JP7067011B2 - Wiring board and manufacturing method of wiring board - Google Patents

Wiring board and manufacturing method of wiring board Download PDF

Info

Publication number
JP7067011B2
JP7067011B2 JP2017198679A JP2017198679A JP7067011B2 JP 7067011 B2 JP7067011 B2 JP 7067011B2 JP 2017198679 A JP2017198679 A JP 2017198679A JP 2017198679 A JP2017198679 A JP 2017198679A JP 7067011 B2 JP7067011 B2 JP 7067011B2
Authority
JP
Japan
Prior art keywords
substrate
wiring
reinforcing member
board
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017198679A
Other languages
Japanese (ja)
Other versions
JP2019075416A (en
Inventor
川 健 一 小
本 直 子 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2017198679A priority Critical patent/JP7067011B2/en
Publication of JP2019075416A publication Critical patent/JP2019075416A/en
Application granted granted Critical
Publication of JP7067011B2 publication Critical patent/JP7067011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示の実施形態は、基板と、前記基板に接合され、電子部品に接続される配線が設けられた支持基板と、を備える配線基板に関する。また、本開示の実施形態は、配線基板の製造方法に関する。 An embodiment of the present disclosure relates to a wiring board comprising a substrate and a support substrate provided with wiring joined to the substrate and connected to electronic components. Moreover, the embodiment of this disclosure relates to the manufacturing method of the wiring board.

近年、伸縮性などの変形性を有する電子デバイスの研究がおこなわれている。例えば特許文献1は、基板と、基板に設けられた配線と、を備え、伸縮性を有する配線基板を開示している。特許文献1においては、予め伸長させた状態の基板に回路を設け、回路を形成した後に基板を弛緩させる、という製造方法を採用している。特許文献1は、基板の伸長状態及び弛緩状態のいずれにおいても基板上の薄膜トランジスタを良好に動作させることを意図している。 In recent years, research has been conducted on electronic devices having deformability such as elasticity. For example, Patent Document 1 discloses a wiring board provided with a substrate and wiring provided on the substrate and having elasticity. Patent Document 1 employs a manufacturing method in which a circuit is provided on a pre-stretched substrate, the circuit is formed, and then the substrate is relaxed. Patent Document 1 intends to operate the thin film transistor on the substrate satisfactorily in both the extended state and the relaxed state of the substrate.

特開2007-281406号公報Japanese Unexamined Patent Publication No. 2007-281406

配線基板は、伸縮などの変形に対する耐性を有する部分だけでなく、変形に起因して破損し易い部分も含む。このため、予め伸長させた状態の基板に回路を設けると、配線基板に破損などの不具合が生じ易くなってしまう。 The wiring board includes not only a part having resistance to deformation such as expansion and contraction but also a part easily damaged due to deformation. For this reason, if the circuit is provided on the board in the stretched state in advance, problems such as damage to the wiring board are likely to occur.

本開示の実施形態は、このような課題を効果的に解決し得る配線基板及び配線基板の製造方法を提供することを目的とする。 It is an object of the present disclosure to provide a wiring board and a method for manufacturing a wiring board that can effectively solve such a problem.

本開示の一実施形態は、伸縮性を有し、第1面及び前記第1面の反対側に位置する第2面を含む基板と、前記基板の前記第1面側から前記基板に接合され、前記基板の弾性係数よりも高い弾性係数を有する支持基板と、前記支持基板に搭載される電子部品の電極に接続されるよう前記支持基板に設けられた配線であって、前記基板の前記第1面の法線方向における山部及び谷部が前記基板の前記第1面の面内方向に沿って繰り返し現れる蛇腹形状部を有する配線と、伸縮に起因して前記基板に生じる応力が前記支持基板に伝わることを抑制するよう前記基板の一部に設けられた応力調整機構と、を備える、配線基板である。 One embodiment of the present disclosure is a stretchable substrate including a first surface and a second surface located on the opposite side of the first surface, and is joined to the substrate from the first surface side of the substrate. A support substrate having an elastic coefficient higher than that of the substrate, and wiring provided on the support substrate so as to be connected to electrodes of electronic components mounted on the support substrate. A wiring having a bellows-shaped portion in which peaks and valleys in the normal direction of one surface repeatedly appear along the in-plane direction of the first surface of the substrate, and stress generated in the substrate due to expansion and contraction are supported by the substrate. It is a wiring board provided with a stress adjusting mechanism provided in a part of the board so as to suppress transmission to the board.

本開示の一実施形態による配線基板において、前記応力調整機構は、前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品に重なるよう前記基板の前記第1面上に位置し、前記基板の弾性係数よりも高い弾性係数を有する第1補強部材と、前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品に重なるよう前記基板の前記第2面上に位置し、前記基板の弾性係数よりも高い弾性係数を有する第2補強部材と、を備えていてもよい。この場合、前記基板のうち、前記第1面の法線方向に沿って見た場合に前記第1補強部材及び前記第2補強部材と重なる部分の厚みは、前記基板のうち前記第1面の法線方向に沿って見た場合に前記第1補強部材又は前記第2補強部材と重ならない部分の厚みよりも小さくなっていてもよい。前記第1補強部材又は前記第2補強部材は、金属層を含んでいてもよい。 In the wiring board according to the embodiment of the present disclosure, the stress adjusting mechanism is the first of the boards so as to overlap the electronic components mounted on the support board when viewed along the normal direction of the first surface. It overlaps the first reinforcing member, which is located on the surface and has an elastic coefficient higher than the elastic coefficient of the substrate, and the electronic component mounted on the support substrate when viewed along the normal direction of the first surface. A second reinforcing member, which is located on the second surface of the substrate and has an elastic coefficient higher than that of the substrate, may be provided. In this case, the thickness of the portion of the substrate that overlaps with the first reinforcing member and the second reinforcing member when viewed along the normal direction of the first surface is the thickness of the first surface of the substrate. When viewed along the normal direction, the thickness may be smaller than the thickness of the portion that does not overlap with the first reinforcing member or the second reinforcing member. The first reinforcing member or the second reinforcing member may include a metal layer.

本開示の一実施形態による配線基板において、前記応力調整機構は、前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品に重なるよう前記基板の前記第2面に形成された複数のスリットを備えていてもよい。この場合、前記スリットの深さは、前記基板の厚みの30%以上であってもよい。 In the wiring board according to the embodiment of the present disclosure, the stress adjusting mechanism is the second of the board so as to overlap the electronic components mounted on the support board when viewed along the normal direction of the first surface. It may be provided with a plurality of slits formed on the surface. In this case, the depth of the slit may be 30% or more of the thickness of the substrate.

本開示の一実施形態による配線基板において、前記配線の前記蛇腹形状部の振幅が1μm以上であってもよい。 In the wiring board according to the embodiment of the present disclosure, the amplitude of the bellows-shaped portion of the wiring may be 1 μm or more.

本開示の一実施形態による配線基板において、前記基板は、シリコーンゴムを含んでいてもよい。 In the wiring board according to the embodiment of the present disclosure, the board may contain silicone rubber.

本開示の一実施形態による配線基板において、前記配線は、複数の導電性粒子を含んでいてもよい。 In the wiring board according to the embodiment of the present disclosure, the wiring may contain a plurality of conductive particles.

本開示の一実施形態による配線基板は、前記支持基板上に位置し、前記配線に電気的に接続される電極を有する電子部品を更に備えていてもよい。 The wiring board according to one embodiment of the present disclosure may further include an electronic component that is located on the support board and has electrodes electrically connected to the wiring.

本開示の一実施形態は、配線基板の製造方法であって、第1面及び前記第1面の反対側に位置する第2面を含み、伸縮性を有する基板に引張応力を加えて、前記基板を伸長させる伸長工程と、前記基板の弾性係数よりも高い弾性係数を有する第1補強部材を前記基板の前記第1面上に設け、前記基板の弾性係数よりも高い弾性係数を有する第2補強部材を前記基板の前記第2面上に設ける工程と、前記基板の弾性係数よりも高い弾性係数を有する支持基板であって、前記支持基板に搭載される電子部品の電極に接続される配線が設けられた支持基板を、伸長した状態の前記基板に前記第1面側から接合する接合工程と、前記基板から前記引張応力を取り除く収縮工程と、を備え、前記接合工程は、前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品が前記第1補強部材及び前記第2補強部材に重なるよう実施され、前記基板から前記引張応力が取り除かれた後、前記配線のうち前記第1面の法線方向に沿って見た場合に前記第1補強部材及び前記第2補強部材と重ならない部分は、前記第1面の法線方向における山部及び谷部が前記第1面の面内方向に沿って繰り返し現れる蛇腹形状部を有する、配線基板の製造方法である。 One embodiment of the present disclosure is a method of manufacturing a wiring board, which includes a first surface and a second surface located on the opposite side of the first surface, and applies tensile stress to the elastic substrate to apply the above-mentioned. A second reinforcing member having an elongation step of extending the substrate and a first reinforcing member having an elastic coefficient higher than that of the substrate is provided on the first surface of the substrate and has an elastic coefficient higher than that of the substrate. A step of providing a reinforcing member on the second surface of the substrate, and a wiring that is a support substrate having an elastic coefficient higher than the elastic coefficient of the substrate and is connected to an electrode of an electronic component mounted on the support substrate. The support substrate provided with the above is provided with a joining step of joining the stretched substrate to the substrate from the first surface side and a shrinkage step of removing the tensile stress from the substrate, and the joining step is the first. After the electronic components mounted on the support substrate are overlapped with the first reinforcing member and the second reinforcing member when viewed along the normal direction of the surface, and the tensile stress is removed from the substrate. The portions of the wiring that do not overlap with the first reinforcing member and the second reinforcing member when viewed along the normal direction of the first surface are peaks and valleys in the normal direction of the first surface. This is a method for manufacturing a wiring board, which has a bellows-shaped portion in which the portion repeatedly appears along the in-plane direction of the first surface.

本開示の一実施形態は、配線基板の製造方法であって、第1面及び前記第1面の反対側に位置する第2面を含み、伸縮性を有する基板に引張応力を加えて、前記基板を伸長させる伸長工程と、前記基板の弾性係数よりも高い弾性係数を有する支持基板であって、前記支持基板に搭載される電子部品の電極に接続される配線が設けられた支持基板を、伸長した状態の前記基板に前記第1面側から接合する接合工程と、前記基板から前記引張応力を取り除く収縮工程と、を備え、前記接合工程と前記収縮工程との間に実施され、前記基板のうち前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品と重なる部分の前記第2面に複数のスリットを形成するスリット形成工程を更に備え、前記基板から前記引張応力が取り除かれた後、前記配線のうち前記第1面の法線方向に沿って見た場合に前記スリットと重ならない部分は、前記第1面の法線方向における山部及び谷部が前記第1面の面内方向に沿って繰り返し現れる蛇腹形状部を有する、配線基板の製造方法である。 One embodiment of the present disclosure is a method of manufacturing a wiring board, which includes a first surface and a second surface located on the opposite side of the first surface, and applies tensile stress to the stretchable substrate to apply the above-mentioned A support substrate having an elongation step for extending the substrate and a support substrate having an elastic coefficient higher than the elastic coefficient of the substrate and provided with wiring connected to electrodes of electronic components mounted on the support substrate. A joining step of joining the stretched substrate from the first surface side and a shrinking step of removing the tensile stress from the substrate are provided, and the substrate is carried out between the joining step and the shrinking step. Of the above, the substrate is further provided with a slit forming step of forming a plurality of slits on the second surface of the portion overlapping with the electronic component mounted on the support substrate when viewed along the normal direction of the first surface. After the tensile stress is removed from the above, the portion of the wiring that does not overlap with the slit when viewed along the normal direction of the first surface is a mountain portion and a valley in the normal direction of the first surface. This is a method for manufacturing a wiring board, which has a bellows-shaped portion in which portions repeatedly appear along the in-plane direction of the first surface.

本開示の一実施形態による配線基板の製造方法において、前記スリットの深さは、前記基板の厚みの30%以上であってもよい。 In the method for manufacturing a wiring board according to an embodiment of the present disclosure, the depth of the slit may be 30% or more of the thickness of the board.

