JP7058171B2 - Storage type power supply - Google Patents

Storage type power supply Download PDF

Info

Publication number
JP7058171B2
JP7058171B2 JP2018090813A JP2018090813A JP7058171B2 JP 7058171 B2 JP7058171 B2 JP 7058171B2 JP 2018090813 A JP2018090813 A JP 2018090813A JP 2018090813 A JP2018090813 A JP 2018090813A JP 7058171 B2 JP7058171 B2 JP 7058171B2
Authority
JP
Japan
Prior art keywords
electrode side
positive electrode
negative electrode
power storage
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018090813A
Other languages
Japanese (ja)
Other versions
JP2018195816A (en
Inventor
翔伍 永吉
信也 渡邉
安久 斎藤
仁 斉藤
心祐 平山
洋徳 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to US15/977,728 priority Critical patent/US10483048B2/en
Priority to CN201810458965.3A priority patent/CN108878155B/en
Publication of JP2018195816A publication Critical patent/JP2018195816A/en
Application granted granted Critical
Publication of JP7058171B2 publication Critical patent/JP7058171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、蓄積した電気エネルギーを外部に供給可能な蓄電式電源装置に関する。 The present invention relates to a power storage type power supply device capable of supplying stored electric energy to the outside.

従来、並列接続された蓄電装置に蓄積された電気エネルギーを外部に供給する蓄電式電源装置が種々提案されている。このような蓄電式電源装置では、並列接続された多数の蓄電装置に極力均分化された電流が流れるように工夫されている場合がある。これは充放電の電流が特定の蓄電装置に集中してその耐用期間が短くなってしまうことを回避するためである。 Conventionally, various power storage type power supply devices have been proposed to supply the electric energy stored in the power storage devices connected in parallel to the outside. In such a power storage type power supply device, there are cases where it is devised so that a current that is evenly differentiated as much as possible flows through a large number of power storage devices connected in parallel. This is to prevent the charging / discharging current from concentrating on a specific power storage device and shortening its useful life.

並列接続された多数の蓄電装置(コンデンサ)に流れる電流の均分化を図るために、コンデンサを並列に結ぶパターン導体にスリットを設けるという手法が提案されている(例えば、特許文献1参照)。特許文献1の技術では、スリットによってパターン導体の区画を分けることによって、各コンデンサを結ぶ導体部のインピーダンスを均等にしている。即ち、各コンデンサへの電流経路のインピーダンスを均等にすることによって各コンデンサに流れる電流の均分化を図っている。 In order to even out the current flowing through a large number of power storage devices (capacitors) connected in parallel, a method of providing a slit in a pattern conductor connecting the capacitors in parallel has been proposed (see, for example, Patent Document 1). In the technique of Patent Document 1, the impedance of the conductor portion connecting each capacitor is made uniform by dividing the section of the pattern conductor by a slit. That is, the impedance of the current path to each capacitor is made equal to equalize the current flowing through each capacitor.

一方、特許文献1の技術では、当該スリットによって電流の均分化が図られるのは、正極端子と負極端子とが並ぶ方向のみであって、正極端子と負極端子とが並ぶ方向に直交する方向においては、上記の均分化は十分に図られないという課題の解決手法も提案されている(例えば、特許文献2参照)。 On the other hand, in the technique of Patent Document 1, the current is evenly differentiated by the slit only in the direction in which the positive electrode terminal and the negative electrode terminal are lined up, and in the direction orthogonal to the direction in which the positive electrode terminal and the negative electrode terminal are lined up. Has also proposed a method for solving the problem that the above-mentioned leveling is not sufficiently achieved (see, for example, Patent Document 2).

特許文献2の技術では、両端に電極を有する複数の筒状のコンデンサ素子を互いに交差する第1と第2方向に並べ、各コンデンサ素子の一方の電極を互いに接続する第1バスバーと、各コンデンサ素子の他方の電極を互いに接続する第2バスバーを設ける。第1と第2バスバーに、それらの各一端の中央位置から各バスバーを2分するような切り込み(スリット)を、それぞれそれらの他端中央近傍まで各形成する。この結果、各バスバーはU字状の平面形状を有するものとなり、上記第1と第2方向に並ぶ複数のコンデンサ素子に対するバスバーインダクタンス及び経路抵抗のばらつきやバスバーからの発熱量のばらつきを低減することができるとされている。 In the technique of Patent Document 2, a plurality of tubular capacitor elements having electrodes at both ends are arranged in the first and second directions intersecting each other, and a first bus bar connecting one electrode of each capacitor element to each other and each capacitor. A second bus bar is provided to connect the other electrodes of the element to each other. A notch (slit) is formed in the first and second bus bars so as to divide each bus bar into two from the center position of each one end thereof to the vicinity of the center of the other end thereof. As a result, each bus bar has a U-shaped planar shape, and variations in bus bar inductance and path resistance with respect to the plurality of capacitor elements arranged in the first and second directions and variations in the amount of heat generated from the bus bar can be reduced. Is said to be possible.

特開2001-352767号公報Japanese Unexamined Patent Publication No. 2001-352767 特開2007-311634号公報Japanese Unexamined Patent Publication No. 2007-31634

しかしながら、上記何れの特許文献における技術も、複数の蓄電装置(コンデンサ)を並列に結ぶパターン導体やバスバー等の並列接続導体の各該当端部が外部回路との接続を行うための正極側及び負極側の各外部接続部とされている。
このため、外部接続部に大電流が流れると、並列接続導体自体の持つ抵抗によって無視できない程の電圧降下が生じる。即ち、並列接続された各蓄電装置の外部接続部からの距離が異なることに起因して、蓄電装置の両端間の電圧に差が生じるため、蓄電装置に流れる電流の均分化が図れなくなってしまう。このため、蓄電装置ごとの寿命に差が生じてしまい、結果的に蓄電式電源装置としての耐用年数が短縮されてしまうといった問題を生じることになる。
However, in any of the techniques in the above patent documents, the positive electrode side and the negative electrode for connecting each corresponding end of a parallel connection conductor such as a pattern conductor or a bus bar connecting a plurality of power storage devices (capacitors) in parallel to an external circuit. It is said to be each external connection part on the side.
Therefore, when a large current flows through the external connection portion, a voltage drop that cannot be ignored occurs due to the resistance of the parallel connection conductor itself. That is, due to the difference in the distance from the external connection portion of each power storage device connected in parallel, the voltage between both ends of the power storage device is different, so that the current flowing through the power storage device cannot be evenly differentiated. .. For this reason, there is a difference in the life of each power storage device, and as a result, there arises a problem that the useful life of the power storage device is shortened.

本発明は、上述のような従来における問題を解決するべくなされたものであり、蓄電式電源装置における並列接続された蓄電装置に流れる電流の均分化が図られ、蓄電式電源装置としての耐用年数を延ばすことを可能にした蓄電式電源装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned conventional problems, and the current flowing through the power storage devices connected in parallel in the power storage type power supply device is equalized, and the useful life of the power storage type power supply device is achieved. It is an object of the present invention to provide a power storage type power supply device capable of extending.

本発明者らは、種々検討とシミュレーションを繰り返して上記課題の解決手段を見出し、本発明を完成させるに至った。 The present inventors have found a means for solving the above problems by repeating various studies and simulations, and have completed the present invention.

(1)第1番目から第n番目(nは6以上の整数)までの複数の蓄電装置(例えば、後述するリチウムイオンキャパシタ10)が並列に接続された蓄電式電源装置であって、
自己の一方の端部(例えば、後述する一方の端部31)から他方の端部(例えば、後述する正極第2端部32)まで、前記第1番目から前記第n番目の蓄電装置の各正極端子(例えば、後述する正極端子101)がこの順で接続された正極側並列接続導体(例えば、後述する正極側バスバー30)と、
自己の一方の端部(例えば、後述する一方の端部41)から他方の端部(例えば、後述する負極第2端部42)まで、前記第1番目から前記第n番目の蓄電装置の各負極端子(例えば、後述する負極端子102)がこの順で接続された負極側並列接続導体(例えば、後述する負極側バスバー40)と、を備え、
前記正極側並列接続導体は、前記一方の端部から他方の端部までの抵抗値の20%から30%の範囲の抵抗値に相当する長さ分前記第1番目の蓄電装置側の端部から離隔した位置に正極側外部接続部が設定され、
前記負極側並列接続導体は、前記一方の端部から他方の端部までの抵抗値の20%から30%の範囲の抵抗値に相当する長さ分前記第n番目の蓄電装置側の端部から離隔した位置に負極側外部接続部が設定されている、
蓄電式電源装置。
(1) A power storage type power supply device in which a plurality of power storage devices (for example, a lithium ion capacitor 10 described later) connected in parallel from the first to the nth (n is an integer of 6 or more) are connected in parallel.
Each of the first to the nth power storage devices from one end of the self (for example, one end 31 described later) to the other end (for example, the second end portion 32 of the positive electrode described later). A positive electrode side parallel connecting conductor (for example, a positive electrode side bus bar 30 described later) to which positive electrode terminals (for example, a positive electrode terminal 101 described later) are connected in this order,
Each of the first to the nth power storage devices from one end of the self (for example, one end 41 described later) to the other end (for example, the second negative electrode 42 described later). A negative electrode side parallel connecting conductor (for example, a negative electrode side bus bar 40 described later) to which the negative electrode terminals (for example, the negative electrode terminal 102 described later) are connected in this order is provided.
The positive electrode side parallel connecting conductor has a length corresponding to a resistance value in the range of 20% to 30% of the resistance value from one end to the other end, and the end portion on the first power storage device side. The positive electrode side external connection part is set at a position away from
The negative electrode side parallel connecting conductor has a length corresponding to a resistance value in the range of 20% to 30% of the resistance value from one end to the other end, and the end portion on the nth power storage device side. The negative electrode side external connection part is set at a position away from
Storage type power supply.

上記(1)の蓄電式電源装置では、第1番目から第n番目(nは6以上の整数)までの複数の蓄電装置が、正極側並列接続導体と負極側並列接続導体とによって、並列に接続される。前記正極側並列接続導体は、自己の一方の端部から他方の端部まで、前記第1番目から前記第n番目の蓄電装置の各正極端子がこの順で接続される。前記負極側並列接続導体は、自己の一方の端部から他方の端部まで、前記第1番目から前記第n番目の蓄電装置の各負極端子がこの順で接続される。前記正極側並列接続導体は、前記一方の端部から他方の端部までの抵抗値の20%から30%の範囲の抵抗値に相当する長さ分前記第1番目の蓄電装置側の端部から離隔した位置に正極側外部接続部が設定される。前記負極側並列接続導体は、前記一方の端部から他方の端部までの抵抗値の20%から30%の範囲の抵抗値に相当する長さ分前記第n番目の蓄電装置側の端部から離隔した位置に負極側外部接続部が設定される。前記正極側並列接続導体及び前記負極側並列接続導体における正極側外部接続部及び負極側外部接続部が上述のような位置に設けられることによって、正極側外部接続部及び負極側外部接続部を通して大電流が流れる際に、並列接続された各個の蓄電装置に流れる電流の均分化が図られる。 In the electricity storage type power supply device of the above (1), a plurality of electricity storage devices from the first to the nth (n is an integer of 6 or more) are connected in parallel by the positive electrode side parallel connection conductor and the negative electrode side parallel connection conductor. Be connected. In the positive electrode side parallel connecting conductor, each positive electrode terminal of the first to the nth power storage device is connected in this order from one end to the other end. In the negative electrode side parallel connection conductor, each negative electrode terminal of the first to the nth power storage device is connected in this order from one end to the other end. The positive electrode side parallel connecting conductor has a length corresponding to a resistance value in the range of 20% to 30% of the resistance value from one end to the other end, and the end portion on the first power storage device side. The positive electrode side external connection portion is set at a position away from the positive electrode side. The negative electrode side parallel connecting conductor has a length corresponding to a resistance value in the range of 20% to 30% of the resistance value from one end to the other end, and the end portion on the nth power storage device side. The negative electrode side external connection portion is set at a position separated from the negative electrode side. By providing the positive electrode side external connection portion and the negative electrode side external connection portion in the positive electrode side parallel connection conductor and the negative electrode side parallel connection conductor at the positions as described above, the positive electrode side external connection portion and the negative electrode side external connection portion are large. When the current flows, the current flowing through each of the power storage devices connected in parallel is evenly differentiated.

(2)第1番目から第n番目(nは6以上の整数)までの複数の蓄電装置(例えば、後述するリチウムイオンキャパシタ10)が並列に接続された蓄電式電源装置であって、
前記複数の蓄電装置の並列方向に延び、自己の一方の端部(例えば、後述する一方の端部31)から他方の端部(例えば、後述する正極第2端部32)までには、前記第1番目から前記第n番目の蓄電装置の各正極端子(例えば、後述する正極端子101)がこの順で接続された正極側並列接続導体(例えば、後述する正極側バスバー30)と、
前記並列方向に延び、その一方の端部(例えば、後述する一方の端部41)から他方の端部(例えば、後述する負極第2端部42)までには、前記第1番目から前記第n番目の蓄電装置の各負極端子(例えば、後述する負極端子102)がこの順で接続された負極側並列接続導体(例えば、後述する負極側バスバー40)と、を備え、
前記正極側並列接続導体は、前記第1番目の蓄電装置側の端部から自己の長手方向の全長の20%から30%の範囲で離隔した位置に正極側外部接続部が設定され、
前記負極側並列接続導体は、前記第n番目の蓄電装置側の端部から自己の長手方向の全長の20%から30%の範囲で離隔した位置に負極側外部接続部が設定されている、
蓄電式電源装置。
(2) A power storage type power supply device in which a plurality of power storage devices (for example, a lithium ion capacitor 10 described later) connected in parallel from the first to the nth (n is an integer of 6 or more) are connected in parallel.
The plurality of power storage devices extend in the parallel direction, and from one end of the self (for example, one end 31 described later) to the other end (for example, the second end 32 of the positive electrode described later), the said. A positive electrode side parallel connecting conductor (for example, a positive electrode side bus bar 30 described later) to which each positive electrode terminal (for example, a positive electrode terminal 101 described later) of the first to the nth power storage device is connected in this order.
From the first end to the other end (for example, the negative electrode second end 42 described later) extending in the parallel direction from one end (for example, one end 41 described later). Each negative electrode terminal (for example, the negative electrode terminal 102 described later) of the nth power storage device is provided with a negative electrode side parallel connecting conductor (for example, a negative electrode side bus bar 40 described later) connected in this order.
In the positive electrode side parallel connection conductor, the positive electrode side external connection portion is set at a position separated from the end portion on the first power storage device side within a range of 20% to 30% of the total length in the longitudinal direction of the positive electrode side.
In the negative electrode side parallel connection conductor, the negative electrode side external connection portion is set at a position separated from the end portion on the nth power storage device side within a range of 20% to 30% of the total length in the longitudinal direction of the conductor.
Storage type power supply.

上記(2)の蓄電式電源装置では、第1番目から第n番目(nは6以上の整数)までの複数の蓄電装置が、正極側並列接続導体と負極側並列接続導体とによって、並列に接続される。前記正極側並列接続導体は、前記複数の蓄電装置の並列方向に延び、自己の一方の端部から他方の端部までには、前記第1番目から前記第n番目の蓄電装置の各正極端子がこの順で接続される。前記負極側並列接続導体は、前記並列方向に延び、その一方の端部から他方の端部までには、前記第1番目から前記第n番目の蓄電装置の各負極端子がこの順で接続される。前記正極側並列接続導体は、前記第1番目の蓄電装置側の端部から自己の長手方向の全長の20%から30%の範囲で離隔した位置に正極側外部接続部が設定される。前記負極側並列接続導体は、前記第n番目の蓄電装置側の端部から自己の長手方向の全長の20%から30%の範囲で離隔した位置に負極側外部接続部が設定される。前記正極側並列接続導体及び前記負極側並列接続導体における正極側外部接続部及び負極側外部接続部が上述のような位置に設けられることによって、正極側外部接続部及び負極側外部接続部を通して大電流が流れる際に、並列接続された各個の蓄電装置に流れる電流の均分化が図られる。 In the electricity storage type power supply device of the above (2), a plurality of electricity storage devices from the first to the nth (n is an integer of 6 or more) are connected in parallel by the positive electrode side parallel connection conductor and the negative electrode side parallel connection conductor. Be connected. The positive electrode side parallel connecting conductor extends in the parallel direction of the plurality of power storage devices, and from one end of the self to the other end, each positive electrode terminal of the first to the nth power storage devices is provided. Are connected in this order. The negative electrode side parallel connection conductor extends in the parallel direction, and each negative electrode terminal of the first to the nth power storage device is connected in this order from one end to the other end. To. In the positive electrode side parallel connecting conductor, the positive electrode side external connecting portion is set at a position separated from the end portion on the first power storage device side within a range of 20% to 30% of the total length in the longitudinal direction of the positive electrode side. In the negative electrode side parallel connection conductor, the negative electrode side external connection portion is set at a position separated from the end portion on the nth power storage device side within a range of 20% to 30% of the total length in the longitudinal direction of the conductor. By providing the positive electrode side external connection portion and the negative electrode side external connection portion in the positive electrode side parallel connection conductor and the negative electrode side parallel connection conductor at the positions as described above, the positive electrode side external connection portion and the negative electrode side external connection portion are large. When the current flows, the current flowing through each of the power storage devices connected in parallel is evenly differentiated.

