JP6563081B1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP6563081B1
JP6563081B1 JP2018116879A JP2018116879A JP6563081B1 JP 6563081 B1 JP6563081 B1 JP 6563081B1 JP 2018116879 A JP2018116879 A JP 2018116879A JP 2018116879 A JP2018116879 A JP 2018116879A JP 6563081 B1 JP6563081 B1 JP 6563081B1
Authority
JP
Japan
Prior art keywords
capacitor
capacitors
common mode
power
connection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018116879A
Other languages
English (en)
Other versions
JP2019221068A (ja
Inventor
直也 藪内
直也 藪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018116879A priority Critical patent/JP6563081B1/ja
Priority to PCT/JP2018/039501 priority patent/WO2019244368A1/ja
Priority to US17/051,250 priority patent/US11374504B2/en
Priority to CN201880094395.2A priority patent/CN112262524B/zh
Priority to EP18923027.9A priority patent/EP3813244A4/en
Application granted granted Critical
Publication of JP6563081B1 publication Critical patent/JP6563081B1/ja
Publication of JP2019221068A publication Critical patent/JP2019221068A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

【課題】ラインとグランドとの間の絶縁耐性を確保しつつ、より小型化が可能な電力変換装置を提供する。【解決手段】本発明に係る電力変換装置(1)は、電源(201)から供給される電力の変換を行うものである。この電力変換装置は、電力の供給に用いられる2つのライン間に直列に接続された複数の第1のコンデンサ(11、12)と、複数の第1のコンデンサのうちの2つの第1のコンデンサ間の接続点(303)とグランドとの間に接続された1つ以上の第2のコンデンサ(13)と、を備える。【選択図】図1

