JP6854685B2 - A carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same, and a catalyst carrier for a polymer electrolyte fuel cell using the carbon material for the catalyst carrier. - Google Patents

A carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same, and a catalyst carrier for a polymer electrolyte fuel cell using the carbon material for the catalyst carrier. Download PDF

Info

Publication number
JP6854685B2
JP6854685B2 JP2017071625A JP2017071625A JP6854685B2 JP 6854685 B2 JP6854685 B2 JP 6854685B2 JP 2017071625 A JP2017071625 A JP 2017071625A JP 2017071625 A JP2017071625 A JP 2017071625A JP 6854685 B2 JP6854685 B2 JP 6854685B2
Authority
JP
Japan
Prior art keywords
carbon material
catalyst carrier
fuel cell
silver
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017071625A
Other languages
Japanese (ja)
Other versions
JP2018174078A (en
Inventor
一嘉 正木
一嘉 正木
若菜 多田
若菜 多田
広幸 林田
広幸 林田
孝 飯島
孝 飯島
健一郎 田所
健一郎 田所
正孝 日吉
正孝 日吉
晋也 古川
晋也 古川
田中 智子
智子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Corp
Priority to JP2017071625A priority Critical patent/JP6854685B2/en
Publication of JP2018174078A publication Critical patent/JP2018174078A/en
Application granted granted Critical
Publication of JP6854685B2 publication Critical patent/JP6854685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法、並びに前記触媒担体用炭素材料を用いた固体高分子形燃料電池用触媒担体に係り、特に、固体高分子形燃料電池の触媒を調製するための触媒担体として有用な触媒担体用炭素材料及びその製造方法に関する。 The present invention relates to a carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same, and a catalyst carrier for a solid polymer fuel cell using the carbon material for a catalyst carrier, and in particular, a polymer electrolyte fuel. The present invention relates to a carbon material for a catalyst carrier useful as a catalyst carrier for preparing a catalyst for a battery, and a method for producing the same.

近年、100℃以下の低温で作動可能な固体高分子形燃料電池が注目され、車両用駆動電源や定置型発電装置として開発や実用化が進められている。そして、一般的な固体高分子形燃料電池は、プロトン伝導性の電解質膜を挟んでその両外側にそれぞれアノード及びカソードとなる触媒層が配置された膜電極接合体(MEA: Membrane Electrode Assembly)と、この膜電極接合体を挟んでそれぞれ触媒層の外側に配置されたガス拡散層と、更にこれらガス拡散層の外側に配置されたセパレーターとからなる構造を基本構造(単位セル)とし、通常は、必要な出力を達成するために必要な数の単位セルをスタックすることにより構成されている。 In recent years, a polymer electrolyte fuel cell that can operate at a low temperature of 100 ° C. or lower has attracted attention, and is being developed and put into practical use as a drive power source for vehicles and a stationary power generation device. A general polymer electrolyte fuel cell has a membrane electrode assembly (MEA) in which catalyst layers serving as an anode and a cathode are arranged on both outer sides of a proton conductive electrolyte membrane. The basic structure (unit cell) is a structure consisting of a gas diffusion layer arranged outside the catalyst layer with the membrane electrode assembly interposed therebetween and a separator arranged outside the gas diffusion layer. , Consists of stacking the required number of unit cells to achieve the required output.

そして、このような固体高分子形燃料電池の単位セルにおいては、アノード側とカソード側にそれぞれ配されたセパレーターのガス流路から、カソード側には酸素や空気等の酸化性ガスを、また、アノード側には水素等の燃料をそれぞれ供給し、これら供給された酸化性ガス及び燃料(これらを「反応ガス」ということがある。)を、それぞれガス拡散層を介して触媒層まで供給し、アノードの触媒層で起こる化学反応とカソードの触媒層で起こる化学反応との間のエネルギー差(電位差)を利用して仕事を取り出している。例えば、燃料として水素ガスが、また、酸化性ガスとして酸素ガスが使用される場合には、アノードの触媒層で起こる化学反応〔酸化反応:H2→2H++2e-(E0=0V)〕と、カソードの触媒層で起こる化学反応〔還元反応:O2+4H++4e-→2H2O(E0=1.23V)〕とのエネルギー差(電位差)を仕事として取り出している。 Then, in the unit cell of such a polymer electrolyte fuel cell, an oxidizing gas such as oxygen or air is applied to the cathode side from the gas flow paths of the separators arranged on the anode side and the cathode side, respectively. Fuels such as hydrogen are supplied to the anode side, and these supplied oxidizing gases and fuels (these are sometimes referred to as "reaction gases") are supplied to the catalyst layer via the gas diffusion layer, respectively. Work is taken out by utilizing the energy difference (potential difference) between the chemical reaction occurring in the catalyst layer of the anode and the chemical reaction occurring in the catalyst layer of the cathode. For example, hydrogen gas as the fuel, and when the oxygen gas is used as the oxidizing gas, a chemical reaction occurring in the anode catalyst layer [oxidation reaction: H 2 → 2H + + 2e - (E 0 = 0V) ] When the chemical reaction occurring in the catalyst layer of the cathode: - is extracted energy difference between [the reduction reaction O 2 + 4H + + 4e → 2H 2 O (E 0 = 1.23V) ] a (potential difference) as work.

ここで、上記のような触媒層を形成して化学反応を生起させる触媒については、通常、触媒担体としては電子伝導性、化学的安定性、電気化学的安定性の観点から多孔質炭素材料が用いられ、また、触媒金属としては強酸性環境下での使用が可能であって酸化反応及び還元反応に対して共に高い反応活性を示すPt又はPt合金が主として用いられている。そして、触媒金属については、一般に上記の酸化反応及び還元反応が触媒金属上で起きるので、この触媒金属の利用率を高めるためには、質量当りの比表面積を大きくすることが必要になり、通常は数nm程度の大きさの粒子が用いられている。 Here, with respect to a catalyst that forms a catalyst layer as described above and causes a chemical reaction, a porous carbon material is usually used as a catalyst carrier from the viewpoints of electron conductivity, chemical stability, and electrochemical stability. As the catalyst metal, Pt or Pt alloy, which can be used in a strongly acidic environment and exhibits high reaction activity for both oxidation reaction and reduction reaction, is mainly used. As for the catalyst metal, the above-mentioned oxidation reaction and reduction reaction generally occur on the catalyst metal. Therefore, in order to increase the utilization rate of the catalyst metal, it is necessary to increase the specific surface area per mass, which is usually the case. Uses particles with a size of about several nm.

そして、このような触媒金属の粒子を担持する触媒担体については、担体としての担持能力を高めるために、すなわち、上記の数nm程度の触媒金属粒子を吸着して担持するためのサイトを多くするために、比表面積の大きな多孔質炭素材料であることが必要であると共に、上記の触媒金属粒子を可及的に高分散状態で担持するように、細孔直径2〜50nmのメソ孔の容積、すなわちメソ孔容積の大きな多孔質炭素材料であることが求められると同時に、アノード及びカソードとなる触媒層を形成した際には、この触媒層中に供給された反応ガスを抵抗なく拡散させ、また、この触媒層中で生成した水(生成水)を遅滞なく排出させるために、この触媒層中に反応ガスの拡散や生成水の排出に適した微細孔が形成される必要がある。 As for the catalyst carrier that supports such catalyst metal particles, in order to enhance the supporting ability as a carrier, that is, to increase the number of sites for adsorbing and supporting the above-mentioned catalyst metal particles of about several nm. Therefore, it is necessary to use a porous carbon material having a large specific surface area, and the volume of mesopores having a pore diameter of 2 to 50 nm so as to support the above-mentioned catalytic metal particles in a highly dispersed state as much as possible. That is, it is required to be a porous carbon material having a large mesopore volume, and at the same time, when a catalyst layer serving as an anode and a cathode is formed, the reaction gas supplied into the catalyst layer is diffused without resistance. Further, in order to discharge the water (produced water) generated in the catalyst layer without delay, it is necessary to form fine pores in the catalyst layer suitable for diffusion of the reaction gas and discharge of the produced water.

そこで、従来においては、比較的大きな比表面積及びメソ孔容積を有し、同時に、立体的に枝が発達した樹状構造を持つ多孔質炭素材料として、例えばCABOT社製バルカンXC-72や、ライオン社製EC600JD及びライオン社製EC300が用いられている。また、触媒担体用炭素材料としてより好適な比表面積及びメソ孔容積を有すると共に、より好適な樹状構造を持つ多孔質炭素材料を開発するための試みも行われており、近年、特に注目され始めたものとして、3次元的に分岐した3次元樹状構造を持つ銀アセチリド等の金属アセチリドを中間体として製造され、この3次元樹状構造を維持した樹状炭素ナノ構造体があり、これまでにも幾つかの提案がされている。 Therefore, conventionally, as a porous carbon material having a relatively large specific surface area and mesopore volume and at the same time having a dendritic structure in which branches are three-dimensionally developed, for example, Cabot's Vulcan XC-72 or Lion. The company's EC600JD and Lion's EC300 are used. Attempts have also been made to develop a porous carbon material having a more suitable specific surface area and mesopore volume as a carbon material for a catalyst carrier and a more suitable dendritic structure, which has attracted particular attention in recent years. As a starting point, there is a dendritic carbon nanostructure that is manufactured using a metal acetylide such as silver acetylide having a three-dimensionally branched three-dimensional dendritic structure as an intermediate and maintains this three-dimensional dendritic structure. Some proposals have been made before.

例えば、特許文献1には、金属又は金属塩を含む溶液を準備する工程と、前記溶液にアセチレンガスを吹き込んで金属アセチリドからなる樹状の炭素ナノ構造体を生成させる工程と、この炭素ナノ構造体を60〜80℃で加熱して前記樹状の炭素ナノ構造体中に金属が内包された金属内包樹状炭素ナノ構造物を作製する工程と、この金属内包樹状炭素ナノ構造物を160〜200℃に加熱して金属を噴出させ、樹状の炭素メソポーラス構造体を作製する工程と、この炭素メソポーラス構造体を減圧雰囲気下又は不活性ガス雰囲気下で1600〜2200℃に加熱する工程とからなる製造方法で調製された多孔質炭素材料であって、窒素吸着等温線をDollimore-Heal法で解析して求められる細孔径1〜20nm及び積算細孔容積0.2〜1.5cc/gを有すると共に、BET比表面積200〜1300m2/gを有して、長期に亘って電流量の低下率が低く、耐久性に優れた固体高分子形燃料電池用の触媒を調製可能な触媒担体用炭素材料が提案されている。 For example, Patent Document 1 describes a step of preparing a solution containing a metal or a metal salt, a step of blowing acetylene gas into the solution to generate a dendritic carbon nanostructure made of metal acetylide, and the carbon nanostructure. A step of producing a metal-encapsulated dendritic carbon nanostructure in which a metal is encapsulated in the dendritic carbon nanostructure by heating the body at 60 to 80 ° C., and 160 of this metal-encapsulated dendritic carbon nanostructure. A step of producing a dendritic carbon mesoporous structure by heating to ~ 200 ° C. to eject metal, and a step of heating this carbon mesoporous structure to 1600 to 2200 ° C. under a reduced pressure atmosphere or an inert gas atmosphere. A porous carbon material prepared by a manufacturing method consisting of a pore diameter of 1 to 20 nm and an integrated pore volume of 0.2 to 1.5 cc / g obtained by analyzing nitrogen adsorption isotherms by the Dollimore-Heal method. A catalyst carrier that has a BET specific surface area of 200 to 1300 m 2 / g, has a low rate of decrease in the amount of current over a long period of time, and can prepare a catalyst for solid polymer fuel cells with excellent durability. Carbon materials for mesoporous materials have been proposed.

また、特許文献2においては、金属又は金属塩を含むアンモニア性水溶液中にアセチレンガスを吹き込んで金属アセチリドを生成させるアセチリド生成工程と、前記金属アセチリドを60〜80℃の温度で加熱して金属粒子内包中間体を作成する第1の加熱処理工程と、前記金属粒子内包中間体を120〜200℃の温度で加熱してこの金属粒子内包中間体から金属粒子を噴出させ、炭素材料中間体を得る第2の加熱処理工程と、前記炭素材料中間体を熱濃硫酸と接触させてこの炭素材料中間体を清浄化する洗浄処理工程と、更に清浄化された炭素材料中間体を1000〜2100℃で加熱処理して担体炭素材料を得る第3の加熱処理工程とからなる製造方法で調製された多孔質炭素材料であって、所定の水素含有量を有すると共に、BET比表面積600〜1500m2/g、及びラマン分光スペクトルから得られるD-バンド1200〜1400cm-1の範囲のピーク強度(lD)とG-バンド1500〜1700cm-1の範囲のピーク強度(lG)との相対強度比(lD/lG)1.0〜2.0を有し、高加湿条件下で高い電池性能を発揮し得る固体高分子形燃料電池用触媒を調製可能な担体炭素材料が提案されている。 Further, in Patent Document 2, an acetylide production step of blowing acetylene gas into an ammoniacal aqueous solution containing a metal or a metal salt to generate a metal acetylide, and a step of heating the metal acetylide at a temperature of 60 to 80 ° C. to generate metal particles. In the first heat treatment step of preparing the inclusion intermediate, the metal particle inclusion intermediate is heated at a temperature of 120 to 200 ° C. and the metal particles are ejected from the metal particle inclusion intermediate to obtain a carbon material intermediate. A second heat treatment step, a cleaning treatment step of contacting the carbon material intermediate with hot concentrated sulfuric acid to clean the carbon material intermediate, and a further cleaned carbon material intermediate at 1000 to 2100 ° C. A porous carbon material prepared by a production method comprising a third heat treatment step of heat-treating to obtain a carrier carbon material, which has a predetermined hydrogen content and a BET specific surface area of 600 to 1500 m 2 / g. , And the relative intensity ratio (l G ) of the peak intensity (l D ) in the D-band 1200 to 1400 cm -1 range and the peak intensity (l G) in the G-band 1500 to 1700 cm -1 obtained from the Raman spectral spectrum. A carrier carbon material having D / l G ) 1.0 to 2.0 and capable of preparing a catalyst for a solid polymer fuel cell capable of exhibiting high battery performance under high humidification conditions has been proposed.

