JP6713114B2 - Transparent conductive film containing graphene - Google Patents

Transparent conductive film containing graphene Download PDF

Info

Publication number
JP6713114B2
JP6713114B2 JP2016128050A JP2016128050A JP6713114B2 JP 6713114 B2 JP6713114 B2 JP 6713114B2 JP 2016128050 A JP2016128050 A JP 2016128050A JP 2016128050 A JP2016128050 A JP 2016128050A JP 6713114 B2 JP6713114 B2 JP 6713114B2
Authority
JP
Japan
Prior art keywords
graphene
transparent conductive
conductive film
layer
pmma layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016128050A
Other languages
Japanese (ja)
Other versions
JP2018006044A (en
JP2018006044A5 (en
Inventor
侑揮 沖川
侑揮 沖川
貴壽 山田
貴壽 山田
正統 石原
正統 石原
雅考 長谷川
雅考 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016128050A priority Critical patent/JP6713114B2/en
Publication of JP2018006044A publication Critical patent/JP2018006044A/en
Publication of JP2018006044A5 publication Critical patent/JP2018006044A5/ja
Application granted granted Critical
Publication of JP6713114B2 publication Critical patent/JP6713114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、グラフェンとその保護膜を備える透明導電膜に関するものである。 The present invention relates to a transparent conductive film including graphene and its protective film.

SP結合した炭素原子による導電性の平面状結晶は、グラフェン膜と呼ばれている。グラフェン膜については、非特許文献1に詳述されている。グラフェン膜は、様々な形態の結晶性炭素膜の基本単位である。グラフェン膜から構成される結晶性炭素膜の例としては、一層のグラフェン膜による単層グラフェン、ナノメートルサイズのグラフェン膜の数層から十層程度の積層体であるナノグラフェン、さらに数層から数十層程度のグラフェン膜積層体が基材面に対して垂直に近い角度で配向するカーボンナノウォール(非特許文献2参照)などがある。グラフェン膜から構成される結晶性炭素膜は、高い移動度を持つことから高周波デバイスとしての利用が、また高い光透過率を持つことから透明導電膜や透明電極としての利用が期待されている。 A conductive planar crystal formed of SP 2 -bonded carbon atoms is called a graphene film. Non-Patent Document 1 describes the graphene film in detail. Graphene films are the basic unit of various forms of crystalline carbon films. Examples of crystalline carbon films composed of graphene films are single-layer graphene composed of one graphene film, nanographene that is a laminated body of several to ten nanometer-sized graphene films, and several to several tens of graphene films. There is a carbon nanowall (see Non-Patent Document 2) in which a graphene film laminated body of about layers is oriented at an angle close to perpendicular to the substrate surface. A crystalline carbon film composed of a graphene film is expected to be used as a high frequency device because of its high mobility, and as a transparent conductive film or a transparent electrode because of its high light transmittance.

グラフェン膜の製造方法として、天然黒鉛からの剥離法、炭化ケイ素の高温熱処理によるケイ素の脱離法、様々な金属表面への形成法などがこれまでに開発されている。グラフェン膜から構成される結晶性炭素膜を用いた電子デバイスは、多岐にわたる工業的な利用が検討されている。このため、高いスループットで大面積のグラフェン膜が形成できる成膜方法の出現が望まれている。化学気相合成法(CVD)による銅箔表面へのグラフェン膜の形成法が知られている(非特許文献3および非特許文献4参照)。その中の一つであるマイクロ波表面波プラズマCVD(非特許文献5参照)は、低温かつ短時間でグラフェン膜を成膜することができるため、プラスチックなどの耐熱性が低い基板上への電子デバイスの作製が期待される。 As a method for producing a graphene film, a method of exfoliating from natural graphite, a method of desorbing silicon by high temperature heat treatment of silicon carbide, a method of forming on various metal surfaces, etc. have been developed so far. Electronic devices using a crystalline carbon film composed of a graphene film have been studied for various industrial applications. Therefore, the advent of a film forming method capable of forming a large-area graphene film with high throughput is desired. A method of forming a graphene film on the surface of a copper foil by a chemical vapor deposition method (CVD) is known (see Non-Patent Document 3 and Non-Patent Document 4). Microwave surface wave plasma CVD (see Non-Patent Document 5), which is one of them, can form a graphene film at a low temperature and in a short time, so that electrons on a substrate such as plastic having low heat resistance can be formed. Fabrication of devices is expected.