(3)前記正極側並列接続導体は、前記複数の蓄電装置の各正極端子が接続された正極接続導体部(例えば、後述する正極接続導体部30a)と、前記正極接続導体部と所定間隔で並行に設けられ、前記正極接続導体部の前記正極側外部接続部に対応する部位で前記正極接続導体部と接続された正極側外部接続導体部(例えば、後述する正極側外部接続導体部30b)とを有し、
前記負極側並列接続導体は、前記複数の蓄電装置の各負極端子が接続された負極接続導体部(例えば、後述する負極接続導体部40a)と、前記負極接続導体部と所定間隔で並行に設けられ、前記負極接続導体部の前記負極側外部接続部に対応する部位で前記負極接続導体部と接続された負極側外部接続導体部(例えば、後述する負極側外部接続導体部40b)とを有する、上記(1)又は(2)の蓄電式電源装置。
(3) The positive electrode side parallel connection conductor has a positive electrode connection conductor portion (for example, a positive electrode connection conductor portion 30a described later) to which each positive electrode terminal of the plurality of power storage devices is connected, and the positive electrode connection conductor portion at a predetermined interval. A positive electrode side external connection conductor portion (for example, a positive electrode side external connection conductor portion 30b described later) which is provided in parallel and is connected to the positive electrode connection conductor portion at a portion corresponding to the positive electrode side external connection portion of the positive electrode connection conductor portion. And have
The negative electrode side parallel connection conductor is provided in parallel with the negative electrode connection conductor portion (for example, the negative electrode connection conductor portion 40a described later) to which the negative electrode terminals of the plurality of power storage devices are connected and the negative electrode connection conductor portion at predetermined intervals. It has a negative electrode side external connection conductor portion (for example, a negative electrode side external connection conductor portion 40b described later) connected to the negative electrode connection conductor portion at a portion of the negative electrode connection conductor portion corresponding to the negative electrode side external connection portion. , The storage type power supply device of the above (1) or (2).

上記(3)の蓄電式電源装置では、上記(1)又は(2)の蓄電式電源装置において特に、前記正極接続導体部及び前記負極接続導体部によって、並列接続された各個の蓄電装置に流れる電流の均分化が図られる。更に、前記正極接続導体部及び前記負極接続導体部とそれぞれ所定間隔で並行に設けられた前記正極側外部接続導体部及び前記負極側外部接続導体部の何れの箇所で負荷やその他の外部回路と接続しても、各個の蓄電装置に流れる電流の均分化が妨げられることがなく、外部接続する位置が制約されない。 In the electricity storage type power supply device of the above (3), in particular, in the electricity storage type power supply device of the above (1) or (2), the current flows to each of the electricity storage devices connected in parallel by the positive electrode connection conductor portion and the negative electrode connection conductor portion. The current is evenly differentiated. Further, with the load and other external circuits at any of the positive electrode side external connecting conductor portion and the negative electrode side external connecting conductor portion provided in parallel with the positive electrode connecting conductor portion and the negative electrode connecting conductor portion at predetermined intervals, respectively. Even if they are connected, the equalization of the current flowing through each power storage device is not hindered, and the position of external connection is not restricted.

(4)前記蓄電装置は、リチウムイオンキャパシタ又はその直列接続体である上記(1)から(3)の何れかの蓄電式電源装置。 (4) The power storage device is any of the above (1) to (3), which is a lithium ion capacitor or a series connection thereof.

上記(4)の蓄電式電源装置では、上記(1)から(3)の何れかの蓄電式電源装置において特に、高温耐久性能に優れ、且つ、各個の蓄電装置の耐用年数の均等化が図られた蓄電式電源装置が実現される。 In the storage type power supply device of the above (4), the high temperature durability performance is particularly excellent in any of the storage type power supply devices of the above (1) to (3), and the service life of each power storage device is equalized. The storage type power supply device is realized.

(5)前記蓄電装置は、二次電池又はその直列接続体である上記(1)から(3)の何れかの蓄電式電源装置。 (5) The power storage device is any of the above (1) to (3), which is a secondary battery or a series connection thereof.

上記(5)の蓄電式電源装置では、上記(1)から(3)の何れかの蓄電式電源装置において特に、蓄電装置を構成する並列接続された各個の二次電池又はその直列接続体の充放電電流の均分化が図られ、各個の蓄電装置の耐用年数の均等化が図られた蓄電式電源装置が実現される。 In the power storage type power supply device of the above (5), in particular, in any of the power storage type power supply devices of the above (1) to (3), each of the secondary batteries connected in parallel constituting the power storage device or a series connection thereof thereof. A power storage type power supply device is realized in which the charge / discharge currents are evenly distributed and the service life of each power storage device is equalized.

本発明によれば、蓄電式電源装置における並列接続された、蓄電装置に流れる電流の、均分化が図られ、蓄電式電源装置としての耐用年数を延ばすことを可能にした蓄電式電源装置を具現することができる。 According to the present invention, a power storage type power supply device that is connected in parallel in a power storage type power supply device and that allows the current flowing through the power storage device to be evenly differentiated and to extend the useful life of the power storage type power supply device is realized. can do.

本発明の蓄電式電源装置の一実施形態を示す外観斜視図である。It is an external perspective view which shows one Embodiment of the electricity storage type power supply device of this invention. 本発明の蓄電式電源装置の一般的構成を示す回路図である。It is a circuit diagram which shows the general structure of the storage type power supply device of this invention. 本発明の蓄電式電源装置について、電流の取出し位置に関するシミュレーションを行うために適用した回路図である。It is a circuit diagram applied to perform the simulation about the current take-out position about the storage type power supply device of this invention. 図3の回路について複数のパラメータを適用した場合のシミュレーション結果を表す図である。It is a figure which shows the simulation result when a plurality of parameters are applied to the circuit of FIG. 本発明の蓄電式電源装置の他の実施形態を示す外観斜視図である。It is an external perspective view which shows the other embodiment of the storage type power supply device of this invention. 図5の蓄電式電源装置の蓋体を解放した様子を示す図である。It is a figure which shows the state which opened the lid body of the power storage type power supply device of FIG. 図5の蓄電式電源装置の分解斜視図である。FIG. 5 is an exploded perspective view of the power storage type power supply device of FIG. 図5の蓄電式電源装置の正極側バスバーと負極側バスバーを示す図である。It is a figure which shows the positive electrode side bus bar and the negative electrode side bus bar of the storage type power supply device of FIG. 図5の蓄電式電源装置の側面断面の詳細図である。FIG. 5 is a detailed cross-sectional view of the side surface of the power storage type power supply device of FIG. 図5の蓄電式電源装置の蓄電器の積層方向(並列方向)断面の詳細図である。It is a detailed view of the stacking direction (parallel direction) cross section of the capacitor of the storage type power supply device of FIG. 図1の蓄電式電源装置と略同様の蓄電式電源装置を3基直列接続した直列接続体を示す概念図である。It is a conceptual diagram which shows the serial connection body which connected three storage type power supply devices in series which are substantially the same as the storage type power supply device of FIG. 図11における直列接続体の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the series connection body in FIG. 図5から図7の蓄電式電源装置と略同様の蓄電式電源装置を3基直列接続した直列接続体を示す概念図である。5 is a conceptual diagram showing a series connection body in which three power storage type power supply devices substantially similar to those of the power storage type power supply devices of FIGS. 5 to 7 are connected in series. 図13における直列接続体の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the series connection body in FIG. 図5から図7の蓄電式電源装置と略同様の蓄電式電源装置を3基直列接続した直列接続体を示す概念図である。5 is a conceptual diagram showing a series connection body in which three power storage type power supply devices substantially similar to those of the power storage type power supply devices of FIGS. 5 to 7 are connected in series. 図15における直列接続体の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the series connection body in FIG. 図1の蓄電式電源装置と略同様の蓄電式電源装置を3基直列接続した直列接続体を示す概念図である。It is a conceptual diagram which shows the serial connection body which connected three storage type power supply devices in series which are substantially the same as the storage type power supply device of FIG. 図17における直列接続体の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the series connection body in FIG.

以下に、図面を参照して本発明の蓄電式電源装置について詳細に説明する。
図1は、本発明の蓄電式電源装置の一実施形態を示す外観斜視図である。
図2は、本発明の蓄電式電源装置の一般的構成を示す回路図である。
図1における蓄電式電源装置の各部における電気的接続関係は、適宜、図2を参照することによって理解される。
図1において、複数の各蓄電装置であるリチウムイオンキャパシタ10がベース2上に整列して配置され、それら複数のリチウムイオンキャパシタ10が並列に接続されて蓄電式電源装置1が構成されている。各リチウムイオンキャパシタ10の内部抵抗が、図2では「R」と表記されている。
Hereinafter, the power storage type power supply device of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an external perspective view showing an embodiment of the power storage type power supply device of the present invention.
FIG. 2 is a circuit diagram showing a general configuration of the power storage type power supply device of the present invention.
The electrical connection relationship in each part of the power storage type power supply device in FIG. 1 is understood by referring to FIG. 2 as appropriate.
In FIG. 1, a plurality of lithium-ion capacitors 10 which are each storage device are arranged in an aligned manner on a base 2, and the plurality of lithium-ion capacitors 10 are connected in parallel to form a storage-type power supply device 1. The internal resistance of each lithium ion capacitor 10 is indicated by "R" in FIG.

本例における各リチウムイオンキャパシタ10は、同仕様の直方体状のものである。図1では、リチウムイオンキャパシタ10の単体での外観が上方に図示されている。
各リチウムイオンキャパシタ10は、ベース2に接する底部とは反対側の上部に、正極端子101と負極端子102とを有している。各リチウムイオンキャパシタ10は、各個の内部において、単位リチウムイオンキャパシタが直列に接続された直列接続体(リチウムイオンキャパシタモジュール)の態様を採り得る。
Each lithium ion capacitor 10 in this example has a rectangular parallelepiped shape having the same specifications. In FIG. 1, the appearance of the lithium ion capacitor 10 as a single unit is shown above.
Each lithium ion capacitor 10 has a positive electrode terminal 101 and a negative electrode terminal 102 at an upper portion on the opposite side to the bottom portion in contact with the base 2. Each lithium-ion capacitor 10 may take the form of a series-connected body (lithium-ion capacitor module) in which unit lithium-ion capacitors are connected in series inside each of the pieces.

各リチウムイオンキャパシタ10を並列接続するために、各リチウムイオンキャパシタ10の正極端子101どうしを接続する正極側並列接続導体としての正極側バスバー30が設けられている。同様に、各リチウムイオンキャパシタ10の負極端子102どうしを接続する負極側並列接続導体としての負極側バスバー40が設けられている。 In order to connect the lithium ion capacitors 10 in parallel, a positive electrode side bus bar 30 is provided as a positive electrode side parallel connection conductor for connecting the positive electrode terminals 101 of each lithium ion capacitor 10. Similarly, a negative electrode side bus bar 40 is provided as a negative electrode side parallel connection conductor for connecting the negative electrode terminals 102 of each lithium ion capacitor 10.

正極側バスバー30は、各リチウムイオンキャパシタ10の正極端子101が接続された正極接続導体部30aと、この正極接続導体部30aと所定間隔で並行に設けられた正極側外部接続導体部30bとを有している。
正極側バスバー30の正極接続導体部30aは、その正極第1端部31から正極第2端部32までの間に、各リチウムイオンキャパシタ10それぞれの正極端子101が接続されている。
The positive electrode side bus bar 30 includes a positive electrode connecting conductor portion 30a to which the positive electrode terminal 101 of each lithium ion capacitor 10 is connected, and a positive electrode side external connecting conductor portion 30b provided in parallel with the positive electrode connecting conductor portion 30a at predetermined intervals. Have.
The positive electrode connection conductor portion 30a of the positive electrode side bus bar 30 is connected to the positive electrode terminal 101 of each lithium ion capacitor 10 between the positive electrode first end portion 31 and the positive electrode second end portion 32.

詳細には、各正極端子101が正極接続導体部30aに接続される図2の各接続ノード201(図1では、正極側バスバー30の下側になって見えない)について、隣接ノード間の抵抗値rが等しくなる間隔で、各リチウムイオンキャパシタ10の各正極端子101が正極側バスバー30(正極接続導体部30a)に接続されている(図2参照)。 Specifically, for each connection node 201 of FIG. 2 in which each positive electrode terminal 101 is connected to the positive electrode connection conductor portion 30a (not visible under the positive electrode side bus bar 30 in FIG. 1), resistance between adjacent nodes. Each positive electrode terminal 101 of each lithium ion capacitor 10 is connected to a positive electrode side bus bar 30 (positive electrode connecting conductor portion 30a) at intervals at intervals where the values r become equal (see FIG. 2).

上述の正極側バスバー30と同様に、負極側バスバー40は、各リチウムイオンキャパシタ10の負極端子102が接続された負極接続導体部40aと、この負極接続導体部40aと所定間隔で並行に設けられた負極側外部接続導体部40bとを有している。
負極側バスバー40の負極接続導体部40aは、その負極第1端部41から負極第2端部42までの間に、各リチウムイオンキャパシタ10の各負極端子102が接続されている。
Similar to the above-mentioned positive electrode side bus bar 30, the negative electrode side bus bar 40 is provided in parallel with the negative electrode connecting conductor portion 40a to which the negative electrode terminal 102 of each lithium ion capacitor 10 is connected and the negative electrode connecting conductor portion 40a at predetermined intervals. It also has a negative electrode side external connecting conductor portion 40b.
The negative electrode connection conductor portion 40a of the negative electrode side bus bar 40 is connected to each negative electrode terminal 102 of each lithium ion capacitor 10 between the negative electrode first end portion 41 and the negative electrode second end portion 42.

詳細には、各負極端子102が負極接続導体部40aに接続される図2の各接続ノード202(図1では、負極側バスバー40の下側になって見えない)について、隣接ノード間の抵抗値rが等しくなる間隔で、各リチウムイオンキャパシタ10の各負極端子102が負極側バスバー40(負極接続導体部40a)に接続されている(図2参照)。 Specifically, for each connection node 202 of FIG. 2 in which each negative electrode terminal 102 is connected to the negative electrode connection conductor portion 40a (in FIG. 1, it is not visible under the negative electrode side bus bar 40), resistance between adjacent nodes. Each negative electrode terminal 102 of each lithium ion capacitor 10 is connected to the negative electrode side bus bar 40 (negative electrode connecting conductor portion 40a) at intervals at which the values r become equal (see FIG. 2).

正極側バスバー30の正極接続導体部30aには、正極第1端部31から正極第2端部32までの抵抗値の20%から30%の範囲の抵抗値分、正極第1端部31から離隔した位置に正極側外部接続部33が設けられている。図1では、正極第1端部31から正極側外部接続部33までの離隔距離をSDと表記している。 The positive electrode connecting conductor portion 30a of the positive electrode side bus bar 30 has a resistance value in the range of 20% to 30% of the resistance value from the positive electrode first end portion 31 to the positive electrode second end portion 32, from the positive electrode first end portion 31. The positive electrode side external connection portion 33 is provided at a separated position. In FIG. 1, the separation distance from the positive electrode first end portion 31 to the positive electrode side external connection portion 33 is referred to as SD.

一方、負極側バスバー40の負極接続導体部40aには、負極第2端部42から負極第1端部41までの抵抗値の20%から30%の範囲の抵抗値分、負極第2端部42から離隔した位置に負極側外部接続部43が設けられている。図1では、負極第2端部42から負極側外部接続部43までの離隔距離をSDと表記している。 On the other hand, the negative electrode connecting conductor portion 40a of the negative electrode side bus bar 40 has a resistance value in the range of 20% to 30% of the resistance value from the negative electrode second end portion 42 to the negative electrode first end portion 41, and the negative electrode second end portion. The negative electrode side external connection portion 43 is provided at a position separated from the 42. In FIG. 1, the separation distance from the negative electrode second end portion 42 to the negative electrode side external connection portion 43 is referred to as SD.

本実施形態では、正極接続導体部30a及び負極接続導体部40aは、抵抗率が均一で断面積が一様な導電材料により構成されている。
従って、各リチウムイオンキャパシタ10それぞれの正極端子101が正極接続導体部30aに接続される図2の各接続ノード201の間の抵抗値rが等しいことから、各接続ノード201の間の物理的間隔が等しい。
In the present embodiment, the positive electrode connecting conductor portion 30a and the negative electrode connecting conductor portion 40a are made of a conductive material having a uniform resistivity and a uniform cross section.
Therefore, since the resistance value r between the connection nodes 201 of FIG. 2 in which the positive electrode terminal 101 of each lithium ion capacitor 10 is connected to the positive electrode connection conductor portion 30a is equal, the physical distance between the connection nodes 201 is equal. Are equal.

同様に、各リチウムイオンキャパシタ10それぞれの負極端子102が負極接続導体部40aに接続される図2の各接続ノード202の間の抵抗値rが等しいことから、各接続ノード202の間の物理的間隔が等しい。
更に、本実施形態では、各リチウムイオンキャパシタ10の物理的間隔が等しくなるようにベース2上に複数配置されていることから、上述の離隔距離SDをリチウムイオンキャパシタ10の個数でPn個相当分の離隔距離であると見ることもできる。
Similarly, since the resistance value r between the connection nodes 202 in FIG. 2 in which the negative electrode terminal 102 of each lithium ion capacitor 10 is connected to the negative electrode connection conductor portion 40a is equal, the physical resistance between the connection nodes 202 is equal. The intervals are equal.
Further, in the present embodiment, since a plurality of lithium ion capacitors 10 are arranged on the base 2 so that the physical intervals of the lithium ion capacitors 10 are equal, the above-mentioned separation distance SD is equivalent to Pn by the number of lithium ion capacitors 10. It can also be seen as the separation distance of.

なお、図2におけるように、正極側外部接続部33と接地間の外部抵抗をRL1と表記し、負極側外部接続部43と接地間の外部抵抗をRL2と表記している。 As shown in FIG. 2, the external resistance between the positive electrode side external connection portion 33 and the ground is referred to as RL1, and the external resistance between the negative electrode side external connection portion 43 and the ground is referred to as RL2.