更に、特許文献3においては、金属又は金属塩を含むアンモニア性水溶液中にアセチレンガスを吹き込んで金属アセチリドを生成させるアセチリド生成工程と、前記金属アセチリドを40〜80℃の温度で加熱して金属粒子内包中間体を作成する第1の加熱処理工程と、前記金属粒子内包中間体を圧密成形し、得られた成形体を毎分100℃以上の昇温速度で400℃以上まで加熱してこの金属粒子内包中間体から金属粒子を噴出させ、炭素材料中間体を得る第2の加熱処理工程と、前記炭素材料中間体を熱濃硝酸又は熱濃硫酸と接触させてこの炭素材料中間体を清浄化する洗浄処理工程と、更に清浄化された炭素材料中間体を真空中又は不活性ガス雰囲気中1400〜2100℃で加熱処理して担体炭素材料を得る第3の加熱処理工程とからなる製造方法で調製された多孔質炭素材料であって、吸着過程の窒素吸着等温線をDollimore-Heal法で解析して求められる細孔直径2〜50nmのメソ孔の比表面積SAが600〜1600m2/gであり、ラマン分光スペクトルにおけるG’-バンド2650〜2700cm-1の範囲のピーク強度(lG’)とG-バンド1550〜1650cm-1の範囲のピーク強度(lG)との相対強度比(lG’/lG)が0.8〜2.2であり、メソ孔の内の細孔直径2nm以上10nm未満のメソ孔の比細孔面積S2-10が400〜1100m2/gであって比細孔容積V2-10が0.4〜1.6cc/gであり、メソ孔の内の細孔直径10nm以上50nm以下のメソ孔の比細孔面積S10-50が20〜150m2/gであって比細孔容積V2-10が0.4〜1.6cc/gであり、また、吸着過程の窒素吸着等温線をHorvath-Kawazoe法で解析して求められる細孔直径2nm未満の細孔の比細孔面積S2が250〜550m2/gであって、高い発電性能を維持しつつ電位変動に対して優れた耐久性を発現し得る固体高分子形燃料電池用触媒を調製可能な触媒担体用炭素材料が提案されている。 Further, in Patent Document 3, an acetylide production step of blowing acetylene gas into an ammoniacal aqueous solution containing a metal or a metal salt to generate a metal acetylide, and a step of heating the metal acetylide at a temperature of 40 to 80 ° C. to generate metal particles. In the first heat treatment step of preparing the inclusion intermediate, the metal particle inclusion intermediate is compactally molded, and the obtained molded body is heated to 400 ° C. or higher at a heating rate of 100 ° C. or higher per minute to obtain this metal. A second heat treatment step of ejecting metal particles from the particle inclusion intermediate to obtain a carbon material intermediate, and contacting the carbon material intermediate with hot concentrated nitric acid or hot concentrated sulfuric acid to purify the carbon material intermediate. A third heat treatment step of heat-treating the purified carbon material intermediate at 1400 to 2100 ° C. in a vacuum or an inert gas atmosphere to obtain a carrier carbon material. a porous carbon material prepared, the specific surface area S a is 600~1600m 2 / g mesopore pore diameter 2~50nm obtained by analyzing the nitrogen adsorption isotherm of adsorption process in Dollimore-Heal method The relative intensity ratio ( l G ) between the peak intensity in the range of G'-band 2650 to 2700 cm -1 and the peak intensity in the range of G-band 1550 to 1650 cm -1 in the Raman spectral spectrum (l G'). l G' / l G ) is 0.8 to 2.2, and the specific pore area S 2-10 of the mesopores with a pore diameter of 2 nm or more and less than 10 nm is 400 to 1100 m 2 / g. The specific pore volume V 2-10 is 0.4 to 1.6 cc / g, and the specific pore area S 10-50 of the mesopores with a pore diameter of 10 nm or more and 50 nm or less is 20 to 20. The pores are 150 m 2 / g, the specific surface area V 2-10 is 0.4 to 1.6 cc / g, and the nitrogen adsorption isotherm in the adsorption process is analyzed by the Horvath-Kawazoe method. A solid polymer fuel cell having a specific surface area S 2 of pores with a diameter of less than 2 nm of 250 to 550 m 2 / g and capable of exhibiting excellent durability against potential fluctuations while maintaining high power generation performance. A carbon material for a catalyst carrier capable of preparing a catalyst for use has been proposed.

更にまた、特許文献4においては、金属アセチリドを中間体として自己分解爆発反応を経て調製された樹状炭素ナノ構造を有する多孔質炭素材料〔新日鉄住金化学社製商品名:エスカーボン(ESCARBON)(登録商標)-MCND〕を原料として用い、黒鉛化処理を行った後に、更に過酸化水素、硝酸、液中プラズマ装置等を用いた酸化処理を行って得られた触媒担体用炭素材料であって、酸素含有量OICPが0.1〜3.0質量%、不活性ガス(又は真空)雰囲気中1200℃の熱処理後に残存する酸素残存量O1200℃が0.1〜1.5質量%、BET比表面積が300〜1500m2/g、ラマン分光スペクトルの1550〜1650cm-1の範囲に検出されるG-バンドの半値幅ΔGが30〜70cm-1、及び不活性ガス(又は真空)雰囲気中1200℃の熱処理後に残存する水素残存量H1200℃が0.005〜0.080質量%であり、起動・停止といった負荷変動の繰り返しに対する耐久性に優れ、また、低加湿時の運転条件下での発電性能に優れている固体高分子形燃料電池用触媒を調製可能な触媒担体用炭素材料が提案されている。 Furthermore, in Patent Document 4, a porous carbon material having a dendritic carbon nanostructure prepared through a self-decomposition explosion reaction using a metal acetylide as an intermediate [trade name: ESCARBON manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.] ( A carbon material for a catalyst carrier obtained by performing a graphitization treatment using [registered trademark) -MCND] as a raw material and then further performing an oxidation treatment using hydrogen peroxide, nitric acid, a submerged plasma apparatus, or the like. O ICP content O ICP is 0.1 to 3.0% by mass, residual oxygen content O 1200 ° C. remaining after heat treatment at 1200 ° C. in an inert gas (or vacuum) atmosphere is 0.1 to 1.5% by mass, BET specific surface area is 300 to 1500 m 2 / g, half-value width ΔG of G-band detected in the range of 1550 to 1650 cm -1 of Raman spectral spectrum is 30 to 70 cm -1 , and in an inert gas (or vacuum) atmosphere. The residual amount of hydrogen remaining after heat treatment at 1200 ° C. H 1200 ° C. is 0.005 to 0.080 mass%, which is excellent in durability against repeated load fluctuations such as start and stop, and under operating conditions under low humidification. A carbon material for a catalyst carrier has been proposed, which can prepare a catalyst for a polymer electrolyte fuel cell excellent in power generation performance.

WO 2014/129597 A1号公報WO 2014/129597 A1 Gazette WO 2015/088025 A1号公報WO 2015/088025 A1 Gazette WO 2015/141810 A1号公報WO 2015/141810 A1 Gazette WO 2016/133132 A1号公報WO 2016/133132 A1 Gazette

上記の特許文献1〜4に記載された触媒担体用炭素材料は、いずれも比較的大きな比表面積やメソ孔容積を有し、また、耐久性にも優れるものであることから、特に自動車用燃料電池として利用する際に大出力を引き出す上で重要な大電流特性に優れるものであるものの、本願の発明者らがさらに詳細な検討を続けたところ、耐久性を維持しつつも、その大電流特性を高めることにおいて、更に改善の余地があることが判明した。
そして、この大電流特性を高めるためには、上述したように、触媒担体に対して、触媒金属の白金を十分にかつ高分散状態で担持させる上で比較的大きな比表面積やメソ孔容積が必要であることに加えて、反応ガスの拡散性に優れることが重要である。大電流時に生じる過電圧の原因は、正極反応に関与する物質の移動抵抗(拡散抵抗)が支配因子と考えられている。移動抵抗に関与する具体的物質は、電子、プロトン、酸素、そして、生成する水蒸気であるが、電子は担体炭素材料を通じて移動するもので、ohmicな抵抗挙動を示し、大電流ゆえの抵抗増大を与えることはないと考えられる。プロトンは、プロトン伝導樹脂を介した移動であって、湿潤度合さえ一定であれば電子同様にohmicな抵抗を示し、大電流時の特別な過電圧増大はない。このため、大電流時の過電圧の主な原因は、酸素と水蒸気の拡散にあると一般に認められている。酸素と水蒸気の拡散を向上させるためには、酸素と水蒸気の多孔質炭素細孔内における拡散性を向上させるという観点に基づけば、当該触媒担体用炭素材料のかさ密度と相関するのではないかという考えに至った。
The carbon materials for catalyst carriers described in Patent Documents 1 to 4 above have a relatively large specific surface area and mesopore volume, and are also excellent in durability, and thus are particularly durable fuels for automobiles. Although it has excellent large current characteristics that are important for drawing out a large output when used as a battery, the inventors of the present application continued to study in more detail and found that the large current while maintaining durability. It was found that there is room for further improvement in enhancing the characteristics.
Then, in order to enhance this large current characteristic, as described above, a relatively large specific surface area and mesopore volume are required to support the catalyst metal platinum in a sufficiently and highly dispersed state on the catalyst carrier. In addition to this, it is important that the reaction gas has excellent diffusivity. It is considered that the cause of the overvoltage generated at the time of a large current is the movement resistance (diffusion resistance) of the substance involved in the positive electrode reaction. The specific substances involved in the transfer resistance are electrons, protons, oxygen, and the water vapor generated, but the electrons move through the carrier carbon material, exhibiting ohmic resistance behavior, and increasing the resistance due to the large current. It is considered that it will not be given. Protons move through a proton conductive resin, and as long as the degree of wetting is constant, they show ohmic resistance like electrons, and there is no special overvoltage increase at the time of large current. For this reason, it is generally accepted that the main cause of overvoltage at high currents is the diffusion of oxygen and water vapor. In order to improve the diffusion of oxygen and water vapor, it may correlate with the bulk density of the carbon material for the catalyst carrier from the viewpoint of improving the diffusivity of oxygen and water vapor in the porous carbon pores. I came up with the idea.

すなわち、多孔質炭素材料におけるかさ密度とは、細孔構造の発達度合を表すものであるが、ミクロ〜メソ孔容積が同等である場合、これをできるだけ低くすることにより、マクロ孔容積、すなわち樹状構造が発達した多孔質炭素材料になると推察されて、それにより、反応ガスの拡散性を向上させて、その結果、大電流特性を高めることができるのではないかとの考えに至った。
この点に関して、本願の発明者らが検討するに、特許文献3には多孔質炭素材料の原料となる金属アセチリドの製造過程でアセチレン濃度を高めることにより、立体的な樹枝状構造の枝の太さと長さを適度に大きくし、樹枝状ネットワークの程度を示すDBP吸油量及びBET比表面積を損なうことなくΔGを小さくできる多孔質炭素について開示されているが、上記特許文献1〜4に記載されたような従来の触媒担体用炭素材料については、これを得る過程のうちの銀粒子を溶解除去する工程においていずれも(濃)硝酸や熱濃硫酸を含む酸化性の酸溶液が使用されているが、このような酸化性の酸による銀除去を行うことで、少なからず炭素の酸化が起こる。炭素が酸化されることによりその表面にはヒドロキシル基やカルボキシル基などの官能基が粒子表面に付与される。このような表面官能基は、その後に行われる2000℃前後の加熱処理の過程で脱水縮合反応を起こすため、粒子どうしの焼結を引き起こし、それにより、当該従来の触媒担体用炭素材料においては、どうしてもかさ密度を有意に下げられないといった問題があることが判明した。
That is, the bulk density in the porous carbon material represents the degree of development of the pore structure, but when the micro to mesopore volumes are the same, by making this as low as possible, the macropore volume, that is, the tree It was speculated that it would be a porous carbon material with a well-developed shape structure, which led to the idea that the diffusibility of the reaction gas could be improved, and as a result, the high-current characteristics could be improved.
In this regard, the inventors of the present application have examined in Patent Document 3 that the thickness of a branch having a three-dimensional dendritic structure is increased by increasing the acetylene concentration in the process of producing metal acetylide, which is a raw material for a porous carbon material. A porous carbon capable of reducing ΔG without impairing the DBP oil absorption amount and the BET specific surface area, which indicate the degree of the dendritic network, by appropriately increasing the length and length is disclosed, and is described in Patent Documents 1 to 4 above. For such conventional carbon materials for catalyst carriers, an oxidizing acid solution containing (concentrated) nitric acid or hot concentrated sulfuric acid is used in the process of dissolving and removing silver particles in the process of obtaining the carbon material. However, by removing silver with such an oxidizing acid, not a little carbon oxidation occurs. Oxidation of carbon imparts functional groups such as hydroxyl groups and carboxyl groups to the surface of the particles. Since such a surface functional group causes a dehydration condensation reaction in the subsequent heat treatment at about 2000 ° C., it causes sintering of particles, whereby in the conventional carbon material for a catalyst carrier, the carbon material for a catalyst carrier is used. It turned out that there was a problem that the bulk density could not be significantly reduced.

そして、このような従来技術の問題点について、本願の発明者らが更に詳細に検討したところ、減圧下高温において銀は気化しやすいとの着眼点のもと、これまで酸溶液で処理してきた銀除去(清浄化工程)を抜本的に変更して、減圧雰囲気中において所定の温度で加熱することにより、酸化性の酸での銀除去工程を経ないことで、粒子表面への官能基の付加とそれに続く高温処理における粒子どうしの焼結を防ぐことができ、従来の触媒担体用炭素材料よりもかさ密度が低くてガス拡散性がよく、しかも、発電特性が従来の触媒担体用炭素材料を用いたものよりも良好であるといった利点もあることを見出して、本発明を完成するに至った。 Then, when the inventors of the present application examined such problems of the prior art in more detail, they have been treated with an acid solution from the viewpoint that silver is easily vaporized at a high temperature under reduced pressure. By drastically changing the silver removal (cleaning step) and heating at a predetermined temperature in a reduced pressure atmosphere, the functional groups on the particle surface can be removed without going through the silver removal step with an oxidizing acid. Sintering of particles in addition and subsequent high temperature treatment can be prevented, the bulk density is lower than that of the conventional carbon material for catalyst carriers, the gas diffusibility is good, and the power generation characteristics are the conventional carbon materials for catalyst carriers. We have found that there is an advantage that it is better than the one using the above, and have completed the present invention.

