JP6415540B2 - Carbon nanomaterial coating method - Google Patents

Carbon nanomaterial coating method Download PDF

Info

Publication number
JP6415540B2
JP6415540B2 JP2016509398A JP2016509398A JP6415540B2 JP 6415540 B2 JP6415540 B2 JP 6415540B2 JP 2016509398 A JP2016509398 A JP 2016509398A JP 2016509398 A JP2016509398 A JP 2016509398A JP 6415540 B2 JP6415540 B2 JP 6415540B2
Authority
JP
Japan
Prior art keywords
nanomaterial
solution
motomeko
temperature range
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016509398A
Other languages
Japanese (ja)
Other versions
JP2016526092A (en
Inventor
リウ、ヨハン・ジャンイーン
Original Assignee
シェンジェン シェン ルイ グラフィン テクノロジー カンパニー リミテッド
シェンジェン シェン ルイ グラフィン テクノロジー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シェンジェン シェン ルイ グラフィン テクノロジー カンパニー リミテッド, シェンジェン シェン ルイ グラフィン テクノロジー カンパニー リミテッド filed Critical シェンジェン シェン ルイ グラフィン テクノロジー カンパニー リミテッド
Publication of JP2016526092A publication Critical patent/JP2016526092A/en
Application granted granted Critical
Publication of JP6415540B2 publication Critical patent/JP6415540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1666Ultrasonics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1676Heating of the solution
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1682Control of atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Description

発明の分野Field of Invention

本発明は、炭素系ナノ材料に関し、特にこのような材料の被覆に関する。   The present invention relates to carbon-based nanomaterials, and in particular to coating such materials.

炭素系ナノ材料(CNM)はその優れた機械的および電気的特性のために最近多くの注目を引いている。たとえば、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)およびグラフェンは、高引張強さおよび高弾性率、ならびに高熱伝導率および高電気伝導率を含めて、それらの優れた機械的特徴のため、様々な用途の理想的な原材料である。   Carbon-based nanomaterials (CNM) have recently received much attention due to their excellent mechanical and electrical properties. For example, carbon nanotubes (CNT), carbon nanofibers (CNF) and graphene, due to their superior mechanical characteristics, including high tensile strength and high modulus, and high thermal and high electrical conductivity, It is an ideal raw material for various applications.

したがって、CNMの実際の適用のための研究が積極的に進められてきた。特に、これらのナノ材料を含む金属複合材は、改善された独特の機能性を提供する新規材料として有望である。たとえば、金属−CNF複合材は、高強度および高熱伝導率を有するものと予想される。しかし、CNFの溶融金属、たとえばスズ合金、アルミニウムおよび銀との濡れ性が良くないので、いくつかの欠陥および空孔が複合材の中に検出されることがあり、これはあらゆる種類のCNMに存在する共通の問題でもある。したがって、金属合金と合わせる前にCNMの表面改質が必要である。   Therefore, research for actual application of CNM has been actively promoted. In particular, metal composites containing these nanomaterials are promising as new materials that provide improved and unique functionality. For example, metal-CNF composites are expected to have high strength and high thermal conductivity. However, due to the poor wettability of CNF with molten metals such as tin alloys, aluminum and silver, some defects and vacancies may be detected in the composite, which can be found in all types of CNMs. It is a common problem that exists. Therefore, it is necessary to modify the surface of the CNM before combining with the metal alloy.

金属被覆を表面に塗布することが、それらの溶融金属との濡れ性を改善するのに最も有効な方法の1つである。金属被覆または被着によって、CNMに種々の有益な特性、たとえば高い平均密度、種々の溶媒に対する良好な溶解性ならびに望ましい磁性および触媒特性を付与することもできる。金属被覆したCNMは高い平均密度のため、リフロー後にはんだフラックスによって不純物として除去されることがない。均質な金属被覆層であれば、ナノ材料の凝集を防止するためのバリヤとしても働くことができ、それによって、十分に分散させたCNM懸濁液を得ることが容易になる。強磁性金属で被覆したCNMは、磁界により制御可能に動かすことができ、このことによって、高度に制御されたマイクロテクスチャを有するCNM複合材がもたらされてもよい。触媒金属粒子を被着させたCNMは、用途、たとえば改善された燃料電池電極に関して優れた触媒をもたらしてもよい。   Applying a metal coating to the surface is one of the most effective ways to improve the wettability of those molten metals. Metallization or deposition can also impart various beneficial properties to the CNM, such as high average density, good solubility in various solvents, and desirable magnetic and catalytic properties. Metal-coated CNMs are not removed as impurities by solder flux after reflow due to their high average density. A homogeneous metal coating layer can also act as a barrier to prevent nanomaterial aggregation, thereby facilitating obtaining a well-dispersed CNM suspension. A ferromagnetic metal coated CNM can be controlled by a magnetic field, which may result in a CNM composite having a highly controlled microtexture. A CNM deposited with catalytic metal particles may provide an excellent catalyst for applications such as improved fuel cell electrodes.