Description

本発明は、電源から供給される電力の変換を行う電力変換装置に関する。
電力変換装置は、電源から供給される電力を変換し、電気諸量、つまり電圧、電流、周波数、位相、相数などを異ならせる装置である。この電力変換装置を用いることで、様々な電気電子機器を利用することができる。
電力変換装置のなかには、スイッチ素子を用いて、電力変換を行うものがある。近年、このタイプの電力変換装置は、高周波化が進んでいる。その理由は、高周波化には、高効率化、小型軽量化、などの利点があるためである。しかし、高周波化により、高周波域のノイズの発生への対応も不可欠となっている。また、例えば、中華人民共和国国家標準の推薦制標準として制定されたGB(Guojia Biaozhun)/T184488.1等の法規対応に伴い、高電圧ラインとグランドとの間の絶縁耐性を確保する必要がある。
電力変換装置のノーマルモードノイズは、一般的にライン−ライン間にコンデンサを配置することにより対策される。コモンモードノイズは、一般的にライン−グランド間にコンデンサを配置することにより対策される。なお、以下の説明では、「ライン−ライン間のコンデンサ」を、「Xコンデンサ」と称し、「ライン−グランド間のコンデンサ」を「Yコンデンサ」と称す。しかし、Xコンデンサ及びYコンデンサには、電極構造等に起因する寄生インダクタンスが存在する。
高周波化された電力変換装置では、この寄生インダクタンスは、無視できない。従って、高周波化された電力変換装置において、Xコンデンサに存在する寄生インダクタンスは、ノーマルモードノイズのバイパス性能を低下させる要因となっている。また、高周波化された電力変換装置において、Yコンデンサに存在する寄生インダクタンスは、コモンモードノイズのバイパス性能を低下させる要因となっている。
このようなことから、従来、寄生インダクタンス成分を低減させることが行われている。寄生インダクタンス成分を低減させる電力変換装置としては、2つの信号ラインとグランドとの間に、コモンモードノイズが流れる向きが対向するように配置したYコンデンサをそれぞれ接続させたものがある(例えば、特許文献1参照)。このように、2つのYコンデンサを磁気結合させることにより、相互インダクタンスは、負の値となって、各Yコンデンサのインダクタンス成分は、低減する。そのため、コモンモードノイズは、より効率的に除去される。
特許第6075834号公報
コモンモードノイズが流れるYコンデンサには、上記のように、ラインとグランドとの間の絶縁耐性を確保させる必要がある。コンデンサは、定格電圧が大きくなるほど、サイズもより大きくなる傾向がある。よりサイズの大きいコンデンサを採用することは、電力変換装置を小型化するうえでは望ましくない。このことから、信号ラインとグランドとの間の絶縁耐性の確保には、電力変換装置を小型化する視点も重要となる。
本発明は、かかる課題を解決するためになされたもので、その目的は、ラインとグランドとの間の絶縁耐性を確保しつつ、より小型化が可能な電力変換装置を提供することにある。
本発明に係る第1の態様の電力変換装置は、電源から供給される電力の変換を行うことを前提とし、電力の供給に用いられる2つのライン間に直列に接続された複数の第1のコンデンサと、複数の第1のコンデンサのうちの2つの第1のコンデンサ間の接続点とグランドとの間に接続された1つ以上の第2のコンデンサと、を備え、接続点と、グランドに接続された他の接続点との間の電流経路には、コモンモード電流の向きが180度、異なるようにした2つの部分経路が存在する。
また、本発明に係る第2の態様の電力変換装置は、電源から供給される電力の変換を行うことを前提とし、電力の供給に用いられる2つのライン間に直列に接続された複数の第1のコンデンサと、複数の第1のコンデンサのうちの2つの第1のコンデンサ間の接続点とグランドとの間に接続された1つ以上の第2のコンデンサと、を備え、第2のコンデンサを複数、有し、各第2のコンデンサは、それぞれ異なるグランド用の接続点と接続され、2つの第2のコンデンサのうちの一方、及び2つの第1のコンデンサのうちの一方は、それぞれに流れるコモンモード電流の向きが180度、異なるように配置され、2つの第2のコンデンサのうちの他方、及び2つの第1のコンデンサのうちの他方は、それぞれに流れるコモンモード電流の向きが180度、異なるように配置されている
本発明によれば、ラインとグランドとの間の絶縁耐性を確保しつつ、電力変換装置をより小型化することができる。
本発明の実施の形態1に係る電力変換装置の回路構成例を示す図である。 本発明の実施の形態1に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。 各スイッチ素子に対するオン/オフ制御例を示すタイミングチャートである。 本発明の実施の形態1に係る電力変換装置のライン−グランド間の絶縁耐性試験のための構成例を示す図である。 本発明の実施の形態2に係る電力変換装置の回路構成例を示す図である。 本発明の実施の形態2に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。 本発明の実施の形態3に係る電力変換装置の回路構成例を示す図である。 本発明の実施の形態4に係る電力変換装置の回路構成例を示す図である。 本発明の実施の形態4に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。 本発明の実施の形態4に係る電力変換装置に用いられている各コンデンサの配置の変形例を説明する図である。 周波数によるフィルタ特性例を示す図である。 ワイドギャップ半導体のオン/オフ駆動例を説明する図である。 ワイドギャップ半導体をスイッチ素子として採用した場合の周波数特性例を説明する図である。 本発明の実施の形態5に係る電力変換装置の回路構成例を示す図である。 本発明の実施の形態5に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。 本発明の実施の形態6に係る電力変換装置の回路構成例を示す図である。 本発明の実施の形態6に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。 本発明の実施の形態7に係る電力変換装置の回路構成例を示す図である。 本発明の実施の形態7に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。 本発明の実施の形態8に係る電力変換装置の回路構成例を示す図である。 本発明の実施の形態8に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。
以下、本発明に係る電力変換装置の各実施の形態を、図を参照して説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る電力変換装置の回路構成例を示す図である。
この電力変換装置1は、図1に示すように、4つのスイッチ素子101〜104をオン/オフ制御することにより、電源201から供給される電力を変換するインバータ装置である。この電源201は、直流の電圧Vinを発生させる。
本実施の形態1では、スイッチ素子101〜104として、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)を採用しているが、採用可能なスイッチ素子はMOSFETに限定されない。IGBT(Insulated Gate Bipolar Transistor)等の半導体素子は、スイッチ素子として幅広く採用することができる。電力変換装置1の種類も、インバータ装置に限定されない。