本発明の蓄電式電源装置1では、正極側外部接続部33及び負極側外部接続部43の位置が上述のように設定されていることによって、各リチウムイオンキャパシタ10に流れる電流の均分化が図られる。電流の均分化が図られる点については、図面を参照して更に後述する。 In the storage type power supply device 1 of the present invention, the positions of the positive electrode side external connection portion 33 and the negative electrode side external connection portion 43 are set as described above, so that the current flowing through each lithium ion capacitor 10 is evenly differentiated. Be done. The point at which the current can be evenly differentiated will be described later with reference to the drawings.

正極接続導体部30aは、上述の正極側外部接続部33を介して正極側外部接続導体部30bと接続される。更に、正極側外部接続導体部30bは、負荷その他の外部回路(不図示)と接続される。 The positive electrode connecting conductor portion 30a is connected to the positive electrode side external connecting conductor portion 30b via the above-mentioned positive electrode side external connecting portion 33. Further, the positive electrode side external connecting conductor portion 30b is connected to a load or other external circuit (not shown).

同様に、負極接続導体部40aは、負極側外部接続部43を介して負極側外部接続導体部40bと接続される。更に、負極側外部接続導体部40bは、負荷その他の外部回路(不図示)と接続される。 Similarly, the negative electrode connecting conductor portion 40a is connected to the negative electrode side external connecting conductor portion 40b via the negative electrode side external connecting portion 43. Further, the negative electrode side external connecting conductor portion 40b is connected to a load or other external circuit (not shown).

即ち、本実施形態では、正極接続導体部30aと正極側外部接続導体部30bとが並行に設けられ、正極接続導体部30aと正極側外部接続導体部30bとは、上述の位置に設けられた正極側外部接続部33によって接続されている。 That is, in the present embodiment, the positive electrode connecting conductor portion 30a and the positive electrode side external connecting conductor portion 30b are provided in parallel, and the positive electrode connecting conductor portion 30a and the positive electrode side external connecting conductor portion 30b are provided at the above-mentioned positions. It is connected by the positive electrode side external connecting portion 33.

同様に、負極接続導体部40aと負極側外部接続導体部40bとが並行に設けられ、負極接続導体部40aと負極側外部接続導体部40bとは、上述の位置に設けられた負極側外部接続部43によって接続されている。 Similarly, the negative electrode connecting conductor portion 40a and the negative electrode side external connecting conductor portion 40b are provided in parallel, and the negative electrode connecting conductor portion 40a and the negative electrode side external connecting conductor portion 40b are provided at the above-mentioned positions. It is connected by a unit 43.

従って、正極側外部接続導体部30b及び負極側外部接続導体部40bから負荷その他の外部回路にボンディングワイヤ等(不図示)で接続される場合には、正極側外部接続導体部30b及び負極側外部接続導体部40bの何れの箇所で電流の授受を行う場合にも、各リチウムイオンキャパシタ10との接続に関しては、正極接続導体部30a及び負極接続導体部40aにおける上述の接続点の位置は不変である。従って、各リチウムイオンキャパシタ10に流れる電流の均分化が妨げられることがなく、外部接続する位置が制約されない。 Therefore, when the positive electrode side external connecting conductor portion 30b and the negative electrode side external connecting conductor portion 40b are connected to a load or other external circuit by a bonding wire or the like (not shown), the positive electrode side external connecting conductor portion 30b and the negative electrode side external Regardless of where the current is exchanged in the connecting conductor portion 40b, the positions of the above-mentioned connection points in the positive electrode connecting conductor portion 30a and the negative electrode connecting conductor portion 40a do not change with respect to the connection with each lithium ion capacitor 10. be. Therefore, the equalization of the current flowing through each lithium ion capacitor 10 is not hindered, and the position of external connection is not restricted.

図3は、本発明の蓄電式電源装置について、蓄電装置の並列数を独立変数とし、電流の取出し位置を従属変数とした場合の特性をシミュレーションするために適用した回路図である。
図3の回路図では、リチウムイオンキャパシタ10のn個(図3では、代表的に6個の場合を表記)の並列接続体に蓄積された電気エネルギーを、正極側外部接続部33及び負極側外部接続部43から取り出して外部回路(抵抗RL1、RL2)に供給するように構成されている。シミュレーションを行うに際し、外部回路の抵抗RL1=RL2=100μΩとし、取り出される電流I=11000Aとし、リチウムイオンキャパシタ10の並列接続数に応じたリチウムイオンキャパシタ10に流れる電流の最大値と最小値との差分値ΔIAが最少となるときの電流の取出し位置を既述のように接続導体部の端部からの離隔距離SD(%)と表記している。
また、図2を参照して既述のとおり、正極接続導体部30aとリチウムイオンキャパシタ10の正極端子101との各接続ノード201に関する隣接ノード間の各抵抗値rは等しく、負極接続導体部40aとリチウムイオンキャパシタ10の負極端子102との各接続ノード202関する隣接ノード間の各抵抗値rは等しい。
FIG. 3 is a circuit diagram applied to simulate the characteristics of the power storage type power supply device of the present invention when the number of parallel power storage devices is set as an independent variable and the current extraction position is set as a dependent variable.
In the circuit diagram of FIG. 3, the electric energy stored in the n parallel connections of the lithium ion capacitors 10 (typically 6 in FIG. 3) is transferred to the positive electrode side external connection portion 33 and the negative electrode side. It is configured to be taken out from the external connection unit 43 and supplied to the external circuit (resistors RL1 and RL2). When performing the simulation, the resistance of the external circuit is RL1 = RL2 = 100 μΩ, the current I is taken out is 11000 A, and the maximum and minimum values of the current flowing through the lithium ion capacitor 10 according to the number of parallel connections of the lithium ion capacitor 10 are set. The current extraction position when the difference value ΔIA is the minimum is expressed as the separation distance SD (%) from the end of the connecting conductor portion as described above.
Further, as described above with reference to FIG. 2, the resistance values r between the adjacent nodes for each connection node 201 of the positive electrode connection conductor portion 30a and the positive electrode terminal 101 of the lithium ion capacitor 10 are equal, and the negative electrode connection conductor portion 40a. And each resistance value r between the adjacent nodes relating to each connection node 202 with the negative electrode terminal 102 of the lithium ion capacitor 10 is equal.

図4は、図3の回路についてのシミュレーション結果を表す図である。
図4における特性曲線は、リチウムイオンキャパシタ10の並列接続数nを独立変数とし、電流の取出し位置(上述のSDによって表した位置)を従属変数とした場合の特性を表している。
図4における特性曲線は、上述した隣接ノード間の抵抗値rとリチウムイオンキャパシタ10の内部抵抗Rとの比r/Rをパラメータとして、r/R=0.01、r/R=0.001、r/R=0.0001、r/R=0.00001、r/R=0.000001の5通りの場合について、リチウムイオンキャパシタ10の並列数nとリチウムイオンキャパシタ10に流れる電流の最大値と最小値との差分値ΔIAが最少となる電流の取出し位置(上述のSDによって表した位置)のシミュレーション結果を表している。なお図4には、5通りの抵抗比r/Rのシミュレーション結果について、それぞれ線種を変えて図示する。しかしながら、抵抗比r/Rを0.0001、0.00001、及び0.000001とした場合のシミュレーション結果は、抵抗比r/Rを0.001とした場合のシミュレーション結果とほぼ同じであったため、図4ではこれら4通りのシミュレーション結果は重複している。詳細には、電流の最大値と最小値との差分値ΔIAとは、並列接続されたn個のリチウムイオンキャパシタ10のうち、放電電流値が最大であるものの電流値Imaxと、放電電流値が最小であるものの電流値Iminとの差である。
なお、既述のとおり、正極接続導体部30aにおける隣接ノード201,201間の抵抗値rは、負極接続導体部40aにおける隣接ノード202,202間の抵抗値rと等しい。
FIG. 4 is a diagram showing simulation results for the circuit of FIG.
The characteristic curve in FIG. 4 shows the characteristics when the number n of parallel connections of the lithium ion capacitor 10 is set as the independent variable and the current extraction position (the position represented by SD described above) is set as the dependent variable.
The characteristic curve in FIG. 4 shows r / R = 0.01 and r / R = 0.001 with the ratio r / R of the resistance value r between the adjacent nodes and the internal resistance R of the lithium ion capacitor 10 as parameters. , R / R = 0.0001, r / R = 0.00001, r / R = 0.000001, the maximum number of parallel numbers n of the lithium ion capacitors 10 and the maximum value of the current flowing through the lithium ion capacitors 10. It shows the simulation result of the current extraction position (the position represented by SD described above) at which the difference value ΔIA between the capacitor and the minimum value is the minimum. Note that FIG. 4 shows the simulation results of the resistivity r / R in five ways with different line types. However, the simulation results when the resistivity r / R was 0.0001, 0.00001, and 0.000001 were almost the same as the simulation results when the resistivity r / R was 0.001. In FIG. 4, these four types of simulation results overlap. Specifically, the difference value ΔIA between the maximum value and the minimum value of the current is the current value Imax of the n lithium ion capacitors 10 connected in parallel, which has the maximum discharge current value, and the discharge current value. It is the difference from the current value Imin, which is the minimum.
As described above, the resistance value r between the adjacent nodes 201 and 201 in the positive electrode connecting conductor portion 30a is equal to the resistance value r between the adjacent nodes 202 and 202 in the negative electrode connecting conductor portion 40a.

図4における特性曲線から、リチウムイオンキャパシタ10の並列数nが6以上の場合には、リチウムイオンキャパシタ10に流れる電流の最大値と最小値との差分値ΔIAが最少となるときの電流の取出し位置SD(接続導体部の全長に対する、接続導体部の端部から電流の取出し位置までの距離の比率)は、抵抗比r/Rの大きさによらず概ね、20%から30%の範囲内となることが判読される。 From the characteristic curve in FIG. 4, when the number n in parallel of the lithium ion capacitor 10 is 6 or more, the current is taken out when the difference value ΔIA between the maximum value and the minimum value of the current flowing through the lithium ion capacitor 10 becomes the minimum. The position SD (the ratio of the distance from the end of the connecting conductor to the current extraction position with respect to the total length of the connecting conductor) is generally within the range of 20% to 30% regardless of the magnitude of the resistance ratio r / R. It is read that

以上、図面を参照して説明した本発明の実施形態としての蓄電式電源装置1は、第1番目から第n番目(nは6以上の整数)までの複数の蓄電装置であるリチウムイオンキャパシタ10が並列に接続された蓄電式電源装置であって、
正極側バスバー30(正極接続導体部30a)は、第1番目から前記第n番目のリチウムイオンキャパシタ10の各正極端子101を、一方の端部31での接続ノード201から正極第2端部32での接続ノード201まで、隣接する正極端子との接続ノード201間の抵抗値rが等しくなる間隔で上述の順に接続し、一方の端部31から正極第2端部32までの抵抗値の20%から30%の範囲の抵抗値に相当する長さ分一方の端部31(第1番目のリチウムイオンキャパシタ10側の端部31)から離隔した位置SDに正極側外部接続部33が設定されている。
また、負極側バスバー40(負極接続導体部40a)は、第1番目から第n番目(nは6以上の整数)までの複数の蓄電装置であるリチウムイオンキャパシタ10の各負極端子102を、一方の端部41での接続ノード202から負極第2端部42での接続ノード202まで、隣接する負極端子との接続ノード202間の抵抗値rが等しくなる間隔で上述の順に接続し、一方の端部41から負極第2端部42までの抵抗値の20%から30%の範囲の抵抗値に相当する長さ分前記負極第2端部42(第n番目のリチウムイオンキャパシタ10側の負極第2端部42)から離隔した位置SDに負極側外部接続部43が設定されている。
As described above, the power storage type power supply device 1 as the embodiment of the present invention described with reference to the drawings is a lithium ion capacitor 10 which is a plurality of power storage devices from the first to the nth (n is an integer of 6 or more). Is a storage type power supply connected in parallel,
The positive electrode side bus bar 30 (positive electrode connecting conductor portion 30a) connects each positive electrode terminal 101 of the first to nth lithium ion capacitors 10 from the connection node 201 at one end portion 31 to the positive electrode second end portion 32. Connect to the connection node 201 in the above order at intervals where the resistance values r between the connection nodes 201 with the adjacent positive electrode terminals are equal, and the resistance value 20 from one end 31 to the positive electrode second end 32. The positive electrode side external connection portion 33 is set at the position SD separated from one end portion 31 (the end portion 31 on the first lithium ion capacitor 10 side) by the length corresponding to the resistance value in the range of% to 30%. ing.
Further, the negative electrode side bus bar 40 (negative electrode connecting conductor portion 40a) has one of the negative electrode terminals 102 of the lithium ion capacitor 10 which is a plurality of power storage devices from the first to the nth (n is an integer of 6 or more). From the connection node 202 at the end portion 41 of the negative electrode to the connection node 202 at the negative electrode second end portion 42, the connection nodes 202 between the adjacent negative electrode terminals and the connection nodes 202 are connected in the above-mentioned order at intervals where the resistance values r are equal to each other. The length corresponding to the resistance value in the range of 20% to 30% of the resistance value from the end portion 41 to the negative electrode second end portion 42, the negative electrode second end portion 42 (negative electrode on the nth lithium ion capacitor 10 side). The negative electrode side external connection portion 43 is set at the position SD separated from the second end portion 42).

正極側バスバー30及び負極側バスバー40における正極側外部接続部33及び負極側外部接続部43が上述のような位置SDに設けられることによって、正極側外部接続部33及び負極側外部接続部43を通して大電流が流れる際に、並列接続された各個のリチウムイオンキャパシタ10に流れる電流の均分化が図られる。
このため、蓄電装置である各個のリチウムイオンキャパシタ10の経年劣化が略均等になり、蓄電式電源装置としての耐用年数を延ばすことが可能になる。
By providing the positive electrode side external connection portion 33 and the negative electrode side external connection portion 43 in the positive electrode side bus bar 30 and the negative electrode side bus bar 40 at the position SD as described above, the positive electrode side external connection portion 33 and the negative electrode side external connection portion 43 are passed through. When a large current flows, the current flowing through each of the lithium ion capacitors 10 connected in parallel is equalized.
Therefore, the aging deterioration of each lithium ion capacitor 10 which is a power storage device becomes substantially equal, and the useful life of the power storage type power supply device can be extended.

また、本発明の実施形態としての蓄電式電源装置1では、第1番目から第n番目(nは6以上の整数)までの複数の蓄電装置であるリチウムイオンキャパシタ10が並列に接続された蓄電式電源装置であって、
正極側バスバー30(正極接続導体部30a)は、複数のリチウムイオンキャパシタ10の各正極端子101を、一方の端部31での接続ノード201から正極第2端部32での接続ノード201まで等間隔で接続してリチウムイオンキャパシタ10の並列方向に延び、一方の端部31(第1番目のリチウムイオンキャパシタ10側の端部31)から自己の長手方向の全長の20%から30%の範囲で離隔した位置SDに正極側外部接続部33が設定されている。
また、負極側バスバー40(負極接続導体部40a)は、複数のリチウムイオンキャパシタ10の各負極端子102を、自己の一方の端部での接続ノード202から負極第2端部42での接続ノード202まで等間隔で接続して並列方向に延び、負極第2端部42(第n番目のリチウムイオンキャパシタ10側の負極第2端部42)から自己の長手方向の全長の20%から30%の範囲で離隔した位置SDに負極側外部接続部43が設定されている。
Further, in the power storage type power supply device 1 as the embodiment of the present invention, the lithium ion capacitors 10 which are a plurality of power storage devices from the first to the nth (n is an integer of 6 or more) are connected in parallel. It is a type power supply
The positive electrode side bus bar 30 (positive electrode connecting conductor portion 30a) connects each positive electrode terminal 101 of a plurality of lithium ion capacitors 10 from the connection node 201 at one end 31 to the connection node 201 at the second positive end 32, and the like. They are connected at intervals and extend in the parallel direction of the lithium ion capacitor 10, and range from one end 31 (the end 31 on the side of the first lithium ion capacitor 10) to 20% to 30% of the total length in the longitudinal direction of the self. The positive electrode side external connection portion 33 is set at the position SD separated by.
Further, the negative electrode side bus bar 40 (negative electrode connecting conductor portion 40a) connects each negative electrode terminal 102 of the plurality of lithium ion capacitors 10 from the connection node 202 at one end thereof to the connection node at the second negative electrode portion 42. 20% to 30% of the total length in the longitudinal direction of the negative electrode 42 (the second end 42 of the negative electrode on the nth lithium ion capacitor 10 side) connected to 202 at equal intervals and extended in the parallel direction. The negative electrode side external connection portion 43 is set at the position SD separated in the range of.

正極側バスバー30(正極接続導体部30a)及び負極側バスバー40(負極接続導体部40a)における正極側外部接続部33及び負極側外部接続部43が上述のような位置SDに設けられることによって、正極側外部接続部33及び負極側外部接続部43を通して大電流が流れる際に、並列接続された各個のリチウムイオンキャパシタ10に流れる電流の均分化が図られる。
このため、蓄電装置である各個のリチウムイオンキャパシタ10の経年劣化が略均等になり、蓄電式電源装置としての耐用年数を延ばすことが可能になる。
The positive electrode side external connection portion 33 and the negative electrode side external connection portion 43 in the positive electrode side bus bar 30 (positive electrode connection conductor portion 30a) and the negative electrode side bus bar 40 (negative electrode connection conductor portion 40a) are provided at the positions SD as described above. When a large current flows through the positive electrode side external connection portion 33 and the negative electrode side external connection portion 43, the current flowing through each of the lithium ion capacitors 10 connected in parallel is equalized.
Therefore, the aging deterioration of each lithium ion capacitor 10 which is a power storage device becomes substantially equal, and the useful life of the power storage type power supply device can be extended.