したがって、CNMの表面上の均一に分散させた金属被覆層は上記の興味深い特性の達成に決定的に重要なものとなる。しかし、CNMの不活性な性質は周囲との相互作用の弱さにもつながり、したがって(金属ナノ粒子の均一な被着を含めて)表面機能化の点から難題である。CNMに対する金属性被覆方法は公知であるが、単にスズ(II)イオンを増感剤として使用して、CNMを前処理するような通常の増感方法はCNMの表面不活性が強いのであまりうまくいかず、従来の硝酸処理では炭素と硝酸の間の反応を精密に制御することができないので、十分な活性化点を形成することができない。これらの要因はすべて、被着させた金属ナノ粒子の粒度分布および均一性にマイナス効果をもたらすことになる。   Thus, a uniformly dispersed metal coating on the surface of the CNM becomes critical to achieving the interesting properties described above. However, the inert nature of CNM also leads to weak interaction with the surroundings and is therefore a challenge in terms of surface functionalization (including uniform deposition of metal nanoparticles). Although metallic coating methods for CNM are known, conventional sensitizing methods such as simply pretreating CNM using tin (II) ions as the sensitizer are not very successful due to the strong surface inertness of CNM. However, the conventional nitric acid treatment cannot precisely control the reaction between carbon and nitric acid, so that a sufficient activation point cannot be formed. All of these factors will have a negative effect on the particle size distribution and uniformity of the deposited metal nanoparticles.

被覆したナノ材料の上記の所望の特性ならびに先行技術の上記および他の欠点を考慮して、本発明の目的はカーボンナノ材料の自己触媒めっきの改良方法を提供することである。   In view of the above desired properties of coated nanomaterials and the above and other shortcomings of the prior art, it is an object of the present invention to provide an improved method of autocatalytic plating of carbon nanomaterials.

したがって、本発明の第1の側面によれば、カーボンナノ材料の自己触媒めっき方法が提供され、方法は、少なくとも2種の酸化剤を含む酸化性溶液中のカーボンナノ材料を用意し、溶液を第1の温度範囲内に維持し、溶液を第1の所定の時間撹拌する工程と、溶液を加熱して、第1の温度範囲より高い第2の温度範囲に到達させ、溶液を第2の温度範囲内に維持しながら、溶液を第1の時間より短い第2の所定の時間撹拌する工程と、ナノ材料を酸化性溶液から取り出す工程と、増感剤を含む増感水溶液にナノ材料を分散する工程と、ナノ材料を増感溶液から取り出す工程と、ナノ材料に付着している種粒子を含む種混合物にナノ材料を浸漬する工程と、ナノ材料を種混合物から取り出す工程と、水性の金属源および第1の水性還元剤を含むめっき溶液にナノ材料を浸漬することによって、金属性層が種粒子からナノ材料上に成長するようにナノ材料をめっきする工程と、ナノ材料をめっき溶液から取り出す工程と、第2の還元剤を含む水溶液にナノ材料を分散する工程と、溶液を加熱して、第3の温度範囲に到達させ、溶液を第3の温度範囲内に維持しながら、加熱した溶液の超音波処理を第3の所定の時間行う工程とを含む。   Therefore, according to the first aspect of the present invention, a method for autocatalytic plating of carbon nanomaterials is provided, the method comprising preparing a carbon nanomaterial in an oxidizing solution containing at least two oxidizing agents, Maintaining within the first temperature range and stirring the solution for a first predetermined time; heating the solution to reach a second temperature range higher than the first temperature range; Stirring the solution for a second predetermined time shorter than the first time, maintaining the temperature range, removing the nanomaterial from the oxidizing solution, and adding the nanomaterial to the sensitized aqueous solution containing the sensitizer. Dispersing the nanomaterial from the sensitizing solution; immersing the nanomaterial in a seed mixture including seed particles attached to the nanomaterial; removing the nanomaterial from the seed mixture; Contains a metal source and a first aqueous reducing agent Immersing the nanomaterial in the plating solution, plating the nanomaterial such that the metallic layer grows from the seed particles onto the nanomaterial, removing the nanomaterial from the plating solution, and a second reducing agent. A step of dispersing the nanomaterial in the aqueous solution, and heating the solution to reach the third temperature range and maintaining the solution in the third temperature range while subjecting the heated solution to ultrasonic treatment. Performing for a predetermined time.