国際公開第2012/108526号International Publication No. 2012/108526

山田久美、化学と工業、61 (2008) pp.1123-1127Kumi Yamada, Chemistry and Industry, 61 (2008) pp.1123-1127 Y. Wu, P. Qiao, T.Chong, Z. Shen, Adv. Mater., 14 (2002) pp.64-67Y. Wu, P. Qiao, T. Chong, Z. Shen, Adv. Mater., 14 (2002) pp.64-67 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science, 324 (2009) pp.1312-1314X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, SK Banerjee, L. Colombo, RS Ruoff, Science, 324 (2009) pp.1312-1314 X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, R. S Ruoff, Nano Letters, 9 (2009) pp.4359-4363X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, R. S Ruoff, Nano Letters, 9 (2009) pp.4359-4363 J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, S. Iijima, Applied Physics Letters 98 (2011) pp.091502-1-091502-3J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, S. Iijima, Applied Physics Letters 98 (2011) pp.091502-1-091502-3

CVDで合成するグラフェンは、非特許文献3から非特許文献5に記載されているように、CuやNiなどの触媒金属上に形成される。このため、グラフェンを任意の基板上に形成するには、触媒金属上からその基板上にグラフェンを転写する技術が必要となる。ポリメタクリル酸メチル(以下、「PMMA」と記載することがある)などのポリマーを用いて、グラフェンを転写する方法が知られている。 Graphene synthesized by CVD is formed on a catalytic metal such as Cu or Ni, as described in Non-Patent Documents 3 to 5. Therefore, in order to form graphene on an arbitrary substrate, a technique for transferring graphene from the catalytic metal onto the substrate is required. A method of transferring graphene using a polymer such as polymethylmethacrylate (hereinafter sometimes referred to as “PMMA”) is known.

すなわち、触媒金属上のグラフェンにPMMA層を形成した後、触媒金属をエッチング液にて除去する。残ったPMMA層/グラフェンを任意の基板上に貼り付けた後、アセトンでPMMA層を除去することで、任意の基板上にグラフェンが形成できる。本出願では、例えば「PMMA層/グラフェン」は、グラフェン上にPMMA層を有する積層体を示している。三層以上の積層体についても同様に表記する。図5に、この方法で得られるグラフェン24/基板22の構造を有するグラフェン転写積層体20を示す。 That is, after forming the PMMA layer on the graphene on the catalytic metal, the catalytic metal is removed with an etching solution. Graphene can be formed on an arbitrary substrate by attaching the remaining PMMA layer/graphene on the arbitrary substrate and then removing the PMMA layer with acetone. In the present application, for example, “PMMA layer/graphene” refers to a laminate having a PMMA layer on graphene. The same applies to a laminate having three or more layers. FIG. 5 shows a graphene transfer laminate 20 having a structure of graphene 24/substrate 22 obtained by this method.

PMMA層を除去したグラフェンにクラックが入る場合があることが、顕微鏡で観察された。このクラックは、グラフェンの電気伝導特性の劣化につながると考えられる。このため、グラフェンにクラックが入らないような転写技術を確立するか、任意の基板上にグラフェンを形成する全く別の手法を考える必要があった。本発明は、こうした現状に鑑みてなされたものであり、グラフェン自体の劣化がなく、低抵抗の透明導電膜を提供することを目的とする。 It was observed under a microscope that the graphene from which the PMMA layer was removed may crack. It is considered that the cracks lead to deterioration of electric conduction characteristics of graphene. Therefore, it is necessary to establish a transfer technique that does not cause cracks in graphene or to consider a completely different method for forming graphene on an arbitrary substrate. The present invention has been made in view of the above circumstances, and an object thereof is to provide a transparent conductive film having low resistance without deterioration of graphene itself.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、グラフェンの転写の際に保護膜のPMMA層を除去せず、PMMA層/グラフェンのままでシート抵抗が低減できる知見を得た。本発明はこの知見に基づいて完成に至ったものであり、本出願では以下の発明が提供される。 As a result of earnest studies to achieve the above-mentioned object, the present inventors have found that the PMMA layer of the protective film is not removed during the transfer of graphene, and the sheet resistance can be reduced with the PMMA layer/graphene as it is. It was The present invention has been completed based on this finding, and the present invention provides the following inventions.

本発明の透明導電膜は、透明基材と、透明基材上に設けられたグラフェンと、グラフェン上に設けられたポリメタクリル酸メチル層とを有し、ポリメタクリル酸メチル層の厚さが20〜150nmである。本発明の透明導電膜において、グラフェンが単層グラフェンから構成されていてもよく、2層〜10層の複層グラフェンから構成されていてもよい。本発明の透明導電膜において、グラフェンとポリメタクリル酸メチル層との積層部のシート抵抗が353Ω以下であることが好ましい。 The transparent conductive film of the present invention has a transparent base material, graphene provided on the transparent base material, and a polymethylmethacrylate layer provided on the graphene, and the thickness of the polymethylmethacrylate layer is 20. ~150 nm. In the transparent conductive film of the present invention, graphene may be composed of single-layer graphene or may be composed of two to ten layers of multilayer graphene. In the transparent conductive film of the present invention, it is preferable that the sheet resistance of the laminated portion of the graphene and the polymethylmethacrylate layer is 353Ω or less.

