 deg (14-2) A modular multi-level cascade converter, wherein the zero-phase d-axis voltage and the zero-phase q-axis voltage are calculated based on the equation (14-3) when the phase difference is 240 deg and 60 deg.
Figure 0007322566000036

Figure 0007322566000037

Figure 0007322566000038

Figure 0007322566000039

Vu, Vv, Vw: U-phase output voltage, V-phase output voltage, W-phase output voltage V1d: Positive phase d-axis voltage V2d: Negative phase d-axis voltage V2q: Negative phase q-axis voltage V0d: Zero phase d-axis Voltage V0q: Zero-phase q-axis voltage ωt: System voltage phase φ: Phase difference between positive-phase current and negative-phase current
a': Ratio of negative-sequence current amplitude to positive-sequence current amplitude (a'=√(I2d* 2 +I2q* 2 )/|I1q*|, where I1d*=0)
a: corrected amplitude ratio where a=a' (φ=0deg, 120deg, 240deg)
a = -a' (φ = 60deg, 180deg, 300deg)
Iu, Iv, Iw : U-phase output current, V-phase output current, W-phase output current I1q: Positive phase q-axis current I2d: Negative phase d-axis current I2q: Negative phase q-axis current
I2d*: Negative phase d-axis current command value
I2q*: Anti-phase q-axis current command value
I1d*: positive phase d-axis current command value
I1q*: positive phase q-axis current command value
複数台のブリッジセルを直列接続して1相のモジュールを構成し、このモジュールを3台有する3相のモジュラー・マルチレベル・カスケード変換器であって、
系統電圧検出信号に基づいて正相d軸電圧を算出し、正相電流の振幅に対する逆相電流の振幅の比および正相電流と逆相電流の位相差に基づいて補正振幅比を算出し、前記正相d軸電圧と前記補正振幅比に基づいて零相d軸電圧と零相q軸電圧を演算し、前記零相d軸電圧と前記系統電圧検出信号の位相に対応した余弦値との積と、前記零相q軸電圧と前記系統電圧検出信号の位相に対応した正弦値との積と、を足し合わせて零相電圧を算出する零相電圧演算部と、
正相q軸電流指令値と前記正相電流の振幅に対する逆相電流の振幅の比と前記位相差に基づいて逆相電流指令値を求め、前記逆相電流指令値を重畳した電流指令値を算出する電流指令値演算部と、
前記電流指令値に基づいて各相の出力電圧指令値を生成し、前記各相の出力電圧指令値に前記零相電圧を加算した値と各前記ブリッジセルに対応したキャリア三角波とを比較して各前記ブリッジセルのゲート信号を生成する電流制御部と、
備え
前記モジュラー・マルチレベル・カスケード変換器の出力電圧,出力電流が(2)式,(3)式,(15)式で定義されるとき、前記零相電圧演算部は、前記位相差が0deg,180degの時(14-1)式、前記位相差が120deg,300degの時(14-2)式、前記位相差が240deg,60degの時(14-3)式に基づいて前記零相d軸電圧,前記零相q軸電圧を算出し、前記位相差が0deg,60deg,120deg,180deg,240deg,300degでない場合、最も近い2つの前記位相差から(14-1)式,(14-2)式,(14-3)式により2つの前記零相d軸電圧,前記零相q軸電圧を求め、その2つの前記零相d軸電圧,前記零相q軸電圧の補間により前記零相d軸電圧,前記零相q軸電圧を決定することを特徴とするモジュラー・マルチレベル・カスケード変換器。
Figure 0007322566000040

