JP7143135B2 - insulation - Google Patents

insulation Download PDF

Info

Publication number
JP7143135B2
JP7143135B2 JP2018141849A JP2018141849A JP7143135B2 JP 7143135 B2 JP7143135 B2 JP 7143135B2 JP 2018141849 A JP2018141849 A JP 2018141849A JP 2018141849 A JP2018141849 A JP 2018141849A JP 7143135 B2 JP7143135 B2 JP 7143135B2
Authority
JP
Japan
Prior art keywords
silica airgel
powder
average particle
silicon carbide
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018141849A
Other languages
Japanese (ja)
Other versions
JP2020016326A (en
Inventor
博隆 山城
功治 中澤
幸雄 中川
Original Assignee
明星工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明星工業株式会社 filed Critical 明星工業株式会社
Priority to JP2018141849A priority Critical patent/JP7143135B2/en
Publication of JP2020016326A publication Critical patent/JP2020016326A/en
Application granted granted Critical
Publication of JP7143135B2 publication Critical patent/JP7143135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、気密空間に充填可能な断熱材に関する。 TECHNICAL FIELD The present invention relates to a heat insulating material that can be filled in an airtight space.

従来、前記断熱材として、シリカエアロゲルの粉粒体が知られている(周知である)。 Conventionally, silica airgel particles have been known (well-known) as the heat insulating material.

上述したシリカエアロゲルは、網目状の微細構造を持ち、骨格間に10nmに満たない細孔があって、三次元的で微細な多孔性の構造をしているために優れた断熱性を示し、融点が1200℃で、高温環境下での断熱にも利用できるという利点がある。
しかも、曲げには脆いが自重の2000倍もの重さを支える強度を持つものもあることが知られている。
しかし、更なる断熱性能の高いものが求められている。
The silica airgel described above has a network-like fine structure, has pores of less than 10 nm between skeletons, and has a three-dimensional fine porous structure, so it exhibits excellent heat insulation, It has a melting point of 1200°C and has the advantage of being used for heat insulation in high temperature environments.
In addition, it is known that there is a material that is fragile in bending but has the strength to support 2000 times its own weight.
However, there is a demand for a material with even higher heat insulation performance.

従って、本発明の目的は、シリカエアロゲルの特性を備えながら、より低い熱伝導率の断熱材を提供するところにある。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an insulating material having the properties of silica airgel but with lower thermal conductivity.

本発明の第1の特徴構成は、気密空間に充填可能な断熱材であって、シリカエアロゲル粉粒体と、平均粒径が前記シリカエアロゲル粉粒体よりも小さい酸化チタン粉粒体とを混合し、前記シリカエアロゲル粉粒体が平均粒径0.01~1.2mmで、前記酸化チタン粉粒体が平均粒径7nmである。 A first characteristic configuration of the present invention is a heat insulating material that can be filled in an airtight space, and is a mixture of silica airgel powder and titanium oxide powder having an average particle size smaller than that of the silica airgel powder. The silica airgel particles have an average particle size of 0.01 to 1.2 mm, and the titanium oxide particles have an average particle size of 7 nm.

本発明の第1の特徴構成によれば、シリカエアロゲル粉粒体と、平均粒径が前記シリカエアロゲル粉粒体よりも小さい酸化チタン粉粒体とを混合することにより、双方の熱伝導率よりもより低い断熱材を提供できる。 According to the first characteristic configuration of the present invention, by mixing the silica airgel powder and the titanium oxide powder having an average particle diameter smaller than that of the silica airgel powder, the thermal conductivity of both is can also provide lower insulation.

平均粒径0.01~1.2mmのシリカエアロゲルに対して、平均粒径7nmの酸化チタン粉粒体を添加して混合して、夫々の単独使用時よりも熱伝導率が確実に低下する。
従って、より断熱性の良い断熱材を提供できる。

By adding and mixing titanium oxide powder particles with an average particle size of 7 nm to silica airgel with an average particle size of 0.01 to 1.2 mm, the thermal conductivity is surely lower than when each is used alone. .
Therefore, it is possible to provide a heat insulating material with better heat insulating properties.

シリカエアロゲルに炭化ケイ素を添加した場合の熱伝導率の変化グラフである。4 is a graph showing changes in thermal conductivity when silicon carbide is added to silica airgel. シリカエアロゲル単体と、シリカエアロゲルに炭化ケイ素を混入した場合の低温時の熱伝導率の変化を比較するグラフである。4 is a graph comparing changes in thermal conductivity at low temperatures between silica airgel alone and silica airgel mixed with silicon carbide. シリカエアロゲル単体と、シリカエアロゲルに炭化ケイ素を混入した場合の高温時の熱伝導率の変化を比較するグラフである。4 is a graph comparing changes in thermal conductivity at high temperatures between silica airgel alone and silica airgel mixed with silicon carbide.