本発明のタッチパネルは、本発明の透明導電膜と、透明導電膜のポリメタクリル酸メチル層を保護する保護膜とを有している。本発明のタッチパネルにおいて、保護膜が接着層を介して透明導電膜上に設けられていてもよい。本発明のフレキシブルヒーターは、本発明の透明導電膜と、グラフェンと接触している一対のコンタクト電極と、一対のコンタクト電極に接続された電源とを有している。 The touch panel of the present invention has the transparent conductive film of the present invention and a protective film for protecting the polymethylmethacrylate layer of the transparent conductive film. In the touch panel of the present invention, the protective film may be provided on the transparent conductive film via an adhesive layer. The flexible heater of the present invention includes the transparent conductive film of the present invention, a pair of contact electrodes in contact with graphene, and a power source connected to the pair of contact electrodes.

本発明によれば、低抵抗な透明導電膜が得られる。 According to the present invention, a low conductive transparent conductive film can be obtained.

本発明の実施形態の透明導電膜の断面模式図。FIG. 3 is a schematic sectional view of the transparent conductive film according to the embodiment of the present invention. 本発明の実施形態の透明導電膜の製造工程を説明するための断面模式図。FIG. 5 is a schematic cross-sectional view for explaining the manufacturing process of the transparent conductive film of the embodiment of the present invention. 実施例2および実施例3で得られた各種透明導電膜のラマン分光スペクトル(広域)。The Raman spectroscopy spectrum (wide range) of the various transparent conductive films obtained in Example 2 and Example 3. 実施例2および実施例3で得られた各種透明導電膜のラマン分光スペクトル(狭域)。The Raman spectroscopy spectrum (narrow range) of the various transparent conductive films obtained in Example 2 and Example 3. 従来のグラフェン転写積層体の断面模式図。The cross-sectional schematic diagram of the conventional graphene transfer laminated body.

以下、本発明の透明導電膜、タッチパネル装置、およびフレキシブルヒーターについて、実施形態と実施例に基づいて説明する。重複説明は適宜省略する。なお、2つの数値の間に「〜」を記載して数値範囲を表す場合には、これらの2つの数値も数値範囲に含まれるものとする。 Hereinafter, the transparent conductive film, the touch panel device, and the flexible heater of the present invention will be described based on embodiments and examples. Overlapping description will be omitted as appropriate. In addition, when "-" is described between two numerical values to represent the numerical range, these two numerical values are also included in the numerical range.

図1は、本発明の実施形態に係る透明導電膜10を示している。透明導電膜10は、透明基材12と、グラフェン14と、ポリメタクリル酸メチル層16を備えている。透明基材12は薄い板状部材で、例えば石英から作製される。透明基材12の材料としては、石英以外に、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のフレキシブル性がある透明樹脂などが挙げられる。なお、本出願では、透明基材の「透明」は、白色光を90%以上透過するものをいう。 FIG. 1 shows a transparent conductive film 10 according to an embodiment of the present invention. The transparent conductive film 10 includes a transparent base material 12, graphene 14, and a polymethylmethacrylate layer 16. The transparent substrate 12 is a thin plate member and is made of, for example, quartz. Examples of the material of the transparent substrate 12 include, in addition to quartz, a flexible transparent resin such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). In addition, in the present application, “transparent” of the transparent substrate means a material that transmits 90% or more of white light.

グラフェン14は、透明基材12上に設けられている。グラフェン14は、単層グラフェンから構成されていてもよい。熱CVD法を用いると単層グラフェンが合成しやすいからである。また、グラフェン14は、2層〜10層の複層グラフェンから構成されていてもよい。プラズマCVD法を用いると2層〜10層の複層グラフェンが合成しやすいからである。 The graphene 14 is provided on the transparent substrate 12. The graphene 14 may be composed of single-layer graphene. This is because single layer graphene can be easily synthesized by using the thermal CVD method. Further, the graphene 14 may be composed of two to ten layers of multilayer graphene. This is because double layer graphene having 2 to 10 layers can be easily synthesized by using the plasma CVD method.

グラフェン14が2層〜10層の複層グラフェンから構成されている場合、単層グラフェンから構成されている場合と比べて、透明導電膜10のガスバリア性等の性能が向上する。PMMA層16は、グラフェン14に設けられている。PMMA層16の厚さは20〜150nmである。フレキシブル性がある透明基材12を用いた場合、PMMA層16の厚さを20〜150nmとすることによって、透明導電膜10のフレキシブル性が担保できるからである。 When the graphene 14 is composed of two to ten layers of multilayer graphene, the performance such as the gas barrier property of the transparent conductive film 10 is improved as compared with the case of being composed of single layer graphene. The PMMA layer 16 is provided on the graphene 14. The PMMA layer 16 has a thickness of 20 to 150 nm. This is because when the transparent base material 12 having flexibility is used, the flexibility of the transparent conductive film 10 can be secured by setting the thickness of the PMMA layer 16 to 20 to 150 nm.