本発明は、上述した各知見に基づいて発明されたものであり、その目的とするところは、従来の触媒担体用炭素材料よりもかさ密度が低く、樹状構造が発達し、ガス拡散性に優れ、発電特性に優れる上に、燃料電池としての使用する上で求められる特性(比表面積、メソ孔容積、耐久性など)にも優れるような固体高分子形燃料電池の触媒を製造する上で好適な触媒担体用炭素材料を提供することにある。
さらに、本発明の他の目的は、このような固体高分子形燃料電池の触媒を製造する上で有用な触媒担体用炭素材料の製造方法を提供することにある。
The present invention has been invented based on the above-mentioned findings, and its purpose is to have a lower bulk density than a conventional carbon material for a catalyst carrier, develop a dendritic structure, and make gas diffusible. In manufacturing catalysts for polymer electrolyte fuel cells that are excellent in power generation characteristics and also excellent in characteristics (specific surface area, mesopore volume, durability, etc.) required for use as fuel cells. It is an object of the present invention to provide a suitable carbon material for a catalyst carrier.
Furthermore, another object of the present invention is to provide a method for producing a carbon material for a catalyst carrier, which is useful for producing a catalyst for such a polymer electrolyte fuel cell.

すなわち、本発明は以下の通りである。
〔1〕多孔質炭素材料であって、下記(1)、(2)及び(3)を同時に満たすことを特徴とする固体高分子形燃料電池の触媒担体用炭素材料。
(1)かさ密度が0.05g/mL以上0.14g/mL未満であること。
(2)窒素ガス吸着等温線のBET解析により求められるBET比表面積が400〜1500m/gであること。
(3)窒素ガス吸着等温線のDollimore-Heal法を用いた解析により求められる細孔径2〜10nmの積算細孔容積V2-10が0.4〜1.5mL/gであること。
〔2〕ラマン分光スペクトルの1550〜1650cm−1の範囲に検出されるG−バンドの半値幅ΔGが、50〜70cm−1であることを特徴とする〔1〕に記載の固体高分子形燃料電池の触媒担体用炭素材料。
〔3〕前記V2-10が、0.5〜1.0mL/gであることを特徴とする〔1〕又は〔2〕に記載の固体高分子形燃料電池の触媒担体用炭素材料。
〔4〕窒素ガス吸着測定において求められるメソ孔のモード直径が、2nm超過9nm未満であることを特徴とする〔1〕〜〔3〕のいずれかに記載の固体高分子形燃料電池の触媒担体用炭素材料。
〔5〕前記かさ密度が、0.05g/mL以上0.10g/mL以下である〔1〕〜〔4〕のいずれかに記載の固体高分子形燃料電池の触媒担体用炭素材料。
〔6〕棒状体又は環状体が3次元的に分岐した3次元樹状構造を有することを特徴とする〔1〕〜〔5〕のいずれかに記載の固体高分子形燃料電池の触媒担体用炭素材料。
〔7〕 〔1〕〜〔6〕のいずれかに記載の触媒担体用炭素材料を用いた固体高分子形燃料電池用触媒担体。
That is, the present invention is as follows.
[1] A carbon material for a catalyst carrier of a polymer electrolyte fuel cell, which is a porous carbon material and which simultaneously satisfies the following (1), (2), and (3).
(1) The bulk density is 0.05 g / mL or more and less than 0.14 g / mL.
(2) The BET specific surface area determined by BET analysis of the nitrogen gas adsorption isotherm is 400 to 1500 m 2 / g.
(3) The integrated pore volume V 2-10 with a pore diameter of 2 to 10 nm determined by analysis of the nitrogen gas adsorption isotherm using the Dollimore-Heal method is 0.4 to 1.5 mL / g.
[2] half-width ΔG of G- bands detected in the range of 1550~1650Cm -1 Raman spectroscopy spectrum, the polymer electrolyte fuel according to characterized in that it is a 50 to 70 cm -1 (1) Carbon material for catalyst carriers of batteries.
[3] The carbon material for a catalyst carrier of a polymer electrolyte fuel cell according to [1] or [2], wherein V 2-10 is 0.5 to 1.0 mL / g.
[4] The catalyst carrier of the polymer electrolyte fuel cell according to any one of [1] to [3], wherein the mode diameter of the mesopores required in the nitrogen gas adsorption measurement is more than 2 nm and less than 9 nm. For carbon material.
[5] The carbon material for a catalyst carrier of a polymer electrolyte fuel cell according to any one of [1] to [4], wherein the bulk density is 0.05 g / mL or more and 0.10 g / mL or less.
[6] For a catalyst carrier of a polymer electrolyte fuel cell according to any one of [1] to [5], wherein the rod-shaped body or the annular body has a three-dimensional dendritic structure branched three-dimensionally. Carbon material.
[7] A catalyst carrier for a polymer electrolyte fuel cell using the carbon material for a catalyst carrier according to any one of [1] to [6].

〔8〕 〔1〕〜〔6〕のいずれかに記載された固体高分子形燃料電池の触媒担体用炭素材料の製造方法であり、
硝酸銀のアンモニア水溶液からなる反応溶液中にアセチレンガスを吹き込んで銀アセチリドを合成する銀アセチリド生成工程と、前記銀アセチリドを自己分解爆発反応させて分解生成物を得る分解工程と、前記分解生成物を減圧雰囲気中にて1400〜1800℃の温度で加熱処理して銀が除去された炭素材料中間体を得る清浄化工程と、前記炭素材料中間体を真空中又は不活性ガス雰囲気中1800〜2200℃の温度で加熱処理して触媒担体用炭素材料を得る加熱処理工程とを備えることを特徴とする固体高分子形燃料電池の触媒担体用炭素材料の製造方法。
[8] The method for producing a carbon material for a catalyst carrier of a polymer electrolyte fuel cell according to any one of [1] to [6].
A silver acetylide production step of injecting acetylene gas into a reaction solution consisting of an aqueous ammonia solution of silver nitrate to synthesize silver acetylide, a decomposition step of self-decomposing and exploding the silver acetylide to obtain a decomposition product, and the decomposition product. A cleaning step of obtaining a carbon material intermediate from which silver has been removed by heat treatment at a temperature of 1400 to 1800 ° C. in a reduced pressure atmosphere, and a cleaning step in which the carbon material intermediate is placed in a vacuum or in an inert gas atmosphere at 1800 to 2200 ° C. A method for producing a carbon material for a catalyst carrier of a solid polymer fuel cell, which comprises a heat treatment step of obtaining a carbon material for a catalyst carrier by heat treatment at the same temperature as above.

本発明によれば、かさ密度が低くガス拡散性に優れ、酸化耐性の高い高比表面積の触媒担体用炭素材料を提供することができる。更に、これら触媒担体用炭素材料を燃料電池用触媒担体として用いることにより高い触媒活性を付与することができる。
また、本発明の製造方法によれば、固体高分子形燃料電池の触媒を製造する上で有用であり、かさ密度が低くガス拡散性に優れ、酸化耐性の高い高比表面積の触媒担体用炭素材料の製造方法を提供することができる。
According to the present invention, it is possible to provide a carbon material for a catalyst carrier having a low bulk density, excellent gas diffusibility, and high oxidation resistance and a high specific surface area. Further, by using these carbon materials for catalyst carriers as catalyst carriers for fuel cells, high catalytic activity can be imparted.
Further, according to the production method of the present invention, it is useful for producing a catalyst for a polymer electrolyte fuel cell, and carbon for a catalyst carrier having a low bulk density, excellent gas diffusivity, and high oxidation resistance and a high specific surface area. A method of manufacturing a material can be provided.

以下に、本発明の好適な実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.

<触媒担体用炭素材料の製造方法>
まず、本発明の一実施形態に係る触媒担体用炭素材料の製造方法について説明する。本実施形態に係る触媒担体用炭素材料の製造方法は、銀アセチリドを得る銀アセチリド生成工程と、銀アセチリドを加熱することにより分解させ、銀と炭素との複合材料からなる分解生成物を得る分解工程と、当該複合材料からなる分解生成物を、減圧雰囲気下にて、1400℃以上1800℃以下の温度で処理し、複合材料から銀を除去して炭素材料中間体を得る清浄化工程と、銀が除去された状態の炭素材料中間体を、さらに熱処理して多孔質な触媒担体用炭素材料として得る加熱処理工程と、を有する。以下、各工程について詳細に説明する。
<Manufacturing method of carbon material for catalyst carrier>
First, a method for producing a carbon material for a catalyst carrier according to an embodiment of the present invention will be described. The method for producing a carbon material for a catalyst carrier according to the present embodiment is a silver acetylide production step for obtaining silver acetylide, and decomposition by heating the silver acetylide to obtain a decomposition product composed of a composite material of silver and carbon. A cleaning step of treating the decomposition product composed of the composite material at a temperature of 1400 ° C. or higher and 1800 ° C. or lower in a reduced pressure atmosphere to remove silver from the composite material to obtain a carbon material intermediate. It has a heat treatment step of further heat-treating the carbon material intermediate in a state where silver has been removed to obtain a carbon material for a porous catalyst carrier. Hereinafter, each step will be described in detail.

(銀アセチリド生成工程)
銀アセチリド生成工程は公知の方法であれば特に限定されないが、例えば、特許文献1に記載の硝酸銀水溶液とアセチレン分子を接触させることにより、銀アセチリドを生成させる方法を用いることができる。
(Silver acetylide production process)
The silver acetylide production step is not particularly limited as long as it is a known method, but for example, a method of producing silver acetylide by contacting an acetylene molecule with an aqueous silver nitrate solution described in Patent Document 1 can be used.

アセチレンガスの接触方法は、特に限定されないが、例えば、硝酸銀水溶液にアセチレンガスを通過させる、より具体的には硝酸銀水溶液にアセチレンガスを吹き込む方法が挙げられる。 The method of contacting the acetylene gas is not particularly limited, and examples thereof include a method of passing the acetylene gas through the silver nitrate aqueous solution, and more specifically, a method of blowing the acetylene gas into the silver nitrate aqueous solution.

また、硝酸銀水溶液とアセチレンガスとの接触時において、硝酸銀水溶液に対し超音波を照射することもできる。これにより、アセチレンガスの硝酸銀水溶液への溶解と分散が促進されるという効果が得られる。 It is also possible to irradiate the silver nitrate aqueous solution with ultrasonic waves at the time of contact between the silver nitrate aqueous solution and the acetylene gas. This has the effect of promoting the dissolution and dispersion of acetylene gas in the silver nitrate aqueous solution.

また、硝酸銀水溶液とアセチレンガスとの接触時において、硝酸銀水溶液を撹拌することが好ましい。これにより、アセチレンガスと硝酸銀水溶液との接触の接触頻度が増加する結果、効率よく銀アセチリドが生成する。撹拌は、一般的な撹拌翼を用いて行ってもよいし、マグネットスターラー等の撹拌子を用いて行ってもよい。 Further, it is preferable to stir the silver nitrate aqueous solution at the time of contact between the silver nitrate aqueous solution and the acetylene gas. As a result, the frequency of contact between the acetylene gas and the silver nitrate aqueous solution increases, and as a result, silver acetylide is efficiently produced. Stirring may be performed using a general stirring blade or a stirrer such as a magnetic stirrer.

以上により、白色結晶の嵩高い沈殿物として銀アセチリドを得ることができる。 From the above, silver acetylide can be obtained as a bulky precipitate of white crystals.

(分解工程)
次に、得られた銀アセチリドを加熱することにより分解させ、複合材料からなる分解生成物を得る。銀アセチリドを加熱することにより、銀アセチリドがナノスケールにて爆発し、銀と炭素とに相分離し、その際、銀はナノサイズの粒子を形成し、または反応熱によりガス化して表面部分に噴出する。炭素は、アセチレン分子等のアセチレン系化合物が3個集まってベンゼン環を形成しやすいために、芳香族性の高い構造を有する。また、銀がナノ粒子を形成するため、銀を除去した炭素相は、多孔質の構造体となる。
(Disassembly process)
Next, the obtained silver acetylide is decomposed by heating to obtain a decomposition product composed of a composite material. By heating the silver acetylide, the silver acetylide explodes on a nanoscale and phase-separates into silver and carbon, at which time the silver forms nano-sized particles or is gasified by the heat of reaction to the surface. Squirt. Carbon has a highly aromatic structure because three acetylene compounds such as acetylene molecules easily gather to form a benzene ring. Further, since silver forms nanoparticles, the carbon phase from which silver has been removed becomes a porous structure.

銀アセチリドの加熱は、例えば、以下のように行うことができる。得られた銀アセチリドの沈殿物を、減圧雰囲気下で例えば40℃以上100℃以下で加熱(これを、「第1の加熱処理」と呼ぶこととする。)することにより、銀アセチリド中に残存した反応溶液中の溶媒を除去することができ、爆発の熱エネルギーが溶媒の気相への相転移の顕熱に費やされることを防ぎ、銀アセチリドの分解を効率化することができる。なお、この温度では、銀アセチリドは分解しない。 Heating of silver acetylide can be performed, for example, as follows. The obtained silver acetylide precipitate remains in the silver acetylide by heating it in a reduced pressure atmosphere at, for example, 40 ° C. or higher and 100 ° C. or lower (this is referred to as "first heat treatment"). The solvent in the reaction solution can be removed, the heat energy of the explosion can be prevented from being spent on the heat of the phase transition of the solvent to the gas phase, and the decomposition of silver acetylide can be made efficient. At this temperature, silver acetylide does not decompose.