更に、正極側バスバー30は、リチウムイオンキャパシタ10の各正極端子101が接続された正極接続導体部30aと、正極接続導体部30aと所定間隔で並行に設けられ、正極接続導体部30aの正極側外部接続部33に対応する部位で正極接続導体部30aと接続された正極側外部接続導体部30bとを有する。
また、負極側バスバー40は、リチウムイオンキャパシタ10の各負極端子102が接続された負極接続導体部40aと、負極接続導体部40aと所定間隔で並行に設けられ、負極接続導体部40aの負極側外部接続部43に対応する部位で負極接続導体部40aと接続された負極側外部接続導体部40bとを有する。
このため、正極側バスバー30及び負極側バスバー40は、正極接続導体部30a及び負極接続導体部40aとそれぞれ所定間隔で並行に設けられた正極側外部接続導体部30b及び負極側外部接続導体部40bにおける何れの箇所で負荷やその他の外部回路と接続しても、各個のリチウムイオンキャパシタ10に流れる電流の均分化が妨げられることがなく、外部接続する位置が制約されない。
Further, the positive electrode side bus bar 30 is provided in parallel with the positive electrode connecting conductor portion 30a to which each positive electrode terminal 101 of the lithium ion capacitor 10 is connected and the positive electrode connecting conductor portion 30a at predetermined intervals, and is provided on the positive electrode side of the positive electrode connecting conductor portion 30a. It has a positive electrode side external connecting conductor portion 30b connected to the positive electrode connecting conductor portion 30a at a portion corresponding to the external connecting portion 33.
Further, the negative electrode side bus bar 40 is provided in parallel with the negative electrode connecting conductor portion 40a to which each negative electrode terminal 102 of the lithium ion capacitor 10 is connected and the negative electrode connecting conductor portion 40a at predetermined intervals, and the negative electrode side of the negative electrode connecting conductor portion 40a. It has a negative electrode side external connecting conductor portion 40b connected to the negative electrode connecting conductor portion 40a at a portion corresponding to the external connecting portion 43.
Therefore, the positive electrode side bus bar 30 and the negative electrode side bus bar 40 are provided in parallel with the positive electrode connecting conductor portion 30a and the negative electrode connecting conductor portion 40a at predetermined intervals, respectively, of the positive electrode side external connecting conductor portion 30b and the negative electrode side external connecting conductor portion 40b. No matter where the load or other external circuit is connected, the leveling of the current flowing through each lithium ion capacitor 10 is not hindered, and the position of the external connection is not restricted.

また、本発明の実施形態としての蓄電式電源装置1では、複数の蓄電装置はリチウムイオンキャパシタ又はその直列接続体である。
このため、高温耐久性能に優れ、且つ、各個の蓄電装置の耐用年数の均等化により、結果的に蓄電式電源装置としての耐用年数の延長が実現される。
Further, in the power storage type power supply device 1 as the embodiment of the present invention, the plurality of power storage devices are lithium ion capacitors or their series connections.
Therefore, the high temperature durability performance is excellent, and the service life of each power storage device is equalized, and as a result, the service life of the power storage device can be extended.

次に、本発明の他の実施形態としての蓄電式電源装置について説明する。
図5は、本発明の蓄電式電源装置の他の実施形態を示す外観斜視図である。
図6は、図5の蓄電式電源装置の蓋体を解放した様子を示す図である。
図5及び図6において、蓄電式電源装置1aは、上方が開放される概略直方体状の筐体3が蓋体4によって封止されるように構成されている。
筐体3内の長手方向に延びた両側板7,8の方向に沿って複数のリチウムイオンキャパシタ20が積層されるように並置される。
Next, a power storage type power supply device as another embodiment of the present invention will be described.
FIG. 5 is an external perspective view showing another embodiment of the power storage type power supply device of the present invention.
FIG. 6 is a diagram showing a state in which the lid of the power storage type power supply device of FIG. 5 is opened.
In FIGS. 5 and 6, the power storage type power supply device 1a is configured such that a substantially rectangular parallelepiped housing 3 having an open upper portion is sealed by a lid 4.
A plurality of lithium ion capacitors 20 are juxtaposed so as to be laminated along the directions of the side plates 7 and 8 extending in the longitudinal direction in the housing 3.

図6では、全数のリチウムイオンキャパシタ20のうちの一部のものが図示されている。各リチウムイオンキャパシタ20は、正極側並列接続導体としての正極側バスバー50及び負極側並列接続導体としての負極側バスバー60によって電気的に並列に接続されている。
正極側バスバー50及び負極側バスバー60は、図示のように、筐体3内の幅方向の略中央を長手方向に沿って延び、筐体3の一方の第1端板5から他方の第2端板6まで両者が平行となるように配されている。
筐体3の一方の第1端板5には、正極側バスバー50と電気的に導通する正極側外部接続端子部501と、負極側バスバー60と電気的に導通する負極側外部接続端子部502とが、の第1端板5の上辺中央に設けられている。
In FIG. 6, some of the total number of lithium ion capacitors 20 are shown. Each lithium ion capacitor 20 is electrically connected in parallel by a positive electrode side bus bar 50 as a positive electrode side parallel connection conductor and a negative electrode side bus bar 60 as a negative electrode side parallel connection conductor.
As shown in the figure, the positive electrode side bus bar 50 and the negative electrode side bus bar 60 extend substantially in the center of the housing 3 in the width direction along the longitudinal direction, and the first end plate 5 of the housing 3 to the second end plate 5 of the other. Both are arranged so as to be parallel to the end plate 6.
The first end plate 5 of the housing 3 has a positive electrode side external connection terminal portion 501 that is electrically conductive with the positive electrode side bus bar 50 and a negative electrode side external connection terminal portion 502 that is electrically conductive with the negative electrode side bus bar 60. Is provided in the center of the upper side of the first end plate 5.

同様に、筐体3の第2端板6には、正極側バスバー50と電気的に導通する正極側外部接続端子部503と、負極側バスバー60と電気的に導通する負極側外部接続端子部504とが、第2端板6の上辺中央に設けられている。
尚、図5及び図6においては、正極側バスバー50及び負極側バスバー60は概略的に描かれているが、詳細については後に図8を参照して説明する。
以下、適宜、正極側外部接続端子部501を第1外部接続端子、負極側外部接続端子部502を第2外部接続端子、正極側外部接続端子部503を第3外部接続端子、負極側外部接続端子部504を第4外部接続端子と称する。
Similarly, the second end plate 6 of the housing 3 has a positive electrode side external connection terminal portion 503 that is electrically conductive with the positive electrode side bus bar 50 and a negative electrode side external connection terminal portion that is electrically conductive with the negative electrode side bus bar 60. A 504 is provided at the center of the upper side of the second end plate 6.
Although the positive electrode side bus bar 50 and the negative electrode side bus bar 60 are schematically drawn in FIGS. 5 and 6, the details will be described later with reference to FIG.
Hereinafter, the positive electrode side external connection terminal portion 501 is the first external connection terminal, the negative electrode side external connection terminal portion 502 is the second external connection terminal, the positive electrode side external connection terminal portion 503 is the third external connection terminal, and the negative electrode side external connection. The terminal portion 504 is referred to as a fourth external connection terminal.

図5及び図6の視座では、筐体3の底板9が側板7の外方に突出した部分の上面に重なるようにして外形が薄板状の冷却器を構成するウォータージャケット90の一部が視認される。ウォータージャケット90は筐体3内で、底板9の上面(内面)とリチウムイオンキャパシタ20の底部との間に介在してリチウムイオンキャパシタ20の冷却を行う。ウォータージャケット90には、冷却流体の出入り口となる外部配管接続部91,92を有するが、図5及び図6の視座では、一方の外部配管接続部91が視認される。 In the viewpoints of FIGS. 5 and 6, a part of the water jacket 90 constituting the cooler having a thin outer shape is visually recognized so that the bottom plate 9 of the housing 3 overlaps the upper surface of the portion protruding outward of the side plate 7. Will be done. The water jacket 90 is interposed between the upper surface (inner surface) of the bottom plate 9 and the bottom of the lithium ion capacitor 20 in the housing 3 to cool the lithium ion capacitor 20. The water jacket 90 has external pipe connecting portions 91 and 92 that serve as entrances and exits for the cooling fluid, and one of the external pipe connecting portions 91 is visually recognized from the viewpoints of FIGS. 5 and 6.

図7は、図5の蓄電式電源装置の分解斜視図である。
図7において、既述の図5及び図6との対応部は同一の符号を附して示し、それら各個の説明は適宜省略する。また、図7においても、図5及び図6におけると同様に、正極側バスバー50及び負極側バスバー60は概略的に描かれている。
図7では、ウォータージャケット90の外部配管接続部91,92が共に視認される。ウォータージャケット90はその内部に設けられた流路を外部配管接続部91,92を通して冷却液が移動することにより、自己の上面に接して配置される各リチウムイオンキャパシタ20をそれらの底部から冷却する。
各リチウムイオンキャパシタ20は、それぞれ正極端子101及び負極端子102を有する。尚、図7においても、全数のリチウムイオンキャパシタ20のうちの一部のものが図示されている。
FIG. 7 is an exploded perspective view of the power storage type power supply device of FIG.
In FIG. 7, the corresponding portions with those of FIGS. 5 and 6 described above are designated by the same reference numerals, and the description of each of them will be omitted as appropriate. Further, also in FIG. 7, the positive electrode side bus bar 50 and the negative electrode side bus bar 60 are schematically drawn as in FIGS. 5 and 6.
In FIG. 7, the external pipe connection portions 91 and 92 of the water jacket 90 are both visually recognized. The water jacket 90 cools each lithium ion capacitor 20 arranged in contact with the upper surface of the water jacket 90 from the bottom thereof by moving the coolant through the external pipe connecting portions 91 and 92 through the flow path provided inside the water jacket 90. ..
Each lithium ion capacitor 20 has a positive electrode terminal 101 and a negative electrode terminal 102, respectively. Also in FIG. 7, some of the total number of lithium ion capacitors 20 are shown.

隣接するリチウムイオンキャパシタ20間には、両者の対向する面部の略全面にわたって均熱シートとしての銅板21と伝熱シート22とが配されている。銅板21と伝熱シート22とはそれらの下方においてウォータージャケット90に接触している。従って、蓄電式電源装置1aが作動中にリチウムイオンキャパシタ20で発生する熱は上述の対向する面部から銅板21及び伝熱シート22を通してウォータージャケット90に向けて効果的に放熱される。 Between the adjacent lithium ion capacitors 20, a copper plate 21 as a heat equalizing sheet and a heat transfer sheet 22 are arranged over substantially the entire surface of the facing surfaces of the two. The copper plate 21 and the heat transfer sheet 22 are in contact with the water jacket 90 below them. Therefore, the heat generated in the lithium ion capacitor 20 while the storage type power supply device 1a is operating is effectively dissipated from the above-mentioned facing surfaces toward the water jacket 90 through the copper plate 21 and the heat transfer sheet 22.

図8は、図5の蓄電式電源装置の正極側バスバーと負極側バスバーを示す図である。図6を参照して既述のように、正極側バスバー50及び負極側バスバー60は、図示のように、筐体3内の幅方向の略中央を長手方向に沿って延び、筐体3の第1端板5から第2端板6まで並行に配されている。
図8に示されたように、正極側バスバー50は、全体として概略直方体状を呈し、当該直方体の長手方向に形成され部分的に途切れたスリットSによって、正極側外部接続導体部50bと、この正極側外部接続導体部50bと平行に延びた正極接続導体部50aとに区分されている。
正極側外部接続導体部50bの一端側が既述の第1外部接続端子501に接続され、他端側が既述の第3外部接続端子503に接続される。
正極側外部接続導体部50bと正極接続導体部50aとは正極側外部接続部53で接続される。また、この正極側外部接続部53によって正極側外部接続導体部50bと正極接続導体部50aとはスリットSを隔てて両者の相対位置が保持されている。
FIG. 8 is a diagram showing a positive electrode side bus bar and a negative electrode side bus bar of the power storage type power supply device of FIG. As described above with reference to FIG. 6, the positive electrode side bus bar 50 and the negative electrode side bus bar 60 extend substantially in the center of the housing 3 in the width direction along the longitudinal direction as shown in the drawing, and the housing 3 has a positive electrode side bus bar 50 and a negative electrode side bus bar 60. The first end plate 5 to the second end plate 6 are arranged in parallel.
As shown in FIG. 8, the positive electrode side bus bar 50 has a substantially rectangular parallelepiped shape as a whole, and the positive electrode side external connecting conductor portion 50b and the positive electrode side external connecting conductor portion 50b are formed by a slit S formed in the longitudinal direction of the rectangular parallelepiped and partially interrupted. It is divided into a positive electrode connecting conductor portion 50a extending in parallel with the positive electrode side external connecting conductor portion 50b.
One end side of the positive electrode side external connection conductor portion 50b is connected to the above-mentioned first external connection terminal 501, and the other end side is connected to the above-mentioned third external connection terminal 503.
The positive electrode side external connecting conductor portion 50b and the positive electrode connecting conductor portion 50a are connected by the positive electrode side external connecting conductor portion 53. Further, the positive electrode side external connecting conductor portion 53 holds the relative positions of the positive electrode side external connecting conductor portion 50b and the positive electrode connecting conductor portion 50a across the slit S.

換言すれば、スリットSは、正極側外部接続部53によって、第1外部接続端子501に近い側のスリット部分S1と第3外部接続端子503に近い側のスリット部分S2とに分かれている。第1外部接続端子501と第3外部接続端子503との間に延びた概略直方体状の導体を、上述のようなスリット部分S1とスリット部分S2とによって区分けすることによって、並行に延びた正極側外部接続導体部50bと正極接続導体部50aとが形成されている。 In other words, the slit S is divided into a slit portion S1 on the side close to the first external connection terminal 501 and a slit portion S2 on the side close to the third external connection terminal 503 by the positive electrode side external connection portion 53. By dividing the substantially rectangular parallelepiped conductor extending between the first external connection terminal 501 and the third external connection terminal 503 by the slit portion S1 and the slit portion S2 as described above, the positive electrode side extending in parallel The external connecting conductor portion 50b and the positive electrode connecting conductor portion 50a are formed.

図示のように、スリット部分S1は第1外部接続端子501寄りの端部で概略直方体状の導体の長手方向から幅方向へと曲がるように形成されている。同様に、スリット部分S2は第3外部接続端子503寄りの端部で概略直方体状の導体の長手方向から幅方向へと曲がるように形成されている。このため、正極接続導体部50aは、概略直方体状の正極側外部接続導体部50bに対してスリット部分S1及びS2である切り込みを入れることによって形成される様相を呈している。従って、正極側外部接続導体部50bと正極接続導体部50aとは両者が並行しながら全体として概略直方体状を成している。 As shown in the figure, the slit portion S1 is formed so as to bend from the longitudinal direction to the width direction of the substantially rectangular parallelepiped conductor at the end portion near the first external connection terminal 501. Similarly, the slit portion S2 is formed so as to bend from the longitudinal direction to the width direction of the substantially rectangular parallelepiped conductor at the end portion near the third external connection terminal 503. Therefore, the positive electrode connecting conductor portion 50a has an appearance of being formed by making notches, which are slit portions S1 and S2, in the positive electrode side external connecting conductor portion 50b having a substantially rectangular parallelepiped shape. Therefore, the positive electrode side external connecting conductor portion 50b and the positive electrode connecting conductor portion 50a form a substantially rectangular parallelepiped shape as a whole while being parallel to each other.

正極接続導体部50aには、リチウムイオンキャパシタ20の各正極端子101(図7参照)との電気的接続を得るための各接続片71が接触している。それぞれの接続片71は、リチウムイオンキャパシタ20の正極端子101が貫通する貫通穴72が設けられた第1接触板部73と、第1接触板部73の一端から折り曲げ部74で直角に起立し正極接続導体部50aに接触するように設けられた第2接触板部75を有し、側面視で概略L字状をなしている。第2接触板部75にも貫通穴76が形成されている。 Each connection piece 71 for obtaining an electrical connection with each positive electrode terminal 101 (see FIG. 7) of the lithium ion capacitor 20 is in contact with the positive electrode connection conductor portion 50a. Each connection piece 71 stands at a right angle from a first contact plate portion 73 provided with a through hole 72 through which the positive electrode terminal 101 of the lithium ion capacitor 20 penetrates and a bent portion 74 from one end of the first contact plate portion 73. It has a second contact plate portion 75 provided so as to come into contact with the positive electrode connecting conductor portion 50a, and has a substantially L-shape in a side view. A through hole 76 is also formed in the second contact plate portion 75.

正極接続導体部50aに、一方の端部(第3外部接続端子503寄りの端部)である正極第1端部51から他方の端部(第1外部接続端子501寄りの端部)である正極第2端部52まで、長手方向に整列するようにして各接続片71が接触している。正極接続導体部50a上での各接続片71の位置は、図2の回路図における各接続ノード201に対応する位置であり、接続ノード間それぞれの抵抗はrで等しい。本例の場合は、各接続片71間の物理的間隔も等しい。
正極接続導体部50aの第3外部接続端子503寄りの正極第1端部51から正極側外部接続部53までの距離が、図1を参照して既述の距離SD(リチウムイオンキャパシタ20の個数でPn)に相応する。
One end (the end near the third external connection terminal 503) of the positive electrode connection conductor portion 50a is from the first end 51 of the positive electrode to the other end (the end near the first external connection terminal 501). The connecting pieces 71 are in contact with each other up to the second end 52 of the positive electrode so as to be aligned in the longitudinal direction. The position of each connection piece 71 on the positive electrode connection conductor portion 50a is the position corresponding to each connection node 201 in the circuit diagram of FIG. 2, and the resistances between the connection nodes are equal in r. In the case of this example, the physical spacing between the connection pieces 71 is also the same.
The distance from the positive electrode first end 51 near the third external connection terminal 503 of the positive electrode connection conductor portion 50a to the positive electrode side external connection 53 is the distance SD (number of lithium ion capacitors 20) described above with reference to FIG. Corresponds to Pn).