図2は、透明導電膜10の製造工程を示している。まず、図2(a)に示すように、薄板状の触媒金属18上にグラフェン14を形成する。グラフェン14は、プラズマ処理を用いた以下の合成方法によって得られる(特許文献1参照)。すなわち、有機化合物などの炭素源と触媒金属18とが含まれている金属基材を加熱しながら、プラズマ中の荷電粒子や電子のエネルギーをこの金属基材に照射することによって、金属基材中の炭素源を活性化してグラフェンを生成する。触媒金属18としては、炭素が溶けにくい銅、イリジウム、白金、またはこれらのいずれかの金属と炭素の合金などが挙げられる。 FIG. 2 shows a manufacturing process of the transparent conductive film 10. First, as shown in FIG. 2A, the graphene 14 is formed on the thin plate-shaped catalyst metal 18. The graphene 14 is obtained by the following synthesis method using plasma treatment (see Patent Document 1). That is, while heating a metal base material containing a carbon source such as an organic compound and the catalytic metal 18, the metal base material is irradiated with the energy of charged particles and electrons in plasma, thereby heating the metal base material. Activates the carbon source to generate graphene. Examples of the catalyst metal 18 include copper, iridium, platinum, and alloys of any of these metals and carbon, in which carbon is difficult to dissolve.

金属基材中の炭素源、プラズマ反応容器内に付着していた微量の炭素成分、およびプラズマ処理ガス中に含まれていた微量の炭素成分によって、触媒金属18上にグラフェン14が生成する。この方法によれば、従来の熱CVD法や樹脂炭化法と比べて、短時間でグラフェンが生成できる。なお、金属基材中の炭素含有量は4〜10000ppmであることが望ましい。また、金属基材の表面粗さRaは200〜0.095nmであることが望ましい。さらに、金属基材の温度を900℃以下にしてグラフェン14を生成することが望ましい。実施例で示すように、本発明の透明導電膜では、グラフェンの作製方法に特に制限がない。 The graphene 14 is generated on the catalytic metal 18 by the carbon source in the metal base material, the trace amount of carbon component attached to the plasma reaction vessel, and the trace amount of carbon component contained in the plasma processing gas. According to this method, graphene can be generated in a shorter time than the conventional thermal CVD method or resin carbonization method. The carbon content in the metal substrate is preferably 4 to 10,000 ppm. Further, the surface roughness Ra of the metal substrate is preferably 200 to 0.095 nm. Furthermore, it is desirable that the temperature of the metal base material be set to 900° C. or lower to generate the graphene 14. As shown in Examples, the transparent conductive film of the present invention is not particularly limited in the method for producing graphene.

つぎに、図2(b)に示すように、グラフェン14上にPMMA溶液を塗布し、乾燥させてPMMA層16を厚さ20〜150nmで形成する。そして、図2(c)に示すように、触媒金属18をウエットエッチング等によって除去する。最後に、図2(d)に示すように、透明基材12とグラフェン14が接するように、PMMA層16/グラフェン14を透明基材12上に設置する。こうして、PMMA層16/グラフェン14/透明基材12である透明導電膜10が得られる。 Next, as shown in FIG. 2B, a PMMA solution is applied onto the graphene 14 and dried to form a PMMA layer 16 with a thickness of 20 to 150 nm. Then, as shown in FIG. 2C, the catalytic metal 18 is removed by wet etching or the like. Finally, as shown in FIG. 2D, the PMMA layer 16/graphene 14 is placed on the transparent substrate 12 so that the transparent substrate 12 and the graphene 14 are in contact with each other. In this way, the transparent conductive film 10 which is the PMMA layer 16/graphene 14/transparent substrate 12 is obtained.

従来は、図5に示すように、PMMA層/グラフェン/基板からPMMA層を除去して、グラフェン24/基板22を使用していた。本実施形態では、PMMA層16を除去しないことによって、PMMA層16/グラフェン14のシート抵抗を、PMMA層16を除去したときのグラフェン14のシート抵抗より低くできる。これは、透明導電膜10の作製工程でグラフェンにクラックがほとんど入らないことや、PMMA層16/グラフェン14構造でのグラフェン14への応力が関係していると考えられる。具体的には、PMMA層16/グラフェン14のシート抵抗は、353Ω以下にできる。 Conventionally, as shown in FIG. 5, the PMMA layer was removed from the PMMA layer/graphene/substrate and the graphene 24/substrate 22 was used. In this embodiment, the sheet resistance of the PMMA layer 16/graphene 14 can be made lower than the sheet resistance of the graphene 14 when the PMMA layer 16 is removed by not removing the PMMA layer 16. It is considered that this is because cracks hardly occur in the graphene in the manufacturing process of the transparent conductive film 10 and the stress on the graphene 14 in the PMMA layer 16/graphene 14 structure. Specifically, the sheet resistance of the PMMA layer 16/graphene 14 can be 353Ω or less.