本開示の実施形態によれば、基板の伸縮に起因して配線基板に不具合が生じることを抑制することができる。 According to the embodiment of the present disclosure, it is possible to suppress the occurrence of a defect in the wiring board due to the expansion and contraction of the substrate.

一実施の形態に係る配線基板を示す断面図である。It is sectional drawing which shows the wiring board which concerns on one Embodiment. 一実施の形態に係る配線基板を示す平面図である。It is a top view which shows the wiring board which concerns on one Embodiment. 図1に示す配線基板の配線及びその周辺の構成要素の一例を拡大して示す断面図である。It is sectional drawing which enlarges and shows an example of the wiring of the wiring board shown in FIG. 1 and the component around it. 図1に示す配線基板の配線及びその周辺の構成要素のその他の例を拡大して示す断面図である。FIG. 3 is an enlarged cross-sectional view showing other examples of the wiring of the wiring board shown in FIG. 1 and other components around the wiring board. 図1に示す配線基板の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the wiring board shown in FIG. 第1の変形例に係る配線基板を示す断面図である。It is sectional drawing which shows the wiring board which concerns on 1st modification. 第1の変形例に係る配線基板を示す底面図である。It is a bottom view which shows the wiring board which concerns on the 1st modification. 図6に示す配線基板の配線及びその周辺の構成要素の一例を拡大して示す断面図である。FIG. 6 is an enlarged cross-sectional view showing an example of the wiring of the wiring board shown in FIG. 6 and its peripheral components. 図6に示す配線基板の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the wiring board shown in FIG.

以下、本開示の実施形態に係る配線基板の構成及びその製造方法について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本開示の実施形態の一例であって、本開示はこれらの実施形態に限定して解釈されるものではない。また、本明細書において、「基板」、「基材」、「シート」や「フィルム」など用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「基板」は、基材、シートやフィルムと呼ばれ得るような部材も含む概念である。更に、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」や「直交」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。また、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。 Hereinafter, the configuration of the wiring board and the manufacturing method thereof according to the embodiment of the present disclosure will be described in detail with reference to the drawings. It should be noted that the embodiments shown below are examples of the embodiments of the present disclosure, and the present disclosure is not construed as being limited to these embodiments. Further, in the present specification, terms such as "board", "base material", "sheet" and "film" are not distinguished from each other based only on the difference in names. For example, "substrate" is a concept that includes a base material, a member that may be called a sheet or a film. Furthermore, the terms such as "parallel" and "orthogonal" and the values of length and angle used in the present specification to specify the shape and geometric conditions and their degrees are bound by a strict meaning. Instead, the interpretation shall be made to include the range in which similar functions can be expected. Further, in the drawings referred to in the present embodiment, the same parts or parts having similar functions may be designated by the same reference numerals or similar reference numerals, and the repeated description thereof may be omitted. Further, the dimensional ratio of the drawing may differ from the actual ratio for convenience of explanation, or a part of the configuration may be omitted from the drawing.

以下、図1乃至図5を参照して、本開示の一実施の形態について説明する。 Hereinafter, an embodiment of the present disclosure will be described with reference to FIGS. 1 to 5.

(配線基板)
まず、本実施の形態に係る配線基板10について説明する。図1及び図2はそれぞれ、配線基板10を示す断面図及び平面図である。図1に示す断面図は、図2の配線基板10を線A-Aに沿って切断した場合の図である。
(Wiring board)
First, the wiring board 10 according to the present embodiment will be described. 1 and 2 are a cross-sectional view and a plan view showing the wiring board 10, respectively. The cross-sectional view shown in FIG. 1 is a view when the wiring board 10 of FIG. 2 is cut along the lines AA.

図1に示す配線基板10は、基板20、応力調整機構30、支持基板40、電子部品51、配線52を備える。以下、配線基板10の各構成要素について説明する。 The wiring board 10 shown in FIG. 1 includes a board 20, a stress adjusting mechanism 30, a support board 40, an electronic component 51, and a wiring 52. Hereinafter, each component of the wiring board 10 will be described.

〔基板〕
基板20は、伸縮性を有するよう構成された板状の部材である。基板20は、電子部品51及び配線52側に位置する第1面21と、第1面21の反対側に位置する第2面22と、を含む。基板20の厚みは、例えば10mm以下であり、より好ましくは1mm以下である。基板20の厚みを小さくすることにより、基板20の伸縮に要する力を低減することができる。また、基板20の厚みを小さくすることにより、配線基板10を用いた製品全体の厚みを小さくすることができる。これにより、例えば、配線基板10を用いた製品が、人の腕などの身体の一部に取り付けるセンサである場合に、装着感を低減することができる。基板20の厚みは、10μm以上であってもよい。
〔substrate〕
The substrate 20 is a plate-shaped member configured to have elasticity. The substrate 20 includes a first surface 21 located on the side of the electronic component 51 and the wiring 52, and a second surface 22 located on the opposite side of the first surface 21. The thickness of the substrate 20 is, for example, 10 mm or less, more preferably 1 mm or less. By reducing the thickness of the substrate 20, the force required for expansion and contraction of the substrate 20 can be reduced. Further, by reducing the thickness of the substrate 20, the thickness of the entire product using the wiring board 10 can be reduced. Thereby, for example, when the product using the wiring board 10 is a sensor attached to a part of the body such as a human arm, the wearing feeling can be reduced. The thickness of the substrate 20 may be 10 μm or more.

基板20の伸縮性を表すパラメータの例として、基板20の弾性係数を挙げることができる。基板20の弾性係数は、例えば10MPa以下であり、より好ましくは1MPa以下である。このような弾性係数を有する基板20を用いることにより、配線基板10全体に伸縮性を持たせることができる。以下の説明において、基板20の弾性係数のことを、第1の弾性係数とも称する。基板20の第1の弾性係数は、1kPa以上であってもよい。 As an example of the parameter representing the elasticity of the substrate 20, the elastic modulus of the substrate 20 can be mentioned. The elastic modulus of the substrate 20 is, for example, 10 MPa or less, more preferably 1 MPa or less. By using the substrate 20 having such an elastic modulus, the entire wiring board 10 can be made elastic. In the following description, the elastic modulus of the substrate 20 is also referred to as a first elastic modulus. The first elastic modulus of the substrate 20 may be 1 kPa or more.

基板20の第1の弾性係数を算出する方法としては、基板20のサンプルを用いて引張試験を実施するという方法を採用することができる。基板20のサンプルを準備する方法としては、配線基板10から基板20の一部をサンプルとして取り出す方法や、配線基板10を構成する前の基板20の一部をサンプルとして取り出す方法が考えられる。その他にも、基板20の第1の弾性係数を算出する方法として、基板20を構成する材料を分析し、材料の既存のデータベースに基づいて基板20の第1の弾性係数を算出するという方法を採用することもできる。 As a method of calculating the first elastic modulus of the substrate 20, a method of carrying out a tensile test using a sample of the substrate 20 can be adopted. As a method of preparing a sample of the substrate 20, a method of extracting a part of the substrate 20 from the wiring board 10 as a sample and a method of extracting a part of the substrate 20 before forming the wiring board 10 as a sample can be considered. Another method for calculating the first elastic modulus of the substrate 20 is to analyze the materials constituting the substrate 20 and calculate the first elastic modulus of the substrate 20 based on the existing database of materials. It can also be adopted.

基板20の伸縮性を表すパラメータのその他の例として、基板20の曲げ剛性を挙げることができる。曲げ剛性は、対象となる部材の断面二次モーメントと、対象となる部材を構成する材料の弾性係数との積であり、単位はN・m又はPa・mである。基板20の断面二次モーメントは、配線基板10の伸縮方向に直交する平面によって基板20を切断した場合の断面に基づいて算出される。以下の説明において、基板20の曲げ剛性のことを、第1の曲げ剛性とも称する。 As another example of the parameter representing the elasticity of the substrate 20, the bending rigidity of the substrate 20 can be mentioned. The flexural rigidity is the product of the moment of inertia of area of the target member and the elastic modulus of the material constituting the target member, and the unit is N · m 2 or Pa · m 4 . The moment of inertia of area of the substrate 20 is calculated based on the cross section when the substrate 20 is cut by a plane orthogonal to the expansion / contraction direction of the wiring board 10. In the following description, the bending rigidity of the substrate 20 is also referred to as a first bending rigidity.

基板20を構成する材料の例としては、熱可塑性エラストマー、シリコーンゴム、ウレタンゲル、シリコンゲル等を挙げることができる。熱可塑性エラストマーとしては、ポリウレタン系エラストマー、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩ビ系熱可塑性エラストマー、エステル系熱可塑性エラストマー、アミド系熱可塑性エラストマー、1,2-BR系熱可塑性エラストマー、フッ素系熱可塑性エラストマー等を用いることができる。機械的強度や耐磨耗性を考慮すると、ウレタン系エラストマーを用いることが好ましい。さらに、シリコーンゴムは、耐熱性・耐薬品性・難燃性に優れており、基板20の材料として好ましい。 Examples of the material constituting the substrate 20 include thermoplastic elastomers, silicone rubbers, urethane gels, silicon gels and the like. Examples of the thermoplastic elastomer include polyurethane-based elastomers, styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, ester-based thermoplastic elastomers, amide-based thermoplastic elastomers, and 1,2-BR-based thermoplastic elastomers. A fluorothermoplastic elastomer or the like can be used. Considering mechanical strength and abrasion resistance, it is preferable to use a urethane-based elastomer. Further, silicone rubber is excellent in heat resistance, chemical resistance, and flame retardancy, and is preferable as a material for the substrate 20.

〔応力調整機構〕
応力調整機構30は、伸縮に起因して基板20に生じる応力が支持基板40に伝わることを抑制するために基板20の一部に設けられた機構である。本実施の形態において、応力調整機構30は、図1に示すように、基板20の第1面21上に位置する第1補強部材31と、基板20の第2面22上に位置する第2補強部材32とを備える。
[Stress adjustment mechanism]
The stress adjusting mechanism 30 is a mechanism provided in a part of the substrate 20 in order to suppress the stress generated in the substrate 20 due to expansion and contraction from being transmitted to the support substrate 40. In the present embodiment, as shown in FIG. 1, the stress adjusting mechanism 30 has a first reinforcing member 31 located on the first surface 21 of the substrate 20 and a second reinforcing member 31 located on the second surface 22 of the substrate 20. A reinforcing member 32 is provided.

第1補強部材31及び第2補強部材32はいずれも、基板20の第1の弾性係数よりも大きい弾性係数を有する。第1補強部材31及び第2補強部材32の弾性係数は、例えば1GPa以上であり、より好ましくは10GPa以上である。第1補強部材31及び第2補強部材32の弾性係数は、基板20の第1の弾性係数の100倍以上であってもよく、1000倍以上であってもよい。このような第1補強部材31及び第2補強部材32を備える応力調整機構30を基板20に設けることにより、基板20のうち応力調整機構30と重なる部分に生じている応力が支持基板40側に伝わることを抑制することができる。これにより、支持基板40及び支持基板40上の構成要素のうち応力調整機構30と重なる部分が破損することなどを抑制することができる。以下の説明において、第1補強部材31及び第2補強部材32の弾性係数のことを、第2の弾性係数とも称する。 Both the first reinforcing member 31 and the second reinforcing member 32 have an elastic modulus larger than the first elastic modulus of the substrate 20. The elastic modulus of the first reinforcing member 31 and the second reinforcing member 32 is, for example, 1 GPa or more, more preferably 10 GPa or more. The elastic modulus of the first reinforcing member 31 and the second reinforcing member 32 may be 100 times or more or 1000 times or more the first elastic modulus of the substrate 20. By providing the substrate 20 with the stress adjusting mechanism 30 including the first reinforcing member 31 and the second reinforcing member 32, the stress generated in the portion of the substrate 20 that overlaps with the stress adjusting mechanism 30 is applied to the support substrate 40 side. It can be suppressed from being transmitted. As a result, it is possible to prevent the portion of the support substrate 40 and the components on the support substrate 40 that overlap with the stress adjusting mechanism 30 from being damaged. In the following description, the elastic modulus of the first reinforcing member 31 and the second reinforcing member 32 is also referred to as a second elastic modulus.