Figure 0007322566000041

Figure 0007322566000042

Figure 0007322566000043

Vu,Vv,Vw:U相の出力電圧,V相の出力電圧,W相の出力電圧
V1d:正相d軸電圧
V2d:逆相d軸電圧
V2q:逆相q軸電圧
V0d:零相d軸電圧
V0q:零相q軸電圧
ωt:系統電圧の位相
φ:正相電流と逆相電流の位相差
a’:正相電流の振幅に対する逆相電流の振幅の比(a’=√(I2d* +I2q* )/|I1q*|、ただし、I1d*=0)
a:補正振幅比
ただし、(14-1)式では、a=a’(φ<90deg,270deg<φ)
a=-a’(90deg<φ<270deg)
(14-2)式では、a=a’(30deg<φ<210deg)
a=-a’(φ<30deg,210deg<φ)
(14-3)式では、a=a’(150deg<φ<330deg)
a=-a’(φ<150deg,330deg<φ)
Iu,Iv,Iw:U相の出力電流,V相の出力電流,W相の出力電流
I1q:正相q軸電流
I2d:逆相d軸電流
I2q:逆相q軸電流
I2d*:逆相d軸電流指令値
I2q*:逆相q軸電流指令値
I1d*:正相d軸電流指令値
I1q*:正相q軸電流指令値
A three-phase modular multilevel cascade converter having three modules, wherein a plurality of bridge cells are connected in series to form a one-phase module,
calculating a positive-sequence d-axis voltage based on the system voltage detection signal, calculating a corrected amplitude ratio based on the ratio of the amplitude of the negative-sequence current to the amplitude of the positive-sequence current and the phase difference between the positive-sequence current and the negative-sequence current; A zero-phase d-axis voltage and a zero-phase q-axis voltage are calculated based on the positive-phase d-axis voltage and the corrected amplitude ratio, and a difference between the zero-phase d-axis voltage and a cosine value corresponding to the phase of the system voltage detection signal is calculated. a zero-phase voltage calculator that calculates a zero-phase voltage by adding the product and the product of the zero-phase q-axis voltage and a sine value corresponding to the phase of the system voltage detection signal;
A negative-phase current command value is obtained based on the positive-phase q-axis current command value, the ratio of the amplitude of the negative-phase current to the amplitude of the positive-phase current, and the phase difference, and the current command value superimposed on the negative-phase current command value is obtained. A current command value calculation unit for calculating,
An output voltage command value for each phase is generated based on the current command value, and a value obtained by adding the zero-phase voltage to the output voltage command value for each phase is compared with a carrier triangular wave corresponding to each bridge cell. a current controller that generates a gate signal for each bridge cell ;
prepared ,
When the output voltage and the output current of the modular multi-level cascade converter are defined by the formulas (2), (3) and (15), the zero-phase voltage calculation section calculates that the phase difference is 0 deg, When the phase difference is 180 deg, expression (14-1), when the phase difference is 120 deg and 300 deg, expression (14-2), and when the phase difference is 240 deg and 60 deg, the zero-phase d-axis voltage is calculated based on expression (14-3). , the zero-phase q-axis voltage is calculated, and if the phase difference is not 0 deg, 60 deg, 120 deg, 180 deg, 240 deg, or 300 deg, from the two closest phase differences (14-1), (14-2) , (14-3) to obtain the two zero-phase d-axis voltages and the zero-phase q-axis voltage, and interpolate the two zero-phase d-axis voltages and the zero-phase q-axis voltage to obtain the zero-phase d-axis voltage A modular multi-level cascade converter, characterized in that it determines a voltage, said zero-phase q-axis voltage.
Figure 0007322566000040

Figure 0007322566000041

Figure 0007322566000042

Figure 0007322566000043

Vu, Vv, Vw: U-phase output voltage, V-phase output voltage, W-phase output voltage V1d: Positive phase d-axis voltage V2d: Negative phase d-axis voltage V2q: Negative phase q-axis voltage V0d: Zero phase d-axis Voltage V0q: Zero-phase q-axis voltage ωt: System voltage phase φ: Phase difference between positive-phase current and negative-phase current
a': Ratio of negative-sequence current amplitude to positive-sequence current amplitude (a'=√(I2d* 2 +I2q* 2 )/|I1q*|, where I1d*=0)
a: corrected amplitude ratio However, in the formula (14-1), a = a'(φ<90deg,270deg<φ)
a=-a'(90deg<φ<270deg)
(14-2), a=a'(30deg<φ<210deg)
a=-a'(φ<30deg,210deg<φ)
In the formula (14-3), a=a'(150deg<φ<330deg)
a=-a'(φ<150deg,330deg<φ)
Iu, Iv, Iw : U-phase output current, V-phase output current, W-phase output current I1q: Positive phase q-axis current I2d: Negative phase d-axis current I2q: Negative phase q-axis current
I2d*: Negative phase d-axis current command value
I2q*: Anti-phase q-axis current command value
I1d*: positive phase d-axis current command value
I1q*: positive phase q-axis current command value
前記零相電圧演算部は、前記位相差が30deg,90deg,150deg,210deg,270deg,330degの時に補正係数を2/√3とし、前記位相差が0deg,60deg,120deg,180deg,240deg,300degの時に補正係数を1とし、間の前記位相差においては補正係数を補間により求めたゲインGiを(14-1)式,(14-2)式,(14-3)式の前記正相d軸電圧に依存する項に乗算することを特徴とする請求項3記載のモジュラー・マルチレベル・カスケード変換器。 The zero-phase voltage calculator sets the correction coefficient to 2/√3 when the phase difference is 30deg, 90deg, 150deg, 210deg, 270deg and 330deg, When the correction coefficient is set to 1, the gain Gi obtained by interpolating the correction coefficient for the phase difference between 4. Modular multilevel cascade converter according to claim 3, characterized in that the voltage dependent terms are multiplied.
JP2019135767A 2019-07-24 2019-07-24 Modular multilevel cascade converter Active JP7322566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019135767A JP7322566B2 (en) 2019-07-24 2019-07-24 Modular multilevel cascade converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135767A JP7322566B2 (en) 2019-07-24 2019-07-24 Modular multilevel cascade converter