以下に本発明の実施の形態を図面に基づいて説明する。
例えば、断熱容器において被断熱体の収容空間を囲繞する壁厚内の気密空間や、真空断熱体の気密空間に充填可能な断熱材を構成するのに、平均粒径0.01~4.0mmのシリカエアロゲル粉粒体と、平均粒径2μmの炭化ケイ素粉粒体とを混合した断熱材を提供する。
そして、前記断熱材は、質量割合が、前記シリカエアロゲル粉粒体100に対して、前記炭化ケイ素粉粒体を0より大で110よりも小にすることにより、シリカエアロゲル粉粒体だけの場合や、炭化ケイ素粉粒体だけの場合よりも、熱伝導率が低下するもので、次の実験結果により示す。
An embodiment of the present invention will be described below with reference to the drawings.
For example, in order to form an airtight space within the wall thickness of an insulated container surrounding the space containing the object to be insulated, or a heat insulating material that can be filled in the airtight space of a vacuum heat insulator, an average particle size of 0.01 to 4.0 mm is required. and a silicon carbide powder having an average particle diameter of 2 μm.
Then, the heat insulating material has a mass ratio of the silicon carbide powder to the silica airgel powder 100 that is greater than 0 and less than 110, so that when only the silica airgel powder is used Also, the thermal conductivity is lower than in the case of only silicon carbide particles, which is shown by the following experimental results.

〔実験1〕
シリカエアロゲルは、網目状の微細構造を持ち、骨格間に10nmに満たない細孔があって、三次元的で微細な多孔性の構造をしているために優れた断熱性を示し、融点が1200℃で、粒子サイズとして表1に示すように、4種類のサンプルを準備した。
[Experiment 1]
Silica airgel has a network-like fine structure, has pores of less than 10 nm between skeletons, and has a three-dimensional fine porous structure, so it exhibits excellent heat insulation and has a melting point. At 1200° C., four types of samples were prepared as shown in Table 1 as particle sizes.

Figure 0007143135000001
Figure 0007143135000001

表1より、粒径0.01~1.2mmのシリカエアロゲル粉粒体が、熱伝導率において0.0198W/mKと最も小さかった。 From Table 1, silica airgel particles with a particle size of 0.01 to 1.2 mm had the lowest thermal conductivity of 0.0198 W/mK.

〔実験2〕
サンプル2のシリカエアロゲル粉粒体を用いて、シリカエアロゲル100質量部に対する炭化ケイ素粉粒体の添加割合を変化させた場合の熱伝導率の変化を調べ、表2に示した。
[Experiment 2]
Using the silica airgel granules of Sample 2, changes in thermal conductivity were investigated when the addition ratio of the silicon carbide granules to 100 parts by mass of silica airgel was changed.

Figure 0007143135000002
Figure 0007143135000002

表2をグラフにすると、図1に示すようになり、シリカエアロゲル粉粒体100質量部に対して、平均粒子サイズ約2μm(分布は1~5μm)の炭化ケイ素粉粒体15~25質量部を添加した混合物が、他の添加割合よりも熱伝導率の低下率が高くなることが明確である。
尚、炭化ケイ素粉粒体(SiC)単独の場合の熱伝導率は、0.0774W/mKである。
When Table 2 is graphed, it becomes as shown in FIG. 1, with respect to 100 parts by mass of silica airgel powder, 15 to 25 parts by mass of silicon carbide powder with an average particle size of about 2 μm (distribution is 1 to 5 μm). It is clear that the rate of decrease in thermal conductivity is higher in mixtures to which is added than other addition ratios.
Incidentally, the thermal conductivity of silicon carbide powder (SiC) alone is 0.0774 W/mK.

〔実験3〕
次に、各種粒子サイズの異なるシリカエアロゲル粉粒体として、サンプル1~サンプル4単独の場合と、サンプル1~サンプル4のシリカエアロゲル粉粒体100質量部に対して、平均粒子サイズ約2μm(分布は1~5μm)の炭化ケイ素粉粒体(SiC)を、夫々20質量部の割合で添加して混合した材料において、実測嵩密度(kg/m3)及び平均温度23℃での熱伝導率(W/mK)を測定して表3に示した。
[Experiment 3]
Next, as silica airgel granules with different particle sizes, the average particle size of about 2 μm (distribution 1 to 5 μm) silicon carbide granules (SiC) are added at a rate of 20 parts by mass, respectively, and mixed, the measured bulk density (kg/m 3 ) and the thermal conductivity at an average temperature of 23 ° C. (W/mK) was measured and shown in Table 3.