図1及び図2に示すように、第1補強部材31及び第2補強部材32を備える応力調整機構30は、基板20の第1面21の法線方向に沿って見た場合に、支持基板40上に位置する電子部品51と重なっている。この場合、第1補強部材31及び第2補強部材32は、伸縮に起因して基板20に生じている応力が支持基板40上の電子部品51に伝わることを抑制するよう機能する。これにより、電子部品51が変形したり破損したりしてしまうことを抑制することができる。 As shown in FIGS. 1 and 2, the stress adjusting mechanism 30 including the first reinforcing member 31 and the second reinforcing member 32 is a support substrate when viewed along the normal direction of the first surface 21 of the substrate 20. It overlaps with the electronic component 51 located on the 40. In this case, the first reinforcing member 31 and the second reinforcing member 32 function to suppress the stress generated in the substrate 20 due to the expansion and contraction from being transmitted to the electronic component 51 on the support substrate 40. As a result, it is possible to prevent the electronic component 51 from being deformed or damaged.

第1補強部材31及び第2補強部材32の第2の弾性係数は、500GPa以下であってもよい。また、第1補強部材31及び第2補強部材32の第2の弾性係数は、基板20の第1の弾性係数の500000倍以下であってもよい。第1補強部材31及び第2補強部材32の第2の弾性係数を算出する方法は、基板20の場合と同様である。なお、「重なる」とは、基板20の第1面21の法線方向に沿って見た場合に2つの構成要素が重なることを意味している。また、第1補強部材31の弾性係数と第2補強部材32の弾性係数とは、同一であってもよく、異なっていてもよい。 The second elastic modulus of the first reinforcing member 31 and the second reinforcing member 32 may be 500 GPa or less. Further, the second elastic modulus of the first reinforcing member 31 and the second reinforcing member 32 may be 500,000 times or less the first elastic modulus of the substrate 20. The method of calculating the second elastic modulus of the first reinforcing member 31 and the second reinforcing member 32 is the same as that of the substrate 20. Note that "overlapping" means that the two components overlap when viewed along the normal direction of the first surface 21 of the substrate 20. Further, the elastic modulus of the first reinforcing member 31 and the elastic modulus of the second reinforcing member 32 may be the same or different.

また、第1補強部材31及び第2補強部材32は、基板20の第1の曲げ剛性よりも大きい曲げ剛性を有する。第1補強部材31及び第2補強部材32の曲げ剛性は、基板20の第1の曲げ剛性の100倍以上であってもよく、1000倍以上であってもよい。以下の説明において、第1補強部材31及び第2補強部材32の曲げ剛性のことを、第2の曲げ剛性とも称する。 Further, the first reinforcing member 31 and the second reinforcing member 32 have a bending rigidity larger than that of the first bending rigidity of the substrate 20. The bending rigidity of the first reinforcing member 31 and the second reinforcing member 32 may be 100 times or more or 1000 times or more the first bending rigidity of the substrate 20. In the following description, the bending rigidity of the first reinforcing member 31 and the second reinforcing member 32 is also referred to as a second bending rigidity.

第1補強部材31及び第2補強部材32を構成する材料の例としては、金属材料を含む金属層や、一般的な熱可塑性エラストマー、アクリル、ウレタン、エポキシ、ポリエステル、エポキシ、ビニルエーテル、ポリエン・チオール、シリコーン系等のオリゴマー、ポリマー等を挙げることができる。金属材料の例としては、銅、アルミニウム、ステンレス鋼等を挙げることができる。第1補強部材31及び第2補強部材32の厚みは、例えば10μm以上である。上述の材料のうち、金属層は、弾性率が大きくエッチング加工などにより微細加工可能であり、より好ましい。 Examples of the materials constituting the first reinforcing member 31 and the second reinforcing member 32 include a metal layer containing a metal material, a general thermoplastic elastomer, an acrylic type , a urethane type , an epoxy type , a polyester type , and an epoxy type . Examples thereof include oligomers such as vinyl ether type , polyene / thiol type , and silicone type, and polymers. Examples of metal materials include copper, aluminum, stainless steel and the like. The thickness of the first reinforcing member 31 and the second reinforcing member 32 is, for example, 10 μm or more. Among the above-mentioned materials, the metal layer has a high elastic modulus and can be finely processed by etching or the like, which is more preferable.

〔支持基板〕
支持基板40は、基板20よりも低い伸縮性を有するよう構成された板状の部材である。支持基板40は、基板20側に位置する第2面42と、第2面42の反対側に位置する第1面41と、を含む。図1に示す例において、支持基板40は、その第1面41側において電子部品51及び配線52を支持している。また、支持基板40は、その第2面42側において基板20の第1面に接合されている。例えば、基板20と支持基板40との間に、接着剤を含む接着層60が設けられていてもよい。接着層60を構成する材料としては、例えばアクリル系接着剤、シリコーン系接着剤等を用いることができる。接着層60の厚みは、例えば5μm以上且つ200μm以下である。また、図示はしないが、常温接合によって支持基板40の第2面42が基板20の第1面21に接合されていてもよい。この場合、基板20と支持基板40との間に接着層が設けられていなくてもよい。
[Support board]
The support substrate 40 is a plate-shaped member configured to have lower elasticity than the substrate 20. The support substrate 40 includes a second surface 42 located on the substrate 20 side and a first surface 41 located on the opposite side of the second surface 42. In the example shown in FIG. 1, the support substrate 40 supports the electronic component 51 and the wiring 52 on the first surface 41 side thereof. Further, the support substrate 40 is joined to the first surface of the substrate 20 on the second surface 42 side thereof. For example, an adhesive layer 60 containing an adhesive may be provided between the substrate 20 and the support substrate 40. As the material constituting the adhesive layer 60, for example, an acrylic adhesive, a silicone adhesive, or the like can be used. The thickness of the adhesive layer 60 is, for example, 5 μm or more and 200 μm or less. Further, although not shown, the second surface 42 of the support substrate 40 may be bonded to the first surface 21 of the substrate 20 by normal temperature bonding. In this case, the adhesive layer may not be provided between the substrate 20 and the support substrate 40.

後述するように、支持基板40に接合された基板20から引張応力が取り除かれて基板20が収縮するとき、支持基板40には蛇腹形状部が形成される。支持基板40の特性や寸法は、このような蛇腹形状部が形成され易くなるよう設定されている。例えば、支持基板40は、基板20の第1の弾性係数よりも大きい弾性係数を有する。以下の説明において、支持基板40の弾性係数のことを、第3の弾性係数とも称する。 As will be described later, when the tensile stress is removed from the substrate 20 joined to the support substrate 40 and the substrate 20 contracts, a bellows-shaped portion is formed on the support substrate 40. The characteristics and dimensions of the support substrate 40 are set so that such a bellows-shaped portion can be easily formed. For example, the support substrate 40 has an elastic modulus larger than that of the first elastic modulus of the substrate 20. In the following description, the elastic modulus of the support substrate 40 is also referred to as a third elastic modulus.

支持基板40の第3の弾性係数は、例えば100MPa以上であり、より好ましくは1GPa以上である。支持基板40の第3の弾性係数は、基板20の第1の弾性係数の100倍以上であってもよく、1000倍以上であってもよい。また、支持基板40の厚みは、例えば10μm以下であり、より好ましくは5μm以下である。支持基板40の弾性係数を高くしたり、支持基板40の厚みを小さくしたりすることにより、基板20の収縮に伴って支持基板40に蛇腹形状部が形成され易くなる。支持基板40を構成する材料としては、例えば、ポリエチレンナフタレート、ポリイミド、ポリカーボネート、アクリル樹脂、ポリエチレンテレフタラート等を用いることができる。 The third elastic modulus of the support substrate 40 is, for example, 100 MPa or more, more preferably 1 GPa or more. The third elastic modulus of the support substrate 40 may be 100 times or more or 1000 times or more the first elastic modulus of the substrate 20. The thickness of the support substrate 40 is, for example, 10 μm or less, more preferably 5 μm or less. By increasing the elastic modulus of the support substrate 40 or reducing the thickness of the support substrate 40, a bellows-shaped portion is likely to be formed on the support substrate 40 as the substrate 20 shrinks. As the material constituting the support substrate 40, for example, polyethylene naphthalate, polyimide, polycarbonate, acrylic resin, polyethylene terephthalate and the like can be used.

支持基板40の第3の弾性係数は、基板20の第1の弾性係数の100倍以下であってもよい。支持基板40の第3の弾性係数を算出する方法は、基板20の場合と同様である。また、支持基板40の厚みは、500nm以上であってもよい。 The third elastic modulus of the support substrate 40 may be 100 times or less the first elastic modulus of the substrate 20. The method of calculating the third elastic modulus of the support substrate 40 is the same as that of the substrate 20. Further, the thickness of the support substrate 40 may be 500 nm or more.

〔電子部品〕
図1に示す例において、電子部品51は、配線52に接続される電極を少なくとも有する。電子部品51は、能動部品であってもよく、受動部品であってもよい。能動部品の例としては、トランジスタ、LSI(Large-Scale Integration)、MEMS(Micro Electro Mechanical Systems)、リレー、LED、OLED、LCDなどの発光素子、センサなどを挙げることができる。受動部品の例としては、抵抗器、キャパシタ、インダクタ、圧電素子などを挙げることができる。電子部品51の上述の例のうち、センサが好ましく用いられる。センサとしては、例えば、温度センサ、圧力センサ、光センサ、光電センサ、近接センサ、せん断力センサ、生体センサ等を挙げることができる。これらのセンサのうち、生体センサが特に好ましい。生体センサは、心拍や脈拍、心電、血圧、体温、血中酸素濃度等の生体情報を測定することができる。図1及び図2に示すように、複数の電子部品51が支持基板40に設けられていてもよい。また、図1に示すように、電子部品51は、樹脂などからなる封止部58によって覆われていてもよい。
[Electronic components]
In the example shown in FIG. 1, the electronic component 51 has at least an electrode connected to the wiring 52. The electronic component 51 may be an active component or a passive component. Examples of active components include transistors, LSIs (Large Scale Integration), MEMS (Micro Electro Mechanical Systems), relays, LEDs, OLEDs, light emitting elements such as LCDs, sensors, and the like. Examples of passive components include resistors, capacitors, inductors, piezoelectric elements and the like. Of the above examples of the electronic component 51, the sensor is preferably used. Examples of the sensor include a temperature sensor, a pressure sensor, an optical sensor, a photoelectric sensor, a proximity sensor, a shear force sensor, a biological sensor and the like. Of these sensors, biosensors are particularly preferred. The biological sensor can measure biological information such as heartbeat, pulse, electrocardiogram, blood pressure, body temperature, and blood oxygen concentration. As shown in FIGS. 1 and 2, a plurality of electronic components 51 may be provided on the support substrate 40. Further, as shown in FIG. 1, the electronic component 51 may be covered with a sealing portion 58 made of resin or the like.

〔配線〕
配線52は、電子部品51の電極に接続された、導電性を有する部材である。例えば図2に示すように、配線52の一端及び他端が、2つの電子部品51の電極にそれぞれ接続されている。図2に示すように、複数の配線52が2つの電子部品51の間に設けられていてもよい。
〔wiring〕
The wiring 52 is a conductive member connected to the electrodes of the electronic component 51. For example, as shown in FIG. 2, one end and the other end of the wiring 52 are connected to the electrodes of the two electronic components 51, respectively. As shown in FIG. 2, a plurality of wirings 52 may be provided between the two electronic components 51.

後述するように、支持基板40に接合された基板20から引張応力が取り除かれて基板20が収縮するとき、配線52は蛇腹状に変形する。この点を考慮し、好ましくは、配線52は、変形に対する耐性を有する構造を備える。例えば、配線52は、ベース材と、ベース材の中に分散された複数の導電性粒子とを有する。この場合、ベース材として、樹脂などの変形可能な材料を用いることにより、基板20の伸縮に応じて配線52も変形することができる。また、変形が生じた場合であっても複数の導電性粒子の間の接触が維持されるように導電性粒子の分布や形状を設定することにより、配線52の導電性を維持することができる。 As will be described later, when the tensile stress is removed from the substrate 20 joined to the support substrate 40 and the substrate 20 contracts, the wiring 52 is deformed in a bellows shape. In consideration of this point, preferably, the wiring 52 has a structure having resistance to deformation. For example, the wiring 52 has a base material and a plurality of conductive particles dispersed in the base material. In this case, by using a deformable material such as resin as the base material, the wiring 52 can also be deformed according to the expansion and contraction of the substrate 20. Further, the conductivity of the wiring 52 can be maintained by setting the distribution and shape of the conductive particles so that the contact between the plurality of conductive particles is maintained even when the deformation occurs. ..