電源201の正側、つまりP(Positive)側には、スイッチ素子101、及び103の各ドレインが接続され、電源201の負側、つまりN(Negative)側には、スイッチ素子102、及び104の各ソースが接続されている。スイッチ素子101のソースは、スイッチ素子102のドレインと接続され、スイッチ素子103のソースは、スイッチ素子104のドレインと接続されている。それにより、電源201間に、直列に接続されたスイッチ素子101、及び102と、直列に接続されたスイッチ素子103、及び104とが並列に接続されている。負荷202、つまり電力変換装置1が電力を供給する電子機器、或いは電気機器は、スイッチ素子101、及び103の各ソースに接続されている。
各スイッチ素子101〜104は、図示しない制御部によってオン/オフ制御される。そのために、各スイッチ素子101〜104のゲートは、例えば制御部に直接、接続されている。
図3は、各スイッチ素子に対するオン/オフ制御例を示すタイミングチャートである。ここで、図3を参照し、制御部が各スイッチ素子101〜104に対して行うオン/オフ制御の例について具体的に説明する。
図3において、「Q1」〜「Q4」は、それぞれスイッチ素子101〜104を表している。「Vds」は、ドレイン−ソース間の電圧を表している。それにより、電圧VdsがL(Low)となっている期間が、制御部によってゲートに電圧が印加されているオン期間である。電圧VdsがH(High)となっている期間が、制御部によってゲートに電圧が印加されていないオフ期間である。
このようなことから、時刻t0において、スイッチ素子101及び103はターンオンし、スイッチ素子102及び104はターンオフする。その後、時刻t1において、スイッチ素子101及び103はターンオフし、スイッチ素子102及び104はターンオンする。このようなオン/オフ駆動を実現させる制御がスイッチ素子101〜104に対して繰り返し行われる。
図1の説明に戻る。電源201間には、コンデンサ11、及び12が直列に接続されている。コンデンサ13は、一端が2つのコンデンサ11、及び12と接続され、他端がグランドと接続されている。このグランドは、金属筐体等である。ここで、300は、コンデンサ13をグランドと接続する接続点、つまりノードである。301は、電源201の正側ラインとコンデンサ11との接続点、302は、電源201の負側ラインとコンデンサ12との接続点、303は、コンデンサ11、コンデンサ12、及びコンデンサ13の接続点である。
コンデンサ11及び12は、主に、ライン−ライン間に存在するノーマルモードノイズの除去用として機能する。このことから、以降、コンデンサ11は「第1のXコンデンサ11」、コンデンサ12は「第2のXコンデンサ12」とも表記する。コンデンサ13は、「Yコンデンサ13」とも表記する。
上記のように、スイッチ素子101〜104は、オン/オフ駆動される。スイッチ素子101〜104の動作を切り換えるタイミング、つまり図3に示す時刻t0、及びt1では、接続点301→スイッチ素子101〜104→接続点302の電流経路上に存在する寄生のインダクタンスLにより、サージ電圧Vが発生する。このサージ電圧Vは、コモンモード電流を発生させる。そのため、スイッチ素子101〜104の動作の切り換えは、コモンモードノイズを発生させる1つの要因となっている。なお、サージ電圧Vは、以下の式により表される。
V=L×di/dt
このコモンモード電流は、第1のXコンデンサ11、及び第2のXコンデンサ12を介してYコンデンサ13に流れる。ここでは、混乱を避けるために、以降、第1のXコンデンサ11、及び第2のXコンデンサ12に流れる電流として、コモンモード電流のみを想定する。
第1のXコンデンサ11の端子間電圧Vcom1、つまり接続点301−303間に発生する電圧は、接続点301−303間のインピーダンスをZcom1、接続点303−300間のインピーダンスをZcom3とすると
Vcom1=1/2×Vin×Zcom1/(Zcom1+Zcom3)
により求められる。同様に、第2のXコンデンサ12の端子間電圧Vcom2、つまり接続点302−303間に発生する電圧は、接続点302−303間のインピーダンスをZcom2とすると
Vcom2=1/2×Vin×Zcom2/(Zcom2+Zcom3)
により求められる。
次に、接続点301から接続点303に流れるコモンモード電流Icx1は
Icx1=1/2×Vin×Zcom1/(Zcom1+Zcom3)/Zcom1
により表される。同様に、接続点302から接続点303に流れるコモンモード電流Icx2は
Icx2=−1/2×Vin×Zcom2/(Zcom2+Zcom3)/Zcom2により表される。接続点303から接続点300に流れるコモンモード電流Icyは
Icy=Icx1+Icx2
により表される。それにより、接続点303−300間の電圧であるYコンデンサ13の両端電圧Vcom3は
Vcom3=Icy×Zcom3=(Icx1+Icx2)Zcom3
により表される。
接続点301−300間の電圧をVoとすると
Vo=Vcom1+Vcom3
となる。接続点301−300間には、第1のXコンデンサ11とYコンデンサ13とが直列に接続されていることから、電圧Voは分圧され、Yコンデンサ13の両端電圧Vcom3は電圧Voより低くなる。このため、電圧Voを直接、印加させる従来と比較して、ラインとグランドとの間の絶縁耐性の確保は、定格電圧のより低いコンデンサ、言い換えればより小型のコンデンサにより実現させることができる。そのようなコンデンサをYコンデンサ13として採用することにより、電力変換装置1の更なる小型化もより容易に実現できるようになる。
図2は、本発明の実施の形態1に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。図2に示すように、第2のXコンデンサ12、Yコンデンサ13は、隣接させつつ、コモンモード電流が流れる向きが180度、或いは略180度、異なるように配置させている。このため、Yコンデンサ13がコモンモード電流Icyにより発生させる磁束Φcyは、第1のXコンデンサ11が発生させる磁束Φcx1には殆ど影響しなくとも、第2のXコンデンサ12が発生させる磁束Φcx2を打ち消すように働く。図2では、各コンデンサ11〜13に想定するコモンモード電流Icx1、Icx2、Icyをそれぞれ矢印により表している。矢印の向きは、対応するコモンモード電流が流れる向きを表している。これは、他の図でも同様である。
そのように、第2のXコンデンサ12とYコンデンサ13とを磁気結合させたことから、相互インダクタンスは負の値となり、インピーダンスZcom2、Zcom3はより小さくなる。インピーダンスZcom3がより小さくなることにより、Yコンデンサ13の両端電圧Vcom3もより小さくなる。第1のXコンデンサ11、第2のXコンデンサ12は、図2に示すように、それぞれ流れるコモンモード電流Icx1、Icx2の向きが180度、或いは略180度、異なるように配置されている。
図4は、本発明の実施の形態1に係る電力変換装置のライン−グランド間の絶縁耐性試験のための構成例を示す図である。この絶縁耐性試験は、GB/T184488.1等の法規対応のための試験である。図4に示すように、絶縁耐性試験では、電源201の代わりに、交流電圧Vacを印加する交流電源201bが用いられている。交流電源201bの一端は、グランド用の別の接続点300cと接続され、他端は接続点301、及び302と接続されている。接続点300と接続点300cは、基本的に同じ電位である。
交流電源201bの周波数をfac、第1のXコンデンサ11の容量をCx1、第2のXコンデンサ12の容量をCx2とすると、第1のXコンデンサ11と第2のXコンデンサ12との合成容量Cxは
Cx=Cx1+Cx2
