JP6520041B2 - Pellicle - Google Patents

Pellicle Download PDF

Info

Publication number
JP6520041B2
JP6520041B2 JP2014214415A JP2014214415A JP6520041B2 JP 6520041 B2 JP6520041 B2 JP 6520041B2 JP 2014214415 A JP2014214415 A JP 2014214415A JP 2014214415 A JP2014214415 A JP 2014214415A JP 6520041 B2 JP6520041 B2 JP 6520041B2
Authority
JP
Japan
Prior art keywords
pellicle
euv
layer
membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014214415A
Other languages
Japanese (ja)
Other versions
JP2016080967A (en
Inventor
福上 典仁
典仁 福上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2014214415A priority Critical patent/JP6520041B2/en
Publication of JP2016080967A publication Critical patent/JP2016080967A/en
Application granted granted Critical
Publication of JP6520041B2 publication Critical patent/JP6520041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

本発明は、半導体デバイス等をリソグラフィ技術により製造する際に使用するフォトマスクおよびこれに取り付けられるペリクルに関する。より詳しくは、極端紫外領域の波長の光を光源としてパターン転写を行う際に適用可能な反射型フォトマスクおよびこれに取り付けられるペリクルに関する。   The present invention relates to a photomask used in manufacturing a semiconductor device or the like by a lithography technique and a pellicle attached to the photomask. More particularly, the present invention relates to a reflective photomask applicable when performing pattern transfer using light of a wavelength in the extreme ultraviolet region as a light source, and a pellicle attached thereto.

半導体集積回路は性能及び生産性を向上させるために微細化、高集積化が進んでおり、回路パターンを形成するためのリソグラフィ技術についても、より微細なパターンを高精度に形成するための技術開発が進められている。これに伴い、パターン形成に使用される露光装置の光源についても短波長化が進められ、波長13.5ナノメートル(nm)の極端紫外光(Extreme Ultraviolet光。以下、「EUV光」と称する。)を用いたパターン転写のプロセスが開発されている。   Semiconductor integrated circuits are being miniaturized and highly integrated to improve performance and productivity, and with regard to lithography for forming circuit patterns, technological development for forming finer patterns with high accuracy Is in progress. Along with this, shortening of the wavelength of the light source of the exposure apparatus used for pattern formation has been promoted, and extreme ultraviolet light (Extreme Ultraviolet light) having a wavelength of 13.5 nanometers (nm) is hereinafter referred to as "EUV light". The process of pattern transfer using (A) has been developed.

EUV光を用いるリソグラフィでは従来の193nm等の深紫外光とは異なり、あらゆる物質の屈折率が1に近い値であり、吸収係数も大きいことから、屈折を用いた透過光学系を用いた露光ができない。そこで、屈折率差の大きい材料を交互に積層した多層膜ミラーを用いた反射光学系の露光装置が用いられている。具体的にはモリブデンとシリコンの多層膜が主に用いられる。   In lithography using EUV light, unlike conventional deep ultraviolet light such as 193 nm, the refractive index of all substances is a value close to 1, and the absorption coefficient is large, so exposure using a transmission optical system using refraction is Can not. Therefore, an exposure apparatus of a reflective optical system using a multilayer film mirror in which materials having large refractive index differences are alternately stacked is used. Specifically, a multilayer film of molybdenum and silicon is mainly used.

マスクについても同様に基板上にモリブデンとシリコンの多層膜を形成した上にEUV光を高効率で吸収する材料で露光パターンを形成する。たとえば吸収パターンの材料としてはタンタルを主成分とするものが典型的に用いられ、多層膜の最上層にはルテニウムなどを成分とする保護膜が形成されているものも使用されている。   Similarly to the mask, a multilayer film of molybdenum and silicon is formed on a substrate, and then an exposure pattern is formed of a material that absorbs EUV light with high efficiency. For example, as the material of the absorption pattern, one having tantalum as a main component is typically used, and one having a protective film containing ruthenium or the like as a component is formed on the top layer of the multilayer film.

従来の透過型のマスクにおいてはパターンを形成した後にペリクルを取り付けてパターン形成面に直接異物が付着するのを防止し、仮にマスク上に異物が付着したとしてもペリクル表面は焦点から大きくずれているために付着した異物が解像せず欠陥にならない。   In the conventional transmission type mask, after the pattern is formed, the pellicle is attached to prevent foreign matter from adhering directly to the pattern forming surface, and even if foreign matter adheres on the mask, the pellicle surface is largely deviated from the focal point Therefore, the attached foreign matter does not resolve and does not become a defect.

EUVリソグラフィにおいては従来のフォトリソグラフィで使用されてきた樹脂性のペリクル膜が使用できないため、ペリクルがなくてもマスクパターン表面に異物を付着することを防止する技術が開発されてきた。   Since the resinous pellicle film used in conventional photolithography can not be used in EUV lithography, a technique has been developed to prevent foreign matter from adhering to the surface of the mask pattern even without a pellicle.