配線52のベース材を構成する材料としては、例えば、一般的な熱可塑性エラストマーおよび熱硬化性エラストマーを用いることができ、例えば、スチレン系エラストマー、アクリル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、シリコーンゴム、ウレタンゴム、フッ素ゴム、ニトリルゴム、ポリブタジエン、ポリクロロプレン等を用いることができる。中でも、ウレタン系、シリコーン系構造を含む樹脂やゴムが、その伸縮性や耐久性などの面から好ましく用いられる。また、配線52の導電性粒子を構成する材料としては、例えば銀、銅、金、ニッケル、パラジウム、白金、カーボン等の粒子を用いることができる。中でも、銀粒子が、価格と導電性の観点から好ましく用いられる。 As a material constituting the base material of the wiring 52, for example, a general thermoplastic elastomer and a thermocurable elastomer can be used, and for example, a styrene-based elastomer, an acrylic-based elastomer, an olefin-based elastomer, a urethane-based elastomer, and a silicone can be used. Rubber, elastomer rubber, fluororubber, nitrile rubber, polybutadiene, polychloroprene and the like can be used. Among them, resins and rubbers containing urethane-based and silicone-based structures are preferably used in terms of their elasticity and durability. Further, as the material constituting the conductive particles of the wiring 52, for example, particles of silver, copper, gold, nickel, palladium, platinum, carbon and the like can be used. Among them, silver particles are preferably used from the viewpoint of price and conductivity.

配線52の厚みは、電子部品51の厚みよりも小さく、例えば50μm以下である。配線52の幅は、例えば50μm以上且つ10mm以下である。 The thickness of the wiring 52 is smaller than the thickness of the electronic component 51, for example, 50 μm or less. The width of the wiring 52 is, for example, 50 μm or more and 10 mm or less.

〔配線の構造〕
続いて、配線52の断面構造について、図3を参照して詳細に説明する。図3は、図1に示す配線基板10の配線52及びその周辺の構成要素の一例を拡大して示す断面図である。
[Wiring structure]
Subsequently, the cross-sectional structure of the wiring 52 will be described in detail with reference to FIG. FIG. 3 is an enlarged cross-sectional view showing an example of the wiring 52 of the wiring board 10 shown in FIG. 1 and its peripheral components.

図1及び図2に示すように、配線52全体は、若しくは配線52の大部分は、第1補強部材31及び第2補強部材32を備える応力調整機構30と重ならないように配置されている。このため、基板20が伸縮して基板20に生じた応力は、支持基板40及び支持基板40上の配線52にまで伝わる。例えば、伸張状態の基板20から引張応力を取り除いて基板20を弛緩させると、基板20に圧縮応力が生じ、この圧縮応力が支持基板40及び支持基板40上の配線52にまで伝わる。この結果、図3に示すように、配線52のうち応力調整機構30と重なっていない部分に蛇腹形状部57が生じる。 As shown in FIGS. 1 and 2, the entire wiring 52 or most of the wiring 52 is arranged so as not to overlap with the stress adjusting mechanism 30 provided with the first reinforcing member 31 and the second reinforcing member 32. Therefore, the stress generated in the substrate 20 due to the expansion and contraction of the substrate 20 is transmitted to the support substrate 40 and the wiring 52 on the support substrate 40. For example, when the tensile stress is removed from the stretched substrate 20 to relax the substrate 20, a compressive stress is generated in the substrate 20, and the compressive stress is transmitted to the support substrate 40 and the wiring 52 on the support substrate 40. As a result, as shown in FIG. 3, a bellows-shaped portion 57 is formed in a portion of the wiring 52 that does not overlap with the stress adjusting mechanism 30.

蛇腹形状部57は、基板20の第1面21の法線方向における山部及び谷部を含む。図3において、符号53は、配線52の表面に現れる山部を表し、符号54は、配線52の裏面に現れる山部を表す。また、符号55は、配線52の表面に現れる谷部を表し、符号56は、配線52の裏面に現れる谷部を表す。表面とは、配線52の面のうち基板20から遠い側に位置する面であり、裏面とは、配線52の面のうち基板20に近い側に位置する面である。 The bellows-shaped portion 57 includes peaks and valleys in the normal direction of the first surface 21 of the substrate 20. In FIG. 3, reference numeral 53 represents a mountain portion appearing on the front surface of the wiring 52, and reference numeral 54 represents a mountain portion appearing on the back surface of the wiring 52. Further, reference numeral 55 represents a valley portion appearing on the front surface of the wiring 52, and reference numeral 56 represents a valley portion appearing on the back surface of the wiring 52. The front surface is a surface of the wiring 52 located on the side farther from the substrate 20, and the back surface is a surface of the wiring 52 located on the side closer to the substrate 20.

山部53,54及び谷部55,56は、基板20の第1面21の面内方向に沿って繰り返し現れる。山部53,54及び谷部55,56が繰り返し現れる周期Fは、例えば10μm以上且つ100mm以下である。 The mountain portions 53, 54 and the valley portions 55, 56 repeatedly appear along the in-plane direction of the first surface 21 of the substrate 20. The period F in which the peaks 53 and 54 and the valleys 55 and 56 repeatedly appear is, for example, 10 μm or more and 100 mm or less.

図3において、符号S1は、配線52の表面における蛇腹形状部57の振幅を表す。振幅S1は、例えば1μm以上であり、より好ましくは10μm以上である。振幅S1を10μm以上とすることにより、基板20の伸張に追従して配線52が変形し易くなる。また、振幅S1は、例えば500μm以下であってもよい。 In FIG. 3, reference numeral S1 represents the amplitude of the bellows-shaped portion 57 on the surface of the wiring 52. The amplitude S1 is, for example, 1 μm or more, more preferably 10 μm or more. By setting the amplitude S1 to 10 μm or more, the wiring 52 is easily deformed following the expansion of the substrate 20. Further, the amplitude S1 may be, for example, 500 μm or less.

振幅S1は、例えば、配線52の長さ方向における一定の範囲にわたって、隣り合う山部53と谷部55との間の、第1面21の法線方向における距離を測定し、それらの平均を求めることにより算出される。「配線52の長さ方向における一定の範囲」は、例えば10mmである。隣り合う山部53と谷部55との間の距離を測定する測定器としては、レーザー顕微鏡などを用いた非接触式の測定器を用いてもよく、接触式の測定器を用いてもよい。また、断面写真などの画像に基づいて、隣り合う山部53と谷部55との間の距離を測定してもよい。 The amplitude S1 measures, for example, the distance in the normal direction of the first surface 21 between the adjacent peaks 53 and the valleys 55 over a certain range in the length direction of the wiring 52, and averages them. It is calculated by finding it. The "constant range in the length direction of the wiring 52" is, for example, 10 mm. As the measuring instrument for measuring the distance between the adjacent peaks 53 and the valleys 55, a non-contact measuring instrument using a laser microscope or the like may be used, or a contact measuring instrument may be used. .. Further, the distance between the adjacent mountain portion 53 and the valley portion 55 may be measured based on an image such as a cross-sectional photograph.

図3において、符号S2は、配線52の裏面における蛇腹形状部57の振幅を表す。振幅S2は、振幅S1と同様に、例えば1μm以上であり、より好ましくは10μm以上である。また、振幅S2は、例えば500μm以下であってもよい。 In FIG. 3, reference numeral S2 represents the amplitude of the bellows-shaped portion 57 on the back surface of the wiring 52. The amplitude S2 is, for example, 1 μm or more, more preferably 10 μm or more, like the amplitude S1. Further, the amplitude S2 may be, for example, 500 μm or less.

図3に示すように、支持基板40、接着層60や基板20の第1面21にも、配線52と同様の蛇腹形状部が形成されていてもよい。図3において、符号S3は、基板20の第1面21における蛇腹形状部の振幅を表す。振幅S3は、例えば1μm以上であり、より好ましくは10μm以上である。また、振幅S3は、例えば500μm以下であってもよい。 As shown in FIG. 3, a bellows-shaped portion similar to the wiring 52 may be formed on the support substrate 40, the adhesive layer 60, and the first surface 21 of the substrate 20. In FIG. 3, reference numeral S3 represents the amplitude of the bellows-shaped portion on the first surface 21 of the substrate 20. The amplitude S3 is, for example, 1 μm or more, more preferably 10 μm or more. Further, the amplitude S3 may be, for example, 500 μm or less.

図4は、図1に示す配線基板10の配線52及びその周辺の構成要素のその他の例を拡大して示す断面図である。図5に示すように、基板20の第1面21には蛇腹形状部が形成されていなくてもよい。 FIG. 4 is an enlarged cross-sectional view showing another example of the wiring 52 of the wiring board 10 shown in FIG. 1 and its peripheral components. As shown in FIG. 5, the bellows-shaped portion may not be formed on the first surface 21 of the substrate 20.

図3や図4に示す蛇腹形状部57が配線52に形成されていることの利点について説明する。上述のように、基板20は、10MPa以下の弾性係数を有する。このため、配線基板10に引張応力を加えた場合、基板20は、弾性変形によって伸長することができる。ここで、仮に配線52も同様に弾性変形によって伸長すると、配線52の全長が増加し、配線52の断面積が減少するので、配線52の抵抗値が増加してしまう。また、配線52の弾性変形に起因して配線52にクラックなどの破損が生じてしまうことも考えられる。 The advantage that the bellows-shaped portion 57 shown in FIGS. 3 and 4 is formed in the wiring 52 will be described. As described above, the substrate 20 has an elastic modulus of 10 MPa or less. Therefore, when a tensile stress is applied to the wiring board 10, the board 20 can be stretched by elastic deformation. Here, if the wiring 52 is similarly stretched by elastic deformation, the total length of the wiring 52 increases and the cross-sectional area of the wiring 52 decreases, so that the resistance value of the wiring 52 increases. Further, it is also conceivable that the wiring 52 may be damaged such as cracks due to the elastic deformation of the wiring 52.

これに対して、本実施の形態においては、配線52が蛇腹形状部57を有している。このため、基板20が伸張する際、配線52は、蛇腹形状部57の起伏を低減するように変形することによって、すなわち蛇腹形状を解消することによって、基板20の伸張に追従することができる。このため、基板20の伸張に伴って配線52の全長が増加することや、配線52の断面積が減少することを抑制することができる。このことにより、配線基板10の伸張に起因して配線52の抵抗値が増加することを抑制することができる。また、配線52にクラックなどの破損が生じてしまうことを抑制することができる。 On the other hand, in the present embodiment, the wiring 52 has a bellows-shaped portion 57. Therefore, when the substrate 20 is stretched, the wiring 52 can follow the stretching of the substrate 20 by deforming the bellows-shaped portion 57 so as to reduce the undulations, that is, by eliminating the bellows shape. Therefore, it is possible to suppress an increase in the total length of the wiring 52 and a decrease in the cross-sectional area of the wiring 52 with the extension of the substrate 20. As a result, it is possible to suppress an increase in the resistance value of the wiring 52 due to the expansion of the wiring board 10. Further, it is possible to prevent the wiring 52 from being damaged such as a crack.