により表される。第1のXコンデンサ11と第2のXコンデンサ12との合成インピーダンスをZcxとすると、この合成インピーダンスZcxは
Zcx=1/(2×π×fac×Cx)
により表される。
同様に、Yコンデンサ13の容量をCyとすると、Yコンデンサ13のインピーダンスZyは
Zy=1/(2×π×fac×Cy)
により表される。第1のXコンデンサ11及び第2のXコンデンサ12の各両端電圧Vcxは
Vcx=Vac×Zcx/(Zcx+Zy)
により表される。Yコンデンサ13の両端電圧Vcyは
Vcy=Vac×Zcy/(Zcx+Zy)
により表される。従って、各Xコンデンサ11、12の両端電圧Vcx及びYコンデンサ13の両端電圧Vcyは、各Xコンデンサ11、12の合成容量Cxと、Yコンデンサ13の容量Cyとを用いて算出されるインピーダンス比によって決定される。
このようなことから、本実施の形態1では、上記インピーダンス比の調整を通して、Yコンデンサ13の両端にかかる電圧を制御することができる。そのため、必要な絶縁耐圧を確保しつつ、より定格電圧の低いコンデンサ、例えばより小型のコンデンサをYコンデンサ13として採用することができる。
なお、本実施の形態1が適用された電力変換装置1は、インバータ装置であるが、本実施の形態1が適用可能な電力変換装置1の種類は、インバータ装置に限定されない。つまり、本実施の形態1は、様々な種類の電力変換装置1に適用することができる。その電力変換装置1は、絶縁トランスを備えたものであっても良い。
また、ライン−ライン間、つまり接続点301−302間に2つのコンデンサ11、12をXコンデンサとして直列に接続させているが、直列に接続させるXコンデンサは3つ以上であっても良い。
実施の形態2.
上記実施の形態1では、図2に示すように、第2のXコンデンサ12、Yコンデンサ13は、発生させる磁束を互いに打ち消すように配置されている。そのように配置した場合、第1のXコンデンサ11、第2のXコンデンサ12の静電容量を同じにしたとしても、上記のように、第2のXコンデンサ12のインピーダンスZcom2は第1のXコンデンサ11のインピーダンスZcom1よりも小さくなる。
Yコンデンサ13に流れるコモンモード電流Icyは
Icy=Icx1+Icx2=1/2×Vin×Zcom1/(Zcom1+
Zcom3)/Zcom1−1/2×Vin×Zcom2/(Zcom2+
Zcom3)/Zcom2
により表される。そのため、Icy≠0、となり、Yコンデンサ13にコモンモード電流Icyが流れることになる。コモンモード電流Icyが流れることにより、コモンモードノイズが発生し、ノイズ性能を悪化させる恐れがある。このことから、本実施の形態2は、コモンモード電流Icyをより抑制するようにしたものである。ここでは、上記実施の形態1と同一、または相当する部分については、上記実施の形態1で付した符号をそのまま用いて、異なる部分を具体的に説明する。これは、後述する他の実施の形態でも同様である。
図5は、本発明の実施の形態2に係る電力変換装置の回路構成例を示す図であり、図6は、本発明の実施の形態2に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。
図5、及び図6に示すように、本実施の形態2では、上記実施の形態1と同じく、第1のXコンデンサ11、第2のXコンデンサ12は、それぞれ想定するコモンモード電流Icx1、Icx2の向きが180度、或いは略180度、異なるように配置させている。言い換えれば、Yコンデンサ13は、コモンモード電流Icyの向きが、コモンモード電流Icx1、Icx2の向きと絶対値で90度、或いは略90度、異なるように配置されている。
このように各コンデンサ11〜13を配置したことにより、各コンデンサ11〜13がそれぞれ発生させる磁束Φcx1、Φcx2、Φcyが互いに干渉しないか、或いは殆ど干渉しなくなる。そのため、各コンデンサ11〜13のインピーダンスZcom1〜Zcom3も、相互インダクタンスによって変化しないか、或いは殆ど変化しなくなる。従って、第1のXコンデンサ11、及び第2のXコンデンサ12の静電容量を等しくすることにより、接続点301−302間の電圧の変動時にも、コモンモード電流Icyが流れるのを回避するか、或いは抑制することができる。
コモンモード電流Icyが流れるのを抑制することにより、コモンモードノイズも抑制される。そのため、上記実施の形態1と比較して、より高いノイズ性能を実現させることができる。接続点301−302間の電圧は、上記のように、各スイッチ素子101〜104のオン/オフの切り換え等によって変動する。
実施の形態3.
図7は、本発明の実施の形態3に係る電力変換装置の回路構成例を示す図である。本実施の形態3では、図7に示すように、第1のXコンデンサ11、及び第2のXコンデンサ12のそれぞれに対し、第1のレジスタ14、及び第2のレジスタ15を並列に接続させている。言い換えれば、接続点301−303間には、第1のXコンデンサ11、及び第1のレジスタ14を並列に接続し、接続点303−302間には、第2のXコンデンサ12、及び第2のレジスタ15を並列に接続している。
第1のレジスタ14の抵抗値、つまりインピーダンスをRx1、接続点301−302間の電圧が変動する周波数、つまりスイッチング周波数をfとすると、接続点301−303間のインピーダンスZcom13は
Zcom13=Rx1×Zcom1/(Rx1+Zcom1)
=Rx1(2π×f×Cx1)/(Rx1+(2π×f×Cx1))
により表される。同様に、第2のレジスタ15の抵抗値、つまりインピーダンスをRx2とすると、接続点302−303間のインピーダンスZcom23は
Zcom23=Rx2×Zcom2/(Rx2+Zcom2)
=Rx2(2π×f×Cx2)/(Rx2+(2π×f×Cx2))
により表される。
接続点301−303間の電圧Vcom1は
Vcom1=1/2×Vin×Zcom13/(Zcom13+Zcom3)
により表される。接続点302−303間の電圧Vcom2は
Vcom2=1/2×Vin×Zcom23/(Zcom23+Zcom3)
により表される。
接続点301−303間を流れるコモンモード電流Icx1は
Icx1=1/2×Vin×Zcom13/(Zcom13+Zcom3)
/Zcom13
により表される。接続点302−303間を流れるコモンモード電流Icx2は
Icx2=−1/2×Vin×Zcom23/(Zcom23+Zcom3)
/Zcom23
により表される。それにより、接続点303−300間を流れるコモンモード電流Icyは
Icy=Icx1+Icx2=1/2×Vin×Zcom13/(Zcom13+
Zcom3)/Zcom13−1/2×Vin×Zcom23/
(Zcom23+Zcom3)/Zcom23
により表される。
上記実施の形態1では、インピーダンスZcom1、Zcom2は、それぞれ第1のXコンデンサ11、第2のXコンデンサ12のみに依存すると想定している。その想定では、インピーダンスZcom1、Zcom2は、周波数fの局所的な変化、例えば接続点301−302間の電圧の変化に応じて変動する。
これに対し、本実施の形態3では、第1のXコンデンサ11、第2のXコンデンサ12に対し、それぞれ第1のレジスタ14、第2のレジスタ15を並列に接続させている。これら第1のレジスタ14、第2のレジスタ15がそれぞれインピーダンスとして有する抵抗値Rx1、Rx2により、周波数fの局所的な変化に応じたインピーダンスZcom1、Zcom2の変動割合は、上記実施の形態1と比較して小さくなる。そのため、上記実施の形態1と比較して、コモンモード電流Icyをより確実に抑制することができる。