次いで、溶媒が除去された銀アセチリドを、例えば150℃以上400℃以下で加熱する(これを、「第2の加熱処理」と呼ぶこととする。)。このような比較的高い温度まで銀アセチリドを加熱することにより、銀アセチリドがナノスケールで爆発して分解し、銀と炭素が各々ナノ構造物を形成する。これにより、銀と、炭素とを含む複合材料からなる分解生成物が得られる。なお、同複合材料の炭素相の部分の基本構造は、前述のようにアセチレン系化合物による多環芳香族形成により、主として数層のグラフェンにより構成される。また、同複合材料においては、銀が爆発過程においてナノスケールの粒子を形成することから、銀粒子を除去した炭素材料は、比表面積が大きく、また多孔性に富んだ炭素材料として得ることができる。 Next, the solvent-removed silver acetylide is heated at, for example, 150 ° C. or higher and 400 ° C. or lower (this is referred to as "second heat treatment"). By heating silver acetylide to such a relatively high temperature, silver acetylide explodes and decomposes on a nanoscale, and silver and carbon each form nanostructures. This gives a decomposition product of a composite material containing silver and carbon. The basic structure of the carbon phase portion of the composite material is mainly composed of several layers of graphene by forming polycyclic aromatic compounds with acetylene compounds as described above. Further, in the composite material, since silver forms nanoscale particles in the explosion process, the carbon material from which the silver particles have been removed can be obtained as a carbon material having a large specific surface area and a high porosity. ..

〔清浄化工程(銀除去工程)〕
次に、得られた複合材料からなる分解生成物を、減圧雰囲気下にて、1400℃以上1800℃以下の温度で加熱処理し(これを、「第3の加熱処理」と呼ぶこととする。)、複合材料から金属の少なくとも一部を気化させ、除去する。
[Cleaning process (silver removal process)]
Next, the decomposition product made of the obtained composite material is heat-treated at a temperature of 1400 ° C. or higher and 1800 ° C. or lower under a reduced pressure atmosphere (this is referred to as a "third heat treatment". ), Vaporize and remove at least part of the metal from the composite.

このような第3の加熱処理を行うことにより、前記複合材料から銀が効率よくかつ十分に除去される。すなわち、上記範囲の温度において銀の蒸気圧は比較的高いため、炭素表面に露出した銀は、容易に気化され、前記複合材料から除去される。一方で、上記温度範囲内においては、前記複合材料の主成分である炭素材料は熱による構造変化、具体的には、グラフェン同士の結合によるグラフェンサイズの巨大化、グラフェンの積層構造の発達などの構造変化を生じており、その構造が変形する結果、複合材料内に内包された銀が複合材料表面に露出する。これにより、当該第3の加熱処理前に複合材料に内包されていたような銀も気化可能となり、前記複合材料から除去される。なお、銀が除去されることから、銀除去後の同材料は、本質的に炭素からなる炭素材料となり、本発明においてはこれを炭素材料中間体と称することとする。 By performing such a third heat treatment, silver is efficiently and sufficiently removed from the composite material. That is, since the vapor pressure of silver is relatively high in the above temperature range, the silver exposed on the carbon surface is easily vaporized and removed from the composite material. On the other hand, within the above temperature range, the carbon material, which is the main component of the composite material, undergoes structural changes due to heat, specifically, the graphene size becomes enormous due to the bonding between graphenes, and the graphene laminated structure develops. A structural change has occurred, and as a result of the structural deformation, the silver contained in the composite material is exposed on the surface of the composite material. As a result, silver as contained in the composite material before the third heat treatment can be vaporized and removed from the composite material. Since silver is removed, the material after removing silver becomes a carbon material essentially composed of carbon, which is referred to as a carbon material intermediate in the present invention.

そして、本工程を採用することにより、従来の硝酸や熱濃硫酸等による洗浄処理において一部確認されていたような、金属が十分に除去しきれないといった問題を防止することができる。 By adopting this step, it is possible to prevent the problem that the metal cannot be sufficiently removed, which has been partially confirmed in the conventional cleaning treatment with nitric acid, hot concentrated sulfuric acid, or the like.

また、前述の通り、従来行われていた硝酸や熱濃硫酸等による洗浄処理では、それにより炭素が酸化されることで炭素粒子表面にヒドロキシル基やカルボキシル基等の官能基が付加され、これに続く後述の加熱処理工程では当該付加された官能基が脱水縮合反応を起こす際に引き起こされる粒子同士の焼結に起因して、得られる触媒担体用炭素材料のかさ密度が増加する傾向があったが、本工程に変更されることでこれを防止することができることが分かった。 Further, as described above, in the conventional cleaning treatment with nitric acid, hot concentrated sulfuric acid, etc., the carbon is oxidized by the cleaning treatment, and functional groups such as hydroxyl groups and carboxyl groups are added to the surface of the carbon particles. In the subsequent heat treatment step described later, the bulk density of the obtained carbon material for a catalyst carrier tended to increase due to the sintering of particles caused when the added functional group caused a dehydration condensation reaction. However, it was found that this can be prevented by changing to this process.

なお、本工程を経て得られた炭素材料中間体に残存する銀アセチリド由来の元素成分については、公知の測定方法により分析することができる。例えば、誘導結合プラズマ質量分析法(ICP−MS)、誘導結合プラズマ発光分光分析法(ICP−AES)、原子吸光分析法(AAS)等が挙げられる。ここで、本工程を経て得られた炭素材料中間体に残存する銀アセチリド由来の銀の量としては、例えば1000ppm未満であることが好ましく、より好ましくは500ppm未満、さらに好ましくは検出されないことである。仮に、銀が多く残存していると、触媒担体用炭素材料の用途によっては、その残存した銀がその用途特性に悪影響を及ぼす場合がある。また、続く加熱処理工程において残存している銀が揮発して加熱炉等の装置を汚染、損傷する虞がある。 The elemental components derived from silver acetylide remaining in the carbon material intermediate obtained through this step can be analyzed by a known measurement method. For example, inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma emission spectrometry (ICP-AES), atomic absorption spectrometry (AAS) and the like can be mentioned. Here, the amount of silver derived from silver acetylide remaining in the carbon material intermediate obtained through this step is preferably, for example, less than 1000 ppm, more preferably less than 500 ppm, and even more preferably not detected. .. If a large amount of silver remains, the remaining silver may adversely affect the application characteristics depending on the use of the carbon material for the catalyst carrier. In addition, there is a risk that the remaining silver will volatilize in the subsequent heat treatment step and contaminate or damage the equipment such as the heating furnace.

また、本工程における温度は、上述したように、1400℃以上1800℃以下である。本工程における温度が上記下限値未満の場合、真空度を向上させたとしても銀の蒸気圧が十分に高くならず、銀の除去効率が十分なものとならない。一方で、本工程における温度が上記上限値を超えると、処理後の炭素材料中間体中に存在する銀の黒鉛化触媒作用により後述の加熱処理工程において黒鉛化が促進され、かさ密度が増大する虞がある。 Further, as described above, the temperature in this step is 1400 ° C. or higher and 1800 ° C. or lower. When the temperature in this step is less than the above lower limit, the vapor pressure of silver is not sufficiently high even if the degree of vacuum is improved, and the silver removal efficiency is not sufficient. On the other hand, when the temperature in this step exceeds the above upper limit, graphitization is promoted in the heat treatment step described later due to the graphitization catalytic action of silver present in the carbon material intermediate after the treatment, and the bulk density increases. There is a risk.

また、本工程における時間は特に限定されないが、例えば10分以上20時間以下、好ましくは30分以上10時間以下である。これにより、十分に金属を除去できるとともに、不本意な過度の炭素化、結晶化を防止し、最終的に得られる多孔質炭素材料の品質をより容易に管理できる。 The time in this step is not particularly limited, but is, for example, 10 minutes or more and 20 hours or less, preferably 30 minutes or more and 10 hours or less. As a result, the metal can be sufficiently removed, unintentional excessive carbonization and crystallization can be prevented, and the quality of the finally obtained porous carbon material can be more easily controlled.

また、本工程における圧力は、圧力は、特に限定されないが、本工程においては、例えば0.1Pa以上10000Pa以下、好ましくは1Pa以上5000Pa以下、さらに好ましくは1Pa以上、1000Pa以下の減圧雰囲気下で処理が行われる。雰囲気の圧力を低く保つことにより効率よく金属を除去することができる。 The pressure in this step is not particularly limited, but in this step, for example, the treatment is performed in a reduced pressure atmosphere of 0.1 Pa or more and 10000 Pa or less, preferably 1 Pa or more and 5000 Pa or less, and more preferably 1 Pa or more and 1000 Pa or less. Is done. By keeping the pressure of the atmosphere low, the metal can be removed efficiently.

(加熱処理工程)
次に、銀が除去された状態の炭素材料中間体を、熱処理し、多孔質な触媒担体用炭素材料として得る(これを、「第4の加熱処理」と呼ぶこととする。)。本工程で行われる熱処理により当該多孔質な炭素材料の結晶を発達させることができ、温度によってその結晶性を調節、制御することができる。例えば固体高分子形燃料電池の電極の触媒担体として使用される場合には、当該多孔質炭素材料は、比較的高温例えば80℃程度であり、pH1以下の強酸性かつ、1.3V vs SHEの高電位の環境下に暴露されるが、このような環境下では、多孔質な当該炭素材料中の炭素が酸化消耗しやすい。したがって、多孔質な当該炭素材料を触媒担体として使用する場合、本工程において結晶性を高めることが重要である。
(Heat treatment process)
Next, the carbon material intermediate in which silver has been removed is heat-treated to obtain a porous carbon material for a catalyst carrier (this is referred to as a "fourth heat treatment"). Crystals of the porous carbon material can be developed by the heat treatment performed in this step, and the crystallinity can be adjusted and controlled by the temperature. For example, when used as a catalyst carrier for electrodes of polymer electrolyte fuel cells, the porous carbon material has a relatively high temperature, for example, about 80 ° C., is strongly acidic with a pH of 1 or less, and has 1.3 V vs. SHE. It is exposed to a high potential environment, and in such an environment, carbon in the porous carbon material is easily oxidatively consumed. Therefore, when the porous carbon material is used as a catalyst carrier, it is important to enhance the crystallinity in this step.

ところで、多孔質な炭素材料中の細孔や比表面積は、触媒担体として使用した際の触媒の担持量に大きく影響を与える因子であり、そのため、多孔質炭素材料の細孔が多く、比表面積が大きいことが一般に好ましい。しかしながら、一般に、多孔質な炭素材料を熱処理すると結晶が発達する一方で、その細孔が潰れ、同材料の比表面積が低下するとされている。 By the way, the pores and the specific surface area in the porous carbon material are factors that greatly affect the supported amount of the catalyst when used as a catalyst carrier. Therefore, the porous carbon material has many pores and the specific surface area. Is generally preferred. However, it is generally said that when a porous carbon material is heat-treated, crystals develop while the pores are crushed and the specific surface area of the material decreases.

そのような観点から、本工程における熱処理の温度は、1800℃以上2200℃以下であることが好ましい。これにより、比表面積の低下を防止するとともに、かさ密度を増大させることなく多孔質炭素材料の結晶性を十分に高めることができる。 From such a viewpoint, the temperature of the heat treatment in this step is preferably 1800 ° C. or higher and 2200 ° C. or lower. As a result, it is possible to prevent a decrease in the specific surface area and sufficiently increase the crystallinity of the porous carbon material without increasing the bulk density.

また、本工程の熱処理は、特に限定されないが、例えば減圧雰囲気下または不活性ガス雰囲気下で行うことができ、好ましくは不活性ガス雰囲気下である。不活性ガスとしては、特に限定されないが、例えば、窒素、アルゴン等を用いることができる。
なお、本工程は、一般的な加熱炉を用いて行うことができる。また、本工程は、前述の銀除去の工程から引き続き行われてもよい。
The heat treatment in this step is not particularly limited, but can be performed, for example, in a reduced pressure atmosphere or an inert gas atmosphere, preferably under an inert gas atmosphere. The inert gas is not particularly limited, but for example, nitrogen, argon or the like can be used.
In addition, this step can be performed using a general heating furnace. Further, this step may be continued from the above-mentioned step of removing silver.

以上説明した本実施形態に係る多孔質炭素材料の製造方法では、上述したような除去工程を採用することにより、銀粒子を複合材料から効率よく、十分に除去できるとともに、得られる触媒担体用炭素材料のかさ密度が低くすることが可能である。 In the method for producing a porous carbon material according to the present embodiment described above, by adopting the removal step as described above, silver particles can be efficiently and sufficiently removed from the composite material, and the obtained carbon for a catalyst carrier can be obtained. It is possible to reduce the bulk density of the material.

<触媒担体用炭素材料>
次に、本発明により得られる多孔質な触媒担体用炭素材料について説明する。
上記方法により製造された触媒担体用炭素材料は、銀アセチリドの嵩高い沈殿物を原料とし、銀を噴出させることにより、形成されている。したがって、この触媒担体用炭素材料は、噴出孔(メソポア)を多数有する多孔質体である。このようなメソポアの存在により、比較的大きな比表面積を有し、表面上に例えば触媒等を担持することができる。
<Carbon material for catalyst carrier>
Next, the porous carbon material for a catalyst carrier obtained by the present invention will be described.
The carbon material for a catalyst carrier produced by the above method is formed by ejecting silver from a bulky precipitate of silver acetylide as a raw material. Therefore, the carbon material for the catalyst carrier is a porous body having a large number of ejection holes (mesopores). Due to the presence of such a mesopore, it has a relatively large specific surface area, and for example, a catalyst or the like can be supported on the surface.

また、当該触媒担体用炭素材料のその微視的な構造は、金属アセチリドの種類、すなわち金属アセチリドの形成に用いられた金属の種類によって異なり得る。 Further, the microscopic structure of the carbon material for the catalyst carrier may differ depending on the type of metal acetylide, that is, the type of metal used for forming the metal acetylide.

当該触媒担体用炭素材料が銀アセチリド由来の場合、炭素を含む棒状体または環状体が三次元的に枝分かれした三次元構造を有する樹状の炭素メソポーラス構造体を有している。より具体的には、この炭素メソポーラス構造体は、棒状体または環状体が3次元的に延在するとともに相互に結合してネットワークを構成し、いわゆるデンドライト状の3次元的な構造を有している。 When the carbon material for the catalyst carrier is derived from silver acetylide, it has a dendritic carbon mesoporous structure having a three-dimensional structure in which a rod-shaped body or an annular body containing carbon is branched three-dimensionally. More specifically, this carbon mesoporous structure has a so-called dendrite-like three-dimensional structure in which rod-shaped or annular bodies are three-dimensionally extended and bonded to each other to form a network. There is.