透明導電膜10は、タッチパネルやフレキシブルヒーターなどの様々な用途に応用できる。すなわち、本発明の実施形態に係るタッチパネルは、1以上の透明導電膜10と、透明導電膜10のPMMA層16を保護する保護膜とを備えている。保護膜は、接着層を介して透明導電膜上に設けられている。2枚の透明導電膜10を用いることによって、抵抗膜方式や投影型静電容量方式のタッチパネルが得られる。また、透明導電膜10の四隅に電圧を印加することによって、表面型静電容量方式のタッチパネルが得られる。 The transparent conductive film 10 can be applied to various uses such as a touch panel and a flexible heater. That is, the touch panel according to the embodiment of the present invention includes at least one transparent conductive film 10 and a protective film that protects the PMMA layer 16 of the transparent conductive film 10. The protective film is provided on the transparent conductive film via the adhesive layer. By using the two transparent conductive films 10, a resistive film type or projected capacitive type touch panel can be obtained. Further, by applying a voltage to the four corners of the transparent conductive film 10, a surface-type capacitive touch panel can be obtained.

本発明の実施形態に係るフレキシブルヒーターは、透明導電膜10と、グラフェンと接触している一対のコンタクト電極と、一対のコンタクト電極に接続された電源とを有している。本実施形態のフレキシブルヒーターに温度制御部を設け、透明導電膜10の温度に応じて、電源からコンタクト電極に供給する電力量を制御してもよい。 The flexible heater according to the embodiment of the present invention includes a transparent conductive film 10, a pair of contact electrodes that are in contact with graphene, and a power supply connected to the pair of contact electrodes. A temperature controller may be provided in the flexible heater of the present embodiment to control the amount of electric power supplied from the power source to the contact electrode according to the temperature of the transparent conductive film 10.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.

実施例1:プラズマCVD法によるグラフェンを用いた透明導電膜
(1)透明導電膜の作製
表面波プラズマCVDチャンバー中に、触媒金属である厚さ約10μmの銅箔をセットした。まず、通電加熱により銅箔の温度を上げて約900℃に維持しながら、水素(200sccm)ガスのプラズマを銅箔に45秒間照射し、銅箔上にグラフェンを生成してグラフェン/銅箔を得た(図2(a)参照)。つぎに、グラフェン/銅箔の上に、PMMAのアニソール溶液(2%)を塗布し、3000rpmで30秒間スピンコートした。
Example 1: Transparent conductive film using graphene by plasma CVD method (1) Preparation of transparent conductive film In a surface wave plasma CVD chamber, a copper foil having a thickness of about 10 μm which is a catalytic metal was set. First, while the temperature of the copper foil is raised by electric heating to maintain it at about 900° C., hydrogen (200 sccm) gas plasma is irradiated on the copper foil for 45 seconds to generate graphene on the copper foil to form graphene/copper foil. Obtained (see FIG. 2(a)). Next, an anisole solution of PMMA (2%) was applied onto the graphene/copper foil, and spin coated at 3000 rpm for 30 seconds.

そして、室温で自然乾燥させてPMMA層/グラフェン/銅箔の積層体を得た(図2(b)参照)。つぎに、0.5mol/L過硫酸アンモニウムを用いて、銅箔をエッチング除去してPMMA層/グラフェンを得た(図2(c)参照)。そして、透明基材である約40mm角の石英基板とグラフェンが接するように、PMMA層/グラフェンを石英基板上に設置して、PMMA層/グラフェン/石英基板の透明導電膜を得た(図2(d)参照)。 Then, it was naturally dried at room temperature to obtain a laminated body of PMMA layer/graphene/copper foil (see FIG. 2(b)). Next, the copper foil was removed by etching using 0.5 mol/L ammonium persulfate to obtain a PMMA layer/graphene (see FIG. 2(c)). Then, the PMMA layer/graphene was placed on the quartz substrate such that the quartz substrate of about 40 mm square, which is a transparent substrate, was in contact with the graphene to obtain a transparent conductive film of the PMMA layer/graphene/quartz substrate (FIG. 2). (See (d)).

(2)透明導電膜のPMMA層/グラフェン部分のシート抵抗測定
非接触シート抵抗測定器(ナプソン社製、EC−80)を用いて、PMMA層/グラフェン/石英基板のPMMA層/グラフェン部分のシート抵抗を測定した。非接触シート抵抗測定方法は、渦電流発生によるキャパシタンスの変化を読み取ることでシート抵抗を見積もる方法で、サンプルへのダメージがないことが特徴である。PMMA層/グラフェン部分のシート抵抗は126Ωであった。
(2) Sheet resistance measurement of PMMA layer/graphene portion of transparent conductive film PMMA layer/graphene/PMMA layer of quartz substrate/sheet of graphene portion using non-contact sheet resistance measuring instrument (EC-80, manufactured by Napson Corporation) The resistance was measured. The non-contact sheet resistance measuring method is a method of estimating the sheet resistance by reading the change in capacitance due to the generation of eddy current, and is characterized in that the sample is not damaged. The sheet resistance of the PMMA layer/graphene part was 126Ω.