それとともに、従来と類似した構造のEUV用ペリクルも開発されてきた。EUV光量の損失を最小限に抑えるために膜は非常に薄くする必要があるが、上述したようにEUV光は、あらゆる材料で吸収係数が高いことから、数μm以下の膜厚まで薄くしなければならない。このため、ペリクル膜だけでは機械的強度が弱く、搬送中の振動などによって、容易に破壊してしまうこともあった。   At the same time, EUV pellicles of similar structure have also been developed. Although it is necessary to make the film very thin to minimize the loss of EUV light, as described above, EUV light must be thinned to a film thickness of several μm or less because of the high absorption coefficient of any material. You must. For this reason, the mechanical strength is weak only with the pellicle film, and may be easily broken due to vibration during transportation.

上記の点を考慮して金属ワイヤーで構成した網状の構造の上に薄膜を形成したものや、シリコン単結晶を研磨したものなどがEUVマスク用のペリクル(以下EUVペリクルと呼ぶ)として考案され、中でもSOI基板を用いることによってシリコンの梁構造と薄膜(以下メンブレンとも呼ぶ)からなるペリクルがたとえば特許文献1に開示されている。この梁構造によって、機械的強度が保つことが出来るようになっている。これは電子線露光用のステンシルマスクにおいて電子線を透過するパターンが形成されていないものと類似の構造である。これはたとえば特許文献2に開示されているようなものである。両者の差異は前記メンブレン構造にパターン加工が行われているか否かにあり、ペリクルはステ
ンシルマスクにパターンを付与する前のステンシルマスクブランクと非常に類似した構造である。
In consideration of the above points, those in which a thin film is formed on a reticulated structure composed of metal wires, and those obtained by polishing a silicon single crystal are devised as pellicles for EUV masks (hereinafter referred to as EUV pellicles), Among them, a pellicle made of a silicon beam structure and a thin film (hereinafter also referred to as a membrane) is disclosed, for example, in Patent Document 1 by using an SOI substrate. This beam structure allows mechanical strength to be maintained. This is a structure similar to that of a stencil mask for electron beam exposure in which a pattern for transmitting an electron beam is not formed. This is, for example, as disclosed in Patent Document 2. The difference between the two is whether the membrane structure is patterned or not, and the pellicle has a structure very similar to the stencil mask blank before applying the pattern to the stencil mask.

特開2010−256434号公報JP, 2010-256434, A 特開2011−211250号公報JP 2011-211250 A

このような梁構造とメンブレンから成るEUVペリクルは、特に梁部分でのEUV光量の損失が大きくなるため、半導体転写パターンに光強度ムラを誘発し、半導体パターンの寸法均一性を低下させる問題が発生する。さらに、梁構造部からの異物の発生も多く、問題となっている。また、EUV露光機の光源に含まれるアウトオブバンド光(EUV光以外の光という意味でOut of band光と呼ばれている)がペリクル表面に当たって反射してしまうために、半導体パターンの品質を劣化させる問題や、EUV光の高いエネルギー照射によってペリクルが温度上昇することによる劣化、その輻射熱がマスク表面の温度上昇を誘発し、EUVマスクを劣化(EUV光の反射率の低下や膜応力変化によるパターン位置精度の低下等)させる問題もあった。   An EUV pellicle composed of such a beam structure and a membrane causes a problem of causing unevenness in light intensity in the semiconductor transfer pattern and reducing the dimensional uniformity of the semiconductor pattern, because the loss of the EUV light quantity particularly in the beam portion becomes large. Do. Furthermore, the generation of foreign matter from the beam structure is also a problem. In addition, the quality of the semiconductor pattern is degraded because out-of-band light (referred to as Out-of-band light in the sense of light other than EUV light) contained in the light source of the EUV exposure machine strikes the pellicle surface and is reflected. Problems and deterioration of the pellicle caused by temperature rise due to high energy irradiation of EUV light, the radiation heat induces temperature rise of the mask surface, and deterioration of the EUV mask (pattern due to decrease of reflectivity of EUV light and change of film stress There is also a problem that the position accuracy is lowered.

本発明のペリクルは、このような問題を解決するもので、半導体パターンの高品質化、またペリクルやマスクの長寿命化が実現できるペリクルを提供することを課題とする。   The pellicle according to the present invention solves such a problem, and an object of the present invention is to provide a pellicle which can realize high quality of a semiconductor pattern, and long life of the pellicle and the mask.

本発明は、係る課題に鑑みなされたもので、請求項1に記載の発明は、EUVマスク上に設けるペリクルであって、
ペリクル表面にEUV光源に含まれるアウトオブバンド光に対する低反射層と、
ダイヤモンド、ナノダイヤモンド(微結晶ダイヤモンド)、DLC(ダイヤモンドライクカーボン)、窒化アルミニウム、金、銀、銅、アルミニウム、窒化ケイ素(Si)のいずれかを含む高熱伝導層と、
を有し、
低反射層の材料が、Si、Cr、Al、Zr及びそれらの酸化物、窒化物、酸窒化物のいずれかを含むことを特徴とするものである。
The present invention has been made in view of such problems, and the invention described in claim 1 is a pellicle provided on an EUV mask,
A low reflective layer for out-of-band light contained in the EUV light source on the pellicle surface,
High thermal conductivity layer comprising any of diamond, nano diamond (microcrystalline diamond), DLC (diamond like carbon), aluminum nitride, gold, silver, copper, aluminum, silicon nitride (Si 3 N 4 ),
I have a,
The material of the low reflective layer is characterized in that it contains any of Si, Cr, Al, Zr and oxides, nitrides and oxynitrides thereof.