さらに、上記炭素メソポーラス構造体は、製造方法等に起因して、一般には、グラフェンからなる表皮と、その内部に含まれる複数のグラフェン小包等の炭素粒とから構成される。ここで、「グラフェン」とは、炭素原子が六角形の網状に配列したものであって、単層の黒鉛に相当する。 Further, the carbon mesoporous structure is generally composed of an epidermis made of graphene and carbon particles such as a plurality of graphene sachets contained therein, depending on the production method or the like. Here, "graphene" is a hexagonal network of carbon atoms, which corresponds to a single layer of graphite.

上記炭素メソポーラス構造体は、上述のような樹状部分を有するため、それ自体高い比表面積を有する。したがって、水素などの任意のガスを十分に吸蔵することができ、気体分子吸蔵体として十分に機能することができる。また、触媒担持用担体としても十分に機能することができる。 Since the carbon mesoporous structure has the dendritic portion as described above, it has a high specific surface area by itself. Therefore, any gas such as hydrogen can be sufficiently occluded, and it can sufficiently function as a gas molecule occluder. In addition, it can sufficiently function as a catalyst-supporting carrier.

ここで、一般的には多孔質炭素材料においてかさ密度が0.10g/mL以下であると、比表面積を確保と炭素壁強度の両立が困難となることがあると言われるが、本発明の炭素材料については、上述したようにグラフェンからなる表皮と、その内部に含まれる複数のグラフェン小包等の炭素粒とから構成されるため、0.10g/mL未満のかさ密度であっても炭素壁の強度を保つことができることが、当該多孔質炭素材料を用いた固体高分子形燃料電池触媒層の断面写真等から確認されている。しかしながら、本発明の触媒担体用炭素材料であってもかさ密度が0.05g/mL未満になると炭素壁の強度を保つことが困難となる虞がある。一方、かさ密度が0.14g/mL以上であると、触媒担体用炭素材料の製造過程で粒子同士の焼結が生じていると考えることができ、樹状構造の間隙が縮小していると推察され、例えば固体高分子形燃料電池の部材として用いた際には、ガス拡散性の低下が生じる。 Here, it is generally said that if the bulk density of the porous carbon material is 0.10 g / mL or less, it may be difficult to secure the specific surface area and the carbon wall strength at the same time. As for the carbon material, as described above, since it is composed of a graphene skin and carbon particles such as a plurality of graphene sachets contained therein, the carbon wall has a bulk density of less than 0.10 g / mL. It has been confirmed from cross-sectional photographs and the like of a solid polymer fuel cell catalyst layer using the porous carbon material that the strength can be maintained. However, even with the carbon material for a catalyst carrier of the present invention, if the bulk density is less than 0.05 g / mL, it may be difficult to maintain the strength of the carbon wall. On the other hand, when the bulk density is 0.14 g / mL or more, it can be considered that the particles are sintered in the process of manufacturing the carbon material for the catalyst carrier, and the gaps in the dendritic structure are reduced. It is presumed that, for example, when it is used as a member of a polymer electrolyte fuel cell, the gas diffusivity is lowered.

また、本発明の触媒担体用炭素材料については、上記(2)の如く、窒素ガス吸着等温線のBET解析により求められるBET比表面積が400〜1500m/g、好ましくは500m2/g以上1400m2/g以下であることが必要であり、このBET比表面積が400m2/g以上、好ましくは500m2/g以上であると、数nmの触媒金属粒子は、良好に分散した状態で、すなわち、触媒金属粒子間距離が一定値以上保たれて粒子が単独で存在できる状態で担持される。反対に、このBET比表面積が400m2/g未満であると、触媒粒子間距離が短くなり、触媒金属微粒子を高密度かつ均一に担持し難くなる虞があり、その結果、触媒金属粒子の有効面積が低下し、燃料電池特性が大幅に低下してしまう。また、1500m2/gを超えて大きくなるようにすると、多孔質炭素材料におけるエッジ部位が増加するため、実質的な結晶性の低下が伴って耐久性が低下し易くなる虞がある。 As for the catalyst carrier carbon material for the present invention, the above (2) as, BET specific surface area as determined by BET analysis of nitrogen sorption isotherms 400~1500m 2 / g, preferably 500 meters 2 / g or more 1400m When it is necessary to be 2 / g or less and the BET specific surface area is 400 m 2 / g or more, preferably 500 m 2 / g or more, the catalyst metal particles of several nm are in a well-dispersed state, that is, , The catalyst metal particles are supported in a state where the distance between them is maintained at a certain value or more and the particles can exist independently. On the contrary, if the BET specific surface area is less than 400 m 2 / g, the distance between the catalyst particles may be shortened, and it may be difficult to support the catalyst metal fine particles with high density and uniformly. As a result, the catalyst metal particles are effective. The area is reduced and the fuel cell characteristics are significantly reduced. Further, if the size is increased to exceed 1500 m 2 / g, the edge portion of the porous carbon material is increased, so that the durability may be easily lowered with a substantial decrease in crystallinity.

さらに、このような本発明の触媒担体用炭素材料は、上記(3)の如く、窒素ガス吸着等温線のDollimore-Heal法を用いた解析により求められる細孔径2〜10nmの積算細孔容積V2-10が0.4〜1.5mL/g、好ましくは0.5〜1.0mL/gであることが必要である。このような2〜10nmの細孔径を有することにより、通常直径数nmに調製される触媒金属微粒子が高分散状態で当該細孔内に分散され、触媒利用率の観点において好ましく寄与する。当該細孔容積V2-10が0.4mL/g未満の場合には、細孔面積に対して容積が小さいため、平均的な細孔サイズが小さくなる。触媒金属である白金微粒子を細孔内に担持した際、細孔と白金微粒子の間の空隙が小さくなるため、ガス拡散が低下して大電流特性が低下してしまう虞がある。反対に、V2-10が1.5mL/g超えて大きくなると、担体用炭素材料としての骨格が肉薄になってしまい、耐酸化消耗性が低下すると共に、触媒層を調製するための触媒層インク液調製の際に必要な撹拌により、この担体用炭素材料の骨格が容易に破壊され、形状に由来する特性が発揮できなくなる虞がある。 Further, as described in (3) above, such a carbon material for a catalyst carrier of the present invention has an integrated pore volume V having a pore diameter of 2 to 10 nm, which is obtained by analysis of nitrogen gas adsorption isotherms using the Dollimore-Heal method. It is necessary that 2-10 is 0.4 to 1.5 mL / g, preferably 0.5 to 1.0 mL / g. By having such a pore diameter of 2 to 10 nm, the catalyst metal fine particles usually prepared to have a diameter of several nm are dispersed in the pores in a highly dispersed state, which preferably contributes from the viewpoint of the catalyst utilization rate. When the pore volume V 2-10 is less than 0.4 mL / g, the volume is small with respect to the pore area, so that the average pore size is small. When platinum fine particles, which are catalyst metals, are supported in the pores, the voids between the pores and the platinum fine particles become small, so that gas diffusion may decrease and the large current characteristics may decrease. On the contrary, when V 2-10 becomes larger than 1.5 mL / g, the skeleton as a carbon material for a carrier becomes thin, the oxidation consumption resistance is lowered, and the catalyst layer for preparing a catalyst layer is prepared. The skeleton of the carbon material for the carrier may be easily destroyed by the stirring required in the preparation of the ink solution, and the characteristics derived from the shape may not be exhibited.

また、担体由来のメソ孔の空孔分布の最頻度径(本発明においては、単に「メソ孔のモード(直)径」とも称する)は、2nm超〜9nm未満であることが好ましく、より好ましくは2.1〜5nm以下である。固体高分子形燃料電池に用いられる触媒粒子の一般的な粒径は約2nmであることから、触媒粒子が担持されるメソ孔は2nmよりも大きいことが好ましい。一方でメソ孔のモード径が9nm以上と大きくなると、触媒粒子よりも過剰に大きな細孔が存在することとなり、不要な空間の存在は触媒担持効率の低下を引き起こすため、初期発電特性の低下を招く。 Further, the most frequent diameter of the pore distribution of the mesopores derived from the carrier (also simply referred to as "mode (straight) diameter of the mesopores" in the present invention) is preferably more than 2 nm and less than 9 nm, more preferably. Is 2.1 to 5 nm or less. Since the general particle size of the catalyst particles used in the polymer electrolyte fuel cell is about 2 nm, the mesopores on which the catalyst particles are supported are preferably larger than 2 nm. On the other hand, when the mode diameter of the mesopores is as large as 9 nm or more, pores that are excessively larger than the catalyst particles are present, and the presence of unnecessary spaces causes a decrease in catalyst loading efficiency, resulting in a decrease in initial power generation characteristics. Invite.

また、本発明の触媒担体用炭素材料については、その結晶性を高めて燃料電池使用環境下における耐久性を改善するという観点から、ラマン分光スペクトルの1550〜1650cm−1の範囲に検出されるG−バンドの半値幅ΔGが、50〜70cm−1であることが好ましく、より好ましくは50〜65cm−1であるのがよい。このΔGは炭素材料の炭素網面の広がりを表すとされており、ΔGが50cm-1未満であると炭素網面が広がり過ぎて細孔壁を形成する炭素網面のエッジ量が減少し、細孔壁への触媒金属微粒子の担持特性が低下する傾向があり、反対に、70cm-1を超えて大きくなると炭素網面が狭く、酸化消耗しやすい炭素網面のエッジ量が増えるため、耐久性が低下する傾向がある。 Further, with respect to the carbon material for a catalyst carrier of the present invention, G detected in the range of 1550 to 1650 cm -1 of the Raman spectral spectrum is detected from the viewpoint of enhancing the crystallinity and improving the durability in the environment in which the fuel cell is used. - half width ΔG band is preferably 50 to 70 cm -1, more preferably in the range of 50~65cm -1. This ΔG is said to represent the extent of the carbon network surface of the carbon material, and if ΔG is less than 50 cm -1 , the carbon network surface expands too much and the amount of edges of the carbon network surface forming the pore wall decreases. The supporting property of the catalyst metal fine particles on the pore wall tends to decrease, and conversely, when the size exceeds 70 cm -1 , the carbon network surface becomes narrow and the edge amount of the carbon network surface, which is easily oxidatively consumed, increases, so that it is durable. The sex tends to decrease.

以上説明したように、本発明の触媒担体用炭素材料は、触媒担体として好適には、棒状体又は環状体が3次元的に分岐した3次元樹状構造を有する樹状炭素ナノ構造体からなり、従来のこの種の樹状炭素ナノ構造体と比較してBET比表面積や耐久性において同等あるいはより優れているだけでなく、前述の通り、かさ密度が低く、それによりガス拡散性に優れ、酸化耐性の高い高比表面積を有することから、この炭素材料を触媒担体として調製された触媒層には反応ガスを抵抗なく拡散させ、また、この触媒層中で生成した水(生成水)を遅滞なく排出させるのに適したメソ細孔が形成され、更には、触媒金属の利用率が低下する虞が少なくて、燃料電池としての耐久性に優れるような固体高分子形燃料電池を得ることができる。 As described above, the carbon material for a catalyst carrier of the present invention preferably comprises a dendritic carbon nanostructure having a three-dimensional dendritic structure in which a rod-shaped body or an annular body is three-dimensionally branched as a catalyst carrier. Not only is it equivalent or better in BET specific surface area and durability compared to conventional dendritic carbon nanostructures of this type, but as mentioned above, it has a lower bulk density, which results in better gas diffusivity. Since it has a high specific surface area with high oxidation resistance, the reaction gas is diffused into the catalyst layer prepared using this carbon material as a catalyst carrier without resistance, and the water (generated water) generated in this catalyst layer is delayed. It is possible to obtain a solid polymer fuel cell having excellent durability as a fuel cell, in which mesopores suitable for discharging the catalyst metal are formed, and the utilization rate of the catalyst metal is less likely to decrease. it can.

以下に、実施例を示しながら、本発明の触媒担体用炭素材料ついて、具体的に説明する。なお、以下に示す実施例は、本発明のあくまでも一例であって、本発明が、下記の例に限定されるものではない。 Hereinafter, the carbon material for the catalyst carrier of the present invention will be specifically described with reference to Examples. The examples shown below are merely examples of the present invention, and the present invention is not limited to the following examples.

1.触媒担体用炭素材料の製造
<実施例1>
(i−1)銀アセチリド生成工程
硝酸銀を15.6質量%の濃度で含む1.9質量%アンモニア水溶液をフラスコに用意し、アルゴンや乾燥窒素などの不活性ガスで残留酸素を除去した後に、溶液を攪拌すると共に超音波振動子を液体に浸して振動を与えながら、アセチレンガスを150mLの溶液に対し25mL/minの流速で約4分間吹き付けた。これによって、溶液中に銀アセチリドの固形物が生じ沈殿を始めた。次いで、沈殿物をメンブレンフィルターで濾過し、ろ過の際に、沈殿物をメタノールで洗浄して若干のメタノールを加え、沈殿物中にメタノールを含浸させた。
1. 1. Production of carbon material for catalyst carrier <Example 1>
(I-1) Silver acetylide production step A 1.9 mass% ammonia aqueous solution containing silver nitrate at a concentration of 15.6 mass% is prepared in a flask, and after removing residual oxygen with an inert gas such as argon or dry nitrogen, the residue is removed. While stirring the solution and immersing the ultrasonic transducer in the liquid to give vibration, acetylene gas was sprayed on 150 mL of the solution at a flow rate of 25 mL / min for about 4 minutes. As a result, a solid substance of silver acetylide was formed in the solution and started to precipitate. The precipitate was then filtered through a membrane filter, and upon filtration, the precipitate was washed with methanol, some methanol was added, and the precipitate was impregnated with methanol.