カーボンナノ材料(CNM)は本文脈の中では、ナノメートルの粒度範囲において少なくとも何らかの特徴を有する炭素系材料または構造として理解されるべきである。   Carbon nanomaterial (CNM) is to be understood within this context as a carbon-based material or structure having at least some characteristics in the nanometer particle size range.

無電解めっきまたは化学めっきと呼ぶこともある自己触媒めっきは、外部電力を使用することなく、反応が水溶液中で行われる方法に関する。   Autocatalytic plating, sometimes referred to as electroless plating or chemical plating, relates to a method in which the reaction is carried out in an aqueous solution without the use of external power.

カーボンナノ材料をそれぞれの溶液および/または混合物から取り出す工程は、当業者に公知の通常の方法、たとえば濾過および/または乾燥のいずれの方法で行ってもよい。   The step of removing the carbon nanomaterial from the respective solutions and / or mixtures may be performed by any conventional method known to those skilled in the art, for example, filtration and / or drying.

本発明は、前処理工程において異なる少なくとも2種の酸化剤(複数の酸化体)を使用することによって、CNMの表面が、ある温度範囲において炭素に強い影響を及ぼす複数の酸化体によって酸化されるという認識に基づいている。それによって、酸化度は、反応温度および反応時間を改変することにより精密に制御することができる。酸化度が高かすぎると、炭素材料の構造を破壊する可能性があるので、CNMの酸化度を制御することは極めて重大である。   In the present invention, by using at least two different oxidants (plural oxidants) in the pretreatment step, the surface of the CNM is oxidized by a plurality of oxidants that strongly affect carbon in a certain temperature range. Is based on the recognition. Thereby, the degree of oxidation can be precisely controlled by modifying the reaction temperature and reaction time. Controlling the degree of oxidation of the CNM is extremely important because if the degree of oxidation is too high, the structure of the carbon material may be destroyed.

ここで、酸化は2工程に分けられ、方法の初めに長い間低温を維持して、酸化体を炭素分子の間隔に浸透させる。次に、温度を上げ、より短い時間維持して、反応を引き起こす。この工程において、元の安定なsp2炭素−炭素結合が突然切断され、代わりに材料の構造全体を破壊することなく、十分な可逆的酸素含有基がCNMの表面に形成された。温度を急速に上げてもよい。 Here, the oxidation is divided into two steps, and a low temperature is maintained for a long time at the beginning of the method to allow the oxidant to penetrate into the spacing of the carbon molecules. The temperature is then raised and maintained for a shorter time to cause the reaction. In this process, the original stable sp 2 carbon-carbon bond was suddenly broken, and instead sufficient reversible oxygen-containing groups were formed on the surface of the CNM without destroying the entire structure of the material. The temperature may be increased rapidly.

表面酸化を行った後、CNMの表面の金属ナノ粒子の分散、粒度および幾何形状を錯化剤の存在および還元剤の特殊な特性の結果として十分制御して、基材表面に緻密で均質な金属ナノ粒子を被着させることができる無電解析出方法で金属性層を合成した。その後、金属被覆したCNMの還元を行えば、酸素含有基の大部分を炭素表面から除去し、炭素−炭素結合を再形成することができる。   After performing surface oxidation, the dispersion, particle size and geometry of the metal nanoparticles on the surface of the CNM are well controlled as a result of the presence of the complexing agent and the special properties of the reducing agent to provide a dense and homogeneous surface on the substrate surface. A metallic layer was synthesized by an electroless deposition method capable of depositing metal nanoparticles. Thereafter, reduction of the metal-coated CNM can remove most of the oxygen-containing groups from the carbon surface and reform the carbon-carbon bond.