ところで、基板20のうち電子部品51と重なる部分には、図3及び図4に示すように、第1補強部材31及び第2補強部材32を備える応力調整機構30が設けられている。上述のように、第1補強部材31及び第2補強部材32は、基板20に比べて高い弾性係数を有する。このため、伸張状態の基板20から引張応力を取り除いて基板20を弛緩させた後も、基板20のうち第1補強部材31及び第2補強部材32と重なる部分においては、伸張状態が少なくとも部分的に維持される。この結果、図3及び図4に示すように、基板20のうち第1補強部材31及び第2補強部材32と重なる部分の厚みT1は、基板20のうち第1補強部材31又は第2補強部材32と重ならない部分の厚みT2よりも小さくなる。例えば、厚みT1は、厚みT2の50%以上且つ95%以下である。なお、図3に示すように基板20の第1面21に蛇腹形状が現れている場合、厚みT2は、周期Fの範囲内における基板20の厚みの平均値として算出され得る。 By the way, as shown in FIGS. 3 and 4, a stress adjusting mechanism 30 including a first reinforcing member 31 and a second reinforcing member 32 is provided in a portion of the substrate 20 that overlaps with the electronic component 51. As described above, the first reinforcing member 31 and the second reinforcing member 32 have a higher elastic modulus than the substrate 20. Therefore, even after the tensile stress is removed from the stretched substrate 20 to relax the substrate 20, the stretched state is at least partially in the portion of the substrate 20 that overlaps with the first reinforcing member 31 and the second reinforcing member 32. Is maintained at. As a result, as shown in FIGS. 3 and 4, the thickness T1 of the portion of the substrate 20 that overlaps the first reinforcing member 31 and the second reinforcing member 32 is the first reinforcing member 31 or the second reinforcing member of the substrate 20. It is smaller than the thickness T2 of the portion that does not overlap with 32. For example, the thickness T1 is 50% or more and 95% or less of the thickness T2. When the bellows shape appears on the first surface 21 of the substrate 20 as shown in FIG. 3, the thickness T2 can be calculated as an average value of the thicknesses of the substrate 20 within the range of the period F.

(配線基板の製造方法)
以下、図5(a)~(e)を参照して、配線基板10の製造方法について説明する。
(Manufacturing method of wiring board)
Hereinafter, a method of manufacturing the wiring board 10 will be described with reference to FIGS. 5A to 5E.

まず、伸縮性を有する基板20を準備する。続いて、図5(a)に示すように、基板20に引張応力Tを加えて基板20を伸長させる伸長工程を実施する。基板20の伸張率は、例えば10%以上且つ200%以下である。伸張工程は、基板20を加熱した状態で実施してもよく、常温で実施してもよい。基板20を加熱する場合、基板20の温度は例えば50℃以上且つ100℃以下である。 First, the elastic substrate 20 is prepared. Subsequently, as shown in FIG. 5A, an elongation step of applying tensile stress T to the substrate 20 to extend the substrate 20 is carried out. The elongation rate of the substrate 20 is, for example, 10% or more and 200% or less. The stretching step may be carried out in a state where the substrate 20 is heated, or may be carried out at room temperature. When the substrate 20 is heated, the temperature of the substrate 20 is, for example, 50 ° C. or higher and 100 ° C. or lower.

続いて、引張応力Tによって伸長した状態の基板20に応力調整機構30を設ける。ここでは、図5(b)に示すように、基板20の第1面21に第1補強部材31を設け、第2面22に第2補強部材32を設ける。第1補強部材31及び第2補強部材32は、第1面21の法線方向に沿って見た場合に互いに重なるよう設けられる。なお、第1補強部材31及び第2補強部材32は、全域にわたって重なっていてもよく、部分的に重なっていてもよい。 Subsequently, a stress adjusting mechanism 30 is provided on the substrate 20 in a state of being stretched by the tensile stress T. Here, as shown in FIG. 5B, the first reinforcing member 31 is provided on the first surface 21 of the substrate 20, and the second reinforcing member 32 is provided on the second surface 22. The first reinforcing member 31 and the second reinforcing member 32 are provided so as to overlap each other when viewed along the normal direction of the first surface 21. The first reinforcing member 31 and the second reinforcing member 32 may overlap over the entire area or may partially overlap.

また、図5(c)に示すように、支持基板40を準備する。本実施の形態においては、図5(c)に示すように、基板20に接合される前の状態の支持基板40の第1面41に電子部品51及び配線52を設ける。配線52を設ける方法としては、例えば、ベース材及び導電性粒子を含む導電性ペーストを支持基板40の第1面41に印刷する方法を採用することができる。 Further, as shown in FIG. 5 (c), the support substrate 40 is prepared. In the present embodiment, as shown in FIG. 5C, the electronic component 51 and the wiring 52 are provided on the first surface 41 of the support substrate 40 in the state before being joined to the substrate 20. As a method of providing the wiring 52, for example, a method of printing a conductive paste containing a base material and conductive particles on the first surface 41 of the support substrate 40 can be adopted.

続いて、図5(d)に示すように、電子部品51及び配線52が設けられた支持基板40の第2面42を、伸長した状態の基板20に第1面21側から接合する接合工程を実施する。接合工程は、支持基板40に搭載されている電子部品51が基板20上の第1補強部材31及び第2補強部材32に重なるよう実施される。接合工程の際、基板20と支持基板40との間に接着層60を設けてもよい。 Subsequently, as shown in FIG. 5D, a joining step of joining the second surface 42 of the support substrate 40 provided with the electronic component 51 and the wiring 52 to the elongated substrate 20 from the first surface 21 side. To carry out. The joining step is carried out so that the electronic component 51 mounted on the support substrate 40 overlaps the first reinforcing member 31 and the second reinforcing member 32 on the substrate 20. At the time of the joining step, the adhesive layer 60 may be provided between the substrate 20 and the support substrate 40.

その後、基板20から引張応力Tを取り除く収縮工程を実施する。これにより、図5(e)において矢印Cで示すように、基板20が収縮し、基板20に接合されている支持基板40及び配線52にも変形が生じる。支持基板40の第3の弾性係数は、基板20の第1の弾性係数よりも大きい。このため、支持基板40及び配線52の変形を、蛇腹形状部の生成として生じさせることができる。 After that, a shrinkage step of removing the tensile stress T from the substrate 20 is carried out. As a result, as shown by the arrow C in FIG. 5 (e), the substrate 20 contracts, and the support substrate 40 and the wiring 52 joined to the substrate 20 are also deformed. The third elastic modulus of the support substrate 40 is larger than the first elastic modulus of the substrate 20. Therefore, the deformation of the support substrate 40 and the wiring 52 can be caused as the generation of the bellows-shaped portion.

また、本実施の形態においては、伸長した状態の基板20に第1補強部材31及び第2補強部材32を設け、その後、伸長した状態の基板20に支持基板40を接合する。このため、伸張される前の状態の基板20に第1補強部材31及び第2補強部材32を設ける場合に比べて、基板20のうち電子部品51と重なる場所に第1補強部材31及び第2補強部材32を精度良く配置し易い。このことにより、接合工程の際、第1補強部材31及び第2補強部材32に対する電子部品51の位置がずれてしまうことを抑制することができる。このような効果は、支持基板40上に複数の電子部品51が搭載されており、このため支持基板40と基板20の位置合わせが困難である場合に顕著に発揮される。 Further, in the present embodiment, the first reinforcing member 31 and the second reinforcing member 32 are provided on the stretched substrate 20, and then the support substrate 40 is joined to the stretched substrate 20. Therefore, as compared with the case where the first reinforcing member 31 and the second reinforcing member 32 are provided on the substrate 20 in the state before being stretched, the first reinforcing member 31 and the second reinforcing member 31 and the second reinforcing member 31 are located in the substrate 20 where they overlap with the electronic component 51. It is easy to arrange the reinforcing member 32 with high accuracy. As a result, it is possible to prevent the electronic component 51 from being displaced with respect to the first reinforcing member 31 and the second reinforcing member 32 during the joining process. Such an effect is remarkably exhibited when a plurality of electronic components 51 are mounted on the support substrate 40, and therefore it is difficult to align the support substrate 40 and the substrate 20.

また、本実施の形態においては、基板20に第1補強部材31及び第2補強部材32を設けている。このため、伸張状態の基板20から引張応力を取り除いた後、基板20のうち第1補強部材31及び第2補強部材32と重なる部分が弛緩することを抑制することができる。従って、支持基板40のうち第1補強部材31及び第2補強部材32と重なる部分には、基板20の弛緩に起因して生じる応力が伝わりにくい。このため、支持基板40上の電子部品51が応力に起因して変形したり破損したりしてしまうことを抑制することができる。さらには、電子部品51と配線52の間の電気接続部が破損してしまうことを抑制することができる。 Further, in the present embodiment, the substrate 20 is provided with the first reinforcing member 31 and the second reinforcing member 32. Therefore, after the tensile stress is removed from the stretched substrate 20, it is possible to prevent the portions of the substrate 20 that overlap with the first reinforcing member 31 and the second reinforcing member 32 from relaxing. Therefore, the stress generated by the relaxation of the substrate 20 is difficult to be transmitted to the portion of the support substrate 40 that overlaps with the first reinforcing member 31 and the second reinforcing member 32. Therefore, it is possible to prevent the electronic component 51 on the support substrate 40 from being deformed or damaged due to stress. Further, it is possible to prevent the electrical connection portion between the electronic component 51 and the wiring 52 from being damaged.

このように、本実施の形態によれば、基板20に第1補強部材31及び第2補強部材32を設けることにより、支持基板40と基板20の位置合わせのし易さや、電子部品51および電子部品51と配線52の間の電気接続部における信頼性を高めることができる。 As described above, according to the present embodiment, by providing the first reinforcing member 31 and the second reinforcing member 32 on the substrate 20, it is easy to align the support substrate 40 and the substrate 20, the electronic components 51 and the electrons. The reliability of the electrical connection between the component 51 and the wiring 52 can be improved.

配線52の蛇腹形状部57によって得られる、配線52の抵抗値に関する効果の一例について説明する。ここでは、基板20の第1面21の面内方向に沿う引張応力が基板20に加えられていない第1状態における配線52の抵抗値を、第1抵抗値と称する。また、基板20に引張応力を加えて基板20を第1面21の面内方向において第1状態に比べて30%伸長させた第2状態における配線52の抵抗値を、第2抵抗値と称する。本実施の形態によれば、配線52に蛇腹形状部57を形成することにより、第1抵抗値に対する、第1抵抗値と第2抵抗値の差の絶対値の比率を、20%以下にすることができ、より好ましくは10%以下にすることができ、更に好ましくは5%以下にすることができる。 An example of the effect on the resistance value of the wiring 52 obtained by the bellows-shaped portion 57 of the wiring 52 will be described. Here, the resistance value of the wiring 52 in the first state in which the tensile stress along the in-plane direction of the first surface 21 of the substrate 20 is not applied to the substrate 20 is referred to as a first resistance value. Further, the resistance value of the wiring 52 in the second state in which tensile stress is applied to the substrate 20 to extend the substrate 20 by 30% in the in-plane direction of the first surface 21 as compared with the first state is referred to as a second resistance value. .. According to the present embodiment, by forming the bellows-shaped portion 57 in the wiring 52, the ratio of the absolute value of the difference between the first resistance value and the second resistance value to the first resistance value is set to 20% or less. It can be more preferably 10% or less, still more preferably 5% or less.

配線基板10の用途としては、ヘルスケア製品、スポーツ製品、アミューズメント製品、振動アクチュエーターデバイスなどを挙げることができる。例えば、人の腕などの身体の一部に取り付ける製品を、本実施の形態による配線基板10を用いて構成する。配線基板10は伸張することができるので、例えば配線基板10を伸長させた状態で身体に取り付けることにより、配線基板10を身体の一部により密着させることができる。このため、良好な着用感を実現することができる。また、配線基板10が伸張した場合に配線52の抵抗値が低下することを抑制することができるので、配線基板10の良好な電気特性を実現することができる。 Applications of the wiring board 10 include healthcare products, sports products, amusement products, vibration actuator devices, and the like. For example, a product to be attached to a part of the body such as a human arm is configured by using the wiring board 10 according to the present embodiment. Since the wiring board 10 can be stretched, for example, by attaching the wiring board 10 to the body in an stretched state, the wiring board 10 can be brought into close contact with a part of the body. Therefore, a good wearing feeling can be realized. Further, since it is possible to suppress the decrease in the resistance value of the wiring 52 when the wiring board 10 is stretched, it is possible to realize good electrical characteristics of the wiring board 10.

なお、上述した実施の形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、上述した実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、上述した実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。 It is possible to make various changes to the above-described embodiment. Hereinafter, modification examples will be described with reference to the drawings as necessary. In the following description and the drawings used in the following description, the same reference numerals as those used for the corresponding portions in the above-described embodiment will be used for the portions that can be configured in the same manner as in the above-described embodiment. Duplicate explanations will be omitted. Further, when it is clear that the action and effect obtained in the above-described embodiment can be obtained in the modified example, the description thereof may be omitted.