なお、Yコンデンサ13は、上記実施の形態2と同様に、コモンモード電流Icyの向きが、第1のXコンデンサ11、第2のXコンデンサ12をそれぞれ流れるコモンモード電流の向きと絶対値で90度、或いは略90度、異なるように配置しても良い。つまり、Yコンデンサ13は、コモンモード電流Icyの向きと、第1のXコンデンサ11、第2のXコンデンサ12をそれぞれ流れるコモンモード電流の向きとが成す角度が絶対値で90度、或いは略90度となるように配置しても良い。第1のレジスタ14、第2のレジスタ15は、それぞれ複数個、用いて、多直列、或いは多並列に接続させるようにしても良い。
実施の形態4.
図8は、本発明の実施の形態4に係る電力変換装置の回路構成例を示す図であり、図9は、本発明の実施の形態4に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。
図8において、Lcy1は、例えば接続点303からYコンデンサ13までのインダクタンスであり、金属導体及びYコンデンサ13の寄生インダクタンスを含んでいる。Lcy2は、例えばYコンデンサ13から接続点300までの金属導体のインダクタンスである。
本実施の形態4では、図9に示すように、インダクタンスLcy1に流れるコモンモード電流Icy1と、インダクタンスLcy2に流れるコモンモード電流Icy2とは、向きが180度、或いは略180度、異なるように、インダクタンスLcy1、Lcy2となる金属導体、及びYコンデンサ13を配置する。言い換えれば、接続点303−300間に存在するYコンデンサ13、及び金属導体を含む電流経路を2つの部分経路に分けて配置し、想定するコモンモード電流Icy1、Icy2の向きが異なるインダクタンスLcy1、及びLcy2を実現させる。このため、コモンモード電流Icy1、Icy2によってそれぞれ発生する磁束Φcy1、Φcy2は、互いを打ち消すように働く。この結果、相互インダクタンスにより、接続点303−300間の実効インダクタンスはより小さくなって、コモンモードノイズに対するフィルタ効果をより向上させることができる。
各コンデンサ11〜13は、図示しない基板に実装される。その基板は、多層基板である。図9では、図9に向かって上下方向上、コモンモード電流Icy1が流れるYコンデンサ13と、コモンモード電流Icy2が流れる金属導体との位置を異ならせている。これは、コモンモード電流Icy2が流れる金属導体は、Yコンデンサ13が実装された面よりも下層に配置されていることを示している。これは、他の図でも同様である。
なお、図10に示すよう、Lcy1を接続点303からYコンデンサ13までの金属導体のインダクタンスとし、Lcy2をYコンデンサ13から接続点300までのYコンデンサ13の寄生インダクタンス及び金属導体のインダクタンスとしても良い。その場合であっても、コモンモード電流Icy1、Icy2の向きが180度、或いは略180度、異なるようにする。それにより、コモンモード電流Icy1、Icy2によってそれぞれ発生する磁束Φcy1、Φcy2は、互いを打ち消すように働くことから、接続点303−300間の実効インダクタンスは小さくなって、コモンモードノイズに対するフィルタ効果はより向上する。
図11は、周波数によるフィルタ特性例を示す図である。次に図11を参照し、本実施の形態4におけるフィルタ特性について具体的に説明する。
図11では、横軸に周波数、縦軸に減衰レベルをとっている。減衰レベルは、より小さくなるほど、フィルタ特性が優れていることを表す。実線は、従来の電力変換装置におけるフィルタ特性を表し、本実施の形態4におけるフィルタ特性は破線で表している。frは共振周波数であり、この共振周波数frは、Yコンデンサ13の静電容量Cy、その寄生インダクタンスLyを用いて、
fr=1/(2×π×(Ly×Cy)1/2
により表される。
上記のように、本実施の形態4では、接続点303−300間のインピーダンスは、容量Cy、Yコンデンサ13の形状、金属導体形状を全て同一としても、互いに打ち消すように、磁束Φcy1、Φcy2を発生させることから、より小さくなる。このため、共振周波数frは、従来と比較してより高い周波数にシフトしている。それにより、図11に示すように、比較的に周波数の高い領域でフィルタ効果が向上している。従って、電力変換装置1を高周波化するうえで有効であることが分かる。
図12は、ワイドギャップ半導体のオン/オフ駆動例を説明する図であり、図13は、ワイドギャップ半導体をスイッチ素子として採用した場合の周波数特性例を説明する図である。ここで、ワイドギャップ半導体をスイッチ素子101〜104として採用した場合の電力変換装置1について具体的に説明する。なお、図12、及び図13では、ワイドギャップ半導体は「ワイドバンドギャップ半導体」と表記している。
図12では、横軸に時間、縦軸に信号レベルをとっている。図13では、横軸に周波数、縦軸に減衰レベルをとっている。図12、及び図13ともに、従来、つまりシリコン等の材料を用いた半導体の採用時は実線、ワイドギャップ半導体の採用時は破線で表している。
ワイドギャップ半導体は、バンドギャップが比較的に広い半導体であり、熱伝導度・電子速度・絶縁破壊電界強度等の値が高いという物性を有している。その物性の優位性から、近年、大幅な機器の小型化、高効率化等に大きく期待されている。
ワイドギャップ半導体は、その物性の優位性から、図12に示すように、高速・高周波駆動化することができる。しかし、高周波化に伴い、パルスの印加時間T及びパルスの立ち上がり時間trは短くなる。
一方、信号レベルは、図13に示すように、バンドギャップ半導体は従来と比較して、高周波数領域で大きく改善している。信号レベルが20dB/decadeで減衰し始める周波数fa、40dB/decadeで減衰し始める周波数fcは共に、バンドギャップ半導体は従来より大きく高周波数側にシフトしている。なお、周波数faは
fa=1/(π×T)
により表され、周波数fcは
fc=1/(π×tr)
により表される。それにより、パルス印加時間Tが短くなるほど、周波数faは高くなり、パルス立ち上がり時間trが短くなるほど、周波数fcは高くなる。
このような周波数特性を有していることから、ワイドギャップ半導体をスイッチ素子101〜104として採用した電力変換装置1に対して本実施の形態4を適用した場合、更にフィルタ効果向上によるノイズ低減効果が得られる。そのため、ワイドギャップ半導体をスイッチ素子101〜104として採用した場合、ラインとグランドとの間の絶縁耐性を確保しつつ、電力変換装置1の更なる小型化をより容易に実現できるようになる。なお、電力変換装置1は高周波化が要求されていることから、ワイドギャップ半導体は、上記実施の形態1〜3でスイッチ素子101〜104として採用しても良い。
実施の形態5.
図14は、本発明の実施の形態5に係る電力変換装置の回路構成例を示す図であり、図15は、本発明の実施の形態5に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。
図14において、Lcx1は、接続点301から接続点303までのインダクタンスであり、金属導体及び第1のXコンデンサ11の寄生インダクタンスを含んでいる。Lcx2は、接続点302から接続点303までのインダクタンスであり、金属導体及び第2のXコンデンサ12の寄生インダクタンスを含んでいる。Lcyは、接続点303から接続点300までのインダクタンスであり、金属導体及びYコンデンサ13の寄生インダクタンスを含んでいる。
本実施の形態5では、図15に示すように、インダクタンスLcx1に流れるコモンモード電流Icx1と、インダクタンスLcyに流れるコモンモード電流Icyとは、向きを180度、或いは略180度、異なるようにしている。また、インダクタンスLcx2に流れるコモンモード電流Icx2と、インダクタンスLcyに流れるコモンモード電流Icyとは、向きを180度、或いは略180度、異なるようにしている。第1のXコンデンサ11、第2のXコンデンサ12、Yコンデンサ13及び各金属導体は、これらコモンモード電流Icx1、Icx2、Icyの向きの関係を満たすように配置されている。