本発明の請求項に記載の発明は、
露光領域に機械的強度を保つための梁構造体を有しないことを特徴とする請求項1記載のペリクルである。
The invention described in claim 2 of the present invention is
It is a pellicle according to claim 1, characterized in that it does not have a beam structure for maintaining mechanical strength in the exposure area.

本発明を実施することにより、EUV光を使用するリソグラフィに使用するEUVマスクのパターン表面に異物が付着するのを防止するペリクルとして、EUV光源に含まれるアウトオブバンド光の反射を低減でき、半導体パターンの劣化を防ぐことが出来る。また、ペリクルの温度上昇を抑制することが可能となるため、ペリクル自体の劣化やその輻射熱に起因するEUVマスクの劣化を防ぐことが出来る。さらに、本発明のペリクルのうち、梁構造の無いタイプを用いれば、梁構造部でのEUV光量損失が無いために、従来見られていた半導体パターンの寸法均一性の低下は起こらない。   By practicing the present invention, it is possible to reduce the reflection of out-of-band light included in the EUV light source as a pellicle to prevent foreign matter from adhering to the pattern surface of the EUV mask used for lithography using EUV light. It is possible to prevent the deterioration of the pattern. Further, since it is possible to suppress the temperature rise of the pellicle, it is possible to prevent the deterioration of the pellicle itself and the deterioration of the EUV mask due to the radiant heat. Furthermore, among the pellicles according to the present invention, when the type without the beam structure is used, the decrease in the uniformity of the semiconductor pattern as in the prior art does not occur because there is no loss of EUV light in the beam structure.

従来のEUVマスク用ペリクルの構造断面図である。It is structure sectional drawing of the conventional pellicle for EUV masks. 本発明のEUVマスク用ペリクルの梁を有しない実施形態例の構造断面図である。FIG. 1 is a structural cross-sectional view of an embodiment of the pellicle for an EUV mask of the present invention which does not have a beam. 本発明のEUVマスク用ペリクルの梁を有しない他の実施形態例の構造断面図である。FIG. 7 is a structural cross-sectional view of another example of the pellicle for an EUV mask of the present invention which does not have a beam. 本発明のEUVマスク用ペリクルの梁を有する実施形態例の構造断面図である。FIG. 1 is a structural cross-sectional view of an embodiment having a beam of a pellicle for an EUV mask of the present invention. 本発明のEUVマスク用ペリクルの梁を有する実施形態例の構造断面図である。FIG. 1 is a structural cross-sectional view of an embodiment having a beam of a pellicle for an EUV mask of the present invention.

まず、従来のEUVマスク用ペリクル(以下EUVペリクルと呼ぶ)の形態について図を用いて説明する。図1は、従来のEUVマスク用ペリクルの構造断面図である。ペリクルの基材としては市販のSOIウェハを用いることができ、前記特許文献2と同様に電子線露光用ステンシルマスクブランクを作成すれば、ペリクルの基本構造となる。外枠部01とペリクル膜02と梁部03が基本的な構造であるが、ペリクル膜の両面に酸化防止膜04a、04bが形成されている。さらにペリクルフレーム30が外枠部01の下部に接着されている。   First, the form of a conventional pellicle for EUV mask (hereinafter referred to as an EUV pellicle) will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a conventional pellicle for EUV mask. A commercially available SOI wafer can be used as a base of a pellicle, and if a stencil mask blank for electron beam exposure is produced as in the case of the above-mentioned patent documents 2, it will become the basic structure of a pellicle. The outer frame portion 01, the pellicle film 02 and the beam portion 03 have a basic structure, but anti-oxidation films 04a and 04b are formed on both sides of the pellicle film. Furthermore, a pellicle frame 30 is bonded to the lower portion of the outer frame portion 01.

次に、本発明のEUVペリクルの実施の形態例について図を用いて説明する。本実施形態例のEUVペリクルの構造は、図2(a)、図2(b)、図2(c)、図2(d)、図2(e)、図3(f)、図3(g)、図4(a)、図4(b)、図4(c)、図4(d)、図4(e)、図5(f)、図5(g)である。   Next, an embodiment of the EUV pellicle of the present invention will be described with reference to the drawings. The structure of the EUV pellicle according to this embodiment is shown in FIGS. 2 (a), 2 (b), 2 (c), 2 (d), 2 (e), 3 (f) and 3 (f). 4 (a), 4 (b), 4 (c), 4 (d), 4 (e), 5 (f) and 5 (g).