(第1の変形例)
上述の実施の形態においては、基板20のうち電子部品51と重なる部分における伸張状態が維持されるよう基板20に第1補強部材31及び第2補強部材32を設けることにより、支持基板40上の電子部品51に応力が伝わることを抑制する例を示した。本変形例においては、伸張に起因して基板20のうち電子部品51と重なる部分に生じている応力を緩和することにより、支持基板40上の電子部品51に応力が伝わることを抑制する例について説明する。
(First modification)
In the above-described embodiment, the substrate 20 is provided with the first reinforcing member 31 and the second reinforcing member 32 so that the stretched state of the portion of the substrate 20 that overlaps with the electronic component 51 is maintained, thereby forming the support substrate 40. An example of suppressing the transmission of stress to the electronic component 51 is shown. In this modification, the example of suppressing the stress from being transmitted to the electronic component 51 on the support substrate 40 by relaxing the stress generated in the portion of the substrate 20 that overlaps with the electronic component 51 due to stretching. explain.

図6は、本変形例に係る配線基板10を示す断面図である。図7は、本変形例に係る配線基板10を基板20の第2面22側から見た場合を示す底面図である。図6に示す断面図は、図7の配線基板10を線B-Bに沿って切断した場合の図である。 FIG. 6 is a cross-sectional view showing a wiring board 10 according to this modification. FIG. 7 is a bottom view showing a case where the wiring board 10 according to this modification is viewed from the second surface 22 side of the board 20. The cross-sectional view shown in FIG. 6 is a view when the wiring board 10 of FIG. 7 is cut along the line BB.

図6及び図7に示すように、応力調整機構30は、第1面21の法線方向に沿って見た場合に電子部品51に重なるよう基板20の第2面22に形成された複数のスリット33を備える。複数のスリット33は、例えば図7に示すように、蛇腹形状部57を生じさせる配線52が延びる方向に沿って並んでいる。 As shown in FIGS. 6 and 7, the stress adjusting mechanism 30 is formed on the second surface 22 of the substrate 20 so as to overlap the electronic component 51 when viewed along the normal direction of the first surface 21. A slit 33 is provided. As shown in FIG. 7, for example, the plurality of slits 33 are arranged along the direction in which the wiring 52 that causes the bellows-shaped portion 57 extends.

図8は、本変形例に係る配線基板10の配線52及びその周辺の構成要素の一例を拡大して示す断面図である。本変形例においても、上述の実施の形態の場合と同様に、配線52のうち応力調整機構30と重なっていない部分には蛇腹形状部57が形成されている。このため、基板20の変形に伴って配線52の全長が増加することや、配線52の断面積が減少することを抑制することができる。 FIG. 8 is an enlarged cross-sectional view showing an example of the wiring 52 of the wiring board 10 according to the present modification and the components around the wiring 52. Also in this modification, the bellows-shaped portion 57 is formed in the portion of the wiring 52 that does not overlap with the stress adjusting mechanism 30, as in the case of the above-described embodiment. Therefore, it is possible to prevent the total length of the wiring 52 from increasing and the cross-sectional area of the wiring 52 from decreasing due to the deformation of the substrate 20.

図8において、符号T3はスリット33の深さを表す。スリット33の深さT3とは、第1面21の法線方向、すなわち基板20の厚み方向におけるスリット33の寸法である。スリット33の深さT3は、基板20のうちスリット33が設けられていない部分の厚みT2の少なくとも10%以上であり、30%以上であってもよい。また、スリット33の深さT3は、厚みT2の90%以下であってもよい。 In FIG. 8, reference numeral T3 represents the depth of the slit 33. The depth T3 of the slit 33 is the dimension of the slit 33 in the normal direction of the first surface 21, that is, the thickness direction of the substrate 20. The depth T3 of the slit 33 is at least 10% or more, and may be 30% or more, of the thickness T2 of the portion of the substrate 20 where the slit 33 is not provided. Further, the depth T3 of the slit 33 may be 90% or less of the thickness T2.

図9(a)~(d)は、本変形例に係る配線基板10の製造方法を説明するための図である。 9 (a) to 9 (d) are diagrams for explaining the manufacturing method of the wiring board 10 according to the present modification.

まず、図9(a)に示すように、基板20を準備する。続いて、図9(b)に示すように、基板20に引張応力Tを加えて基板20を伸長させる伸長工程を実施する。続いて、図9(c)に示すように、電子部品51及び配線52が設けられた支持基板40の第2面42を、伸長した状態の基板20に第1面21側から接合する接合工程を実施する。 First, as shown in FIG. 9A, the substrate 20 is prepared. Subsequently, as shown in FIG. 9B, an elongation step of applying a tensile stress T to the substrate 20 to extend the substrate 20 is carried out. Subsequently, as shown in FIG. 9C, a joining step of joining the second surface 42 of the support substrate 40 provided with the electronic component 51 and the wiring 52 to the elongated substrate 20 from the first surface 21 side. To carry out.

続いて、図9(d)に示すように、伸張状態の基板20のうち支持基板40上の電子部品51と重なる部分の第2面22に複数のスリット33を形成するスリット形成工程を実施する。例えば、刃物を第2面22側から基板20に、基板20の厚み方向に沿って挿入する。これにより、基板20のうち支持基板40上の電子部品51と重なる部分に生じている応力を緩和することができる。 Subsequently, as shown in FIG. 9D, a slit forming step of forming a plurality of slits 33 on the second surface 22 of the portion of the stretched substrate 20 that overlaps with the electronic component 51 on the support substrate 40 is carried out. .. For example, the blade is inserted into the substrate 20 from the second surface 22 side along the thickness direction of the substrate 20. As a result, the stress generated in the portion of the substrate 20 that overlaps with the electronic component 51 on the support substrate 40 can be relieved.

その後、基板20から引張応力Tを取り除く収縮工程を実施する。これにより、図9(e)において矢印Cで示すように、基板20が収縮し、基板20に接合されている支持基板40及び配線52にも変形が生じる。支持基板40の第3の弾性係数は、基板20の第1の弾性係数よりも大きい。このため、支持基板40及び配線52の変形を、蛇腹形状部の生成として生じさせることができる。 After that, a shrinkage step of removing the tensile stress T from the substrate 20 is carried out. As a result, as shown by the arrow C in FIG. 9E, the substrate 20 contracts, and the support substrate 40 and the wiring 52 joined to the substrate 20 are also deformed. The third elastic modulus of the support substrate 40 is larger than the first elastic modulus of the substrate 20. Therefore, the deformation of the support substrate 40 and the wiring 52 can be caused as the generation of the bellows-shaped portion.

また、本変形例においては、上述のように基板20に複数のスリット33を形成することにより、基板20のうち支持基板40上の電子部品51と重なる部分に生じている応力を緩和することができる。このため、基板20に生じている応力に起因して支持基板40上の電子部品51が変形したり破損したりしてしまうことを抑制することができる。さらには、電子部品51と配線52の間の電気接続部が破損してしまうことを抑制することができる。 Further, in this modification, by forming a plurality of slits 33 in the substrate 20 as described above, it is possible to relieve the stress generated in the portion of the substrate 20 that overlaps with the electronic component 51 on the support substrate 40. can. Therefore, it is possible to prevent the electronic component 51 on the support substrate 40 from being deformed or damaged due to the stress generated in the substrate 20. Further, it is possible to prevent the electrical connection portion between the electronic component 51 and the wiring 52 from being damaged.

また、本変形例においては、伸長した状態の基板20に複数のスリット33を形成するので、伸張される前の状態の基板20にスリット33を形成する場合に比べて、基板20のうち電子部品51と重なる場所にスリット33を精度良く形成し易い。このことにより、スリット33に対する電子部品51の位置がずれてしまうことを抑制することができる。このような効果は、支持基板40上に複数の電子部品51が搭載されており、このため支持基板40と基板20の位置合わせが困難である場合に顕著に発揮される。 Further, in this modification, since a plurality of slits 33 are formed in the stretched substrate 20, the electronic components in the substrate 20 are compared with the case where the slits 33 are formed in the substrate 20 in the stretched state. It is easy to form the slit 33 accurately at the place where it overlaps with 51. This makes it possible to prevent the electronic component 51 from being displaced with respect to the slit 33. Such an effect is remarkably exhibited when a plurality of electronic components 51 are mounted on the support substrate 40, and therefore it is difficult to align the support substrate 40 and the substrate 20.

(配線基板の変形例)
上述の実施の形態及び各変形例においては、配線基板10が、支持基板40の第1面21側に搭載された電子部品51を備える例を示した。しかしながら、これに限られることはなく、配線基板10は、電子部品51を備えていなくてもよい。例えば、電子部品51が搭載されていない状態の支持基板40が基板20に接合されてもよい。また、配線基板10は、電子部品51が搭載されていない状態で出荷されてもよい。
(Modification example of wiring board)
In the above-described embodiment and each modification, an example is shown in which the wiring board 10 includes an electronic component 51 mounted on the first surface 21 side of the support board 40. However, the present invention is not limited to this, and the wiring board 10 may not include the electronic component 51. For example, the support substrate 40 in which the electronic component 51 is not mounted may be bonded to the substrate 20. Further, the wiring board 10 may be shipped in a state where the electronic component 51 is not mounted.

なお、上述した実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。 Although some modifications to the above-described embodiments have been described, it is naturally possible to apply a plurality of modifications in combination as appropriate.

次に、本発明を実施例及び比較例により更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。 Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the description of the following Examples as long as the gist of the present invention is not exceeded.

(実施例1)
配線基板10として、図1に示すような、基板20の第1面21上に位置する第1補強部材31と、基板20の第2面22上に位置する第2補強部材32とを有する応力調整機構30を備えるものを作製した。以下、配線基板10の作製方法について説明する。
(Example 1)
As the wiring board 10, a stress having a first reinforcing member 31 located on the first surface 21 of the substrate 20 and a second reinforcing member 32 located on the second surface 22 of the substrate 20, as shown in FIG. The one provided with the adjustment mechanism 30 was manufactured. Hereinafter, a method for manufacturing the wiring board 10 will be described.

≪基板及び応力調整機構の準備≫
基板20として機能する、厚み80μmのウレタンシートを準備した。また、応力調整機構30として、一辺が5mmの四角形状を有するとともに12μmの厚みを有する銅箔と、銅箔に積層された粘着シートと、を有する積層体を準備した。粘着シートとしては、3M社製の8146を用いた。続いて、ウレタンシートからなる基板20を一軸に1.5倍に伸長させた状態で、積層体からなる応力調整機構30を、基板20の第1面21及び第2面22に貼り合わせた。この際、第1面21側の応力調整機構30、すなわち第1補強部材31と、第2面22側の応力調整機構30、すなわち第2補強部材32とが互いに重なるよう、位置を調整した。
≪Preparation of substrate and stress adjustment mechanism≫
A urethane sheet having a thickness of 80 μm, which functions as the substrate 20, was prepared. Further, as the stress adjusting mechanism 30, a laminated body having a copper foil having a square shape with a side of 5 mm and a thickness of 12 μm and an adhesive sheet laminated on the copper foil was prepared. As the adhesive sheet, 8146 manufactured by 3M Co., Ltd. was used. Subsequently, the stress adjusting mechanism 30 made of a laminated body was attached to the first surface 21 and the second surface 22 of the substrate 20 in a state where the substrate 20 made of a urethane sheet was stretched 1.5 times around one axis. At this time, the positions of the stress adjusting mechanism 30 on the first surface 21 side, that is, the first reinforcing member 31, and the stress adjusting mechanism 30 on the second surface 22 side, that is, the second reinforcing member 32 were adjusted so as to overlap each other.