(3)透明導電膜からPMMA層を除去した後のグラフェンのシート抵抗測定
透明導電膜からPMMA層を除去したグラフェンのみのシート抵抗を測定することで、PMMA層の効果を検証した。まず、上記でシート抵抗測定を行った透明導電膜をアセトンに浸潤させてPMMA層を除去し、グラフェン/石英基板を得た。つぎに、グラフェン/石英基板のグラフェン部分のシート抵抗を測定したところ、461Ωであった。PMMA層を除去したことによって、石英基板上の膜部分のシート抵抗が約4倍に上昇した。
(3) Sheet resistance measurement of graphene after removing PMMA layer from transparent conductive film The effect of the PMMA layer was verified by measuring the sheet resistance of only graphene from which the PMMA layer was removed from the transparent conductive film. First, the transparent conductive film whose sheet resistance was measured above was immersed in acetone to remove the PMMA layer, and a graphene/quartz substrate was obtained. Next, the sheet resistance of the graphene portion of the graphene/quartz substrate was measured and found to be 461Ω. By removing the PMMA layer, the sheet resistance of the film portion on the quartz substrate increased by about four times.

実施例2:熱CVD法によるグラフェンを用いた透明導電膜
PMMA層/グラフェンの低抵抗化の優位性を示すため、熱CVD法で作製したグラフェンを用いて、透明導電膜の作製と各種評価を行った。熱CVD法で作製したグラフェン/銅箔(グラフェンプラットフォーム社から購入)を用いた点を除いて、実施例1と同様にして透明導電膜の作製と各種評価を行った。PMMA層/グラフェン/石英基板の透明導電膜のPMMA層/グラフェン部分のシート抵抗は353Ωであった。また、PMMA層除去後のグラフェン部分のシート抵抗981Ωであった。これらの結果から、グラフェン膜の作製方法に関わらず、PMMA層/グラフェンは、PMMA除去後のグラフェンと比べて、低抵抗であることがわかった。
Example 2: Transparent conductive film using graphene by thermal CVD method In order to show the superiority of low resistance of PMMA layer/graphene, preparation of transparent conductive film and various evaluations were performed using graphene manufactured by thermal CVD method. went. A transparent conductive film was prepared and various evaluations were performed in the same manner as in Example 1 except that graphene/copper foil (purchased from Graphene Platform Co., Ltd.) prepared by the thermal CVD method was used. The sheet resistance of the PMMA layer/graphene/graphene/transparent conductive film PMMA layer/graphene portion of the quartz substrate was 353Ω. The sheet resistance of the graphene portion after removing the PMMA layer was 981Ω. From these results, it was found that the PMMA layer/graphene has a lower resistance than the graphene after PMMA removal, regardless of the method for forming the graphene film.

実施例3:PMMA層を再形成した透明導電膜
PMMA層/グラフェンが低抵抗になっている原因を探るために、以下の検証実験を行った。まず、実施例2で得られたPMMA層を除去したグラフェン/石英基板の上にPMMA層を再度形成して、PMMA層/グラフェン/石英基板の透明導電膜を得た。PMMA層の再形成方法は、実施例2の最初のPMMA層の形成と同じ方法にした。この透明導電膜のPMMA層/グラフェン部分のシート抵抗は921Ωであった。PMMA層を再形成する前のグラフェン部分のシート抵抗981Ωからわずかに減少した。実施例2のPMMA層除去前のPMMA層/グラフェンのシート抵抗が353Ωであったことを考慮すると、PMMAのグラフェンへのドーピング作用はほとんどないと推測される。
Example 3: Transparent conductive film in which the PMMA layer was re-formed In order to investigate the cause of the low resistance of the PMMA layer/graphene, the following verification experiment was conducted. First, a PMMA layer was formed again on the graphene/quartz substrate obtained by removing the PMMA layer obtained in Example 2 to obtain a transparent conductive film of the PMMA layer/graphene/quartz substrate. The method for reforming the PMMA layer was the same as the first method for forming the PMMA layer in Example 2. The sheet resistance of the PMMA layer/graphene portion of this transparent conductive film was 921Ω. The sheet resistance of the graphene portion before reforming the PMMA layer was slightly decreased from 981Ω. Considering that the sheet resistance of the PMMA layer/graphene before the removal of the PMMA layer in Example 2 was 353Ω, it is presumed that PMMA has almost no doping effect on graphene.

実施例4:透明導電膜のラマン分光分析
グラフェンの結晶品質を評価する観点から透明導電膜のラマン分光分析を行った。ラマン分光スペクトルのピークシフトを見ることでグラフェンへの応力を、また欠陥を示すDバンドの強度を観察することで、グラフェンへのダメージを検証することが可能となる。図3は、実施例2および実施例3で得られた各種透明導電膜のラマン分光スペクトル(広域)である。使用したレーザー光の波長は532nmであった。
Example 4: Raman spectroscopic analysis of transparent conductive film Raman spectroscopic analysis of a transparent conductive film was performed from the viewpoint of evaluating the crystal quality of graphene. By observing the peak shift of the Raman spectrum and observing the stress on the graphene, and observing the intensity of the D band indicating a defect, the damage to the graphene can be verified. FIG. 3 is Raman spectroscopy spectra (wide range) of various transparent conductive films obtained in Examples 2 and 3. The wavelength of the laser light used was 532 nm.