負極側バスバー60の構成も、上述の正極側バスバー50と略同様である。このため、負極側バスバー60については、正極側バスバー50との対応関係を示して簡略に説明する。
負極側バスバー60は、既述のスリットSのスリット部分S1及びS2に対応するスリット部分S4及びS3を隔てて並行した負極側外部接続導体部60bと負極接続導体部60aとにより構成されている。スリットSが負極側外部接続部63で途切れてスリット部分S4及びS3に分かれている。即ち、この負極側外部接続部63によって負極側外部接続導体部60bと負極接続導体部60aとが電気的に接続され、且つ、両者の物理的相対位置が維持されている。
負極接続導体部60aには、図8では見えない側に接続片71が負極第1端部61から負極第2端部62まで長手方向に並んで配されている。
負極接続導体部60aの第2外部接続端子502寄りの負極第2端部62から負極側外部接続部63までの距離が、図1を参照して既述の距離SD(リチウムイオンキャパシタ20の個数でPn)に相応する。
The configuration of the negative electrode side bus bar 60 is also substantially the same as that of the positive electrode side bus bar 50 described above. Therefore, the negative electrode side bus bar 60 will be briefly described by showing the correspondence relationship with the positive electrode side bus bar 50.
The negative electrode side bus bar 60 is composed of a negative electrode side external connecting conductor portion 60b and a negative electrode connecting conductor portion 60a which are parallel to each other across the slit portions S4 and S3 corresponding to the slit portions S1 and S2 of the slit S described above. The slit S is interrupted at the negative electrode side external connection portion 63 and is divided into slit portions S4 and S3. That is, the negative electrode side external connecting conductor portion 60b and the negative electrode connecting conductor portion 60a are electrically connected by the negative electrode side external connecting portion 63, and the physical relative positions of the two are maintained.
In the negative electrode connecting conductor portion 60a, connection pieces 71 are arranged side by side in the longitudinal direction from the negative electrode first end portion 61 to the negative electrode second end portion 62 on the side not visible in FIG.
The distance from the negative electrode second end 62 near the second external connection terminal 502 of the negative electrode connection conductor portion 60a to the negative electrode side external connection 63 is the distance SD (number of lithium ion capacitors 20) described above with reference to FIG. Corresponds to Pn).

以上、図8の構成において、図2の回路図を併せ対照して説明する。正極側バスバー50(正極接続導体部50a)は、複数のリチウムイオンキャパシタ20の各正極端子101を、正極第1端部51での接続ノード201から正極第2端部52での接続ノード201まで等間隔で接続してリチウムイオンキャパシタ20の並列方向に延び、一方の端部51(第1番目のリチウムイオンキャパシタ20側の正極第1端部51)から自己の長手方向の全長の20%から30%の範囲で離隔した位置SDに正極側外部接続部33が設定されている。
また、負極側バスバー60(負極接続導体部60a)は、複数のリチウムイオンキャパシタ20の各負極端子102を、自己の一方の端部での接続ノード202から他方の端部62での接続ノード202まで等間隔で接続して並列方向に延び、負極第2端部62(第n番目のリチウムイオンキャパシタ20側の負極第2端部62)から自己の長手方向の全長の20%から30%の範囲で離隔した位置SDに負極側外部接続部63が設定されている。
尚、図8の例では、電気的な各接続ノード201及び接続ノード202には接続片71がそれぞれ対応している。
As described above, in the configuration of FIG. 8, the circuit diagram of FIG. 2 will be described in comparison with each other. The positive electrode side bus bar 50 (positive electrode connecting conductor portion 50a) connects each positive electrode terminal 101 of a plurality of lithium ion capacitors 20 from the connection node 201 at the first positive electrode end 51 to the connection node 201 at the second positive electrode 52. Connected at equal intervals and extended in the parallel direction of the lithium ion capacitor 20, from one end 51 (the first end 51 of the positive electrode on the first lithium ion capacitor 20 side) to 20% of the total length in the longitudinal direction of the self. The positive electrode side external connection portion 33 is set at the position SD separated by a range of 30%.
Further, the negative electrode side bus bar 60 (negative electrode connecting conductor portion 60a) connects each negative electrode terminal 102 of the plurality of lithium ion capacitors 20 from the connection node 202 at one end of itself to the connection node 202 at the other end 62. 20% to 30% of the total length in the longitudinal direction of the negative electrode 62 (the second end 62 of the negative electrode on the nth lithium ion capacitor 20 side), which is connected at equal intervals and extends in the parallel direction. The negative electrode side external connection portion 63 is set at the position SD separated by a range.
In the example of FIG. 8, the connection piece 71 corresponds to each of the electrical connection nodes 201 and the connection node 202.

図9は、図5の蓄電式電源装置の側面断面の詳細図である。
図10は、図5の蓄電式電源装置の蓄電器の積層方向(並列方向)断面の詳細図である。
図9及び図10の蓄電式電源装置は、図5及び図6のものとは、厳密にはウォータージャケット90の形状や一方の端板5及び他方の端板6の点、その他に若干の差異があるが、同じ設計思想に基づく実質的に同一の装置である。
図9及び図10において、既述の図5及び図6との対応部には同一の符号を附してある。
FIG. 9 is a detailed cross-sectional view of the side surface of the power storage type power supply device of FIG.
FIG. 10 is a detailed cross-sectional view of the capacitor in the storage type power supply device of FIG. 5 in the stacking direction (parallel direction).
Strictly speaking, the power storage type power supply devices of FIGS. 9 and 10 are slightly different from those of FIGS. 5 and 6 in terms of the shape of the water jacket 90, the points of one end plate 5 and the other end plate 6, and others. However, they are substantially the same device based on the same design concept.
In FIGS. 9 and 10, the same reference numerals are given to the parts corresponding to those in FIGS. 5 and 6 described above.

図9の通り、筐体3の一方の端板5には、流体或いは弾性体による加圧機構511が設けられている。加圧機構511は、リチウムイオンキャパシタ20に対して、それらを積層方向に常時押圧する。筐体3の他方の端板6にも、加圧機構511に相応するような弾性体による加圧機構611が設けられている。他方の端板6には、更に、加圧機構511及び加圧機構611による押圧力を検出するための感圧センサーとしてのロードセル612が設けられている。ロードセル612の検出出力に基づいて図示しないサーボ機構が作動し、加圧機構511及び加圧機構611による押圧力が適切に調節される。
尚、加圧機構511及び加圧機構611自体の可動範囲は僅かなものとし、加圧機構611の押圧端とこれに対向するリチウムイオンキャパシタ20の側面との間などの適所に厚みや枚数を選択してシム613を挟むようにしてもよい。これよって、リチウムイオンキャパシタ20の配置の最適化と、加圧機構511及び加圧機構611による適切な押圧とが実現される。
As shown in FIG. 9, one end plate 5 of the housing 3 is provided with a pressurizing mechanism 511 by a fluid or an elastic body. The pressurizing mechanism 511 constantly presses the lithium ion capacitors 20 against the lithium ion capacitors 20 in the stacking direction. The other end plate 6 of the housing 3 is also provided with a pressurizing mechanism 611 by an elastic body corresponding to the pressurizing mechanism 511. The other end plate 6 is further provided with a load cell 612 as a pressure sensitive sensor for detecting the pressing force by the pressurizing mechanism 511 and the pressurizing mechanism 611. A servo mechanism (not shown) is operated based on the detection output of the load cell 612, and the pressing force by the pressurizing mechanism 511 and the pressurizing mechanism 611 is appropriately adjusted.
The movable range of the pressurizing mechanism 511 and the pressurizing mechanism 611 themselves is small, and the thickness and the number of sheets are set at appropriate positions such as between the pressing end of the pressurizing mechanism 611 and the side surface of the lithium ion capacitor 20 facing the pressing end. You may choose to sandwich the shim 613. Thereby, the optimization of the arrangement of the lithium ion capacitor 20 and the appropriate pressing by the pressurizing mechanism 511 and the pressurizing mechanism 611 are realized.

このような構成により、多数のリチウムイオンキャパシタ20が作動時の温度変化によって膨張や収縮を繰り返しても、それらの積層方向での押圧力が適切に維持されることにより、リチウムイオンキャパシタ20の位置が適切に保持される。また、このような押圧力によって、図7を参照して説明した、均熱シートとしての銅板21や伝熱シート22によるウォータージャケット90への伝熱が適切に図られ、リチウムイオンキャパシタ20に対する冷却作用が維持される。 With such a configuration, even if a large number of lithium ion capacitors 20 repeatedly expand and contract due to temperature changes during operation, the pressing force in the stacking direction thereof is appropriately maintained, so that the position of the lithium ion capacitors 20 can be maintained. Is held properly. Further, by such a pressing force, heat transfer to the water jacket 90 by the copper plate 21 as the heat equalizing sheet or the heat transfer sheet 22 described with reference to FIG. 7 is appropriately achieved, and the lithium ion capacitor 20 is cooled. The action is maintained.

また、図10の通り、側板7及び側板8の上部には、それぞれ、上部保持部材7a及び上部保持部材8aが設けられる。上部保持部材7a及び上部保持部材8aは、側板7及び側板8の長手方向に沿って、略全長に亘って設けられている。
上部保持部材7a及び上部保持部材8aが各側板7及び側板8の上部から筐体3の内側にそれぞれ張り出した部分の下面には、バネ受部7b及びバネ受部8bが設けられている。これらバネ受部7b及びバネ受部8bとリチウムイオンキャパシタ20の上方肩部に設けられた各セットピース111,112との間に弾性体(コイルスプリング)23,24が介挿されている。これらの弾性体23,24による弾発力によって、リチウムイオンキャパシタ20は、常時、筐体3の底板9(底板9上のウォータージャケット90)に向けて押圧される。
Further, as shown in FIG. 10, an upper holding member 7a and an upper holding member 8a are provided on the upper portions of the side plate 7 and the side plate 8, respectively. The upper holding member 7a and the upper holding member 8a are provided along the longitudinal direction of the side plate 7 and the side plate 8 over substantially the entire length.
A spring receiving portion 7b and a spring receiving portion 8b are provided on the lower surface of the portion where the upper holding member 7a and the upper holding member 8a project from the upper part of each side plate 7 and the side plate 8 to the inside of the housing 3, respectively. Elastic bodies (coil springs) 23 and 24 are interposed between the spring receiving portions 7b and the spring receiving portions 8b and the set pieces 111 and 112 provided on the upper shoulder portions of the lithium ion capacitor 20. Due to the elastic force of these elastic bodies 23 and 24, the lithium ion capacitor 20 is constantly pressed toward the bottom plate 9 (water jacket 90 on the bottom plate 9) of the housing 3.

このため、リチウムイオンキャパシタ20は、図9を参照して説明した加圧機構による積層方向(筐体3内での長手方向)での位置決めと押圧が行われるに加えて、積層方向に交差する方向での位置決めと押圧が行われる。従って、リチウムイオンキャパシタ20はウォータージャケット90と十分に熱的に結合されて、適切な冷却が行われる。 Therefore, the lithium ion capacitor 20 is positioned and pressed in the stacking direction (longitudinal direction in the housing 3) by the pressurizing mechanism described with reference to FIG. 9, and also intersects in the stacking direction. Positioning and pressing in the direction is performed. Therefore, the lithium ion capacitor 20 is sufficiently thermally coupled to the water jacket 90 to provide appropriate cooling.

リチウムイオンキャパシタ20の中央上方を図10において紙面に垂直な方向に、既述のような正極側バスバー50と負極側バスバー60とが配されている。正極側バスバー50はスリットSによって正極側外部接続導体部50bと正極接続導体部50aとに区分されている。同様に、負極側バスバー60はスリットSによって負極側外部接続導体部60bと負極接続導体部60aとに区分されている。正極側バスバー50と負極側バスバー60との間、即ち、正極側外部接続導体部50bと負極側外部接続導体部60bとの間は、絶縁部材150によって絶縁されている。 The positive electrode side bus bar 50 and the negative electrode side bus bar 60 as described above are arranged in the direction perpendicular to the paper surface in FIG. 10 above the center of the lithium ion capacitor 20. The positive electrode side bus bar 50 is divided into a positive electrode side external connecting conductor portion 50b and a positive electrode connecting conductor portion 50a by a slit S. Similarly, the negative electrode side bus bar 60 is divided into a negative electrode side external connecting conductor portion 60b and a negative electrode connecting conductor portion 60a by a slit S. The space between the positive electrode side bus bar 50 and the negative electrode side bus bar 60, that is, between the positive electrode side external connecting conductor portion 50b and the negative electrode side external connecting conductor portion 60b is insulated by the insulating member 150.

正極接続導体部50a及び負極接続導体部60aには、それぞれ、接続片71の第2接触板部75が接触している。また、接続片71の第1接触板部73が貫通穴72を通して貫通したリチウムイオンキャパシタ20のボルト状の正極端子101及び負極端子102とナットによって締結されている。これにより、正極接続導体部50a及び負極接続導体部60aは、リチウムイオンキャパシタ20の正極端子101及び負極端子102を、各別に並列接続する。 The second contact plate portion 75 of the connection piece 71 is in contact with the positive electrode connection conductor portion 50a and the negative electrode connection conductor portion 60a, respectively. Further, the first contact plate portion 73 of the connection piece 71 is fastened to the bolt-shaped positive electrode terminal 101 and the negative electrode terminal 102 of the lithium ion capacitor 20 penetrating through the through hole 72 by a nut. As a result, the positive electrode connecting conductor portion 50a and the negative electrode connecting conductor portion 60a separately connect the positive electrode terminal 101 and the negative electrode terminal 102 of the lithium ion capacitor 20 in parallel.

図10の下方には、接続片71のバリエーションが示されている。これらのバリエーションでは、各接続片71a、71b、71c、71d、71eについて、それらの貫通穴72、第1接触板部73、折り曲げ部74、第2接触板部75、貫通穴76について、それらの符号の末尾にa、b、c、d、eを附して示されている。
図示の通り、各接続片71a、71b、71c、71d、71eは、それらの第1接触板部73a、73b、73c、73d、73eそれぞれの貫通穴72a、72b、72c、72d、72eの位置を異にしている。更に各接続片71a、71b、71c、71d、71eは、それらの第2接触板部75a、75b、75c、75d、75eそれぞれの貫通穴76a、76b、76c、76d、76eの形状及び位置を異にしている。
このようなバリエーションを有する接続片71をそれらの配列における順番に応じて使い分けることによって、温度の変化によるリチウムイオンキャパシタ20の正極端子101及び負極端子102の位置や寸法の変位、更には、製造上の公差に柔軟に応じることが可能になる。
At the bottom of FIG. 10, variations of the connection piece 71 are shown. In these variations, for each of the connection pieces 71a, 71b, 71c, 71d, 71e, their through holes 72, the first contact plate portion 73, the bent portion 74, the second contact plate portion 75, and the through holes 76. It is indicated by adding a, b, c, d, and e to the end of the reference numeral.
As shown in the figure, the connection pieces 71a, 71b, 71c, 71d, 71e have the positions of the through holes 72a, 72b, 72c, 72d, 72e of the first contact plate portions 73a, 73b, 73c, 73d, 73e, respectively. It's different. Further, the connection pieces 71a, 71b, 71c, 71d, 71e have different shapes and positions of the through holes 76a, 76b, 76c, 76d, 76e of the second contact plate portions 75a, 75b, 75c, 75d, 75e, respectively. I have to.
By properly using the connection pieces 71 having such variations according to the order in their arrangement, the positions and dimensions of the positive electrode terminals 101 and the negative electrode terminals 102 of the lithium ion capacitor 20 are displaced due to changes in temperature, and further, in manufacturing. It becomes possible to flexibly respond to the tolerance of.

図5から図10を参照して説明した本発明の他の実施形態としての蓄電式電源装置1aにおいても、図8を参照して説明したように、正極側バスバー50及び負極側バスバー60における正極側外部接続部53及び負極側外部接続部63が上述のような位置SDに設けられている。これによって、正極側外部接続部53及び負極側外部接続部63を通し、更に、正極側外部接続導体部50b及び負極側外部接続導体部60bをと通して大電流が流れる際に、並列接続された各個のリチウムイオンキャパシタ20に流れる電流の均分化が図られる。
このため、蓄電装置である各個のリチウムイオンキャパシタ20の経年劣化が略均等になり、蓄電式電源装置としての耐用年数を延ばすことが可能になる。
Also in the storage type power supply device 1a as another embodiment of the present invention described with reference to FIGS. 5 to 10, as described with reference to FIG. 8, the positive electrodes in the positive electrode side bus bar 50 and the negative electrode side bus bar 60 are also used. The side external connection portion 53 and the negative electrode side external connection portion 63 are provided at the position SD as described above. As a result, when a large current flows through the positive electrode side external connection portion 53 and the negative electrode side external connection portion 63, and further through the positive electrode side external connection conductor portion 50b and the negative electrode side external connection conductor portion 60b, they are connected in parallel. The current flowing through each of the lithium ion capacitors 20 is evenly differentiated.
Therefore, the aged deterioration of each lithium ion capacitor 20 which is a power storage device becomes substantially equal, and the useful life of the power storage type power supply device can be extended.