≪支持基板の準備≫
支持基板40として機能する、厚さ1μmのポリエチレンナフタレート(PEN)フィルムを準備した。続いて、支持基板40の第1面41に、溶媒、バインダー樹脂及び導電性粒子を含む導電性ペーストをスクリーン印刷によりパターニングした。溶媒としては、ジエチレングリコールモノエチルエーテルアセテートを用いた。バインダー樹脂としては、ウレタンを用いた。導電性粒子としては、銀粒子を用いた。パターニング後、オーブンにて80℃30分間にわたってアニールを実施して溶媒を揮発させて、配線52を形成した。配線52は、20μmの厚み、100μmの線幅を有し、500μmの間隔が空けられた電極対となるよう、構成された。
≪Preparation of support board≫
A polyethylene naphthalate (PEN) film having a thickness of 1 μm, which functions as a support substrate 40, was prepared. Subsequently, a conductive paste containing a solvent, a binder resin and conductive particles was patterned on the first surface 41 of the support substrate 40 by screen printing. Diethylene glycol monoethyl ether acetate was used as the solvent. Urethane was used as the binder resin. Silver particles were used as the conductive particles. After patterning, annealing was performed in an oven at 80 ° C. for 30 minutes to volatilize the solvent to form the wiring 52. The wiring 52 has a thickness of 20 μm, a line width of 100 μm, and is configured to be an electrode pair with an interval of 500 μm.

次いで、電極対の間に、1.0×0.5mmの寸法を有するLEDチップを、導電性接着剤を用いて搭載した。導電性接着剤としては、化研テック社製のCL-3160を用いた。 Next, an LED chip having a size of 1.0 × 0.5 mm was mounted between the electrode pairs using a conductive adhesive. As the conductive adhesive, CL-3160 manufactured by Kaken Tech Co., Ltd. was used.

次いで、配線52及びLEDチップが設けられた支持基板40と、応力調整機構30が設けられ、且つ1.5倍に伸長された状態の基板20とを、3M社製の粘着シート8146を用いて貼り合わせた。この際、応力調整機構30の一辺が5mmの四角形状の銅箔の中央部とLEDチップとが重なるよう、基板20と支持基板40の位置合わせを行った。 Next, the support substrate 40 provided with the wiring 52 and the LED chip and the substrate 20 provided with the stress adjusting mechanism 30 and stretched 1.5 times are used by 3M's adhesive sheet 8146. I pasted them together. At this time, the substrate 20 and the support substrate 40 were aligned so that the central portion of the square copper foil having a side of 5 mm on one side of the stress adjusting mechanism 30 overlapped with the LED chip.

次いで、基板20の伸長を開放した。これにより、応力調整機構30と重なる領域以外の領域において、配線52の表面に蛇腹形状部が生じ、配線基板10が収縮した。この際、LEDチップの導通接続は維持されており、LEDチップは点灯し続けていた。 Then, the extension of the substrate 20 was released. As a result, a bellows-shaped portion was formed on the surface of the wiring 52 in a region other than the region overlapping the stress adjusting mechanism 30, and the wiring board 10 shrank. At this time, the conductive connection of the LED chip was maintained, and the LED chip continued to light.

(実施例2)
配線基板10として、図6に示すような、基板20の第2面22に形成された複数のスリット33を有する応力調整機構30を備えるものを作製した。以下、配線基板10の作製方法について説明する。
(Example 2)
As the wiring board 10, a wiring board 10 having a stress adjusting mechanism 30 having a plurality of slits 33 formed on the second surface 22 of the board 20 as shown in FIG. 6 was manufactured. Hereinafter, a method for manufacturing the wiring board 10 will be described.

まず、基板20として機能する、厚み80μmのウレタンシートを準備した。また、実施例1の場合と同様にして、配線52及びLEDチップが設けられた支持基板40を準備した。続いて、ウレタンシートからなる基板20を一軸に1.5倍に伸長させた状態で、支持基板40と基板20とを、3M社製の粘着シート8146を用いて貼り合わせた。 First, a urethane sheet having a thickness of 80 μm, which functions as the substrate 20, was prepared. Further, in the same manner as in the case of the first embodiment, the support substrate 40 provided with the wiring 52 and the LED chip was prepared. Subsequently, the support substrate 40 and the substrate 20 were bonded to each other using an adhesive sheet 8146 manufactured by 3M Co., Ltd. in a state where the substrate 20 made of a urethane sheet was stretched 1.5 times around one axis.

続いて、基板20のうち支持基板40とは反対側の面、すなわち第2面22に、カッティングプロッタ装置を用いて複数のスリット33を形成した。カッティングプロッタ装としては、GRAPHTEC社製のFC2250を用いた。スリット33のパターンは、5本のスリット33が互いに直交する碁盤の目状とした。スリット33の幅は5mmとし、スリット33の間隔は1mmとした。また、碁盤の目状の複数のスリット33が存在する領域の中央部とLEDチップとが重なるよう、スリット33を形成した。 Subsequently, a plurality of slits 33 were formed on the surface of the substrate 20 opposite to the support substrate 40, that is, the second surface 22, using a cutting plotter device. As the cutting plotter, FC2250 manufactured by GRAPHTEC was used. The pattern of the slits 33 is a grid pattern in which the five slits 33 are orthogonal to each other. The width of the slits 33 was 5 mm, and the distance between the slits 33 was 1 mm. Further, the slit 33 is formed so that the central portion of the region where the plurality of grid-shaped slits 33 are present and the LED chip overlap each other.

次いで、基板20の伸長を開放した。これにより、碁盤の目状のスリット33からなる応力調整機構30と重なる領域以外の領域において、配線52の表面に蛇腹形状部が生じ、配線基板10が収縮した。この際、LEDチップの導通接続は維持されており、LEDチップは点灯し続けていた。 Then, the extension of the substrate 20 was released. As a result, a bellows-shaped portion was formed on the surface of the wiring 52 in a region other than the region overlapping the stress adjusting mechanism 30 composed of the grid-shaped slits 33 of the board, and the wiring board 10 contracted. At this time, the conductive connection of the LED chip was maintained, and the LED chip continued to light.

(比較例2)
応力調整機構30を設けなかったこと以外は、実施例1の場合と同様にして、配線基板10を作製した。この場合、基板20の伸長を開放した後、配線基板10が収縮する際に、収縮に伴ってLEDチップの導通接続が外れてLEDが不点灯になった。
(Comparative Example 2)
The wiring board 10 was produced in the same manner as in the case of the first embodiment except that the stress adjusting mechanism 30 was not provided. In this case, when the wiring board 10 contracts after the extension of the substrate 20 is released, the conduction connection of the LED chip is disconnected due to the contraction, and the LED is not lit.

10 配線基板
20 基板
21 第1面
22 第2面
30 応力調整機構
31 第1補強部材
32 第2補強部材
33 スリット
40 支持基板
41 第1面
42 第2面
51 電子部品
52 配線
53、54 山部
55、56 谷部
57 蛇腹形状部
58 封止部
60 接着層
10 Wiring board 20 Board 21 First surface 22 Second surface 30 Stress adjustment mechanism 31 First reinforcing member 32 Second reinforcing member 33 Slit 40 Support board 41 First surface 42 Second surface 51 Electronic components 52 Wiring 53, 54 Yamabe 55, 56 Valley part 57 Bellows shape part 58 Sealing part 60 Adhesive layer

Claims (12)