実施例2で得られたPMMA層/グラフェン/石英基板のラマン分光スペクトルが下段で、実施例2で得られたPMMA層除去後のグラフェン/石英基板のラマン分光スペクトルが中段で、実施例3で得られたPMMA層再形成後のPMMA層/グラフェン/石英基板のラマン分光スペクトルが上段である。なお、グラフェンを「Gr」と、石英基板を「ガラス」とそれぞれ表記した。各スペクトルを比較すると、欠陥の有無を示すDバンド(1350cm−1近傍)の強度は、ほとんど変化していなかった。これはPMMA層の除去前後でグラフェンのダメージがほとんどないことを示唆している。ただし、ラマン分光装置で用いたレーザー径が約1μmであるため、この程度の大きさにおける評価となる。 The Raman spectroscopic spectrum of the PMMA layer/graphene/quartz substrate obtained in Example 2 is in the lower stage, the Raman spectroscopic spectrum of the graphene/quartz substrate after removing the PMMA layer obtained in Example 2 is in the middle stage, and in Example 3 The Raman spectroscopy spectrum of the obtained PMMA layer/graphene/quartz substrate after reforming the PMMA layer is shown in the upper row. In addition, graphene was described as "Gr" and the quartz substrate was described as "glass". Comparing the spectra, the intensity of the D band (in the vicinity of 1350 cm −1 ) showing the presence or absence of defects was almost unchanged. This suggests that there is almost no damage to graphene before and after removing the PMMA layer. However, since the laser diameter used in the Raman spectroscope is about 1 μm, the evaluation is performed at this size.

図4は、図3の部分拡大図である。すなわち、Gバンド(1600cm−1近傍)および2Dバンド(2700cm−1近傍)のシフトが観察しやすいように、図3のラマン分光スペクトル(広域)の1560〜1640cm−1と2650〜2730cm−1を選択したのが、図4のラマン分光スペクトル(狭域)である。図4に示すように、PMMA層除去後の透明導電膜のスペクトル(中段)のGバンドおよび2Dバンドのピーク位置は、PMMA除去前の透明導電膜のスペクトル(下段)のそれぞれのピーク位置と比較して負側にシフトしていた。 FIG. 4 is a partially enlarged view of FIG. In other words, as the shift is likely to observe the G band (1600 cm -1 vicinity) and 2D band (2700 cm -1 vicinity), the 1560~1640Cm -1 and 2650~2730Cm -1 of Raman spectrum of FIG. 3 (broad) The Raman spectrum (narrow band) in FIG. 4 was selected. As shown in FIG. 4, the peak positions of the G band and the 2D band of the spectrum of the transparent conductive film after removing the PMMA layer (middle stage) are compared with the respective peak positions of the spectrum of the transparent conductive film before removing PMMA (lower stage). And was shifting to the negative side.

また、PMMA層再形成後の透明導電膜のスペクトル(上段)のGバンドおよび2Dバンドのピーク位置は、PMMA層除去後の透明導電膜のスペクトル(中段)のGバンドおよび2Dバンドのピーク位置とほとんど変わらなかった。この結果から、PMMA層除去前にグラフェンに加わっていた応力がPMMA層除去により解放された、またはPMMA層除去により伸びる力がグラフェンに加わったと推測される。この解放または伸びる力によって、グラフェンにミクロサイズのクラックが入り、PMMA層除去後のグラフェンのシート抵抗が高くなったと推測される。 Further, the peak positions of the G band and 2D band of the spectrum (upper part) of the transparent conductive film after reforming the PMMA layer are the same as the peak positions of the G band and 2D band of the spectrum (middle part) of the transparent conductive film after removal of the PMMA layer. Almost unchanged. From this result, it is presumed that the stress applied to the graphene before the removal of the PMMA layer was released by the removal of the PMMA layer, or the force extending by the removal of the PMMA layer was applied to the graphene. It is speculated that this releasing or stretching force caused micro-sized cracks in the graphene and increased the sheet resistance of the graphene after removing the PMMA layer.

10…透明導電膜
12…透明基材
14…グラフェン
16…ポリメタクリル酸メチル層
18…触媒金属
20…グラフェン転写積層体
22…基板
24…グラフェン
DESCRIPTION OF SYMBOLS 10... Transparent conductive film 12... Transparent base material 14... Graphene 16... Polymethylmethacrylate layer 18... Catalyst metal 20... Graphene transfer laminated body 22... Substrate 24... Graphene

Claims (7)