このため、図15に示すように、コモンモード電流Icx1による磁束ΦCx1とコモンモード電流Icyによる磁束ΦCyとは、互いに磁束を打ち消すように働く。また、コモンモード電流Icx2による磁束ΦCx2とコモンモード電流Icyによる磁束ΦCyとは、互いに磁束を打ち消すように働く。この結果、相互インダクタンスにより接続点301−300間の実効インダクタンス及び接続点302−300間の実効インダクタンスは共により小さくなり、コモンモードノイズに対するフィルタ効果をより向上させることができる。
実施の形態6.
図16は、本発明の実施の形態6に係る電力変換装置の回路構成例を示す図であり、図17は、本発明の実施の形態6に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。
図16において、Lcx1は、接続点301から接続点303までのインダクタンスであり、金属導体及び第1のXコンデンサ11の寄生インダクタンスを含んでいる。Lcx2は、接続点302から接続点303までのインダクタンスであり、金属導体及び第2のXコンデンサ12の寄生インダクタンスを含んでいる。
本実施の形態6では、インダクタンスLcx1に流れるコモンモード電流Icx1とインダクタンスLcx2に流れるコモンモード電流Icx2との向きを180度、或いは略180度、異なるようにしている。その向きの関係を満たすように、第1のXコンデンサ11、第2のXコンデンサ12及び各金属導体は配置されている。
このため、コモンモード電流Icx1による磁束Φcx1とコモンモード電流Icx2による磁束Φcx2とは、互いに磁束を打ち消すように働く。この結果、相互インダクタンスにより、接続点301−303間の実効インダクタンス及び接続点302−303間の実効インダクタンスは共により小さくなり、コモンモードノイズに対するフィルタ効果をより向上させることができる。
実施の形態7.
図18は、本発明の実施の形態7に係る電力変換装置の回路構成例を示す図であり、図19は、本発明の実施の形態7に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。
本実施の形態7では、図18に示すように、接続点303に第1のYコンデンサ13a、及び第2のYコンデンサ13bの一端を接続させている。第1のYコンデンサ13aの他端は、グランドの接続点300aと接続されている。第2のYコンデンサ13bの他端は、グランドの別の接続点300bと接続されている。
接続点300a、接続点300bは、基本的には同電位である。しかし、その電位は、コモンモードノイズによって変動し、接続点300a、300bとで電位に差が生じる場合がある。各コンデンサ13a、13bをそれぞれ異なる接続点300a、300bに接続させたのは、その電位の変動によるコモンモードノイズの影響をより抑えるためである。
Lcyaは、接続点303−300a間のインダクタンスであり、金属導体及び第1のYコンデンサ13aの寄生インダクタンスを含んでいる。Lcybは、接続点303−300b間のインダクタンスであり、金属導体及び第2のYコンデンサ13bの寄生インダクタンスを含んでいる。
本実施の形態7では、図18に示すように、接続点303とグランドとの間に、第1のYコンデンサ13aと第2のYコンデンサ13bを並列に接続させている。そのため、接続点303とグランドとの間の合成インダクタンスLcyは
Lcy=Lcya×Lcyb/(Lcya+Lcyb)
となり、合成インダクタンスLcyはより小さくなる。そのため、コモンモードノイズに対するフィルタ効果はより向上することになる。
また、本実施の形態7では、図18に示すように、インダクタンスLcyaに流れるコモンモード電流Icyaと接続点302−303間に流れるコモンモード電流Icx2との向きを180度、或いは略180度、異なるようにしている。また、インダクタンスLcybに流れるコモンモード電流Icybとコモンモード電流Icx2との向きも180度、或いは略180度、異なるようにしている。それにより、コモンモードノイズに対するフィルタ効果を更に向上させている。
なお、本実施の形態7では、2つのコンデンサ13a、13bをYコンデンサとして用いているが、Yコンデンサの数は3以上であっても良い。各Yコンデンサは並列に接続しても良いが、2つ以上のYコンデンサを直列に接続させても良い。このことからも、様々な変形が可能である。
実施の形態8.
図20は、本発明の実施の形態8に係る電力変換装置の回路構成例を示す図であり、図21は、本発明の実施の形態8に係る電力変換装置に用いられている各コンデンサの配置例を説明する図である。
本実施の形態8では、図20に示すように、上記実施の形態7と同じく、接続点303−300a間に第1のYコンデンサ13a、接続点303−300b間に第2のYコンデンサ13bをそれぞれ接続させている。また、図21に示すように、接続点303−300a間のインダクタンスLcyaに流れるコモンモード電流Icyaと、接続点301−303間のインダクタンスLcx1に流れるコモンモード電流Icx1とは、向きを180度、或いは略180度、異ならせている。同様に、接続点303−300b間のインダクタンスLcybに流れるコモンモード電流Icybと、接続点302−303間のインダクタンスLcx2に流れるコモンモード電流Icx2とは、向きを180度、或いは略180度、異ならせている。これらの向きの関係を満たすように、第1のXコンデンサ11、第2のXコンデンサ12、第1のYコンデンサ13a、第2のYコンデンサ13b及び各金属導体は配置されている。
このため、図21に示すように、コモンモード電流Icx1による磁束Φcx1とコモンモード電流Icyaによる磁束Φcyaとは、互いに相手の磁束を打ち消すように働く。同様に、コモンモード電流Icx2による磁束Φcx2とコモンモード電流Icybによる磁束Φcybも、互いに相手の磁束を打ち消すように働く。この結果、相互インダクタンスにより、接続点301−300a間の実効インダクタンス及び接続点302−300b間の実効インダクタンスは共により小さくなり、コモンモードノイズに対するフィルタ効果はより向上する。
なお、本実施の形態8では、第1のXコンデンサ11と第1のYコンデンサ13a、第2のXコンデンサ12と第2のYコンデンサ13b、をそれぞれ磁気的に結合させているが、結合させる組み合わせはこれに限定されない。つまり、本実施の形態8では、第1のXコンデンサ11と第2のYコンデンサ13b、第2のXコンデンサ12と第1のYコンデンサ13a、をそれぞれ磁気的に結合させても良い。
また、上記実施の形態1〜8は、様々に組み合わせることができる。例えば上記実施の形態3で採用したようなレジスタは、上記実施の形態2、上記実施の形態4〜8であっても用いることができる。レジスタ以外の回路素子を採用することも可能である。接続点303−300間を2つの部分に分け、想定する電流の向きを180度、異ならせるのは、接続点301−303間、接続点302−303間で行っても良い。このようなことからも、様々な変形を行うことができる。
1 電力変換装置、11 第1のXコンデンサ(第1のコンデンサ)、12 第2のXコンデンサ(第1のコンデンサ)、13 Yコンデンサ(第2のコンデンサ)、13a 第1のYコンデンサ(第2のコンデンサ)、13b 第2のYコンデンサ(第2のコンデンサ)、14 第1のレジスタ、15 第2のレジスタ、101〜104 スイッチ素子、201 電源、202 負荷、300、300a、300b、301〜303 接続点。