(i−2)銀アセチリドの分解工程
メタノールを含浸させた状態の前記の沈殿物1gを試験管に装入し、これを真空乾燥機中30〜40℃にて1時間保持してメタノールを除去した後に(第1の加熱処理)、そのまま連続して160℃〜200℃の温度まで急速に加熱し、20分加熱を実施した(第2の加熱処理)。ここで、試験管の中ではナノスケールの爆発反応が起こり、内包された銀が噴出し、表面及び内部に多数の噴出孔が形成された。これにより、銀内包ナノ構造物としての銀と炭素とを含む複合材料からなる分解生成物を得た。
(I-2) Decomposition step of silver acetylide 1 g of the above-mentioned precipitate impregnated with methanol is placed in a test tube and held in a vacuum dryer at 30 to 40 ° C. for 1 hour to remove methanol. After that (first heat treatment), the mixture was continuously heated to a temperature of 160 ° C. to 200 ° C. for 20 minutes (second heat treatment). Here, a nanoscale explosive reaction occurred in the test tube, the contained silver was ejected, and a large number of ejection holes were formed on the surface and inside. As a result, a decomposition product composed of a composite material containing silver and carbon as a silver-encapsulated nanostructure was obtained.

(i−3)清浄化工程
上記(i−2)銀アセチリドの分解工程により得られた銀と炭素を含む複合材料25gを計量して黒鉛製のるつぼに入れ、アルゴン雰囲気で3000℃まで昇温可能なタンマン炉内で、アルゴンガスに真空置換後に圧力を0.5Paまで減圧し、1400℃まで15℃/分で昇温した。そして、所定の温度に達した後、10時間当該温度を維持して、銀の除去を行い銀が除去された清浄化された炭素材料中間体を得た(第3の加熱処理)。
(I-3) Purification Step 25 g of the composite material containing silver and carbon obtained by the above (i-2) decomposition step of silver acetylide is weighed and placed in a graphite crucible, and the temperature is raised to 3000 ° C. in an argon atmosphere. After vacuum replacement with argon gas in a possible Tanman furnace, the pressure was reduced to 0.5 Pa and the temperature was raised to 1400 ° C. at 15 ° C./min. Then, after reaching a predetermined temperature, the temperature was maintained for 10 hours to remove silver to obtain a purified carbon material intermediate from which silver had been removed (third heat treatment).

(i−4)加熱処理工程
上記(i−3)の清浄化工程により得られた清浄化された炭素材料中間体をアルゴン流通下、2100℃まで15℃/分で昇温した。そして、所定の温度に達した後、2時間当該温度を維持して熱処理を行い(第4の加熱処理)、実施例1に係る多孔質な触媒担体用炭素材料を得た。なお、るつぼの黒鉛材料として、低密度で且つ骨材である黒鉛粒子径が大きめのものを押し出し成型して、成型物の密度が高くならない黒鉛性るつぼを選定した。
<実施例2>
銀除去後の加熱処理工程(第4の加熱処理)の維持温度を2000℃とした以外は、実施例1と同様の手順で触媒担体用炭素材料を得た。
(I-4) Heat Treatment Step The purified carbon material intermediate obtained by the cleaning step of (i-3) above was heated to 2100 ° C. at 15 ° C./min under argon flow. Then, after reaching a predetermined temperature, the temperature was maintained for 2 hours and heat treatment was performed (fourth heat treatment) to obtain a porous carbon material for a catalyst carrier according to Example 1. As the graphite material for the crucible, a graphite crucible having a low density and a large graphite particle size as an aggregate was extruded and molded so that the density of the molded product did not increase.
<Example 2>
A carbon material for a catalyst carrier was obtained in the same procedure as in Example 1 except that the maintenance temperature of the heat treatment step (fourth heat treatment) after silver removal was set to 2000 ° C.

<実施例3>
銀除去後の加熱処理工程(第4の加熱処理)の維持温度を1900℃とした以外は、実施例1と同様の手順で触媒担体用炭素材料を得た。
<Example 3>
A carbon material for a catalyst carrier was obtained in the same procedure as in Example 1 except that the maintenance temperature of the heat treatment step (fourth heat treatment) after silver removal was set to 1900 ° C.

<実施例4>
銀除去後の加熱処理工程(第4の加熱処理)の維持温度を1800℃とした以外は、実施例1と同様の手順で触媒担体用炭素材料を得た。
<Example 4>
A carbon material for a catalyst carrier was obtained in the same procedure as in Example 1 except that the maintenance temperature of the heat treatment step (fourth heat treatment) after silver removal was set to 1800 ° C.

<実施例5>
清浄化工程(銀の除去工程、第3の加熱処理)の維持温度を1600℃とした以外は、実施例1と同様の手順で触媒担体用炭素材料を得た。
<Example 5>
A carbon material for a catalyst carrier was obtained in the same procedure as in Example 1 except that the maintenance temperature of the cleaning step (silver removal step, third heat treatment) was set to 1600 ° C.

<実施例6>
清浄化工程(銀の除去工程、第3の加熱処理)の維持温度を1600℃とし、銀除去後の加熱処理工程(第4の加熱処理)の維持温度を1800℃とした以外は、実施例1と同様の手順で触媒担体用炭素材料を得た。
<Example 6>
Examples except that the maintenance temperature of the cleaning step (silver removal step, third heat treatment) was set to 1600 ° C. and the maintenance temperature of the heat treatment step after silver removal (fourth heat treatment) was set to 1800 ° C. A carbon material for a catalyst carrier was obtained in the same procedure as in 1.

<実施例7>
銀除去後の加熱処理工程(第4の加熱処理)の維持温度を2200℃とした以外は、実施例1と同様の手順で触媒担体用炭素材料を得た。
<Example 7>
A carbon material for a catalyst carrier was obtained in the same procedure as in Example 1 except that the maintenance temperature of the heat treatment step (fourth heat treatment) after silver removal was set to 2200 ° C.

<比較例1>
(ii−1)酸除去工程1
実施例1における上記(i−2)銀アセチリドの分解工程まで行って得られた銀と炭素を含む複合材料(分解生成物)20gを用いて、これを30質量%濃硝酸1500g中に浸漬し、60℃で24時間洗浄した。次いで、遠心分離機を用いて、複合材料と濃硝酸とを分離した。複合材料に付着した硝酸を除去する目的で、分離した複合材料を再び純水に分散し、遠心分離機で複合材料(固体)を液体から分離した。この水洗操作を2回行うことにより、硝酸を除去した。次いで、140℃、空気中で2時間処理することにより水分を除去して乾燥させ、その後、アルゴン流通下、1100℃で2時間の熱処理を行った。
<Comparative example 1>
(Ii-1) Acid removal step 1
Using 20 g of a composite material (decomposition product) containing silver and carbon obtained by performing the above-mentioned (i-2) decomposition step of silver acetylide in Example 1, this is immersed in 1500 g of 30 mass% concentrated nitric acid. , 60 ° C. for 24 hours. The composite and concentrated nitric acid were then separated using a centrifuge. For the purpose of removing nitric acid adhering to the composite material, the separated composite material was dispersed in pure water again, and the composite material (solid) was separated from the liquid by a centrifuge. Nitric acid was removed by performing this washing operation twice. Then, moisture was removed by treatment in air at 140 ° C. for 2 hours to dry the mixture, and then heat treatment was performed at 1100 ° C. for 2 hours under argon flow.

(ii−2)酸除去工程2
上記(ii−1)の酸除去工程1により得られた銀と炭素を含む複合材料8gを30質量%濃硝酸150g中に浸漬し、60℃で24時間洗浄した。次いで、遠心分離機を用い、複合材料と濃硝酸とを分離した。複合材料に付着した硝酸を除去する目的で、分離した複合材料を再び純水に分散し、遠心分離機で複合材料(固体)を液体から分離した。この水洗操作を2回行うことにより、硝酸を除去した。次いで、140℃、空気中で複合材料を2時間処理することにより水分を除去して乾燥させ、その後、アルゴン流通下、1400℃で2時間熱処理を行った。
(Ii-2) Acid removal step 2
8 g of the silver-carbon-containing composite material obtained in the acid removal step 1 of (ii-1) above was immersed in 150 g of 30 mass% concentrated nitric acid and washed at 60 ° C. for 24 hours. The composite material and concentrated nitric acid were then separated using a centrifuge. For the purpose of removing nitric acid adhering to the composite material, the separated composite material was dispersed in pure water again, and the composite material (solid) was separated from the liquid by a centrifuge. Nitric acid was removed by performing this washing operation twice. Then, the composite material was treated in air at 140 ° C. for 2 hours to remove water and dried, and then heat-treated at 1400 ° C. for 2 hours under argon flow.

(ii−3)加熱処理工程
上記(ii−2)酸除去工程2により得られた複合材料6gを、アルゴン流通下、2100℃まで15℃/分で昇温した。そして、所定の温度に達した後、2時間当該温度を維持して熱処理を行い(第4の加熱処理)、比較例1に係る多孔質な触媒担体用炭素材料を得た。
(Ii-3) Heat Treatment Step 6 g of the composite material obtained in the above (ii-2) Acid Removal Step 2 was heated to 2100 ° C. at 15 ° C./min under argon flow. Then, after reaching a predetermined temperature, the temperature was maintained for 2 hours and heat treatment was performed (fourth heat treatment) to obtain a porous carbon material for a catalyst carrier according to Comparative Example 1.

<比較例2>
加熱処理工程(第4の加熱処理)の維持温度を1800℃とした以外は、比較例1と同様の手順で触媒担体用炭素材料を得た。
<Comparative example 2>
A carbon material for a catalyst carrier was obtained in the same procedure as in Comparative Example 1 except that the maintenance temperature in the heat treatment step (fourth heat treatment) was set to 1800 ° C.

<比較例3>
銀除去後の加熱処理工程(第4の加熱処理)の維持温度を1500℃とした以外は、実施例1と同様の手順で触媒担体用炭素材料を得た。
<Comparative example 3>
A carbon material for a catalyst carrier was obtained in the same procedure as in Example 1 except that the maintenance temperature of the heat treatment step (fourth heat treatment) after silver removal was set to 1500 ° C.

<比較例4>
銀除去後の加熱処理工程(第4の加熱処理)の維持温度を1400℃とした以外は、実施例1と同様の手順で触媒担体用炭素材料を得た。
<Comparative example 4>
A carbon material for a catalyst carrier was obtained in the same procedure as in Example 1 except that the maintenance temperature of the heat treatment step (fourth heat treatment) after silver removal was set to 1400 ° C.

<比較例5>
清浄化工程(銀の除去工程、第3の加熱処理)の維持温度を1600℃とし、銀除去後の加熱処理工程(第4の加熱処理)の維持温度を1500℃とした以外は、実施例1と同様の手順で触媒担体用炭素材料を得た。
<Comparative example 5>
Examples except that the maintenance temperature of the cleaning step (silver removal step, third heat treatment) was set to 1600 ° C. and the maintenance temperature of the heat treatment step after silver removal (fourth heat treatment) was set to 1500 ° C. A carbon material for a catalyst carrier was obtained in the same procedure as in 1.

<比較例6>
清浄化工程(銀の除去工程、第3の加熱処理)の維持温度を1600℃とし、銀除去後の加熱処理工程(第4の加熱処理)の維持温度を1300℃とした以外は、実施例1と同様の手順で触媒担体用炭素材料を得た。
<Comparative Example 6>
Examples except that the maintenance temperature of the cleaning step (silver removal step, third heat treatment) was set to 1600 ° C. and the maintenance temperature of the heat treatment step after silver removal (fourth heat treatment) was set to 1300 ° C. A carbon material for a catalyst carrier was obtained in the same procedure as in 1.

<比較例7>
銀除去後の加熱処理工程(第4の加熱処理)の維持温度を2300℃とした以外は、実施例1と同様の手順で触媒担体用炭素材料を得た。
<Comparative Example 7>
A carbon material for a catalyst carrier was obtained in the same procedure as in Example 1 except that the maintenance temperature of the heat treatment step (fourth heat treatment) after silver removal was set to 2300 ° C.

<比較例8>
銀除去後の加熱処理工程(第4の加熱処理)の維持温度を2500℃とした以外は、実施例1と同様の手順で触媒担体用炭素材料を得た。
<Comparative Example 8>
A carbon material for a catalyst carrier was obtained in the same procedure as in Example 1 except that the maintenance temperature of the heat treatment step (fourth heat treatment) after silver removal was set to 2500 ° C.

<比較例9>
清浄化工程(銀の除去工程、第3の加熱処理)の維持温度を1300℃としたところ、清浄化された炭素中間体に含まれる残存銀量の判定が不合格であったことから、その後の処理を行わなかった。
<Comparative Example 9>
When the maintenance temperature of the cleaning step (silver removal step, third heat treatment) was set to 1300 ° C., the determination of the amount of residual silver contained in the cleaned carbon intermediate was unsuccessful. Was not processed.

<比較例10>
清浄化工程(銀の除去工程、第3の加熱処理)の維持温度を1100℃としたところ、清浄化された炭素中間体に含まれる残存銀量の判定が不合格であったことから、その後の処理を行わなかった。
<Comparative Example 10>
When the maintenance temperature of the cleaning step (silver removal step, third heat treatment) was set to 1100 ° C., the determination of the amount of residual silver contained in the cleaned carbon intermediate was unsuccessful. Was not processed.

<比較例11>
ケッチェンブラックEC600JD(ライオン社製)5gをアルゴン流通下、2100℃まで15℃/分で昇温した。そして、所定の温度に達した後、2時間当該温度を維持して熱処理を行い(第4の加熱処理に相当)、触媒担体用炭素材料を得た。
<Comparative Example 11>
5 g of Ketjen Black EC600JD (manufactured by Lion) was heated to 2100 ° C. at 15 ° C./min under argon flow. Then, after reaching a predetermined temperature, the temperature was maintained for 2 hours and heat treatment was performed (corresponding to the fourth heat treatment) to obtain a carbon material for a catalyst carrier.

<比較例12>
熱処理(第4の加熱処理に相当)の維持温度を2000℃とした以外は、比較例11と同様の手順で触媒担体用炭素材料を得た。
<Comparative Example 12>
A carbon material for a catalyst carrier was obtained in the same procedure as in Comparative Example 11 except that the maintenance temperature of the heat treatment (corresponding to the fourth heat treatment) was set to 2000 ° C.