Publications (2)

Publication Number Publication Date
JP2021019481A JP2021019481A (en) 2021-02-15
JP7322566B2 true JP7322566B2 (en) 2023-08-08

Family

ID=74566200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135767A Active JP7322566B2 (en) 2019-07-24 2019-07-24 Modular multilevel cascade converter

Country Status (1)

Country Link
JP (1) JP7322566B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199938A (en) 2010-03-17 2011-10-06 Hitachi Ltd Power conversion apparatus and method for control of the same
JP2011223761A (en) 2010-04-12 2011-11-04 Hitachi Ltd Power conversion device
JP2013005694A (en) 2011-06-21 2013-01-07 Central Research Institute Of Electric Power Industry Reactive power compensation unit, reactive power compensation method and reactive power compensation program
JP2013021848A (en) 2011-07-13 2013-01-31 Hitachi Ltd Control device for power converter
JP2013127463A (en) 2011-12-19 2013-06-27 Mitsubishi Electric Corp Method for detecting unbalance in signal and unbalance detector
WO2015102060A1 (en) 2014-01-06 2015-07-09 三菱電機株式会社 Electric power conversion device
JP2018046654A (en) 2016-09-14 2018-03-22 富士電機株式会社 Control device of power converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199938A (en) 2010-03-17 2011-10-06 Hitachi Ltd Power conversion apparatus and method for control of the same
JP2011223761A (en) 2010-04-12 2011-11-04 Hitachi Ltd Power conversion device
JP2013005694A (en) 2011-06-21 2013-01-07 Central Research Institute Of Electric Power Industry Reactive power compensation unit, reactive power compensation method and reactive power compensation program
JP2013021848A (en) 2011-07-13 2013-01-31 Hitachi Ltd Control device for power converter
JP2013127463A (en) 2011-12-19 2013-06-27 Mitsubishi Electric Corp Method for detecting unbalance in signal and unbalance detector
WO2015102060A1 (en) 2014-01-06 2015-07-09 三菱電機株式会社 Electric power conversion device
JP2018046654A (en) 2016-09-14 2018-03-22 富士電機株式会社 Control device of power converter

Also Published As

Publication number Publication date
JP2021019481A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6815496B2 (en) Power converter
JP5542609B2 (en) Reactive power compensator
JP5877648B2 (en) Distributed power system
JP5585371B2 (en) Distributed power system
JP6615012B2 (en) Reactive power compensator
WO2013080744A1 (en) Matrix converter
KR101639192B1 (en) Apparatus for compensating reactive power
WO2019016991A1 (en) Power conversion device and power conversion system
JP2013255317A (en) Control device for three-level inverter
JP2012205325A5 (en)
JP6730946B2 (en) Power converter controller
JP6544170B2 (en) Control device for 3-level inverter
JP5560730B2 (en) Power converter control method, uninterruptible power supply, parallel sag compensator
JP5055184B2 (en) Power converter and its harmonic current suppression method
JP2018148709A (en) Controller of multilevel power conversion circuit
JP6418020B2 (en) Control method of parallel connection system of three level inverter and parallel connection system of three level inverter
WO2016114330A1 (en) Five-level power conversion device and control method
JP7322566B2 (en) Modular multilevel cascade converter
JP2013211970A (en) Controller of 3 level rectifier
JP7316259B2 (en) Controller for three-level power converter
JP2012080666A (en) Power conversion device
JP7322567B2 (en) Modular multilevel cascade converter
JP2009153297A (en) Controller of self-excited converter
JP7409470B1 (en) cell multiplex inverter
CN112335167A (en) Power conversion device and power conversion control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7322566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150