Figure 0007143135000003
Figure 0007143135000003

表3からは、サンプル1~サンプル4夫々において、平均粒径がシリカエアロゲル粉粒体よりも小さい炭化ケイ素粉粒体(SiC)を添加混合することによって熱伝導率が低下することが分かる。 From Table 3, it can be seen that in each of Samples 1 to 4, the thermal conductivity is lowered by adding and mixing silicon carbide particles (SiC) having an average particle size smaller than that of silica airgel particles.

〔実験4〕
次に、シリカエアロゲル粉粒体単体と、シリカエアロゲル粉粒体に炭化ケイ素粉粒体(SiC)を混入した断熱材の夫々の低温特性(-40℃~40℃)を調べて、表4に示した。
[Experiment 4]
Next, the low-temperature characteristics (-40°C to 40°C) of each of the silica airgel powder alone and the heat insulating material in which silicon carbide powder (SiC) is mixed into the silica airgel powder were examined. Indicated.

Figure 0007143135000004
Figure 0007143135000004

尚、表4を温度グラフに表すと図2のようになる。
つまり、シリカエアロゲル粉粒体単体よりも、炭化ケイ素粉粒体を混入したほうが熱伝導率が低減し、温度が高くなるにつれてその低減率が大きくなることが分かる。
It should be noted that Table 4 is represented as a temperature graph as shown in FIG.
That is, it can be seen that the thermal conductivity is lower when the silicon carbide particles are mixed than when the silica airgel particles are mixed alone, and the rate of reduction increases as the temperature rises.

〔実験5〕
上記と同様のシリカエアロゲル粉粒体単体と、シリカエアロゲル粉粒体に炭化ケイ素粉粒体を混入した断熱材の夫々において、高温特性(100℃~500℃)を調べて、表5に示した。
[Experiment 5]
High-temperature characteristics (100° C. to 500° C.) were examined for each of the silica airgel powder alone similar to the above and the heat insulating material in which silicon carbide powder was mixed into the silica airgel powder, and the results are shown in Table 5. .

Figure 0007143135000005
Figure 0007143135000005

表5を、温度グラフに表すと図3のようになる。
つまり、高温になればなるほどシリカエアロゲル粉粒体単独の物よりも炭化ケイ素混入シリカエアロゲル粉粒体の方が熱伝導率に差が大きく出て、断熱性が高くなることが明確である。
FIG. 3 shows Table 5 as a temperature graph.
In other words, it is clear that the higher the temperature, the greater the difference in thermal conductivity of the silica airgel particles mixed with silicon carbide than the silica airgel particles alone, and the higher the heat insulating properties.

〔別実施形態〕
以下に他の実施の形態を説明する。
〈1〉 炭化ケイ素粉粒体は、一般的に赤外線透過抑制剤として使用されているために、同様の特性を持つ酸化チタン粉粒体(平均粒子サイズは約7nm)を、シリカエアロゲル粉粒体(粒子径0.01~1.2mm)に添加混合させた場合にも熱伝導率が低下するか否かを調べ表6に示した。
尚、比較のために炭化ケイ素粉粒体を添加した場合の実験結果も合わせて記載した。この実験で、炭化ケイ素粉粒体以外に平均粒径が前記シリカエアロゲル粉粒体よりも小さい酸化チタン粉粒体でもシリカエアロゲル単体よりも熱伝導率が低減することが分かり、酸化チタン粉粒体混入シリカエアロゲル粉粒体が断熱材として利用できる。
[Another embodiment]
Other embodiments will be described below.
<1> Since silicon carbide powder is generally used as an infrared transmission inhibitor, titanium oxide powder having similar properties (average particle size is about 7 nm) is used as silica airgel powder. Table 6 shows whether or not the thermal conductivity is lowered even when the particles are added and mixed in a particle size of 0.01 to 1.2 mm.
For comparison, the experimental results when silicon carbide particles were added are also shown. In this experiment, it was found that, in addition to the silicon carbide powder, titanium oxide powder having an average particle size smaller than that of the silica airgel powder had a lower thermal conductivity than silica airgel alone. Entrained silica airgel granules can be used as thermal insulation.