図2(a〜e)、図3(f、g)は、いずれも外枠部01とメンブレン部10とペリクルフレーム30から成る。図2(a)のメンブレン部10は、ペリクル膜02と低反射層06の2層構造となっている。図2(b)のメンブレン部は、ペリクル膜02の両面が熱伝導層07a、07bによって挟まれた構造となっている。尚、図では例示していないが、この熱伝導層は、ペリクル膜の両面ではなく、少なくとものどちらか一方の面だけにあっても良い。図2(c)のメンブレン部10は、熱伝導層07の両面がペリクル膜02a、02bによって挟まれた構造となっている。図2(d)のメンブレン部10は、熱伝導層07の材料によってペリクル膜が出来ている。図2(e)は、図2(b)のメンブレン部10の最表面に低反射層06が形成されている。図3(f)は、図2(c)のメンブレン部10の最表面に低反射層06が形成されている。図3(g)は、図2(d)のメンブレン部10の最表面に低反射層06が形成されている。   Each of FIG. 2 (a to e) and FIG. 3 (f, g) comprises an outer frame portion 01, a membrane portion 10 and a pellicle frame 30. The membrane portion 10 in FIG. 2A has a two-layer structure of a pellicle film 02 and a low reflection layer 06. The membrane portion of FIG. 2B has a structure in which both surfaces of the pellicle film 02 are sandwiched between the heat conduction layers 07a and 07b. Although not illustrated in the drawings, the heat conduction layer may be provided not on both sides of the pellicle film, but only on at least one side. The membrane portion 10 of FIG. 2C has a structure in which both sides of the heat conduction layer 07 are sandwiched between the pellicle films 02a and 02b. The membrane portion 10 of FIG. 2D is made of a material of the heat conduction layer 07 and is made of a pellicle membrane. In FIG. 2 (e), a low reflection layer 06 is formed on the outermost surface of the membrane section 10 of FIG. 2 (b). As for FIG.3 (f), the low reflection layer 06 is formed in the outermost surface of the membrane part 10 of FIG.2 (c). As for FIG.3 (g), the low reflection layer 06 is formed in the outermost surface of the membrane part 10 of FIG.2 (d).

なお、EUVリソグラフィにおいて、パターン転写精度に重大な問題を招く上記弊害(
EUV光量の損失,光強度ムラ,異物の発生)を解消し、技術的な優位性の高い「梁構造を持たないメンブレン部」を具備するペリクルの採用も、EUVマスクの搬送時の取扱いに注意することで、実用上の影響が少ないことが確認されている。本発明は、梁構造を持つ構造/持たない構造の双方への適用が可能であり、以後、梁構造を持つ場合について説明する。
In the EUV lithography, the above-described adverse effects (probably
Use of a pellicle that eliminates the loss of EUV light intensity, unevenness of light intensity, and generation of foreign matter, and has a highly technologically superior “membrane section without beam structure”, also pay attention to the handling when transporting the EUV mask It has been confirmed that there is little impact on practical use. The present invention is applicable to both of the structure having the beam structure and the structure not having the beam structure, and the case of having the beam structure will be described hereinafter.

図4(a〜e)、図5(f、g)は、いずれも外枠部01とメンブレン部10と梁構造部03とペリクルフレーム30から成る。図4(a)のメンブレン部10は、ペリクル膜02と低反射層06の2層構造となっている。図4(b)のメンブレン部は、ペリクル膜02の両面が熱伝導層07a、07bによって挟まれた構造となっている。尚、図にはでは例示していないが、この熱伝導層は、ペリクル膜の両面ではなく、少なくとものどちらか一方の面だけにあっても良い。図4(c)のメンブレン部10は、熱伝導層07の両面がペリクル膜02a、02bによって挟まれた構造となっている。図4(d)のメンブレン部10は、熱伝導層07の材料によってペリクル膜が出来ている。図4(e)は、図4(b)のメンブレン部10の最表面に低反射層06が形成されている。図5(f)は、図4(c)のメンブレン部10の最表面に低反射層06が形成されている。図5(g)は、図4(d)のメンブレン部10の最表面に低反射層06が形成されている。   Each of FIG. 4 (a to e) and FIG. 5 (f, g) comprises an outer frame portion 01, a membrane portion 10, a beam structure portion 03, and a pellicle frame 30. The membrane portion 10 of FIG. 4A has a two-layer structure of a pellicle film 02 and a low reflection layer 06. The membrane portion of FIG. 4B has a structure in which both sides of the pellicle film 02 are sandwiched between the heat conduction layers 07a and 07b. Although not illustrated in the drawings, this heat conduction layer may be provided not on both sides of the pellicle film, but only on at least one side. The membrane portion 10 of FIG. 4C has a structure in which both sides of the heat conduction layer 07 are sandwiched between the pellicle films 02a and 02b. The membrane portion 10 of FIG. 4D is made of a material of the heat conduction layer 07 and is made of a pellicle membrane. In FIG. 4 (e), a low reflection layer 06 is formed on the outermost surface of the membrane portion 10 of FIG. 4 (b). As for FIG.5 (f), the low reflection layer 06 is formed in the outermost surface of the membrane part 10 of FIG.4 (c). In FIG. 5G, the low reflection layer 06 is formed on the outermost surface of the membrane portion 10 of FIG. 4D.