透明基材と、前記透明基材上に設けられたグラフェンと、前記グラフェン上に設けられたポリメタクリル酸メチル層とを有し、
波長532nmのレーザー光を使用したラマン分光スペクトルのピークが1600〜1606cm−1および2690〜2699cm−1に観察され、
前記ポリメタクリル酸メチル層の厚さが20〜150nmである透明導電膜。
A transparent substrate, having graphene provided on the transparent substrate, and a polymethylmethacrylate layer provided on the graphene,
Raman spectroscopic spectrum peaks using a laser beam having a wavelength of 532 nm were observed at 1600 to 1606 cm −1 and 2690 to 2699 cm −1 ,
A transparent conductive film having a thickness of the polymethylmethacrylate layer of 20 to 150 nm.
請求項1において、
前記グラフェンが単層グラフェンから構成される透明導電膜。
In claim 1,
A transparent conductive film in which the graphene is composed of single-layer graphene.
請求項1において、
前記グラフェンが2層〜10層の複層グラフェンから構成される透明導電膜。
In claim 1,
A transparent conductive film in which the graphene is composed of two to ten layers of multi-layer graphene.
請求項1から3のいずれかにおいて、
前記グラフェンと前記ポリメタクリル酸メチル層との積層部のシート抵抗が353Ω以下である透明導電膜。
In any one of Claim 1 to 3,
A transparent conductive film having a sheet resistance of 353Ω or less at a laminated portion of the graphene and the polymethylmethacrylate layer.
請求項1から4のいずれかに記載された透明導電膜と、前記透明導電膜のポリメタクリル酸メチル層を保護する保護膜とを有するタッチパネル。 A touch panel comprising the transparent conductive film according to claim 1 and a protective film for protecting the polymethylmethacrylate layer of the transparent conductive film. 請求項5において、
前記保護膜が接着層を介して前記透明導電膜上に設けられているタッチパネル。
In claim 5,
A touch panel in which the protective film is provided on the transparent conductive film via an adhesive layer.
請求項1から4のいずれかに記載された透明導電膜と、前記グラフェンと接触している一対のコンタクト電極と、前記一対のコンタクト電極に接続された電源とを有するフレキシブルヒーター。 A flexible heater comprising the transparent conductive film according to claim 1, a pair of contact electrodes in contact with the graphene, and a power source connected to the pair of contact electrodes.
JP2016128050A 2016-06-28 2016-06-28 Transparent conductive film containing graphene Active JP6713114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016128050A JP6713114B2 (en) 2016-06-28 2016-06-28 Transparent conductive film containing graphene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128050A JP6713114B2 (en) 2016-06-28 2016-06-28 Transparent conductive film containing graphene

Publications (3)

Publication Number Publication Date
JP2018006044A JP2018006044A (en) 2018-01-11
JP2018006044A5 JP2018006044A5 (en) 2019-06-13
JP6713114B2 true JP6713114B2 (en) 2020-06-24

Family

ID=60949582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128050A Active JP6713114B2 (en) 2016-06-28 2016-06-28 Transparent conductive film containing graphene

Country Status (1)

Country Link
JP (1) JP6713114B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113329528A (en) * 2021-06-29 2021-08-31 华南理工大学 Paper-based graphene flexible heater and preparation method thereof
CN114203326B (en) * 2021-12-13 2024-04-30 中国核动力研究设计院 Graphene-encapsulated ultrathin nickel-63 radiation source film and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147706A (en) * 2014-02-06 2015-08-20 国立大学法人 名古屋工業大学 Method of manufacturing single crystal graphene using plastic waste and the like as raw material, and touch panel using single crystal graphene

Also Published As

Publication number Publication date
JP2018006044A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
Ryu et al. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition
Yao et al. Controlled growth of multilayer, few-layer, and single-layer graphene on metal substrates
Aiyiti et al. Thermal conductivity of suspended few-layer MoS 2
US9156699B2 (en) Method for producing graphene, and graphene
Li et al. Strong oxidation resistance of atomically thin boron nitride nanosheets
Li et al. Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy
Piner et al. Graphene synthesis via magnetic inductive heating of copper substrates
Zhang et al. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene
Sun et al. Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates
JP5911024B2 (en) Method for producing transparent conductive film laminate
Kang et al. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing
JP6124300B2 (en) Method for producing graphene laminate and method for producing transparent electrode using the graphene laminate
Mogera et al. Highly decoupled graphene multilayers: turbostraticity at its best
JP6800401B2 (en) Electrolytic copper foil for manufacturing graphene transparent conductive film
Huang et al. Ultra-low-damage radical treatment for the highly controllable oxidation of large-scale graphene sheets
JP6713114B2 (en) Transparent conductive film containing graphene
Barberio et al. Laser-plasma driven Synthesis of Carbon-based Nanomaterials
Lee et al. Dependence of the in-plane thermal conductivity of graphene on grain misorientation
Yoon et al. Detection of graphene cracks by electromagnetic induction, insensitive to doping level
Anagnostopoulos et al. Enhancing the adhesion of graphene to polymer substrates by controlled defect formation
Kumar et al. Growth of few-and multilayer graphene on different substrates using pulsed nanosecond Q-switched Nd: YAG laser
Průcha et al. In-situ thermal Raman spectroscopy of single-layer graphene on different substrates
Lee et al. Rapid fabrication of transparent conductive films with controllable sheet resistance on glass substrates by laser annealing of diamond-like carbon films
Gupta et al. Nanometer-Thick Hexagonal Boron Nitride Films for 2D Field-Effect Transistors
JP7012393B2 (en) Graphite thin film, graphite thin film laminate, and their manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200507

R150 Certificate of patent or registration of utility model

Ref document number: 6713114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250