Figure 0007143135000006
Figure 0007143135000006

Claims (1)

気密空間に充填可能な断熱材であって、
シリカエアロゲル粉粒体と、平均粒径が前記シリカエアロゲル粉粒体よりも小さい酸化チタン粉粒体とを混合し、前記シリカエアロゲル粉粒体が平均粒径0.01~1.2mmで、前記酸化チタン粉粒体が平均粒径7nmである断熱材。
A heat insulating material that can be filled in an airtight space,
Silica airgel granules and titanium oxide granules having an average particle diameter smaller than that of the silica airgel granules are mixed, and the silica airgel granules have an average particle diameter of 0.01 to 1.2 mm, and the A heat insulating material comprising titanium oxide particles having an average particle size of 7 nm.
JP2018141849A 2018-07-27 2018-07-27 insulation Active JP7143135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018141849A JP7143135B2 (en) 2018-07-27 2018-07-27 insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018141849A JP7143135B2 (en) 2018-07-27 2018-07-27 insulation

Publications (2)

Publication Number Publication Date
JP2020016326A JP2020016326A (en) 2020-01-30
JP7143135B2 true JP7143135B2 (en) 2022-09-28

Family

ID=69581251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018141849A Active JP7143135B2 (en) 2018-07-27 2018-07-27 insulation

Country Status (1)

Country Link
JP (1) JP7143135B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023181443A1 (en) 2022-03-25 2023-09-28
CN114853470B (en) * 2022-05-30 2022-12-09 天津城建大学 Enhanced thermal insulation zirconium dioxide composite ceramic aerogel and preparation method thereof
CN115259161B (en) * 2022-08-10 2023-05-05 航天特种材料及工艺技术研究所 Collar-shaped silicon carbide nanofiber aerogel material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232949A (en) 2000-02-25 2001-08-28 Nippon Paper Industries Co Ltd Thermal recording material
JP2008239457A (en) 2007-03-29 2008-10-09 A & A Material Corp Method of manufacturing calcium silicate heat insulating material
JP2012006807A (en) 2010-06-28 2012-01-12 Nichias Corp Composite particle, heat insulating material, and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232949A (en) 2000-02-25 2001-08-28 Nippon Paper Industries Co Ltd Thermal recording material
JP2008239457A (en) 2007-03-29 2008-10-09 A & A Material Corp Method of manufacturing calcium silicate heat insulating material
JP2012006807A (en) 2010-06-28 2012-01-12 Nichias Corp Composite particle, heat insulating material, and method for producing the same

Also Published As

Publication number Publication date
JP2020016326A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
JP7143135B2 (en) insulation
US9188397B2 (en) Dense composite material, method for producing the same, and component for semiconductor production equipment
JP6070710B2 (en) Vacuum insulation material manufacturing method and vacuum insulation material
CA2990105C (en) Composite material and method of producing the same
JP5735046B2 (en) Insulation
Mohanta et al. Low cost porous alumina with tailored microstructure and thermal conductivity prepared using rice husk and sucrose
CN108706980A (en) Aluminium nitride ceramics and preparation method thereof, electrostatic chuck and application
JP2012006807A (en) Composite particle, heat insulating material, and method for producing the same
JP6456857B2 (en) Particles for irregular refractories
CN109437923B (en) Foamed ceramic and preparation method thereof
Belmoujahid et al. SBA-15 mesoporous silica as a super insulating material
Han et al. Low‐temperature synthesis of six‐principal‐component high‐entropy transition‐metal carbide aerogel thermal insulator
KR102286850B1 (en) Poruos ceramic having excellent mechanical property and insulation and method for manufacturing thereof
JP2016040226A (en) Heat insulator and manufacturing method therefor
JP5877821B2 (en) Composite fireproof insulation
JP5928694B2 (en) Alumina sintered body and manufacturing method thereof
GB578869A (en) Improvements in or relating to dielectric compositions and sealed electrical apparatus impregnated therewith
Liu et al. Fabrication of electrically conductive barium aluminum silicate/silicon nitride composites with enhanced strength and toughness
JP7223523B2 (en) insulation
JP7143136B2 (en) insulation panel
JP6127353B2 (en) Insulating material and manufacturing method thereof
JP6214514B2 (en) Insulation
JP6188027B2 (en) Indefinite refractory
JP6320872B2 (en) Hollow particles and thermal insulation containing hollow particles
Yun et al. Effects of the size distribution of SiC powders on the microstructures and properties of liquid phase bonded porous SiC with neck bonding phases of Y4Al2O9, Y3A5O12, Y2Si2O7, and Al2O3

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220914

R150 Certificate of patent or registration of utility model

Ref document number: 7143135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150