これまで説明してきたように、本発明のEUVペリクルの形態は、従来のEUVペリクルには無い、低反射層もしくは熱伝導層もしくはその両方を有していることに特徴がある。   As described above, the form of the EUV pellicle of the present invention is characterized by having a low reflective layer and / or a thermally conductive layer, which are not found in conventional EUV pellicles.

本実施形態例のEUVペリクルは、ペリクル膜を特に限定するものではない。   The EUV pellicle according to this embodiment does not particularly limit the pellicle film.

本発明のEUVペリクルの低反射層は、EUV光源に含まれるアウトオブバンド光(波長150〜400nm)に対して、低反射性を持たせる必要があるため、材料としてSi、Cr、Al、Zr及びそれらの酸化物、窒化物、酸窒化物のいずれかを含み、膜厚10〜200nmのである。   Since the low reflective layer of the EUV pellicle of the present invention needs to have low reflectivity to out-of-band light (wavelength 150 to 400 nm) contained in the EUV light source, the materials Si, Cr, Al, Zr And those oxides, nitrides, and oxynitrides, and have a film thickness of 10 to 200 nm.

本発明のEUVペリクルの熱伝導層は、熱伝導率の高い材料(概ね100 W・m−1・K−1)以上)である必要があるため、ダイヤモンド、ナノダイヤモンド(微結晶ダイヤモンド)、DLC(ダイヤモンドライクカーボン)、グラファイト、CNT(カーボンナノチューブ)、窒化アルミニウム、金、銀、銅、アルミニウム、窒化ケイ素(Si)のいずれかを含む材料から成る。熱伝導層の膜厚は、厚ければ厚いほど熱を逃がす能力を高く出来るので、EUVペリクルの温度上昇を抑制できるが、EUV光量の損失が多くなってしまうため、必要な露光量に応じて、膜厚を設定すればよい。 The thermally conductive layer of the EUV pellicle according to the present invention needs to be a material with high thermal conductivity (generally 100 W · m −1 · K −1 or more), so diamond, nano diamond (microcrystalline diamond), DLC (Diamond-like carbon), graphite, CNT (carbon nanotube), aluminum nitride, gold, silver, copper, aluminum, silicon nitride (Si 3 N 4 ). The thicker the film thickness of the heat conduction layer, the higher the ability to dissipate heat, so it is possible to suppress the temperature rise of the EUV pellicle, but the loss of the EUV light quantity increases, so it depends on the required exposure amount. The film thickness may be set.

本発明のEUVペリクルでは、ペリクル膜が熱伝導層に挟まれた構造と、熱伝導層がペリクル膜に挟まれた構造の両方があるが、露光機内でマスクのクリーニングに使用されるガス(一般には水素や酸素が使われる)との反応性を考慮して、反応し難い材料を選択するのがよい。   In the EUV pellicle of the present invention, there are both a structure in which the pellicle film is sandwiched between the heat conduction layers and a structure in which the heat conduction layer is sandwiched between the pellicle films. It is recommended to select a material that is difficult to react considering the reactivity with hydrogen and oxygen.

本発明において、EUVペリクルの製造方法を限定するものではないが、例えば製造方法の一つとして、電子線露光用ステンシルマスクブランクの製造工程を応用することで作製可能である。例えば、SOIウェハを元に、ステンシルマスクと同様の製造工程にて、Siメンブレンと外枠部(必要に応じて梁構造部も)からなる構造体を予め製造し、次いで、Siメンブレンの表面に低反射層となる材料を形成したり、Siメンブレンの両面に熱伝導層となる材料を形成したり、あるいはその両方を形成したりすることで、本発明のEUVペリクルを作ることが出来る。   In the present invention, the method for producing an EUV pellicle is not limited, but it can be produced, for example, by applying a production process of a stencil mask blank for electron beam exposure as one of the production methods. For example, based on an SOI wafer, a structure consisting of a Si membrane and an outer frame (also a beam structure if necessary) is manufactured in advance in the same manufacturing process as a stencil mask, and then on the surface of the Si membrane. The EUV pellicle of the present invention can be produced by forming a material to be a low reflection layer, forming a material to be a heat conduction layer on both surfaces of a Si membrane, or both of them.

また、これら低反射層や熱伝導層をSOIウェハに直接形成してから、メンブレン部と外枠部(必要に応じて梁構造部も)からなる構造体を製造することも可能である。
これら、低反射層や熱伝導層の形成には、CVD法(化学蒸着法)、PVD法(物理蒸着法)、イオン注入法、拡散法、熱酸化など、様々な方法が可能である。
It is also possible to manufacture a structure comprising the membrane part and the outer frame part (and the beam structure part if necessary) after directly forming the low reflective layer and the heat conductive layer on the SOI wafer.
Various methods such as a CVD method (chemical vapor deposition method), a PVD method (physical vapor deposition method), an ion implantation method, a diffusion method, and thermal oxidation can be used to form the low reflective layer and the heat conductive layer.