Claims (9)

  1. 電源から供給される電力の変換を行う電力変換装置であって、
    前記電力の供給に用いられる2つのライン間に直列に接続された複数の第1のコンデンサと、
    前記複数の第1のコンデンサのうちの2つの第1のコンデンサ間の接続点とグランドとの間に接続された1つ以上の第2のコンデンサと、を備え
    前記接続点と、前記グランドに接続された他の接続点との間の電流経路には、コモンモード電流の向きが180度、異なるようにした2つの部分経路が存在する、
    電力変換装置。
  2. 前記第2のコンデンサ、及び前記2つの第1のコンデンサは、前記第2のコンデンサに流れる前記コモンモード電流の向きと、前記接続点と接続された前記2つの第1のコンデンサにそれぞれ流れる前記コモンモード電流の向きとが成す角度の絶対値が90度となるように配置されている、
    請求項1に記載の電力変換装置。
  3. 前記第2のコンデンサ、及び前記2つの第1のコンデンサは、前記第2のコンデンサに流れる前記コモンモード電流の向きと、前記2つの第1のコンデンサにそれぞれ流れる前記コモンモード電流の向きとが180度、異なるように配置されている、
    請求項1に記載の電力変換装置。
  4. 前記2つの第1のコンデンサは、それぞれに流れる前記コモンモード電流の向きが180度、異なるように配置されている、
    請求項1に記載の電力変換装置。
  5. 前記第2のコンデンサを複数、有し、各第2のコンデンサは、それぞれ異なる前記グランド用の接続点と接続されている、
    請求項1からのいずれか1項に記載の電力変換装置。
  6. 2つの前記第2のコンデンサのうちの一方、及び前記2つの第1のコンデンサのうちの一方は、それぞれに流れる前記コモンモード電流の向きが180度、異なるように配置され、
    前記2つの前記第2のコンデンサのうちの他方、及び前記2つの第1のコンデンサのうちの他方は、それぞれに流れる前記コモンモード電流の向きが180度、異なるように配置されている、
    請求項に記載の電力変換装置。
  7. 電源から供給される電力の変換を行う電力変換装置であって、
    前記電力の供給に用いられる2つのライン間に直列に接続された複数の第1のコンデンサと、
    前記複数の第1のコンデンサのうちの2つの第1のコンデンサ間の接続点とグランドとの間に接続された1つ以上の第2のコンデンサと、を備え、
    前記第2のコンデンサを複数、有し、各第2のコンデンサは、それぞれ異なる前記グランド用の接続点と接続され、
    2つの前記第2のコンデンサのうちの一方、及び前記2つの第1のコンデンサのうちの一方は、それぞれに流れるコモンモード電流の向きが180度、異なるように配置され、
    前記2つの前記第2のコンデンサのうちの他方、及び前記2つの第1のコンデンサのうちの他方は、それぞれに流れる前記コモンモード電流の向きが180度、異なるように配置されている、
    電力変換装置。
  8. 前記2つの第1のコンデンサに対して、それぞれ並列に接続されているレジスタ、
    をさらに備える請求項1から7のいずれか1項に記載の電力変換装置。
  9. 前記変換に用いるスイッチ素子は、ワイドバンドギャップ半導体である、
    請求項1から8のいずれか1項に記載の電力変換装置。
JP2018116879A 2018-06-20 2018-06-20 電力変換装置 Active JP6563081B1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018116879A JP6563081B1 (ja) 2018-06-20 2018-06-20 電力変換装置
PCT/JP2018/039501 WO2019244368A1 (ja) 2018-06-20 2018-10-24 電力変換装置
US17/051,250 US11374504B2 (en) 2018-06-20 2018-10-24 Electric power converter
CN201880094395.2A CN112262524B (zh) 2018-06-20 2018-10-24 功率转换装置
EP18923027.9A EP3813244A4 (en) 2018-06-20 2018-10-24 ELECTRIC POWER CONVERTER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018116879A JP6563081B1 (ja) 2018-06-20 2018-06-20 電力変換装置