<比較例13>
熱処理(第4の加熱処理に相当)の維持温度を1900℃とした以外は、比較例11と同様の手順で触媒担体用炭素材料を得た。
<Comparative Example 13>
A carbon material for a catalyst carrier was obtained in the same procedure as in Comparative Example 11 except that the maintenance temperature of the heat treatment (corresponding to the fourth heat treatment) was set to 1900 ° C.

2.評価
(i)BET比表面積、細孔径2〜10nmの積算細孔容積V2-10、モード直径の測定
各実施例及び比較例の触媒担体用炭素材料について、それぞれ約30mg量り採り、150℃で真空乾燥した後、自動比表面積測定装置(カンタクローム・インスツルメンツ・ジャパン社製、QUADRASORB evo)を用いて、窒素ガスを用いたガス吸着法にて測定し、BET解析式に基づき比表面積を決定した。吸着過程の吸着等温線をDollimore−Heal法(DH法)で解析して算出した。装置内蔵の解析フログラムで細孔径2〜10nm間のメソ孔の積算細孔容積V2-10(mL/g)、細孔モード直径(nm)を算出した。評価結果を表1に示す。
2. Evaluation (i) Measurement of BET specific surface area, integrated pore volume V 2-10 with pore diameter 2 to 10 nm, and mode diameter Weigh about 30 mg of each of the carbon materials for catalyst carriers of Examples and Comparative Examples, and measure them at 150 ° C. After vacuum drying, the specific surface area was measured by the gas adsorption method using nitrogen gas using an automatic specific surface area measuring device (QUADRASORB evo manufactured by Cantachrome Instruments Japan), and the specific surface area was determined based on the BET analysis formula. .. The adsorption isotherm of the adsorption process was analyzed and calculated by the Dollimore-Hell method (DH method). The integrated pore volume V 2-10 (mL / g) and pore mode diameter (nm) of the mesopores with a pore diameter of 2 to 10 nm were calculated from the analysis program built into the device. The evaluation results are shown in Table 1.

(ii)ラマン分光スペクトルの1550〜1650cm−1の範囲に検出されるG-バンドの半値幅ΔG(cm−1
各実施例及び比較例で準備した触媒担体用炭素材料を試料とし、これを約3mg測り採った後、レーザラマン分光光度計(日本分光(株)製NRS-3100型)にセットし、励起レーザー:532nm、レーザーパワー:10mW(試料照射パワー:1.1mW)、顕微配置:Backscattering、スリット:100μm×100μm、対物レンズ:×100倍、スポット径:1μm、露光時間:30sec、観測波数:2000〜300cm−1、及び、積算回数:6回の測定条件で測定し、得られた6個のスペクトルから各々1580cm−1近傍に現れるいわゆる黒鉛のG-バンドの半値幅ΔG(cm−1)を求め、その平均値を測定値とした。
(Ii) Half width ΔG (cm -1 ) of the G-band detected in the range of 1550 to 1650 cm -1 of the Raman spectroscopic spectrum.
The carbon material for the catalyst carrier prepared in each Example and Comparative Example was used as a sample, and after measuring about 3 mg of this, it was set in a laser Raman spectrophotometer (NRS-3100 type manufactured by JASCO Corporation), and the excitation laser: 532 nm, laser power: 10 mW (sample irradiation power: 1.1 mW), microscopic arrangement: Backscattering, slit: 100 μm × 100 μm, objective lens: × 100 times, spot diameter: 1 μm, exposure time: 30 sec, observed wave number: 2000 to 300 cm -1, and the accumulated number of times: 6 times measured under the measurement conditions, determine the half-width of the G- band called graphite appearing in each 1580 cm -1 vicinity of six spectra obtained .DELTA.G (cm -1), The average value was used as the measured value.

(iii)かさ密度
各実施例及び比較例の触媒担体用炭素材料について、それぞれ約300mg量り採り、タップデンサー(セイシン企業製 KYT−5000)を用いて150回タッピングし、かさ密度を測定した。評価結果を表1に示す。
(iV)銀残存量の測定
各実施例及び比較例の清浄化工程後の清浄化された炭素材料中間体又は酸処理2後の炭素材料中間体に残存する銀の残存量を誘導結合プラズマ発光分光分析法(ICP−AES)により求めた。本評価で不合格ランクとなったものはそれ以降の加熱処理工程(第4の加熱処理)で残存銀が揮発し、炉体を損傷する虞があるため加熱処理工程(第4の加熱処理)は実施することができない。
〔合格ランク〕
○:銀の残存量が検出限界以下〜1000ppm以下であるもの
〔不合格ランク〕
×:銀の残存量が1000ppmを超えるもの
(Iii) Bulk Density About 300 mg of each of the carbon materials for catalyst carriers of each Example and Comparative Example was weighed and tapped 150 times using a tap denser (KYT-5000 manufactured by Seishin Enterprise Co., Ltd.) to measure the bulk density. The evaluation results are shown in Table 1.
(IV) Measurement of Residual Silver Amount Inductively coupled plasma emission to the residual amount of silver remaining in the cleaned carbon material intermediate after the cleaning step of each Example and Comparative Example or the carbon material intermediate after acid treatment 2. It was determined by spectroscopic analysis (ICP-AES). Those with a failure rank in this evaluation are in the heat treatment step (fourth heat treatment) because the residual silver may volatilize in the subsequent heat treatment step (fourth heat treatment) and damage the furnace body. Cannot be implemented.
[Pass rank]
◯: The residual amount of silver is below the detection limit to 1000 ppm or less [Failure rank]
X: Residual amount of silver exceeds 1000 ppm

<触媒の調製、触媒層の作製、MEAの作製、燃料電池の組立、及び電池性能(耐久性)の評価>
次に、以上のようにして準備した各触媒担体用炭素材料を用い、以下のようにして触媒金属が担持された固体高分子型燃料電池用触媒を調製し、また、得られた触媒を用いて触媒層インク液を調製し、次いでこの触媒層インク液を用いて触媒層を形成し、更に形成された触媒層を用いて膜電極接合体(MEA: Membrane Electrode Assembly)を作製し、この作製されたMEAを燃料電池セルに組み込み、燃料電池測定装置を用いて発電試験を行った。以下、各部材の調製及び発電試験によるセル評価について詳細に説明する。
<Catalyst preparation, catalyst layer preparation, MEA preparation, fuel cell assembly, and battery performance (durability) evaluation>
Next, using the carbon materials for each catalyst carrier prepared as described above, a catalyst for a solid polymer fuel cell in which a catalyst metal is supported is prepared as described below, and the obtained catalyst is used. The catalyst layer ink solution is prepared, then a catalyst layer is formed using this catalyst layer ink solution, and a membrane electrode junction (MEA: Membrane Electrode Assembly) is prepared using the further formed catalyst layer. The MEA was incorporated into a fuel cell, and a power generation test was conducted using a fuel cell measuring device. Hereinafter, the preparation of each member and the cell evaluation by the power generation test will be described in detail.

(1)固体高分子型燃料電池用触媒(白金担持炭素材料)の作製
上記で作製した各触媒担体用炭素材料を、蒸留水中に分散させ、この分散液にホルムアルデヒドを加え、40℃に設定したウォーターバスにセットし、分散液の温度がバスと同じ40℃になってから、撹拌下にこの分散液中にジニトロジアミンPt錯体硝酸水溶液をゆっくりと注ぎ入れた。その後、約2時間撹拌を続けた後、濾過し、得られた固形物の洗浄を行った。このようにして得られた固形物を90℃で真空乾燥した後、乳鉢で粉砕し、次いで水素を5体積%含むアルゴン雰囲気中200℃で1時間熱処理をして白金触媒粒子担持炭素材料を作製した。なお、この白金担持炭素材料の白金担持量については、触媒担体用炭素材料と白金粒子の合計質量に対して25質量%となるように調整し、誘導結合プラズマ発光分光分析(ICP-AES: Inductively Coupled Plasma - Atomic Emission Spectrometry)により測定して確認した。
(1) Preparation of catalyst for polymer electrolyte fuel cell (platinum-supported carbon material) The carbon material for each catalyst carrier prepared above was dispersed in distilled water, formaldehyde was added to the dispersion, and the temperature was set to 40 ° C. The mixture was set in a water bath, and after the temperature of the dispersion became 40 ° C., which was the same as that of the bath, the dinitrodiamine Pt complex nitrate aqueous solution was slowly poured into the dispersion under stirring. Then, after continuing stirring for about 2 hours, it was filtered and the obtained solid matter was washed. The solid matter thus obtained is vacuum dried at 90 ° C., pulverized in a mortar, and then heat-treated at 200 ° C. for 1 hour in an argon atmosphere containing 5% by volume of hydrogen to prepare a carbon material supporting platinum catalyst particles. did. The amount of platinum supported by this platinum-supported carbon material was adjusted to be 25% by mass with respect to the total mass of the carbon material for the catalyst carrier and the platinum particles, and inductively coupled plasma emission spectroscopy (ICP-AES: Inductively). It was measured and confirmed by Coupled Plasma --Atomic Emission Spectrometry).

(2)触媒層の調製
以上のようにして調製された白金担持炭素材料(Pt触媒)を用い、また、電解質樹脂としてDupont社製ナフィオン(登録商標:Nafion;パースルホン酸系イオン交換樹脂)を用い、Ar雰囲気下でこれらPt触媒とナフィオンとを白金触媒粒子担持炭素材料の質量に対してナフィオン固形分の質量が1.0倍、非多孔質炭素に対しては0.5倍の割合で配合し、軽く撹拌した後、超音波でPt触媒を解砕し、更にエタノールを加えてPt触媒と電解質樹脂とを合わせた合計の固形分濃度が1.0質量%となるように調整し、Pt触媒と電解質樹脂とが混合した触媒層インク液を調製した。
(2) Preparation of catalyst layer Using the platinum-supported carbon material (Pt catalyst) prepared as described above, and using Dupont's Nafion (registered trademark: Nafion; persulfonic acid-based ion exchange resin) as the electrolyte resin. In the Ar atmosphere, these Pt catalysts and Nafion were used at a ratio of 1.0 times the mass of the Nafion solid content to the mass of the platinum catalyst particle-supporting carbon material and 0.5 times the mass of the non-porous carbon. After blending and lightly stirring, the Pt catalyst was crushed with ultrasonic waves, and ethanol was further added to adjust the total solid content concentration of the Pt catalyst and the electrolyte resin to 1.0% by mass. A catalyst layer ink solution in which a Pt catalyst and an electrolyte resin were mixed was prepared.

このようにして調製された固形分濃度1.0質量%の各触媒層インク液に更にエタノールを加え、白金濃度が0.5質量%のスプレー塗布用触媒層インク液を作製し、白金の触媒層単位面積当たりの質量(以下、「白金目付量」という。)が0.1mg/cm2となるようにスプレー条件を調節し、上記スプレー塗布用触媒層インクをテフロン(登録商標)シート上にスプレーした後、アルゴン中120℃で60分間の乾燥処理を行い、触媒層を作製した。 Ethanol was further added to each catalyst layer ink liquid having a solid content concentration of 1.0% by mass thus prepared to prepare a catalyst layer ink liquid for spray coating having a platinum concentration of 0.5% by mass, and a platinum catalyst was prepared. The spray conditions were adjusted so that the mass per layer unit area (hereinafter referred to as "platinum grain amount") was 0.1 mg / cm 2, and the catalyst layer ink for spray coating was applied onto a Teflon (registered trademark) sheet. After spraying, it was dried in argon at 120 ° C. for 60 minutes to prepare a catalyst layer.

(3)MEAの作製
以上のようにして作製した触媒層を用い、以下の方法でMEA(膜電極複合体)を作製した。
ナフィオン膜(Dupont社製NR211)から一辺6cmの正方形状の電解質膜を切り出した。また、テフロン(登録商標)シート上に塗布されたアノード及びカソードの各触媒層については、それぞれカッターナイフで一辺2.5cmの正方形状に切り出した。
このようにして切り出されたアノード及びカソードの各触媒層の間に、各触媒層が電解質膜の中心部を挟んでそれぞれ接すると共に互いにずれが無いように、この電解質膜を挟み込み、120℃、100kg/cm2で10分間プレスし、次いで室温まで冷却した後、アノード及びカソード共にテフロン(登録商標)シートのみを注意深く剥ぎ取り、アノード及びカソードの各触媒層が電解質膜に定着した触媒層−電解質膜接合体を調製した。
(3) Preparation of MEA Using the catalyst layer prepared as described above, MEA (membrane electrode complex) was prepared by the following method.
A square electrolyte membrane with a side of 6 cm was cut out from the Nafion membrane (NR211 manufactured by DuPont). Further, each catalyst layer of the anode and the cathode coated on the Teflon (registered trademark) sheet was cut into a square shape having a side of 2.5 cm with a cutter knife.
The electrolyte membranes are sandwiched between the anode and cathode catalyst layers cut out in this way so that the respective catalyst layers are in contact with each other with the central portion of the electrolyte membrane sandwiched between them and are not displaced from each other. After pressing at / cm 2 for 10 minutes and then cooling to room temperature, only the Teflon® sheet was carefully peeled off for both the anode and cathode, and the anode and cathode catalyst layers were fixed to the electrolyte membrane. An anode was prepared.

次に、ガス拡散層として、カーボンペーパー(SGLカーボン社製35BC)から一辺2.5cmの大きさで一対の正方形状カーボンペーパーを切り出し、これらのカーボンペーパーの間に、アノード及びカソードの各触媒層が一致してずれが無いように、上記触媒層−電解質膜接合体を挟み、120℃、50kg/cm2で10分間プレスしてMEAを作製した。
なお、作製された各MEAにおける触媒金属成分、炭素材料、電解質材料の各成分の目付量については、プレス前の触媒層付テフロン(登録商標)シートの質量とプレス後に剥がしたテフロン(登録商標)シートの質量との差からナフィオン膜(電解質膜)に定着させた触媒層の質量を求め、触媒層の組成の質量比より算出した。
Next, as a gas diffusion layer, a pair of square carbon papers having a side size of 2.5 cm were cut out from carbon paper (35BC manufactured by SGL Carbon Co., Ltd.), and between these carbon papers, each catalyst layer of anode and cathode was cut out. The MEA was prepared by sandwiching the catalyst layer-electrolyte membrane conjugate and pressing at 120 ° C. and 50 kg / cm 2 for 10 minutes so that the two were consistent and not misaligned.
Regarding the amount of each component of the catalyst metal component, carbon material, and electrolyte material in each MEA produced, the mass of the Teflon (registered trademark) sheet with a catalyst layer before pressing and the Teflon (registered trademark) peeled off after pressing. The mass of the catalyst layer fixed on the Nafion membrane (electrolyte membrane) was obtained from the difference from the mass of the sheet, and was calculated from the mass ratio of the composition of the catalyst layer.