本発明のEUVペリクルにより、EUV光源に含まれるアウトオブバンド光に対しての低反射性を有し、また露光中の温度上昇を防ぐことが可能となるため、ペリクルやマスクの長寿命化、半導体パターンの高品質化が実現できる。   The EUV pellicle according to the present invention has low reflectivity to out-of-band light contained in the EUV light source, and can prevent temperature rise during exposure, thus prolonging the life of the pellicle and mask. High quality of semiconductor patterns can be realized.

以下、SOI基板を用いたEUVペリクルの製造工程を例にとり、実施例の詳細を示す。まず直径200mm(8インチ)のSOI基板を用意した。このSOI基板の層構成はシリコン薄膜層、BOX層、支持基板層の厚さがそれぞれ2μm、1μm、725μmである。   Hereinafter, the details of the embodiment will be described by taking an EUV pellicle manufacturing process using an SOI substrate as an example. First, an SOI substrate having a diameter of 200 mm (8 inches) was prepared. In the layer configuration of this SOI substrate, the thicknesses of the silicon thin film layer, the BOX layer and the support substrate layer are 2 μm, 1 μm and 725 μm, respectively.

次に支持基板層上にスパッタリングにより窒化クロム層を形成し、パターン有効領域(露光領域に相当する領域)の窒化クロム層をフォトリソグラフィ法と塩素系ガスを用いたRIEドライエッチング法により除去した。   Next, a chromium nitride layer was formed on the supporting substrate layer by sputtering, and the chromium nitride layer in the pattern effective area (area corresponding to the exposed area) was removed by photolithography and RIE dry etching using a chlorine-based gas.

続いてフッ素系ガスを用いてICPプラズマエッチング装置にて支持基板層をエッチング処理した。エッチングストッパーとなるBOX層が露出するのをエッチング面の光反射率の変化から検出した。あらかじめ窒化クロム層を付与した領域(パターン有効領域以外の部分)は、フッ素系ガスによってエッチングされないため、エッチングマスクとして充分に機能し、エッチング処理後も残存した。   Subsequently, the support substrate layer was etched using a fluorine-based gas in an ICP plasma etching apparatus. The exposure of the BOX layer as the etching stopper was detected from the change in light reflectance of the etching surface. The region (portion other than the pattern effective region) to which the chromium nitride layer has been applied in advance is not etched by the fluorine-based gas, so it sufficiently functions as an etching mask and remains after the etching process.

次にBOX層をフッ酸水溶液によりエッチング除去し、超純水でリンスして清浄なシリコン薄膜層が露出した構造とした。こうして、パターン有効領域がシリコン薄膜層(メンブレン)の構造体が得られた。   Next, the BOX layer was etched away with an aqueous solution of hydrofluoric acid and rinsed with ultrapure water to expose a clean silicon thin film layer. Thus, a structure in which the pattern effective area is a silicon thin film layer (membrane) was obtained.

次に、シリコン薄膜層の表面のほぼ全領域に、SiO膜をスパッタリングにより膜厚25nmの低反射層を形成した。これにより、図2(a)に相当するEUVペリクルを得た。 Then, almost the entire area of the surface of the silicon thin film layer to form a low reflection layer having a film thickness of 25nm by sputtering SiO 2 film. Thus, an EUV pellicle corresponding to FIG. 2 (a) was obtained.

本実施例のEUVペリクルのメンブレン部について、アウトオブバンド光である波長150〜400nmの平均反射率を測定したところ17%となり、低反射層を形成しなかった場合の反射率40%と比べて、充分な低反射機能を有していることが分かった。   When the average reflectance of the wavelength 150 to 400 nm which is the out-of-band light is measured for the membrane part of the EUV pellicle of this example, it is 17%, which is 40% of the reflectance when the low reflective layer is not formed. It turned out that it has a sufficiently low reflection function.

本発明の別の形態を示す。実施例と同様にSOI基板を元に、パターン有効領域がシリコン薄膜層の構造体を形成するまでの工程は同じである。   3 illustrates another aspect of the present invention. Similar to the embodiment, the steps until the pattern effective region forms the structure of the silicon thin film layer based on the SOI substrate are the same.

次に、シリコン薄膜層の両面にマイクロ波プラズマCVDにより、ダイヤモンド薄膜を約20nmの膜厚で形成し、熱伝導層とした。これにより、図2(b)に相当するEUVペリクルを得た。   Next, a diamond thin film was formed to a thickness of about 20 nm on both sides of the silicon thin film layer by microwave plasma CVD to form a thermally conductive layer. Thus, an EUV pellicle corresponding to FIG. 2 (b) was obtained.