また、本発明の他の実施形態としての蓄電式電源装置1aでは、第1番目から第n番目(この実施形態ではnは17)までの複数の蓄電装置であるリチウムイオンキャパシタ10が並列に接続された蓄電式電源装置であって、
正極側バスバー50(正極接続導体部50a)は、複数のリチウムイオンキャパシタ20の各正極端子101を、正極第1端部51での接続ノード201から正極第2端部52での接続ノード201まで等間隔で接続してリチウムイオンキャパシタ20の並列方向に延び、正極第1端部51(第1番目のリチウムイオンキャパシタ20側の正極第1端部51)から自己の長手方向の全長の20%から30%の範囲で離隔した位置SDに正極側外部接続部53が設定されている。
また、負極側バスバー60(負極接続導体部60a)は、複数のリチウムイオンキャパシタ20の各負極端子102を、自己の一方の端部での接続ノード202から負極第2端部62での接続ノード202まで等間隔で接続して並列方向に延び、負極第2端部62(第17番目のリチウムイオンキャパシタ20側の負極第2端部62)から自己の長手方向の全長の20%から30%の範囲で離隔した位置SDに負極側外部接続部63が設定されている。
Further, in the power storage type power supply device 1a as another embodiment of the present invention, the lithium ion capacitors 10 which are a plurality of power storage devices from the first to the nth (n is 17 in this embodiment) are connected in parallel. It is a power storage type power supply device
The positive electrode side bus bar 50 (positive electrode connecting conductor portion 50a) connects each positive electrode terminal 101 of a plurality of lithium ion capacitors 20 from the connection node 201 at the first positive electrode end 51 to the connection node 201 at the second positive electrode 52. It is connected at equal intervals and extends in the parallel direction of the lithium ion capacitor 20, and is 20% of the total length in the longitudinal direction of itself from the first end portion 51 of the positive electrode (the first end portion 51 of the positive electrode on the first lithium ion capacitor 20 side). The positive electrode side external connection portion 53 is set at the position SD separated from the above by 30%.
Further, the negative electrode side bus bar 60 (negative electrode connecting conductor portion 60a) connects each negative electrode terminal 102 of the plurality of lithium ion capacitors 20 from the connection node 202 at one end thereof to the connection node at the second negative electrode portion 62. 20% to 30% of the total length in the longitudinal direction of the negative electrode 62 (the second negative electrode 62 on the side of the 17th lithium ion capacitor 20) extending in parallel by connecting to 202 at equal intervals. The negative electrode side external connection portion 63 is set at the position SD separated in the range of.

正極側バスバー50(正極接続導体部50a)及び負極側バスバー60(負極接続導体部60a)における正極側外部接続部53及び負極側外部接続部63が上述のような位置SDに設けられることによって、正極側外部接続部53及び負極側外部接続部63を通して大電流が流れる際に、並列接続された各個のリチウムイオンキャパシタ20に流れる電流の均分化が図られる。
このため、蓄電装置である各個のリチウムイオンキャパシタ20の経年劣化が略均等になり、蓄電式電源装置としての耐用年数を延ばすことが可能になる。
The positive electrode side external connection portion 53 and the negative electrode side external connection portion 63 in the positive electrode side bus bar 50 (positive electrode connection conductor portion 50a) and the negative electrode side bus bar 60 (negative electrode connection conductor portion 60a) are provided at the positions SD as described above. When a large current flows through the positive electrode side external connection portion 53 and the negative electrode side external connection portion 63, the current flowing through each of the lithium ion capacitors 20 connected in parallel is equalized.
Therefore, the aged deterioration of each lithium ion capacitor 20 which is a power storage device becomes substantially equal, and the useful life of the power storage type power supply device can be extended.

更に、正極側バスバー50及び負極側バスバー60は、図8を参照して説明したような形態に構成されているため、正極側外部接続導体部50b及び負極側外部接続導体部60bに電気的に導通する何れの外部端子(501,502,503,504)によって外部回路と接続しても、リチウムイオンキャパシタ20に流れる電流の均分化が維持される。
例えば、蓄電式電源装置1aを1つの電源ユニットとして、これを3個直列に接続して直列電源装置を構成する場合を想定する。この場合1つ目から3つ目までの蓄電式電源装置1aを直列に接続する。1つ目の蓄電式電源装置1aの第1外部接続端子501(又は第3外部接続端子503)を直列電源装置の正極側の外部接続端子とし、3つ目の蓄電式電源装置1aの第4外部接続端子504(又は第2外部接続端子502)を直列電源装置の負極側の外部接続端子とする。直列接続を行うべく、1つ目の蓄電式電源装置1aの第4外部接続端子504(又は第2外部接続端子502)と2つ目の蓄電式電源装置1aの第1外部接続端子501(又は第3外部接続端子503)とを接続する。更に、2つ目の蓄電式電源装置1aの第4外部接続端子504(又は第2外部接続端子502)と3つ目の蓄電式電源装置1aの第1外部接続端子501(又は第3外部接続端子503)とを接続する。
上述のように蓄電式電源装置1aを1つの電源ユニットとして、これを3個直列に接続して直列電源装置を構成する場合にも、各外部端子(501,502,503,504)は既述のような構成の正極側外部接続導体部50b及び負極側外部接続導体部60bに格物に電気的に導通している。
従って、このような場合もリチウムイオンキャパシタ20に流れる電流の均分化が維持され、直列電源装置の構成要素としてのリチウムイオンキャパシタ20寿命が均等になるため、全体として耐用年数が延長される。
Further, since the positive electrode side bus bar 50 and the negative electrode side bus bar 60 are configured as described with reference to FIG. 8, the positive electrode side external connecting conductor portion 50b and the negative electrode side external connecting conductor portion 60b are electrically connected to each other. Even if it is connected to an external circuit by any of the conductive external terminals (501, 502, 503, 504), the equalization of the current flowing through the lithium ion capacitor 20 is maintained.
For example, it is assumed that the power storage type power supply device 1a is used as one power supply unit, and three of them are connected in series to form a series power supply device. In this case, the first to third power storage type power supply devices 1a are connected in series. The first external connection terminal 501 (or the third external connection terminal 503) of the first storage type power supply device 1a is used as the external connection terminal on the positive electrode side of the series power supply device, and the fourth of the third storage type power supply device 1a. The external connection terminal 504 (or the second external connection terminal 502) is used as the external connection terminal on the negative electrode side of the series power supply device. The fourth external connection terminal 504 (or the second external connection terminal 502) of the first storage type power supply device 1a and the first external connection terminal 501 (or the second external connection terminal 501) of the second storage type power supply device 1a for serial connection. Connect to the third external connection terminal 503). Further, the fourth external connection terminal 504 (or the second external connection terminal 502) of the second storage type power supply device 1a and the first external connection terminal 501 (or the third external connection) of the third storage type power supply device 1a. Connect to terminal 503).
As described above, even when the power storage type power supply device 1a is used as one power supply unit and three of them are connected in series to form a series power supply device, the external terminals (501, 502, 503, 504) are described above. The positive electrode side external connecting conductor portion 50b and the negative electrode side external connecting conductor portion 60b having such a configuration are electrically conductive to the object.
Therefore, even in such a case, the equalization of the current flowing through the lithium ion capacitor 20 is maintained, and the life of the lithium ion capacitor 20 as a component of the series power supply device becomes uniform, so that the service life is extended as a whole.

また、本発明の他の実施形態としての蓄電式電源装置1aでは、複数の蓄電装置はリチウムイオンキャパシタ又はその直列接続体である。
このため、高温耐久性能に優れ、且つ、各個の蓄電装置の耐用年数の均等化により、結果的に蓄電式電源装置としての耐用年数の延長が実現される。
Further, in the power storage type power supply device 1a as another embodiment of the present invention, the plurality of power storage devices are lithium ion capacitors or a series connection thereof.
Therefore, the high temperature durability performance is excellent, and the service life of each power storage device is equalized, and as a result, the service life of the power storage device can be extended.

なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
例えば、上述した複数の蓄電装置は必ずしもリチウムイオンキャパシタである場合には限られず、例えば二次電池又はその直列接続体であってもよい。
この場合も、蓄電装置を構成する並列接続された各個の二次電池又はその直列接続体の充放電電流の均分化が図られ、各個の蓄電装置の耐用年数の均等化により、結果的に蓄電式電源装置としての耐用年数の延長が実現される。
The present invention is not limited to the above embodiment, and modifications, improvements, and the like to the extent that the object of the present invention can be achieved are included in the present invention.
For example, the plurality of power storage devices described above are not necessarily limited to lithium ion capacitors, and may be, for example, a secondary battery or a series connection thereof.
In this case as well, the charge / discharge currents of each of the parallel-connected secondary batteries or their series-connected secondary batteries constituting the power storage device are equalized, and the service life of each power storage device is equalized, resulting in power storage. The service life of the power supply system can be extended.

以上においては、リチウムイオンキャパシタを並列接続して一つの蓄電式電源装置を構成する場合について詳細に説明した。
次に、既述のように構成される蓄電式電源装置を、複数直列接続する場合の技術について説明する。
In the above, the case where one storage type power supply device is configured by connecting lithium ion capacitors in parallel has been described in detail.
Next, a technique for connecting a plurality of power storage type power supply devices configured as described above in series will be described.

図11は、図1を参照して説明した蓄電式電源装置と略同様の蓄電式電源装置を3基直列接続した直列接続体を示す概念図である。
図12は、図11における直列接続体の概略構成を示す斜視図である。
図11及び図12において、第1直列接続体11Sを構成する3基の蓄電式電源装置1-1、1-2及び1-3は、それぞれ、複数のリチウムイオンキャパシタ10とそれらを並列接続する正極側バスバー30(30-1、30-2、30-3)及び負極側バスバー40(40-1、40-2、40-3)を有する。
FIG. 11 is a conceptual diagram showing a series connection body in which three power storage type power supply devices substantially similar to those described with reference to FIG. 1 are connected in series.
FIG. 12 is a perspective view showing a schematic configuration of the series connection body in FIG.
In FIGS. 11 and 12, the three storage type power supply devices 1-1, 1-2, and 1-3 constituting the first series connection body 11S respectively connect a plurality of lithium ion capacitors 10 and them in parallel. It has a positive electrode side bus bar 30 (30-1, 30-2, 30-3) and a negative electrode side bus bar 40 (40-1, 40-2, 40-3).

正極側バスバー30は、図1における正極側バスバー30と同様に平行に並ぶ正極接続導体部30aと正極側外部接続導体部30bとが正極側外部接続部33で接続されている点では共通している。図12の場合、3基の蓄電式電源装置1-1、1-2及び1-3を直列接続するために、正極側バスバー30は、正極側外部接続部33の位置が何れの端部に寄っているかに応じて2通りのタイプのものが用いられる。即ち、第1のタイプは、正極側外部接続部33の位置が、図12の視座で、正極側バスバー30の長手方向中央より右寄りにある。第2のタイプは、正極側外部接続部33の位置が、図12の視座で、正極側バスバー30の長手方向中央より左寄りにある。第1のタイプには第1正極側バスバー30-1、第2正極側バスバー30-3が該当し、第2のタイプには第3正極側バスバー30-2が該当する。
図12と図1とを併せ参照すると、第1のタイプの正極側バスバー30では、正極第1端部31から正極側外部接続部33までの離隔距離SDが、図12における右側を正極第1端部31側とみて設定される。また、第2のタイプの正極側バスバー30では、正極第1端部31から正極側外部接続部33までの離隔距離SDが、図12における左側を正極第1端部31側とみて設定される。
The positive electrode side bus bar 30 is common in that the positive electrode connecting conductor portion 30a and the positive electrode side external connecting conductor portion 30b arranged in parallel like the positive electrode side bus bar 30 in FIG. 1 are connected by the positive electrode side external connecting portion 33. There is. In the case of FIG. 12, in order to connect the three storage type power supply devices 1-1, 1-2 and 1-3 in series, the position of the positive electrode side external connection portion 33 of the positive electrode side bus bar 30 is at any end. Two types are used depending on whether they are close to each other. That is, in the first type, the position of the positive electrode side external connection portion 33 is to the right of the center of the positive electrode side bus bar 30 in the longitudinal direction in the viewpoint of FIG. In the second type, the position of the positive electrode side external connection portion 33 is to the left of the center of the positive electrode side bus bar 30 in the longitudinal direction in the viewpoint of FIG. The first type corresponds to the first positive electrode side bus bar 30-1 and the second positive electrode side bus bar 30-3, and the second type corresponds to the third positive electrode side bus bar 30-2.
Referring to both FIGS. 12 and 1, in the positive electrode side bus bar 30 of the first type, the separation distance SD from the positive electrode first end portion 31 to the positive electrode side external connection portion 33 is the positive electrode first on the right side in FIG. It is set as seen as the end 31 side. Further, in the second type positive electrode side bus bar 30, the separation distance SD from the positive electrode first end portion 31 to the positive electrode side external connection portion 33 is set with the left side in FIG. 12 as the positive electrode first end portion 31 side. ..

負極側バスバー40も、図1における負極側バスバー40と同様に平行に並ぶ負極接続導体部40aと負極外部接続導体部40bとが負極側外部接続部43で接続されている点では共通している。図12の場合、3基の蓄電式電源装置1-1、1-2及び1-3を直列接続するために、負極側バスバー40は、負極側外部接続部43の位置が何れの端部に寄っているかに応じて2通りのタイプのものが用いられる。即ち、第1のタイプは、負極側外部接続部43の位置が、図12の視座で、負極側バスバー40の長手方向中央より左寄りにある。第2のタイプは、負極側外部接続部43の位置が、図12の視座で、負極側バスバー40の長手方向中央より右寄りにある。第1のタイプには第1負極側バスバー40-1、第2負極側バスバー40-3が該当し、第2のタイプには第3負極側バスバー40-2が該当する。
負極側バスバー40についても、図12と図1とを併せ参照すると、第1のタイプの負極側バスバー40では、負極第1端部41から負極側外部接続部43までの離隔距離SDが、図12における左側を負極第1端部41側とみて設定される。また、第2のタイプの負極側バスバー40では、負極第1端部41から負極側外部接続部43までの離隔距離SDが、図12における右側を負極第1端部41側とみて設定される。
The negative electrode side bus bar 40 is also common in that the negative electrode connecting conductor portion 40a and the negative electrode external connecting conductor portion 40b arranged in parallel are connected by the negative electrode side external connecting portion 43 as in the negative electrode side bus bar 40 in FIG. .. In the case of FIG. 12, in order to connect the three storage type power supply devices 1-1, 1-2 and 1-3 in series, the position of the negative electrode side external connection portion 43 of the negative electrode side bus bar 40 is at any end. Two types are used depending on whether they are close to each other. That is, in the first type, the position of the negative electrode side external connection portion 43 is to the left of the center of the negative electrode side bus bar 40 in the longitudinal direction in the viewpoint of FIG. In the second type, the position of the negative electrode side external connection portion 43 is to the right of the center of the negative electrode side bus bar 40 in the longitudinal direction in the viewpoint of FIG. The first type corresponds to the first negative electrode side bus bar 40-1 and the second negative electrode side bus bar 40-3, and the second type corresponds to the third negative electrode side bus bar 40-2.
Regarding the negative electrode side bus bar 40 as well, with reference to FIGS. 12 and 1, in the negative electrode side bus bar 40 of the first type, the separation distance SD from the negative electrode first end portion 41 to the negative electrode side external connection portion 43 is shown in FIG. The left side of No. 12 is set as the negative electrode first end 41 side. Further, in the second type negative electrode side bus bar 40, the separation distance SD from the negative electrode first end portion 41 to the negative electrode side external connection portion 43 is set with the right side in FIG. 12 as the negative electrode first end portion 41 side. ..

第1正極側バスバー30-1及び第1負極側バスバー40-1は、蓄電式電源装置1-1の各リチウムイオンキャパシタ10を並列に繋ぐ導体である。また、第3正極側バスバー30-2及び第3負極側バスバー40-2は、蓄電式電源装置1-2の各リチウムイオンキャパシタ10を並列に繋ぐ導体である。また、第2正極側バスバー30-3及び第2負極側バスバー40-3は蓄電式電源装置1-3の各リチウムイオンキャパシタ10を並列に繋ぐ導体である。 The first positive electrode side bus bar 30-1 and the first negative electrode side bus bar 40-1 are conductors that connect the lithium ion capacitors 10 of the storage type power supply device 1-1 in parallel. Further, the third positive electrode side bus bar 30-2 and the third negative electrode side bus bar 40-2 are conductors connecting the lithium ion capacitors 10 of the storage type power supply device 1-2 in parallel. Further, the second positive electrode side bus bar 30-3 and the second negative electrode side bus bar 40-3 are conductors connecting the lithium ion capacitors 10 of the storage type power supply device 1-3 in parallel.

蓄電式電源装置1-1の第1負極側バスバー40-1と蓄電式電源装置1-2の第3正極側バスバー30-2とが第1連結用接続導体11aで接続され、蓄電式電源装置1-2の第3負極側バスバー40-2と蓄電式電源装置1-3の第2正極側バスバー30-3とが第2連結用接続導体11bで接続されている。また、第1直列接続体11Sにおいて、蓄電式電源装置1-1の第1正極側バスバー30-1から正極側出力導体11pが導出され、蓄電式電源装置1-3の第2負極側バスバー40-3から負極側出力導体11nが導出される。
第1直列接続体11Sにおいて、第1連結用接続導体11a及び第2連結用接続導体11bによって、蓄電式電源装置1-1、1-2及び1-3が直列に接続される。
The first negative electrode side bus bar 40-1 of the storage type power supply device 1-1 and the third positive electrode side bus bar 30-2 of the storage type power supply device 1-2 are connected by the first connecting connection conductor 11a, and the storage type power supply device The third negative electrode side bus bar 40-2 of 1-2 and the second positive electrode side bus bar 30-3 of the storage type power supply device 1-3 are connected by a second connecting conductor 11b. Further, in the first series connection body 11S, the positive electrode side output conductor 11p is derived from the first positive electrode side bus bar 30-1 of the storage type power supply device 1-1, and the second negative electrode side bus bar 40 of the storage type power supply device 1-3. The negative electrode side output conductor 11n is derived from -3.
In the first series connection body 11S, the storage type power supply devices 1-1, 1-2 and 1-3 are connected in series by the first connection connection conductor 11a and the second connection connection conductor 11b.