(4)燃料電池の発電性能評価
各実施例及び比較例に係る各触媒担体用炭素材料を用いて作製したMEAについて、それぞれセルに組み込み、燃料電池測定装置にセットして、次の手順で燃料電池の性能評価を行った。
カソード側には酸化性ガスとして空気を、また、アノード側には反応ガスとして純水素を、それぞれ利用率が40%と70%となるように、セル下流に設けられた背圧弁で圧力調整し、背圧0.1MPaで供給した。また、セル温度は80℃に設定し、また、供給する酸化性ガス及び反応ガスについては、カソード及びアノード共に、加湿器中で60℃に保温された蒸留水でバブリングを行い、低加湿状態での発電評価を行った。
(4) Evaluation of power generation performance of fuel cell Each MEA produced using the carbon material for each catalyst carrier according to each Example and Comparative Example is incorporated into a cell, set in a fuel cell measuring device, and fueled by the following procedure. The performance of the battery was evaluated.
Air is used as an oxidizing gas on the cathode side, and pure hydrogen is used as a reaction gas on the anode side. The pressure is adjusted by a back pressure valve provided downstream of the cell so that the utilization rates are 40% and 70%, respectively. , The back pressure was 0.1 MPa. The cell temperature is set to 80 ° C., and the oxidative gas and reaction gas to be supplied are bubbling with distilled water kept at 60 ° C. in a humidifier for both the cathode and the anode in a low humidification state. Power generation was evaluated.

このような設定の下にセルに反応ガスを供給した条件下で、負荷を徐々に増やし、電流密度1000mA/cm2におけるセル端子間電圧を出力電圧として記録し、燃料電池の性能評価を実施し、下記の合格ランク○と不合格ランク×の基準で評価を行った。結果を表1に示す。
〔合格ランク〕
○:1000mA/cm2における出力電圧が0.65V以上であるもの。
〔不合格ランク〕
×:1000mA/cm2における出力電圧が0.65Vに満たないもの。
Under the condition that the reaction gas was supplied to the cell under such a setting, the load was gradually increased, the voltage between the cell terminals at a current density of 1000 mA / cm 2 was recorded as the output voltage, and the performance of the fuel cell was evaluated. , The evaluation was performed based on the following criteria of pass rank ○ and fail rank ×. The results are shown in Table 1.
[Pass rank]
◯: The output voltage at 1000 mA / cm 2 is 0.65 V or more.
[Failure rank]
X: The output voltage at 1000mA / cm 2 is less than 0.65V.

〔耐久性の評価〕
上記セルにおいて、アノードはそのままに、カソードには上記と同じ加湿条件のアルゴンガスを流しながら、セル電圧を1.0Vにして4秒間保持する操作とセル電圧を1.3Vにして4秒間保持する操作とを繰り返す操作(矩形波的電圧変動の繰返し操作)を1サイクルとし、この矩形波的電圧変動の繰返し操作を200サイクル実施した後、上記の大電流特性の評価と同様にして耐久性を調査し、下記の合格ランク○と不合格ランク×の基準で評価を行った。結果を表1に示す。
〔合格ランク〕
○:1000mA/cm2における出力電圧が0.65V以上であるもの。
〔不合格ランク〕
×:1000mA/cm2における出力電圧が0.65Vに満たないもの。
[Evaluation of durability]
In the above cell, the operation of setting the cell voltage to 1.0 V and holding it for 4 seconds and holding the cell voltage to 1.3 V for 4 seconds while flowing argon gas under the same humidifying conditions as above to the cathode while keeping the anode as it is. The operation of repeating the operation (repeating operation of the square wave voltage fluctuation) is set as one cycle, and after performing the repeating operation of the square wave voltage fluctuation for 200 cycles, the durability is improved in the same manner as the evaluation of the large current characteristic described above. The survey was conducted and evaluation was performed based on the following criteria of pass rank ○ and fail rank ×. The results are shown in Table 1.
[Pass rank]
◯: The output voltage at 1000 mA / cm 2 is 0.65 V or more.
[Failure rank]
X: The output voltage at 1000mA / cm 2 is less than 0.65V.

Figure 0006854685
Figure 0006854685

Claims (8)

多孔質炭素材料であって、下記(1)、(2)及び(3)を同時に満たすことを特徴とする固体高分子形燃料電池の触媒担体用炭素材料。
(1)かさ密度が0.05g/mL以上0.14g/mL未満であること。
(2)窒素ガス吸着等温線のBET解析により求められるBET比表面積が400〜1500m/gであること。
(3)窒素ガス吸着等温線のDollimore-Heal法を用いた解析により求められる細孔径2〜10nmの積算細孔容積V2-10が0.4〜1.5mL/gであること。
A carbon material for a catalyst carrier of a polymer electrolyte fuel cell, which is a porous carbon material and is characterized by simultaneously satisfying the following (1), (2) and (3).
(1) The bulk density is 0.05 g / mL or more and less than 0.14 g / mL.
(2) The BET specific surface area determined by BET analysis of the nitrogen gas adsorption isotherm is 400 to 1500 m 2 / g.
(3) The integrated pore volume V 2-10 with a pore diameter of 2 to 10 nm determined by analysis of the nitrogen gas adsorption isotherm using the Dollimore-Heal method is 0.4 to 1.5 mL / g.
ラマン分光スペクトルの1550〜1650cm−1の範囲に検出されるG−バンドの半値幅ΔGが、50〜70cm−1であることを特徴とする請求項1に記載の固体高分子形燃料電池の触媒担体用炭素材料。 Half width ΔG of G- bands detected in the range of 1550~1650Cm -1 Raman spectroscopy spectrum, the polymer electrolyte fuel cell according to claim 1, characterized in that a 50 to 70 cm -1 catalyst Carbon material for carriers. 前記V2-10が、0.5〜1.0mL/gであることを特徴とする請求項1又は2に記載の固体高分子形燃料電池の触媒担体用炭素材料。 The carbon material for a catalyst carrier of a polymer electrolyte fuel cell according to claim 1 or 2, wherein V 2-10 is 0.5 to 1.0 mL / g. 窒素ガス吸着測定において求められるメソ孔のモード直径が、2nm超過9nm未満であることを特徴とする請求項1〜3のいずれかに記載の固体高分子形燃料電池の触媒担体用炭素材料。 The carbon material for a catalyst carrier of a polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the mode diameter of the mesopores required in the nitrogen gas adsorption measurement is more than 2 nm and less than 9 nm. 前記かさ密度が、0.05g/mL以上0.10g/mL以下である請求項1〜4のいずれかに記載の固体高分子形燃料電池の触媒担体用炭素材料。 The carbon material for a catalyst carrier of a polymer electrolyte fuel cell according to any one of claims 1 to 4, wherein the bulk density is 0.05 g / mL or more and 0.10 g / mL or less. 棒状体又は環状体が3次元的に分岐した3次元樹状構造を有することを特徴とする請求項1〜5のいずれかに記載の固体高分子形燃料電池の触媒担体用炭素材料。 The carbon material for a catalyst carrier of a polymer electrolyte fuel cell according to any one of claims 1 to 5, wherein the rod-shaped body or the annular body has a three-dimensional dendritic structure branched three-dimensionally. 請求項1〜6のいずれかに記載の触媒担体用炭素材料を用いた固体高分子形燃料電池用触媒担体。 A catalyst carrier for a polymer electrolyte fuel cell using the carbon material for a catalyst carrier according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載された固体高分子形燃料電池の触媒担体用炭素材料の製造方法であり、
硝酸銀のアンモニア水溶液からなる反応溶液中にアセチレンガスを吹き込んで銀アセチリドを合成する銀アセチリド生成工程と、前記銀アセチリドを自己分解爆発反応させて分解生成物を得る分解工程と、前記分解生成物を減圧雰囲気中にて1400〜1800℃の温度で加熱処理して銀が除去された炭素材料中間体を得る清浄化工程と、前記炭素材料中間体を真空中又は不活性ガス雰囲気中1800〜2200℃の温度で加熱処理して触媒担体用炭素材料を得る加熱処理工程とを備えることを特徴とする固体高分子形燃料電池の触媒担体用炭素材料の製造方法。
The method for producing a carbon material for a catalyst carrier of a polymer electrolyte fuel cell according to any one of claims 1 to 6.
A silver acetylide production step of injecting acetylene gas into a reaction solution consisting of an aqueous ammonia solution of silver nitrate to synthesize silver acetylide, a decomposition step of self-decomposing and exploding the silver acetylide to obtain a decomposition product, and the decomposition product. A cleaning step of obtaining a carbon material intermediate from which silver has been removed by heat treatment at a temperature of 1400 to 1800 ° C. in a reduced pressure atmosphere, and a cleaning step in which the carbon material intermediate is placed in a vacuum or in an inert gas atmosphere at 1800 to 2200 ° C. A method for producing a carbon material for a catalyst carrier of a solid polymer fuel cell, which comprises a heat treatment step of obtaining a carbon material for a catalyst carrier by heat treatment at the same temperature as above.
JP2017071625A 2017-03-31 2017-03-31 A carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same, and a catalyst carrier for a polymer electrolyte fuel cell using the carbon material for the catalyst carrier. Active JP6854685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071625A JP6854685B2 (en) 2017-03-31 2017-03-31 A carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same, and a catalyst carrier for a polymer electrolyte fuel cell using the carbon material for the catalyst carrier.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071625A JP6854685B2 (en) 2017-03-31 2017-03-31 A carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same, and a catalyst carrier for a polymer electrolyte fuel cell using the carbon material for the catalyst carrier.

Publications (2)

Publication Number Publication Date
JP2018174078A JP2018174078A (en) 2018-11-08
JP6854685B2 true JP6854685B2 (en) 2021-04-07

Family

ID=64108658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071625A Active JP6854685B2 (en) 2017-03-31 2017-03-31 A carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same, and a catalyst carrier for a polymer electrolyte fuel cell using the carbon material for the catalyst carrier.

Country Status (1)

Country Link
JP (1) JP6854685B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151524B2 (en) * 2019-02-06 2022-10-12 トヨタ自動車株式会社 Fuel cell catalyst
JP2021118290A (en) * 2020-01-28 2021-08-10 ジカンテクノ株式会社 Conductive electronic component using carbon material, and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591578A (en) * 1985-02-04 1986-05-27 American Cyanamid Company Catalyst of molybdenum on wide-pore carbon support
EP1176234B1 (en) * 1992-05-22 2005-11-23 Hyperion Catalysis International, Inc. Supported catalysts, methods of making the same and methods of using the same
JPWO2011046139A1 (en) * 2009-10-16 2013-03-07 国立大学法人信州大学 Fluorine storage device
JP6198810B2 (en) * 2013-02-21 2017-09-20 新日鉄住金化学株式会社 Carbon material for catalyst support
US9464162B2 (en) * 2013-03-13 2016-10-11 Georgia-Pacific Chemicals Llc Emulsion and suspension polymerization processes, and improved electrochemical performance for carbon derived from same
WO2015088025A1 (en) * 2013-12-13 2015-06-18 新日鐵住金株式会社 Supporting carbon material for solid polymer fuel cell, metal-catalyst-particle-supporting carbon material, and method for manufacturing said materials
EP3089247B1 (en) * 2013-12-27 2019-09-11 Zeon Corporation Conductive film, gas diffusion layer for fuel cells, catalyst layer for fuel cells, electrode for fuel cells, membrane electrode assembly for fuel cells, and fuel cell
CN106030877B (en) * 2014-03-19 2018-11-02 新日铁住金株式会社 The carrier carbon material of use in solid polymer fuel cell and the carbon material for being supported with catalyst metal particles
EP3261159A4 (en) * 2015-02-18 2020-11-11 Nippon Steel Corporation Catalyst-carrier carbon material, solid-polymer fuel cell catalyst, solid-polymer fuel cell, and method for manufacturing catalyst-carrier carbon material

Also Published As

Publication number Publication date
JP2018174078A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
US10096837B2 (en) Supporting carbon material for solid polymer fuel cell and catalyst metal particle-supporting carbon material
JP6802363B2 (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and its manufacturing method
JP6198810B2 (en) Carbon material for catalyst support
EP2822069B1 (en) Cathode electrode for fuel cell
JP6768386B2 (en) Method for manufacturing porous carbon material, catalyst for polymer electrolyte fuel cell and polymer electrolyte fuel cell, and porous carbon material
JP7094075B2 (en) Carbon material for catalyst carrier, catalyst for polymer electrolyte fuel cell, catalyst layer for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
WO2019004472A1 (en) Solid polymer-type fuel cell catalyst carrier, method for manufacturing solid polymer-type fuel cell catalyst carrier, catalyst layer for solid polymer-type fuel cell, and fuel cell
JP6854685B2 (en) A carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same, and a catalyst carrier for a polymer electrolyte fuel cell using the carbon material for the catalyst carrier.
JP7110377B2 (en) CARBON MATERIAL FOR CATALYST CARRIER FOR PROTEIN POLYMER FUEL CELL AND METHOD FOR MANUFACTURING THE SAME
JP6802362B2 (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and its manufacturing method
JP6815918B2 (en) Silver acetylide and its manufacturing method
JP5862476B2 (en) Anode catalyst for fuel cell and fuel cell
JP6970183B2 (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and its manufacturing method
JP2022156985A (en) Carbon material for catalyst carrier of solid polymer fuel cell, and production method thereof
JP2021061142A (en) Porous carbon material for catalyst carrier of solid polymer type fuel cell, catalyst layer for solid polymer type fuel cell, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210316

R150 Certificate of patent or registration of utility model

Ref document number: 6854685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250