本実施例のEUVペリクルのメンブレン部の熱伝導を、レーザーフラッシュ法熱定数測定装置にて測定したところ、332W・m−1・K−1となり、熱伝導層を形成しなかった場合の熱伝導率134W・m−1・K−1と比べて、高い熱伝導性を有していることが分かった。 The thermal conductivity of the membrane part of the EUV pellicle of this embodiment is 332 W · m −1 · K −1 when measured by the laser flash method thermal constant measurement apparatus, and the thermal conductivity when the thermal conductive layer is not formed compared with rates 134W · m -1 · K -1, it was found to have a high thermal conductivity.

本発明の別の形態を示す。実施例と同様にSOI基板を元に、パターン有効領域がシリコン薄膜層の構造体を形成するまでの工程は同じである。   3 illustrates another aspect of the present invention. Similar to the embodiment, the steps until the pattern effective region forms the structure of the silicon thin film layer based on the SOI substrate are the same.

実施例2と同様の方法で熱伝導層を形成したメンブレン部を製造した後、さらに実施例1と同様の方法で熱伝導層の上層に低反射層を形成した。これにより、図2(e)に相当するEUVペリクルを得た。
本実施例のEUVペリクルのメンブレン部について、波長150〜400nmの平均反射率を測定したところ、12%となり、充分な低反射性を有することが分かった。また、熱伝導率を測定したところ、308W・m−1・K−1となり、高い熱伝導性を有していることが分かった。
After manufacturing the membrane part which formed the heat conduction layer by the same method as Example 2, the low reflective layer was formed in the upper layer of the heat conduction layer by the same method as Example 1 further. Thus, an EUV pellicle corresponding to FIG. 2 (e) was obtained.
When the average reflectance at a wavelength of 150 to 400 nm was measured for the membrane portion of the EUV pellicle of this example, it was 12%, and it was found that the film had sufficiently low reflectivity. The measured thermal conductivity was found to have 308W · m -1 · K -1, and the high thermal conductivity.

本発明を実施することにより、EUV光を使用するリソグラフィに使用するEUVマスクのパターン表面に異物が付着するのを防止するペリクルとして、EUV光源に含まれるアウトオブバンド光の反射を低減でき、半導体パターンの劣化を防ぐことが出来る。また、ペリクルの温度上昇を抑制することが可能となるため、ペリクル自体の劣化やその輻射熱に起因するEUVマスクの劣化を防ぐことが出来る。さらに、本発明のペリクルのうち、梁構造の無いタイプを用いれば、梁構造部でのEUV光量損失が無いために、従来見られていた半導体パターンの寸法均一性の低下は起こらない。   By practicing the present invention, it is possible to reduce the reflection of out-of-band light included in the EUV light source as a pellicle to prevent foreign matter from adhering to the pattern surface of the EUV mask used for lithography using EUV light. It is possible to prevent the deterioration of the pattern. Further, since it is possible to suppress the temperature rise of the pellicle, it is possible to prevent the deterioration of the pellicle itself and the deterioration of the EUV mask due to the radiant heat. Furthermore, among the pellicles according to the present invention, when the type without the beam structure is used, the decrease in the uniformity of the semiconductor pattern as in the prior art does not occur because there is no loss of EUV light in the beam structure.

01…外枠部
02、02a、02b…ペリクル膜
03…梁構造部
04a、04b…酸化防止膜
05…絶縁体層
06…低反射層
07、07a、07b…熱伝導層
10…メンブレン部
30…ペリクルフレーム
DESCRIPTION OF SYMBOLS 01 ... Outer frame part 02, 02a, 02b ... Pellicle film 03 ... Beam structure part 04a, 04b ... Antioxidant film 05 ... Insulator layer 06 ... Low reflection layer 07, 07a, 07b ... Heat conduction layer 10 ... Membrane part 30 ... Pellicle frame

Claims (2)

EUVマスク上に設けるペリクルであって、
ペリクル表面にEUV光源に含まれるアウトオブバンド光に対する低反射層と、
ダイヤモンド、ナノダイヤモンド(微結晶ダイヤモンド)、DLC(ダイヤモンドライクカーボン)、窒化アルミニウム、金、銀、銅、アルミニウム、窒化ケイ素(Si)のいずれかを含む高熱伝導層と、
を有し、
前記低反射層の材料が、Si、Cr、Al、Zr及びそれらの酸化物、窒化物、酸窒化物のいずれかを含むことを特徴とするペリクル。
A pellicle provided on an EUV mask,
A low reflective layer for out-of-band light contained in the EUV light source on the pellicle surface,
High thermal conductivity layer comprising any of diamond, nano diamond (microcrystalline diamond), DLC (diamond like carbon), aluminum nitride, gold, silver, copper, aluminum, silicon nitride (Si 3 N 4 ),
I have a,
A pellicle characterized in that the material of the low reflective layer comprises any of Si, Cr, Al, Zr and oxides, nitrides and oxynitrides thereof .
露光領域に機械的強度を保つための梁構造体を有しないことを特徴とする請求項1記載のペリクル。   The pellicle according to claim 1, which does not have a beam structure for maintaining mechanical strength in the exposure area.
JP2014214415A 2014-10-21 2014-10-21 Pellicle Active JP6520041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014214415A JP6520041B2 (en) 2014-10-21 2014-10-21 Pellicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014214415A JP6520041B2 (en) 2014-10-21 2014-10-21 Pellicle