伸縮性を有し、第1面及び前記第1面の反対側に位置する第2面を含む基板と、
前記基板の前記第1面側から前記基板に接合され、前記基板の弾性係数よりも高い弾性係数を有する支持基板と、
前記支持基板に搭載される電子部品の電極に接続されるよう前記支持基板に設けられた配線であって、前記基板の前記第1面の法線方向における山部及び谷部が前記基板の前記第1面の面内方向に沿って繰り返し現れる蛇腹形状部を有する配線と、
伸縮に起因して前記基板に生じる応力が前記支持基板に伝わることを抑制するよう前記基板の一部に設けられた応力調整機構と、を備え、
前記支持基板は、厚み方向において前記基板と前記配線の間に位置し、
前記応力調整機構は、前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品に重なるよう前記基板の前記第1面上に位置し、前記基板の弾性係数よりも高い弾性係数を有する第1補強部材と、前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品に重なるよう前記基板の前記第2面上に位置し、前記基板の弾性係数よりも高い弾性係数を有する第2補強部材と、を備える、配線基板。
A substrate that has elasticity and includes a first surface and a second surface located on the opposite side of the first surface.
A support substrate bonded to the substrate from the first surface side of the substrate and having an elastic modulus higher than that of the substrate.
The wiring provided on the support board so as to be connected to the electrodes of the electronic components mounted on the support board, and the peaks and valleys in the normal direction of the first surface of the board are the above-mentioned of the board. Wiring with a bellows-shaped portion that repeatedly appears along the in-plane direction of the first surface,
It is provided with a stress adjusting mechanism provided in a part of the substrate so as to suppress the stress generated in the substrate due to expansion and contraction from being transmitted to the support substrate.
The support substrate is located between the substrate and the wiring in the thickness direction.
The stress adjusting mechanism is located on the first surface of the substrate so as to overlap the electronic components mounted on the support substrate when viewed along the normal direction of the first surface, and the elastic coefficient of the substrate. Positioned on the second surface of the substrate so as to overlap the first reinforcing member having a higher elastic coefficient and the electronic component mounted on the support substrate when viewed along the normal direction of the first surface. A wiring board comprising a second reinforcing member having an elastic coefficient higher than that of the substrate.
伸縮性を有し、第1面及び前記第1面の反対側に位置する第2面を含む基板と、
前記基板の前記第1面側から前記基板に接合され、前記基板の弾性係数よりも高い弾性係数を有する支持基板と、
前記支持基板に搭載される電子部品の電極に接続されるよう前記支持基板に設けられた配線であって、前記基板の前記第1面の法線方向における山部及び谷部が前記基板の前記第1面の面内方向に沿って繰り返し現れる蛇腹形状部を有する配線と、
伸縮に起因して前記基板に生じる応力が前記支持基板に伝わることを抑制するよう前記基板の一部に設けられた応力調整機構と、を備え、
前記応力調整機構は、前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品に重なるよう前記基板の前記第1面上に位置し、前記基板の弾性係数よりも高い弾性係数を有する第1補強部材と、前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品に重なるよう前記基板の前記第2面上に位置し、前記基板の弾性係数よりも高い弾性係数を有する第2補強部材と、を備える、配線基板。
A substrate that has elasticity and includes a first surface and a second surface located on the opposite side of the first surface.
A support substrate bonded to the substrate from the first surface side of the substrate and having an elastic modulus higher than that of the substrate.
The wiring provided on the support board so as to be connected to the electrodes of the electronic components mounted on the support board, and the peaks and valleys in the normal direction of the first surface of the board are the above-mentioned of the board. Wiring with a bellows-shaped portion that repeatedly appears along the in-plane direction of the first surface,
It is provided with a stress adjusting mechanism provided in a part of the substrate so as to suppress the stress generated in the substrate due to expansion and contraction from being transmitted to the support substrate.
The stress adjusting mechanism is located on the first surface of the substrate so as to overlap the electronic components mounted on the support substrate when viewed along the normal direction of the first surface, and the elastic coefficient of the substrate. Positioned on the second surface of the substrate so as to overlap the first reinforcing member having a higher elastic coefficient and the electronic component mounted on the support substrate when viewed along the normal direction of the first surface. A wiring board comprising a second reinforcing member having an elastic coefficient higher than that of the substrate.
前記基板のうち、前記第1面の法線方向に沿って見た場合に前記第1補強部材及び前記第2補強部材と重なる部分の厚みは、前記基板のうち前記第1面の法線方向に沿って見た場合に前記第1補強部材又は前記第2補強部材と重ならない部分の厚みよりも小さい、請求項又はに記載の配線基板。 The thickness of the portion of the substrate that overlaps with the first reinforcing member and the second reinforcing member when viewed along the normal direction of the first surface is the normal direction of the first surface of the substrate. The wiring board according to claim 1 or 2 , which is smaller than the thickness of the first reinforcing member or the portion that does not overlap with the second reinforcing member when viewed along the line. 前記第1補強部材及び前記第2補強部材は、金属層を含む、請求項乃至のいずれか一項に記載の配線基板。 The wiring board according to any one of claims 1 to 3 , wherein the first reinforcing member and the second reinforcing member include a metal layer. 伸縮性を有し、第1面及び前記第1面の反対側に位置する第2面を含む基板と、
前記基板の前記第1面側から前記基板に接合され、前記基板の弾性係数よりも高い弾性係数を有する支持基板と、
前記支持基板に搭載される電子部品の電極に接続されるよう前記支持基板に設けられた配線であって、前記基板の前記第1面の法線方向における山部及び谷部が前記基板の前記第1面の面内方向に沿って繰り返し現れる蛇腹形状部を有する配線と、
伸縮に起因して前記基板に生じる応力が前記支持基板に伝わることを抑制するよう前記基板の一部に設けられた応力調整機構と、を備え、
前記支持基板は、厚み方向において前記基板と前記配線の間に位置し、
前記応力調整機構は、前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品に重なるよう前記基板の前記第2面に形成された複数のスリットを備える、配線基板。
A substrate that has elasticity and includes a first surface and a second surface located on the opposite side of the first surface.
A support substrate bonded to the substrate from the first surface side of the substrate and having an elastic modulus higher than that of the substrate.
The wiring provided on the support board so as to be connected to the electrodes of the electronic components mounted on the support board, and the peaks and valleys in the normal direction of the first surface of the board are the above-mentioned of the board. Wiring with a bellows-shaped portion that repeatedly appears along the in-plane direction of the first surface,
It is provided with a stress adjusting mechanism provided in a part of the substrate so as to suppress the stress generated in the substrate due to expansion and contraction from being transmitted to the support substrate.
The support substrate is located between the substrate and the wiring in the thickness direction.
The stress adjusting mechanism includes a plurality of slits formed on the second surface of the substrate so as to overlap electronic components mounted on the support substrate when viewed along the normal direction of the first surface . Wiring board.
伸縮性を有し、第1面及び前記第1面の反対側に位置する第2面を含む基板と、
前記基板の前記第1面側から前記基板に接合され、前記基板の弾性係数よりも高い弾性係数を有する支持基板と、
前記支持基板に搭載される電子部品の電極に接続されるよう前記支持基板に設けられた配線であって、前記基板の前記第1面の法線方向における山部及び谷部が前記基板の前記第1面の面内方向に沿って繰り返し現れる蛇腹形状部を有する配線と、
伸縮に起因して前記基板に生じる応力が前記支持基板に伝わることを抑制するよう前記基板の一部に設けられた応力調整機構と、を備え、
前記応力調整機構は、前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品に重なるよう前記基板の前記第2面に形成された複数のスリットを備える、配線基板。
A substrate that has elasticity and includes a first surface and a second surface located on the opposite side of the first surface.
A support substrate bonded to the substrate from the first surface side of the substrate and having an elastic modulus higher than that of the substrate.
The wiring provided on the support board so as to be connected to the electrodes of the electronic components mounted on the support board, and the peaks and valleys in the normal direction of the first surface of the board are the above-mentioned of the board. Wiring with a bellows-shaped portion that repeatedly appears along the in-plane direction of the first surface,
It is provided with a stress adjusting mechanism provided in a part of the substrate so as to suppress the stress generated in the substrate due to expansion and contraction from being transmitted to the support substrate.
The stress adjusting mechanism includes a plurality of slits formed on the second surface of the substrate so as to overlap electronic components mounted on the support substrate when viewed along the normal direction of the first surface. Wiring board.
前記配線の前記蛇腹形状部の振幅が1μm以上である、請求項1乃至のいずれか一項に記載の配線基板。 The wiring board according to any one of claims 1 to 6 , wherein the bellows-shaped portion of the wiring has an amplitude of 1 μm or more. 前記基板は、シリコーンゴムを含む、請求項1乃至のいずれか一項に記載の配線基板。 The wiring board according to any one of claims 1 to 7 , wherein the board contains silicone rubber. 前記配線は、複数の導電性粒子を含む、請求項1乃至のいずれか一項に記載の配線基板。 The wiring board according to any one of claims 1 to 8 , wherein the wiring includes a plurality of conductive particles. 前記支持基板上に位置し、前記配線に電気的に接続される電極を有する電子部品を更に備える、請求項1乃至のいずれか一項に記載の配線基板。 The wiring board according to any one of claims 1 to 9 , further comprising an electronic component located on the support board and having an electrode electrically connected to the wiring. 配線基板の製造方法であって、
第1面及び前記第1面の反対側に位置する第2面を含み、伸縮性を有する基板に引張応力を加えて、前記基板を伸長させる伸長工程と、
前記基板の弾性係数よりも高い弾性係数を有する第1補強部材を前記基板の前記第1面上に設け、前記基板の弾性係数よりも高い弾性係数を有する第2補強部材を前記基板の前記第2面上に設ける工程と、
前記基板の弾性係数よりも高い弾性係数を有する支持基板であって、前記支持基板に搭載される電子部品の電極に接続される配線が設けられた支持基板を、伸長した状態の前記基板に前記第1面側から接合する接合工程と、
前記基板から前記引張応力を取り除く収縮工程と、を備え、
前記接合工程は、前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品が前記第1補強部材及び前記第2補強部材に重なるよう実施され、
前記基板から前記引張応力が取り除かれた後、前記配線のうち前記第1面の法線方向に沿って見た場合に前記第1補強部材及び前記第2補強部材と重ならない部分は、前記第1面の法線方向における山部及び谷部が前記第1面の面内方向に沿って繰り返し現れる蛇腹形状部を有する、配線基板の製造方法。
It is a method of manufacturing a wiring board.
A stretching step of stretching the substrate by applying tensile stress to the first surface and the second surface located on the opposite side of the first surface and having elasticity.
A first reinforcing member having an elastic modulus higher than the elastic modulus of the substrate is provided on the first surface of the substrate, and a second reinforcing member having an elastic modulus higher than the elastic modulus of the substrate is provided on the first surface of the substrate. The process to be provided on two sides and
A support substrate having an elastic modulus higher than that of the substrate and provided with wiring connected to electrodes of electronic components mounted on the support substrate is stretched onto the substrate. The joining process of joining from the first surface side and
A shrinkage step of removing the tensile stress from the substrate is provided.
The joining step is carried out so that the electronic components mounted on the support substrate overlap with the first reinforcing member and the second reinforcing member when viewed along the normal direction of the first surface.
After the tensile stress is removed from the substrate, the portion of the wiring that does not overlap with the first reinforcing member and the second reinforcing member when viewed along the normal direction of the first surface is the first. A method for manufacturing a wiring board, which has a bellows-shaped portion in which peaks and valleys in the normal direction of one surface repeatedly appear along the in-plane direction of the first surface.
配線基板の製造方法であって、
第1面及び前記第1面の反対側に位置する第2面を含み、伸縮性を有する基板に引張応力を加えて、前記基板を伸長させる伸長工程と、
前記基板の弾性係数よりも高い弾性係数を有する支持基板であって、前記支持基板に搭載される電子部品の電極に接続される配線が設けられた支持基板を、伸長した状態の前記基板に前記第1面側から接合する接合工程と、
前記基板から前記引張応力を取り除く収縮工程と、を備え、
前記接合工程と前記収縮工程との間に実施され、前記基板のうち前記第1面の法線方向に沿って見た場合に前記支持基板に搭載される電子部品と重なる部分の前記第2面に複数のスリットを形成するスリット形成工程を更に備え、
前記基板から前記引張応力が取り除かれた後、前記配線のうち前記第1面の法線方向に沿って見た場合に前記スリットと重ならない部分は、前記第1面の法線方向における山部及び谷部が前記第1面の面内方向に沿って繰り返し現れる蛇腹形状部を有する、配線基板の製造方法。
It is a method of manufacturing a wiring board.
A stretching step of stretching the substrate by applying tensile stress to the first surface and the second surface located on the opposite side of the first surface and having elasticity.
A support substrate having an elastic modulus higher than that of the substrate and provided with wiring connected to electrodes of electronic components mounted on the support substrate is stretched onto the substrate. The joining process of joining from the first surface side and
A shrinkage step of removing the tensile stress from the substrate is provided.
The second surface of the substrate, which is carried out between the joining step and the shrinking step and overlaps with an electronic component mounted on the support substrate when viewed along the normal direction of the first surface of the substrate. Further equipped with a slit forming process for forming a plurality of slits in the
After the tensile stress is removed from the substrate, the portion of the wiring that does not overlap with the slit when viewed along the normal direction of the first surface is a mountain portion in the normal direction of the first surface. A method for manufacturing a wiring board, which has a bellows-shaped portion in which valley portions repeatedly appear along the in-plane direction of the first surface.
JP2017198679A 2017-10-12 2017-10-12 Wiring board and manufacturing method of wiring board Active JP7067011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017198679A JP7067011B2 (en) 2017-10-12 2017-10-12 Wiring board and manufacturing method of wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017198679A JP7067011B2 (en) 2017-10-12 2017-10-12 Wiring board and manufacturing method of wiring board

Publications (2)

Publication Number Publication Date
JP2019075416A JP2019075416A (en) 2019-05-16
JP7067011B2 true JP7067011B2 (en) 2022-05-16

Family

ID=66544281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017198679A Active JP7067011B2 (en) 2017-10-12 2017-10-12 Wiring board and manufacturing method of wiring board

Country Status (1)

Country Link
JP (1) JP7067011B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7216912B2 (en) * 2019-02-14 2023-02-02 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
JP7216911B2 (en) * 2019-02-14 2023-02-02 大日本印刷株式会社 Wiring board and method for manufacturing wiring board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177259A (en) 2007-01-17 2008-07-31 Mitsuboshi Belting Ltd Circuit board
US20120212820A1 (en) 2011-01-24 2012-08-23 Hanqing Jiang Optical diffraction gratings and methods for manufacturing same
JP2016021555A (en) 2014-05-27 2016-02-04 キヤノン・コンポーネンツ株式会社 Flexible printed wiring board and flexible circuit board
WO2017047519A1 (en) 2015-09-17 2017-03-23 ポリマテック・ジャパン株式会社 Elastic wiring member
JP2017069530A (en) 2015-10-01 2017-04-06 日本メクトロン株式会社 Stretchable wiring board and manufacturing method for stretchable wiring board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100967362B1 (en) * 2008-02-28 2010-07-05 재단법인서울대학교산학협력재단 Stretchable and bendable wiring structure and fabricating method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177259A (en) 2007-01-17 2008-07-31 Mitsuboshi Belting Ltd Circuit board
US20120212820A1 (en) 2011-01-24 2012-08-23 Hanqing Jiang Optical diffraction gratings and methods for manufacturing same
JP2016021555A (en) 2014-05-27 2016-02-04 キヤノン・コンポーネンツ株式会社 Flexible printed wiring board and flexible circuit board
WO2017047519A1 (en) 2015-09-17 2017-03-23 ポリマテック・ジャパン株式会社 Elastic wiring member
JP2017069530A (en) 2015-10-01 2017-04-06 日本メクトロン株式会社 Stretchable wiring board and manufacturing method for stretchable wiring board

Also Published As

Publication number Publication date
JP2019075416A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP7154508B2 (en) Wiring board and method for manufacturing wiring board
JP6506653B2 (en) Stretchable wiring board
JP6300156B2 (en) Stretchable flexible substrate and manufacturing method thereof
JP6488189B2 (en) Elastic wiring board
WO2013144738A2 (en) A deformable apparatus and method
JP2020010052A5 (en)
WO2019074111A1 (en) Wiring substrate and method for manufacturing same
JP7252529B2 (en) Expandable wiring member
JP7067011B2 (en) Wiring board and manufacturing method of wiring board
JP6998172B2 (en) Elastic circuit board
WO2019074105A1 (en) Wiring board and wiring board manufacturing method
JP7251165B2 (en) Wiring board and method for manufacturing wiring board
JP7119406B2 (en) Stretchable wiring board and manufacturing method thereof
JP2020155563A (en) Wiring substrate
JP6975422B2 (en) Wiring board
JP7269544B2 (en) Wiring board and method for manufacturing wiring board
JP7155529B2 (en) elastic circuit board
JP7486042B2 (en) Wiring board and method for manufacturing the same
JP7216912B2 (en) Wiring board and method for manufacturing wiring board
JP7216911B2 (en) Wiring board and method for manufacturing wiring board
JP7380158B2 (en) Stretchable circuit boards and stretchable devices
JP7326810B2 (en) Wiring board and method for manufacturing wiring board
JP7236052B2 (en) Wiring board and method for manufacturing wiring board
JP2020136350A (en) Wiring board and manufacturing method thereof
JP2020088337A (en) Wiring board and manufacturing method of the wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R150 Certificate of patent or registration of utility model

Ref document number: 7067011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150