Publications (2)

Publication Number Publication Date
JP6563081B1 true JP6563081B1 (ja) 2019-08-21
JP2019221068A JP2019221068A (ja) 2019-12-26

Family

ID=67692145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018116879A Active JP6563081B1 (ja) 2018-06-20 2018-06-20 電力変換装置

Country Status (5)

Country Link
US (1) US11374504B2 (ja)
EP (1) EP3813244A4 (ja)
JP (1) JP6563081B1 (ja)
CN (1) CN112262524B (ja)
WO (1) WO2019244368A1 (ja)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161268A (ja) 1991-12-02 1993-06-25 Yokogawa Electric Corp ノイズフィルタの実装構造
EP0980003B1 (de) 1998-08-12 2006-03-08 Trench Switzerland AG RC-Spannungsteiler
JP3456442B2 (ja) * 1999-04-21 2003-10-14 日本電気株式会社 プリント配線基板
CN1254000C (zh) * 2002-11-12 2006-04-26 浙江大学 功率变换器动态节点电位平衡共模emi抑制方法
JP2004274161A (ja) * 2003-03-05 2004-09-30 Tdk Corp ノイズ抑制回路
WO2006018007A1 (de) * 2004-08-16 2006-02-23 Epcos Ag Netzfilter
JP2006136058A (ja) * 2004-11-02 2006-05-25 Toshiba Corp ノイズフィルタ
JP2008312403A (ja) * 2007-06-18 2008-12-25 Toshiba Corp 電力変換装置
US8368384B2 (en) * 2008-09-11 2013-02-05 Abb Oy Reduction of semiconductor stresses
JP2010288381A (ja) * 2009-06-12 2010-12-24 Fuji Electric Systems Co Ltd 電力変換装置のノイズ低減回路
JP4930575B2 (ja) * 2009-11-09 2012-05-16 三菱電機株式会社 ノイズ抑制装置、空気調和機
JP2012044812A (ja) * 2010-08-20 2012-03-01 Fuji Electric Co Ltd ノイズフィルタ及びこれを使用したemcフィルタ
JP6075834B2 (ja) 2012-08-16 2017-02-08 キヤノン株式会社 プリント回路板
JP6189084B2 (ja) * 2013-04-30 2017-08-30 双信電機株式会社 ノイズフィルタ
US9209626B2 (en) 2013-06-25 2015-12-08 Renewable Power Conversion, Inc. Parallelable three-phase photovoltaic power converter
TWI540594B (zh) * 2013-09-10 2016-07-01 緯創資通股份有限公司 傳輸線及濾波模組
CN203851107U (zh) 2014-03-04 2014-09-24 青岛云路新能源科技有限公司 一种滤波电路
DE102016116630A1 (de) * 2016-09-06 2018-03-08 Sma Solar Technology Ag Verfahren zum Betrieb eines Wechselrichters und Wechselrichter
CN206211835U (zh) * 2016-11-22 2017-05-31 深圳市汇北川电子技术有限公司 一种用于新能源汽车的emi滤波电容器
CN110121835A (zh) * 2017-02-21 2019-08-13 三菱电机株式会社 电力转换装置及功率模块
DE102018204222A1 (de) * 2017-03-21 2018-09-27 Kabushiki Kaisha Toshiba Energieumwandlungsvorrichtung und Energieumwandlungssystem

Also Published As

Publication number Publication date
JP2019221068A (ja) 2019-12-26
EP3813244A1 (en) 2021-04-28
EP3813244A4 (en) 2021-08-04
WO2019244368A1 (ja) 2019-12-26
US20210367533A1 (en) 2021-11-25
US11374504B2 (en) 2022-06-28
CN112262524A (zh) 2021-01-22
CN112262524B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US9166489B2 (en) Layouts of multiple transformers and multiple rectifiers of interleaving converter
US20180115293A1 (en) Board-type noise filter and electronic device
WO2016104533A1 (ja) 電力変換装置および電力用半導体モジュール
CN109565238B (zh) 开关电路装置以及电力转换装置
JP6151110B2 (ja) 電力変換装置
TW202030963A (zh) 直流/直流變換系統
JPH06225545A (ja) 半導体電力変換装置
US10090753B1 (en) Power conversion device and power conversion system
JP6661002B2 (ja) 電力変換装置
WO2021049091A1 (ja) 電力変換装置、鉄道車両電気システム
JP6563081B1 (ja) 電力変換装置
JP2021145432A (ja) 半導体装置の配線回路、半導体装置の配線回路の制御方法、半導体装置、電力変換装置、並びに鉄道車両用電気システム
JP2021153356A (ja) 力率改善装置及び電力変換装置
US11374485B2 (en) Filter unit and frequency inverter
JP6448759B1 (ja) 電力変換装置
JP6195691B1 (ja) 電力変換装置及びパワーモジュール
JP2017055584A (ja) 三相ノイズフィルタ、並びにそれを用いる交流電動機駆動システム
JP5840514B2 (ja) 漏れ電流抑制回路
JP2001025242A (ja) スイッチング電源
JP6818836B1 (ja) 電力変換装置
US20230402922A1 (en) Power converter
JP2018182880A (ja) 電力変換装置
JPWO2019016929A1 (ja) 電力変換装置
JP2010136505A (ja) インバータ装置
JP2005020869A (ja) 電圧駆動型半導体素子の駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190723

R150 Certificate of patent or registration of utility model

Ref document number: 6563081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250