第1直列接続体11Sにおいて、第1連結用接続導体11aは、第1負極側バスバー40-1における負極側外部接続部43に対応する部位と、第3正極側バスバー30-2における正極側外部接続部33に対応する部位との間に設けられる。同様に、第2連結用接続導体11bは、第3負極側バスバー40-2における負極側外部接続部43に対応する部位と、第2正極側バスバー30-3における正極側外部接続部33に対応する部位との間に設けられる。
また、正極側出力導体11pは、第1正極側バスバー30-1における正極側外部接続部33に対応する部位に設けられる。また、負極側出力導体11nは、第2負極側バスバー40-3における負極側外部接続部43に対応する部位に設けられる。
In the first series connection body 11S, the first connection conductor 11a is a portion corresponding to the negative electrode side external connection portion 43 in the first negative electrode side bus bar 40-1, and the positive electrode side outside in the third positive electrode side bus bar 30-2. It is provided between the portion corresponding to the connecting portion 33. Similarly, the second connecting conductor 11b corresponds to the portion corresponding to the negative electrode side external connecting portion 43 in the third negative electrode side bus bar 40-2 and the positive electrode side external connecting portion 33 in the second positive electrode side bus bar 30-3. It is provided between the part to be used.
Further, the positive electrode side output conductor 11p is provided at a portion of the first positive electrode side bus bar 30-1 corresponding to the positive electrode side external connection portion 33. Further, the negative electrode side output conductor 11n is provided at a portion of the second negative electrode side bus bar 40-3 corresponding to the negative electrode side external connection portion 43.

図11及び図12の第1直列接続体11Sでは、正極側バスバー30として、第1のタイプの第1正極側バスバー30-1、第2正極側バスバー30-3、及び、第2のタイプの第3正極側バスバー30-2が上述のように配置される。また、負極側バスバー40として、第1のタイプの第1負極側バスバー40-1、第2負極側バスバー40-3、及び、第2のタイプの第3負極側バスバー40-2が上述のように配置される。これらの配置に合わせて、正極側バスバー30の正極側外部接続部33に対応する部位と負極側バスバー40の負極側外部接続部43に対応する部位とを結ぶように第1連結用接続導体11a、第2連結用接続導体11bが設けられる。これにより、図1から図4を参照して説明したように、各蓄電式電源装置1-1、1-2、1-3を構成するリチウムイオンキャパシタ10の電流の均分化が図られる。従って、各個のリチウムイオンキャパシタ10の経年劣化が略均等になり、蓄電式電源装置としての耐用年数を延ばすことが可能になる。更に、3基の蓄電式電源装置1-1、1-2及び1-3が、上述の作用効果を維持しつつ、最短経路で第1連結用接続導体11a、第2連結用接続導体11bにより直列接続され、小型化及び重量の軽減や電力のロスを抑制するに有利である。 In the first series connection 11S of FIGS. 11 and 12, the positive electrode side bus bar 30 is of the first type, the first positive electrode side bus bar 30-1, the second positive electrode side bus bar 30-3, and the second type. The third positive electrode side bus bar 30-2 is arranged as described above. Further, as the negative electrode side bus bar 40, the first type first negative electrode side bus bar 40-1, the second negative electrode side bus bar 40-3, and the second type third negative electrode side bus bar 40-2 are as described above. Is placed in. According to these arrangements, the first connecting conductor 11a connects the portion corresponding to the positive electrode side external connection portion 33 of the positive electrode side bus bar 30 and the portion corresponding to the negative electrode side external connection portion 43 of the negative electrode side bus bar 40. , A second connecting conductor 11b is provided. As a result, as described with reference to FIGS. 1 to 4, the currents of the lithium ion capacitors 10 constituting the power storage type power supply devices 1-1, 1-2, and 1-3 can be evenly distributed. Therefore, the aging deterioration of each lithium ion capacitor 10 becomes substantially equal, and the useful life of the power storage type power supply device can be extended. Further, the three power storage type power supply devices 1-1, 1-2 and 1-3 are connected by the first connecting conductor 11a and the second connecting conductor 11b in the shortest path while maintaining the above-mentioned effects. It is connected in series, which is advantageous for miniaturization, weight reduction, and suppression of power loss.

図13は、図5から図7を参照して説明した蓄電式電源装置と略同様の蓄電式電源装置を3基直列接続した直列接続体を示す概念図である。
図14は、図13における直列接続体の概略構成を示す斜視図である。
図13及び図14において、直列接続体を構成する3基の蓄電式電源装置1a-1、1a-2及び1a-3は、それぞれ、複数のリチウムイオンキャパシタ20(詳細は図6参照)と、それらを並列接続する正極側バスバー50(50-1、50-2、50-3)及び負極側バスバー60(60-1、60-2、60-3)を有して構成される。正極側バスバー50及び負極側バスバー60は、図8を参照して説明したバスバーと略同様のものである。即ち、正極側バスバー50は正極接続導体部50aと正極側外部接続導体部50bとが正極側外部接続部53で接続されている。また負極側バスバー60は負極接続導体部60aと負極側外部接続導体部60bとが負極側外部接続部63で接続されている。
FIG. 13 is a conceptual diagram showing a series connection body in which three power storage type power supply devices substantially similar to those described with reference to FIGS. 5 to 7 are connected in series.
FIG. 14 is a perspective view showing a schematic configuration of the series connection body in FIG.
In FIGS. 13 and 14, the three storage-type power supply devices 1a-1, 1a-2, and 1a-3 constituting the series connection have a plurality of lithium ion capacitors 20 (see FIG. 6 for details), respectively. It is configured to have a positive electrode side bus bar 50 (50-1, 50-2, 50-3) and a negative electrode side bus bar 60 (60-1, 60-2, 60-3) connecting them in parallel. The positive electrode side bus bar 50 and the negative electrode side bus bar 60 are substantially the same as the bus bar described with reference to FIG. That is, in the positive electrode side bus bar 50, the positive electrode side connecting conductor portion 50a and the positive electrode side external connecting conductor portion 50b are connected by the positive electrode side external connecting portion 53. Further, in the negative electrode side bus bar 60, the negative electrode side connecting conductor portion 60a and the negative electrode side external connecting conductor portion 60b are connected by the negative electrode side external connecting portion 63.

蓄電式電源装置1a-1における第4正極側バスバー50-1の正極側外部接続部53に相対的に近い方の端部と、蓄電式電源装置1a-2における第5負極側バスバー60-2の負極側外部接続部63に相対的に近い方の端部とが第3連結用接続導体13aで接続される。また、蓄電式電源装置1a-2における第5正極側バスバー50-2の正極側外部接続部53に相対的に近い方の端部と、蓄電式電源装置1a-2における第6負極側バスバー60-3の負極側外部接続部63に相対的に近い方の端部とが接続導体13bで接続される。
上述のような形態で、蓄電式電源装置1a-1、1a-2及び1a-3が第3連結用接続導体13a及び第4連結用接続導体13bによって直列に接続されて、蓄電式電源装置を3基直列接続した第2直列接続体13Sが構成される。この状態で、蓄電式電源装置1a-1の第4負極側バスバー60-1における負極側外部接続導体部60bの負極側外部接続部63に相対的に近い方の端部から負極側出力導体13nが導出される。また、蓄電式電源装置1a-3の第6正極側バスバー50-3における正極側外部接続導体部50bの正極側外部接続部53に相対的に近い方の端部から正極側出力導体13pが導出される。
The end of the fourth positive electrode side bus bar 50-1 in the storage type power supply device 1a-1 that is relatively close to the positive electrode side external connection portion 53, and the fifth negative electrode side bus bar 60-2 in the storage type power supply device 1a-2. The end portion relatively close to the negative electrode side external connecting portion 63 is connected by the third connecting connecting conductor 13a. Further, the end of the fifth positive electrode side bus bar 50-2 in the storage type power supply device 1a-2 that is relatively close to the positive electrode side external connection portion 53 and the sixth negative electrode side bus bar 60 in the storage type power supply device 1a-2. The end portion of -3 that is relatively close to the negative electrode side external connecting portion 63 is connected by the connecting conductor 13b.
In the form as described above, the storage type power supply devices 1a-1, 1a-2 and 1a-3 are connected in series by the third connection connection conductor 13a and the fourth connection connection conductor 13b to form a storage type power supply device. A second series connection body 13S in which three units are connected in series is configured. In this state, the negative electrode side output conductor 13n from the end relatively close to the negative electrode side external connection portion 63 of the negative electrode side external connection conductor portion 60b in the fourth negative electrode side bus bar 60-1 of the storage type power supply device 1a-1. Is derived. Further, the positive electrode side output conductor 13p is derived from the end portion of the positive electrode side external connection conductor portion 50b of the sixth positive electrode side bus bar 50-3 of the storage type power supply device 1a-3 that is relatively close to the positive electrode side external connection portion 53. Will be done.

図13に概念的に示される第2直列接続体13Sは、図14の斜視図にその外観の一例が示される。
上述のように、第2直列接続体13Sを構成する蓄電式電源装置1a-1、1a-2及び1a-3は、図5から図7を参照して説明した蓄電式電源装置と略同様のものであり、正極端子としての第1外部接続端子501及び第3外部接続端子503と、負極端子としての第2外部接続端子502及び第4外部接続端子504とを有する。
図13を参照して既述の第3連結用接続導体13aは、蓄電式電源装置1a-1の第1外部接続端子501と蓄電式電源装置1a-2の第2外部接続端子502との間を結ぶように接続される。また、第4連結用接続導体13bは、蓄電式電源装置1a-2の第3外部接続端子503と、蓄電式電源装置1a-3の第4外部接続端子504との間を結ぶように接続される。更に、蓄電式電源装置1a-1の第4外部接続端子504に負極側出力導体13nが接続され、蓄電式電源装置1a-3の第1外部接続端子501に正極側出力導体13pが接続される。
図13及び図14を参照して説明したような形態で蓄電式電源装置1a-1、1a-2及び1a-3を直列に接続して第2直列接続体13Sを構成するため、第3連結用接続導体13a及び第4連結用接続導体13bが最短のものとなり、小型化及び重量の軽減や電力のロスを抑制するに有利である。また、図11及び図12参照して説明した第1直列接続体11Sにおけるように、リチウムイオンキャパシタ20に流れる電流の均分化が維持され、直列電源装置の構成要素としてのリチウムイオンキャパシタ20の寿命が均等になるため、全体として耐用年数が延長される。
An example of the appearance of the second series connection body 13S conceptually shown in FIG. 13 is shown in the perspective view of FIG.
As described above, the storage-type power supply devices 1a-1, 1a-2, and 1a-3 constituting the second series connection 13S are substantially the same as the storage-type power supply devices described with reference to FIGS. 5 to 7. It has a first external connection terminal 501 and a third external connection terminal 503 as positive electrode terminals, and a second external connection terminal 502 and a fourth external connection terminal 504 as negative electrode terminals.
The third connection conductor 13a described above with reference to FIG. 13 is located between the first external connection terminal 501 of the power storage type power supply device 1a-1 and the second external connection terminal 502 of the power storage type power supply device 1a-2. It is connected so as to connect. Further, the fourth connection conductor 13b is connected so as to connect the third external connection terminal 503 of the power storage type power supply device 1a-2 and the fourth external connection terminal 504 of the power storage type power supply device 1a-3. To. Further, the negative electrode side output conductor 13n is connected to the fourth external connection terminal 504 of the storage type power supply device 1a-1, and the positive electrode side output conductor 13p is connected to the first external connection terminal 501 of the storage type power supply device 1a-3. ..
In order to form the second series connection body 13S by connecting the storage type power supply devices 1a-1, 1a-2 and 1a-3 in series in the manner as described with reference to FIGS. 13 and 14, a third connection is made. The connecting conductor 13a and the fourth connecting conductor 13b are the shortest, which is advantageous in reducing the size, reducing the weight, and suppressing the loss of electric power. Further, as in the first series connection 11S described with reference to FIGS. 11 and 12, the equalization of the current flowing through the lithium ion capacitor 20 is maintained, and the life of the lithium ion capacitor 20 as a component of the series power supply device is maintained. As a result, the useful life is extended as a whole.

図15は、図5から図7を参照して説明した蓄電式電源装置と略同様の蓄電式電源装置を3基直列接続した直列接続体を示す概念図である。
図16は、図15における直列接続体の概略構成を示す斜視図である。
図15及び図16おいて、第3直列接続体15Sと、図13及び図14を参照して既述の第2直列接続体13Sとの一つの相違点は、負極側出力導体13nと正極側出力導体13pとの導出位置である。即ち、第2直列接続体13Sでは、負極側出力導体13nと正極側出力導体13pとの導出位置が、蓄電式電源装置1a-1、1a-2及び1a-3の長手方向逆側であったところ、第3直列接続体15Sでは負極側出力導体15nと正極側出力導体15pとの導出位置が蓄電式電源装置1a-1、1a-2及び1a-3の長手方向の同一側である。これに伴い、第3直列接続体15Sでは、蓄電式電源装置1a-1、1a-2及び1a-3を直列接続するための第5連結用接続導体15a及び第6連結用接続導体15bの接続も、蓄電式電源装置1a-1、1a-2及び1a-3の長手方向の同一側で行われる。
図15及び図16において、図13及び図14との対応部は同一の符号を附して、既述の説明を援用する。
FIG. 15 is a conceptual diagram showing a series connection body in which three power storage type power supply devices substantially similar to those described with reference to FIGS. 5 to 7 are connected in series.
FIG. 16 is a perspective view showing a schematic configuration of the series connection body in FIG.
In FIGS. 15 and 16, one difference between the third series connection body 15S and the second series connection body 13S described above with reference to FIGS. 13 and 14 is the negative electrode side output conductor 13n and the positive electrode side. This is the lead-out position with the output conductor 13p. That is, in the second series connection body 13S, the lead-out position of the negative electrode side output conductor 13n and the positive electrode side output conductor 13p was on the opposite side in the longitudinal direction of the storage type power supply devices 1a-1, 1a-2 and 1a-3. However, in the third series connection body 15S, the lead-out positions of the negative electrode side output conductor 15n and the positive electrode side output conductor 15p are on the same side in the longitudinal direction of the storage type power supply devices 1a-1, 1a-2 and 1a-3. Along with this, in the third series connection body 15S, the connection of the fifth connection connection conductor 15a and the sixth connection connection conductor 15b for connecting the storage type power supply devices 1a-1, 1a-2 and 1a-3 in series. Is also performed on the same side in the longitudinal direction of the storage type power supply devices 1a-1, 1a-2 and 1a-3.
In FIGS. 15 and 16, the corresponding parts of FIGS. 13 and 14 are designated by the same reference numerals, and the above description is incorporated.

図15において、蓄電式電源装置1a-1は負極側バスバー60e-1と第4正極側バスバー50-1を有し、負極側バスバー60e-1における負極側外部接続導体部60bの負極側外部接続部63から相対的に離れた側の端部から負極側出力導体15nが導出される。また蓄電式電源装置1a-3は第6負極側バスバー60-3と正極側バスバー50e-3を有し、正極側バスバー50e-3における正極側外部接続導体部50bの正極側外部接続部53に相対的に近い側の端部から正極側出力導体15pが導出される。 In FIG. 15, the storage type power supply device 1a-1 has a negative electrode side bus bar 60e-1 and a fourth positive electrode side bus bar 50-1, and the negative electrode side external connection conductor portion 60b of the negative electrode side bus bar 60e-1 is connected to the negative electrode side externally. The negative electrode side output conductor 15n is derived from the end portion on the side relatively distant from the portion 63. Further, the storage type power supply device 1a-3 has a sixth negative electrode side bus bar 60-3 and a positive electrode side bus bar 50e-3, and is used as a positive electrode side external connection portion 53 of the positive electrode side external connection conductor portion 50b in the positive electrode side bus bar 50e-3. The positive electrode side output conductor 15p is derived from the end on the relatively close side.

図15及び図16の例では、蓄電式電源装置1a-1の第4正極側バスバー50-1と蓄電式電源装置1a-2の第5負極側バスバー60-2とは、正極側外部接続部53及び負極側外部接続部63から相対的に近い側の端部が第5連結用接続導体15aで結ばれている。これに対し、蓄電式電源装置1a-2の第5正極側バスバー50-2と蓄電式電源装置1a-3の第6負極側バスバー60-3とは、正極側外部接続部53及び負極側外部接続部63から相対的に遠い側の端部が第6連結用接続導体15bで結ばれている。しかしながら、第5連結用接続導体15a及び第6連結用接続導体15bによる接続は、何れも、外部接続導体部(正極側外部接続導体部50b、負極側外部接続導体部60b)で行われるため、既述の例におけるように、並列接続されたリチウムイオンキャパシタの電流の均分化が妨げられず、直列電源装置の構成要素としてのリチウムイオンキャパシタ20寿命が均等になるため、全体として耐用年数が延長される。
また、第5連結用接続導体15a及び第6連結用接続導体15bが最短のものとなり、小型化及び重量の軽減や電力のロスを抑制するに有利である。
In the examples of FIGS. 15 and 16, the fourth positive electrode side bus bar 50-1 of the storage type power supply device 1a-1 and the fifth negative electrode side bus bar 60-2 of the storage type power supply device 1a-2 are connected to the positive electrode side external connection portion. The end portion on the side relatively close to the negative electrode side external connecting portion 63 and the negative electrode side external connecting portion 63 is connected by the fifth connecting connecting conductor 15a. On the other hand, the fifth positive electrode side bus bar 50-2 of the storage type power supply device 1a-2 and the sixth negative electrode side bus bar 60-3 of the storage type power supply device 1a-3 are the positive electrode side external connection portion 53 and the negative electrode side outside. The end portion on the side relatively far from the connecting portion 63 is connected by the sixth connecting connecting conductor 15b. However, since the connection by the fifth connecting conductor 15a and the sixth connecting conductor 15b is performed by the external connecting conductor portion (positive electrode side external connecting conductor portion 50b, negative electrode side external connecting conductor portion 60b), the connection is performed. As in the above-mentioned example, the current equalization of the lithium ion capacitors connected in parallel is not hindered, and the life of the lithium ion capacitor 20 as a component of the series power supply device is equalized, so that the service life is extended as a whole. Will be done.
Further, the fifth connecting conductor 15a and the sixth connecting conductor 15b are the shortest, which is advantageous in reducing the size, reducing the weight, and suppressing the loss of electric power.