Publications (2)

Publication Number Publication Date
JP2016080967A JP2016080967A (en) 2016-05-16
JP6520041B2 true JP6520041B2 (en) 2019-05-29

Family

ID=55958514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014214415A Active JP6520041B2 (en) 2014-10-21 2014-10-21 Pellicle

Country Status (1)

Country Link
JP (1) JP6520041B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179199A1 (en) * 2016-04-15 2017-10-19 凸版印刷株式会社 Pellicle
CN108132582B (en) * 2016-12-01 2020-06-09 清华大学 Photoetching mask plate
JP6518801B2 (en) 2017-03-10 2019-05-22 エスアンドエス テック カンパニー リミテッド Pellet for extreme ultraviolet lithography and method of manufacturing the same
KR102310124B1 (en) 2017-03-28 2021-10-08 삼성전자주식회사 Pellicle for exposure to extreme ultraviolet light, photomask assembly and method of manufacturing the pellicle
EP3404487B1 (en) * 2017-05-15 2021-12-01 IMEC vzw Method for forming a carbon nanotube pellicle membrane
EP3404485B1 (en) * 2017-05-15 2019-07-03 IMEC vzw A lithographic reticle system
JP7252950B2 (en) * 2017-11-21 2023-04-05 エーエスエムエル ネザーランズ ビー.ブイ. porous graphite pellicle
JP7019472B2 (en) * 2018-03-22 2022-02-15 三井化学株式会社 Method for manufacturing carbon nanotube free-standing film and method for manufacturing pellicle
EP3798728A1 (en) * 2019-09-26 2021-03-31 S&S Tech Co., Ltd. Pellicle for euv lithography and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007094197A1 (en) * 2006-02-16 2009-07-02 株式会社ニコン Protective device, mask and exposure device
JP5511818B2 (en) * 2008-08-06 2014-06-04 エーエスエムエル ネザーランズ ビー.ブイ. Optical element for a lithographic apparatus, lithographic apparatus comprising such an optical element, and method for manufacturing such an optical element
WO2014020003A1 (en) * 2012-08-03 2014-02-06 Asml Netherlands B.V. Lithographic apparatus and method of manufacturing a device
CN105051604B (en) * 2013-03-15 2019-07-23 旭化成株式会社 Pellicle film and pellicle

Also Published As

Publication number Publication date
JP2016080967A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6520041B2 (en) Pellicle
KR102479274B1 (en) Reflective mask blank, reflective mask and method for manufacturing semiconductor device
JP4372178B2 (en) Light reflecting mask, light reflecting mask manufacturing method, and semiconductor device manufacturing method
JP7317472B2 (en) Pellicle for photomask, reticle including the same, and method for manufacturing pellicle for photomask
JP5881633B2 (en) Light-reflective photomask for EUV exposure, mask blank, and method for manufacturing semiconductor device
JP7106492B2 (en) MASK BLANK, PHASE SHIFT MASK, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
US20030232256A1 (en) Photolithographic mask and methods for the fabrication of the mask
JP2006324268A (en) Mask blanks for euv exposure, its manufacturing method and mask for euv exposure
JP2012009537A (en) Reflection type mask blank, reflection type mask, method of manufacturing reflection type mask blank, and method of manufacturing reflection type mask
US20050064299A1 (en) Method for fabricating a mask using a hardmask and method for making a semiconductor device using the same
JP2016114820A (en) Pellicle for reflection type mask and manufacturing method of pellicle for reflection type mask
JP2016072438A (en) Reflective mask blank, reflective mask and method of manufacturing the same, and method of manufacturing semiconductor device
JP2010122304A (en) Reflective mask blank, reflective mask, method for manufacturing reflective mask blank, and method for manufacturing reflective mask
WO2017179199A1 (en) Pellicle
JP2020181206A (en) Reflection type mask blank, reflection type mask and manufacturing method of semiconductor device
TW201738650A (en) Protective film element capable of reducing radiation heat and avoiding deterioration of the EUV mask surface
JP6303346B2 (en) Reflective mask blank and reflective mask
WO2019230312A1 (en) Mask blank, phase-shift mask, and semiconductor device manufacturing method
JP2004128490A (en) Manufacturing method of reflective mask blank and reflective mask and manufacturing method of semiconductor device
JP2022183205A (en) Manufacturing method of reflection type mask, reflection type mask blank and semiconductor device
JP2014183075A (en) Reflective mask, and method of manufacturing the same
KR100735530B1 (en) Reflective photomask including a mesa shaped reflective layer and method for fabricating the same
JP2014232844A (en) Method for manufacturing reflective mask
JP6260149B2 (en) Reflective mask blank and reflective mask
WO2020137518A1 (en) Mask blank, phase shift mask, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250