図17は、図1を参照して説明した蓄電式電源装置と略同様の蓄電式電源装置を3基直列接続した直列接続体を示す概念図である。尚、図17における各リチウムイオンキャパシタは、図7のものと略同様のものである。
図18は、図17における直列接続体の概略構成を示す斜視図である。
図17及び図18において、第4直列接続体17Sを構成する3基の蓄電式電源装置1-1、1-2及び1-3は、それぞれ、複数のリチウムイオンキャパシタ20がバスバーによって並列接続されて構成される。個々のリチウムイオンキャパシタ20はそれぞれ正極端子101と負極端子102とを有する。
FIG. 17 is a conceptual diagram showing a series connection body in which three storage-type power supply devices, which are substantially the same as those of the storage-type power supply device described with reference to FIG. 1, are connected in series. Each lithium ion capacitor in FIG. 17 is substantially the same as that in FIG. 7.
FIG. 18 is a perspective view showing a schematic configuration of the series connection body in FIG.
In FIGS. 17 and 18, the three storage type power supply devices 1-1, 1-2, and 1-3 constituting the fourth series connection body 17S have a plurality of lithium ion capacitors 20 connected in parallel by bus bars, respectively. It is composed of. Each lithium ion capacitor 20 has a positive electrode terminal 101 and a negative electrode terminal 102, respectively.

蓄電式電源装置1-1の各リチウムイオンキャパシタ20の負極端子102に個々に対応して接続片71が設けられる。これらの接続片71によって、各リチウムイオンキャパシタ20の負極端子102と第4負極側バスバー60-1の負極接続導体部60aとが接続される。蓄電式電源装置1-1における各リチウムイオンキャパシタ20の各正極端子101は、板状バスバー80-1に接続される。
蓄電式電源装置1-2における各リチウムイオンキャパシタ20の負極端子102は板状バスバー80-1に接続される。蓄電式電源装置1-2における各リチウムイオンキャパシタ20の各正極端子101は、板状バスバー80-2に接続される。
蓄電式電源装置1-3における各リチウムイオンキャパシタ20の負極端子102は板状バスバー80-2に接続される。蓄電式電源装置1-3における各リチウムイオンキャパシタ20の正極端子101は、上述した蓄電式電源装置1-1の各リチウムイオンキャパシタ20の負極端子102と同様に、接続片(図18の視座では見えない)によって第6正極側バスバー50-3の正極接続導体部50aに接続される。
A connection piece 71 is individually provided corresponding to the negative electrode terminal 102 of each lithium ion capacitor 20 of the storage type power supply device 1-1. The negative electrode terminal 102 of each lithium ion capacitor 20 and the negative electrode connection conductor portion 60a of the fourth negative electrode side bus bar 60-1 are connected by these connection pieces 71. Each positive electrode terminal 101 of each lithium ion capacitor 20 in the storage type power supply device 1-1 is connected to a plate-shaped bus bar 80-1.
The negative electrode terminal 102 of each lithium ion capacitor 20 in the storage type power supply device 1-2 is connected to the plate-shaped bus bar 80-1. Each positive electrode terminal 101 of each lithium ion capacitor 20 in the storage type power supply device 1-2 is connected to a plate-shaped bus bar 80-2.
The negative electrode terminal 102 of each lithium ion capacitor 20 in the storage type power supply device 1-3 is connected to the plate-shaped bus bar 80-2. The positive electrode terminal 101 of each lithium ion capacitor 20 in the storage type power supply device 1-3 is a connection piece (in the viewpoint of FIG. 18) like the negative electrode terminal 102 of each lithium ion capacitor 20 of the storage type power supply device 1-1 described above. It is connected to the positive electrode connecting conductor portion 50a of the sixth positive electrode side bus bar 50-3 by (not visible).

図17及び図18の第4直列接続体17Sでは、板状バスバー80-1及び80-2によって、3基の蓄電式電源装置1-1、1-2及び1-3が直列に接続される。即ち、板状バスバー80-1は蓄電式電源装置1-1の各リチウムイオンキャパシタ20の各正極端子101を並列接続すると共に、蓄電式電源装置1-1と蓄電式電源装置1-2とを最短経路で直列に接続する接続導体として機能する。また、板状バスバー80-2は蓄電式電源装置1-2の各リチウムイオンキャパシタ20の各正極端子101を並列接続すると共に、蓄電式電源装置1-2と蓄電式電源装置1-3とを最短経路で直列に接続する接続導体として機能する。 In the fourth series connection body 17S of FIGS. 17 and 18, three storage type power supply devices 1-1, 1-2 and 1-3 are connected in series by the plate-shaped bus bars 80-1 and 80-2. .. That is, the plate-shaped bus bar 80-1 connects the positive electrode terminals 101 of each lithium ion capacitor 20 of the storage type power supply device 1-1 in parallel, and also connects the storage type power supply device 1-1 and the storage type power supply device 1-2. It functions as a connecting conductor that connects in series by the shortest route. Further, the plate-shaped bus bar 80-2 connects the positive electrode terminals 101 of each lithium ion capacitor 20 of the storage type power supply device 1-2 in parallel, and also connects the storage type power supply device 1-2 and the storage type power supply device 1-3. It functions as a connecting conductor that connects in series by the shortest route.

第4負極側バスバー60-1における負極側外部接続導体部60bの負極側外部接続部63に相対的に近い側の端部から負極側出力導体13nが導出される。また、第6正極側バスバー50-3における正極側外部接続導体部50bの正極側外部接続部53に相対的に近い側の端部から正極側出力導体13pが導出される。 The negative electrode side output conductor 13n is derived from the end portion of the negative electrode side external connecting conductor portion 60b of the fourth negative electrode side bus bar 60-1 that is relatively close to the negative electrode side external connecting conductor portion 63. Further, the positive electrode side output conductor 13p is derived from the end portion of the sixth positive electrode side bus bar 50-3 on the side relatively close to the positive electrode side external connection portion 53 of the positive electrode side external connection conductor portion 50b.

図17及び図18の第4直列接続体17Sにおいても、接続導体である板状バスバー80-1及び80-2が最短のものとなり、小型化及び重量の軽減や電力のロスを抑制するに有利である。また、図11及び図12参照して説明した第1直列接続体11Sにおけるように、リチウムイオンキャパシタ20に流れる電流の均分化が維持され、直列電源装置の構成要素としてのリチウムイオンキャパシタ20寿命が均等になるため、全体として耐用年数が延長される。 Also in the fourth series connection body 17S of FIGS. 17 and 18, the plate-shaped bus bars 80-1 and 80-2, which are connection conductors, are the shortest, which is advantageous for miniaturization, weight reduction, and suppression of power loss. Is. Further, as in the first series connection 11S described with reference to FIGS. 11 and 12, the equalization of the current flowing through the lithium ion capacitor 20 is maintained, and the life of the lithium ion capacitor 20 as a component of the series power supply device is extended. Due to the equality, the useful life is extended as a whole.

1,1a,1-1,1-2,1-3,1a-1,1a-2,1a-3…蓄電式電源装置
2,9…ベース
10,20…リチウムイオンキャパシタ(蓄電装置)
11a,11b,13a,13b,15a,15b…接続導体
11S,13S,15S,17S…直列接続体
13n,15n…負極側出力導体
13p,15p…正極側出力導体
30,50…正極側バスバー(正極側並列接続導体)
30a,50a…正極接続導体部
30b,50b…正極側外部接続導体部
31,51…正極第1端部
32,52…正極第2端部
33,53…正極側外部接続部
40,60…負極側バスバー(負極側並列接続導体)
40a,60a…負極接続導体部
40b,60b…負極側外部接続導体部
41,61…負極第1端部
42,62…負極第2端部
43,63…負極側外部接続部
80-1,80-2…板状バスバー
101…正極端子
102…負極端子
201,201…接続ノード
1,1a, 1-1,1-2,1-3,1a-1,1a-2,1a-3 ... Storage type power supply device 2,9 ... Base 10,20 ... Lithium ion capacitor (power storage device)
11a, 11b, 13a, 13b, 15a, 15b ... Connection conductors 11S, 13S, 15S, 17S ... Series connectors 13n, 15n ... Negative electrode side output conductors 13p, 15p ... Positive electrode side output conductors 30, 50 ... Positive electrode side bus bar (positive electrode side) Side parallel connection conductor)
30a, 50a ... Positive electrode connection conductor portion 30b, 50b ... Positive electrode side external connection conductor portion 31,51 ... Positive electrode first end portion 32, 52 ... Positive electrode second end portion 33, 53 ... Positive electrode side external connection portion 40, 60 ... Negative electrode Side bus bar (negative electrode side parallel connection conductor)
40a, 60a ... Negative electrode connection conductor portion 40b, 60b ... Negative electrode side external connection conductor portion 41, 61 ... Negative electrode first end portion 42, 62 ... Negative electrode second end portion 43, 63 ... Negative electrode side external connection portion 80-1, 80 -2 ... Plate-shaped bus bar 101 ... Positive electrode terminal 102 ... Negative electrode terminal 201, 201 ... Connection node

Claims (5)

第1番目から第n番目(nは6以上の整数)までの複数の蓄電装置が並列に接続された蓄電式電源装置であって、
自己の一方の端部から他方の端部まで、前記第1番目から前記第n番目の蓄電装置の各正極端子がこの順で接続された正極側並列接続導体と、
自己の一方の端部から他方の端部まで、前記第1番目から前記第n番目の蓄電装置の各負極端子がこの順で接続された負極側並列接続導体と、を備え、
前記正極側並列接続導体は、前記一方の端部から他方の端部までの抵抗値の20%から30%の範囲の抵抗値に相当する長さ分前記第1番目の蓄電装置側の端部から離隔した位置に単一の正極側外部接続部が設定され、
前記負極側並列接続導体は、前記一方の端部から他方の端部までの抵抗値の20%から30%の範囲の抵抗値に相当する長さ分前記第n番目の蓄電装置側の端部から離隔した位置に単一の負極側外部接続部が設定されている、
蓄電式電源装置。
It is a power storage type power supply device in which a plurality of power storage devices from the first to the nth (n is an integer of 6 or more) are connected in parallel.
From one end of the self to the other end, a positive electrode side parallel connection conductor in which the positive electrode terminals of the first to the nth power storage devices are connected in this order,
From one end of the self to the other end, each negative electrode terminal of the first to the nth power storage device is provided with a negative electrode side parallel connection conductor connected in this order.
The positive electrode side parallel connecting conductor has a length corresponding to a resistance value in the range of 20% to 30% of the resistance value from one end to the other end, and the end portion on the first power storage device side. A single positive electrode side external connection is set at a position away from
The negative electrode side parallel connecting conductor has a length corresponding to a resistance value in the range of 20% to 30% of the resistance value from one end to the other end, and the end portion on the nth power storage device side. A single negative electrode side external connection is set at a position away from the
Storage type power supply.
第1番目から第n番目(nは6以上の整数)までの複数の蓄電装置が並列に接続された蓄電式電源装置であって、
前記複数の蓄電装置の並列方向に延び、自己の一方の端部から他方の端部まで、前記第1番目から前記第n番目の蓄電装置の各正極端子がこの順で接続された正極側並列接続導体と、
前記並列方向に延び、その一方の端部から他方の端部まで、前記第1番目から前記第n番目の蓄電装置の各負極端子がこの順で接続された負極側並列接続導体と、を備え、
前記正極側並列接続導体は、前記第1番目の蓄電装置側の端部から自己の長手方向の全長の20%から30%の範囲で離隔した位置に単一の正極側外部接続部が設定され、
前記負極側並列接続導体は、前記第n番目の蓄電装置側の端部から自己の長手方向の全長の20%から30%の範囲で離隔した位置に単一の負極側外部接続部が設定されている、
蓄電式電源装置。
It is a power storage type power supply device in which a plurality of power storage devices from the first to the nth (n is an integer of 6 or more) are connected in parallel.
The positive electrode side parallel extending in the parallel direction of the plurality of power storage devices and connecting the positive electrode terminals of the first to the nth power storage devices in this order from one end to the other end of the self. With connecting conductors
A negative electrode side parallel connection conductor extending in the parallel direction and connecting the negative electrode terminals of the first to the nth power storage devices in this order from one end to the other end is provided. ,
In the positive electrode side parallel connection conductor, a single positive electrode side external connection portion is set at a position separated from the end portion on the first power storage device side within a range of 20% to 30% of the total length in the longitudinal direction of the conductor. ,
In the negative electrode side parallel connection conductor, a single negative electrode side external connection portion is set at a position separated from the end portion on the nth power storage device side within a range of 20% to 30% of the total length in the longitudinal direction of the conductor. ing,
Storage type power supply.
前記正極側並列接続導体は、前記複数の蓄電装置の各正極端子が接続された正極接続導体部と、前記正極接続導体部と所定間隔で並行に設けられ、前記正極接続導体部の前記正極側外部接続部に対応する部位で前記正極接続導体部と接続された正極側外部接続導体部とを有し、
前記負極側並列接続導体は、前記複数の蓄電装置の各負極端子が接続された負極接続導体部と、前記負極接続導体部と所定間隔で並行に設けられ、前記負極接続導体部の前記負極側外部接続部に対応する部位で前記負極接続導体部と接続された負極側外部接続導体部とを有する、請求項1又は2に記載の蓄電式電源装置。
The positive electrode side parallel connecting conductor is provided in parallel with the positive electrode connecting conductor portion to which the positive electrode terminals of the plurality of power storage devices are connected and the positive electrode connecting conductor portion at predetermined intervals, and the positive electrode side of the positive electrode connecting conductor portion. It has a positive electrode side external connecting conductor portion connected to the positive electrode connecting conductor portion at a portion corresponding to the external connecting portion.
The negative electrode side parallel connecting conductor is provided in parallel with the negative electrode connecting conductor portion to which the negative electrode terminals of the plurality of power storage devices are connected and the negative electrode connecting conductor portion at predetermined intervals, and the negative electrode side of the negative electrode connecting conductor portion. The power storage type power supply device according to claim 1 or 2, further comprising a negative electrode side external connection conductor portion connected to the negative electrode connection conductor portion at a portion corresponding to the external connection portion.
前記蓄電装置は、リチウムイオンキャパシタ又はその直列接続体である請求項1から3の何れかに記載の蓄電式電源装置。 The power storage device according to any one of claims 1 to 3, wherein the power storage device is a lithium ion capacitor or a series connection thereof. 前記蓄電装置は、二次電池又はその直列接続体である請求項1から3の何れかに記載の蓄電式電源装置。 The power storage device according to any one of claims 1 to 3, wherein the power storage device is a secondary battery or a series connection thereof.
JP2018090813A 2017-05-15 2018-05-09 Storage type power supply Active JP7058171B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/977,728 US10483048B2 (en) 2017-05-15 2018-05-11 Capacitor-type power supply unit
CN201810458965.3A CN108878155B (en) 2017-05-15 2018-05-14 Power storage type power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017096613 2017-05-15
JP2017096613 2017-05-15

Publications (2)

Publication Number Publication Date
JP2018195816A JP2018195816A (en) 2018-12-06
JP7058171B2 true JP7058171B2 (en) 2022-04-21

Family

ID=64570902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018090813A Active JP7058171B2 (en) 2017-05-15 2018-05-09 Storage type power supply

Country Status (1)

Country Link
JP (1) JP7058171B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7157014B2 (en) * 2019-07-10 2022-10-19 本田技研工業株式会社 Storage modules and storage module packs
JP7474618B2 (en) 2020-03-24 2024-04-25 日本特殊陶業株式会社 Busbars and battery packs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143272A (en) 2005-11-17 2007-06-07 Hitachi Ltd Capacitor module, power conversion device, and on-vehicle electric machinery system
JP2013161635A (en) 2012-02-03 2013-08-19 Toyota Industries Corp Terminal connection member, method of manufacturing terminal connection member, power storage device, and moving body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143272A (en) 2005-11-17 2007-06-07 Hitachi Ltd Capacitor module, power conversion device, and on-vehicle electric machinery system
JP2013161635A (en) 2012-02-03 2013-08-19 Toyota Industries Corp Terminal connection member, method of manufacturing terminal connection member, power storage device, and moving body

Also Published As

Publication number Publication date
JP2018195816A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
CN108878155B (en) Power storage type power supply device
US9793530B2 (en) Battery assembly with linear bus bar configuration
EP2973782B1 (en) Bus bars for battery packs
JP7045604B2 (en) battery pack
US9837687B2 (en) Battery module
JP7058171B2 (en) Storage type power supply
KR101312425B1 (en) Secondary battery pack and connector utilized therein
CN208127289U (en) battery pack, bracket
JPWO2019124107A1 (en) Busbar and battery laminate
US10476058B2 (en) Battery module
US9698452B2 (en) Battery pack
CN110612615B (en) Battery unit, battery module containing same and application thereof
CN214203910U (en) Battery module and battery pack
JP6314658B2 (en) Power storage device
KR102182222B1 (en) Wireless charging apparatus
KR102199077B1 (en) Method for manufacturing wireless charging apparatus
KR102182224B1 (en) Wireless charging apparatus
WO2021044952A1 (en) Battery module
KR102182228B1 (en) Wireless charging apparatus
KR102182219B1 (en) Wireless charging apparatus
KR102182221B1 (en) Wireless charging apparatus
JP7099807B2 (en) Battery pack
JP2019008876A (en) Bus bar unit and conductive module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R150 Certificate of patent or registration of utility model

Ref document number: 7058171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150