本発明の一態様において、第1の温度範囲は、有利には、−10〜10℃であってもよく、第1の時間は1時間〜8時間であってもよい。   In one aspect of the invention, the first temperature range may advantageously be −10 to 10 ° C. and the first time may be 1 hour to 8 hours.

本発明の一態様において、第2の温度範囲は、有利には、30〜50℃であってもよく、第2の時間は10〜60分であってもよい。上記の温度範囲および時間で、CNMの元の構造を破壊することなく、CNMの効率的な酸化が可能になることが明らかになった。   In one aspect of the invention, the second temperature range may advantageously be 30-50 ° C. and the second time may be 10-60 minutes. It has been found that in the above temperature range and time, efficient oxidation of CNM is possible without destroying the original structure of CNM.

本発明の一態様によれば、酸化剤は、有利には、硫酸、硝酸、過マンガン酸カリウム、二クロム酸カリウムおよび窒化ナトリウムのうちの少なくとも2種を含んでいてもよい。たとえば硫酸分子を利用して、CNTの様々な層を貫通し、過マンガン酸カリウム分子を内側に運び、酸化を実現することによって、十分な量の酸化スポットを形成して、その後の金属被覆方法を容易にすることができる。   According to one aspect of the invention, the oxidizing agent may advantageously comprise at least two of sulfuric acid, nitric acid, potassium permanganate, potassium dichromate and sodium nitride. For example, by using sulfuric acid molecules, penetrating through various layers of CNTs, carrying potassium permanganate molecules inward, and realizing oxidation, thereby forming a sufficient amount of oxidation spots, followed by a metal coating method Can be made easier.

さらに、増感剤は、好ましくは、ホルムアルデヒド、ポリビニルピロリドンまたは塩化スズ(II)を含んでもよい。   Furthermore, the sensitizer may preferably comprise formaldehyde, polyvinylpyrrolidone or tin (II) chloride.

本発明の一態様において、ナノ材料を酸化性溶液から取り出す工程は、有利には、ナノ材料を濾過し、すすぎ液のpH値が約7になるまで脱イオン水ですすぐことを含んでいてもよい。それによって、pH値を監視することにより、酸化剤のすべてが除去されていること、カーボンナノ材料しか残留していないことを決定することができる。   In one aspect of the invention, the step of removing the nanomaterial from the oxidizing solution may advantageously comprise filtering the nanomaterial and rinsing with deionized water until the pH value of the rinse liquid is about 7. Good. Thereby, by monitoring the pH value, it can be determined that all of the oxidant has been removed and that only the carbon nanomaterial remains.

本発明の一態様によれば、種粒子は、有利には、パラジウムを含んでいてもよい。パラジウムはたとえば塩化パラジウムから供給されてもよい。しかし、他の金属、たとえば金銀および銅を種粒子として使用してもよい。   According to one aspect of the invention, the seed particles may advantageously contain palladium. Palladium may be supplied from, for example, palladium chloride. However, other metals such as gold silver and copper may be used as seed particles.

本発明の一態様によれば、第1の還元剤は、硫酸コバルト、塩化第一鉄、ホルムアルデヒド、ポリビニルピロリドン、アンモニア水、エチレンジアミン、エチレンジアミン四酢酸またはベンゾトリアゾールを含んでもよい。   According to one aspect of the present invention, the first reducing agent may include cobalt sulfate, ferrous chloride, formaldehyde, polyvinylpyrrolidone, aqueous ammonia, ethylenediamine, ethylenediaminetetraacetic acid, or benzotriazole.

本発明の一態様によれば、めっきする工程は、有利には、前記溶液中の溶存酸素を超音波で除去して、前記還元剤の酸化を回避することを含んでいてもよい。   According to one aspect of the invention, the step of plating may advantageously include removing dissolved oxygen in the solution with ultrasound to avoid oxidation of the reducing agent.

本発明の一態様によれば、めっきする工程は、前記溶液に窒素ガスを通しながら、閉容器で行われてもよい。   According to one aspect of the present invention, the plating step may be performed in a closed container while passing nitrogen gas through the solution.

本発明の一態様によれば、水性の金属源は、パラジウム、銀、金またはニッケルを含んでもよい。   According to one aspect of the invention, the aqueous metal source may comprise palladium, silver, gold or nickel.

本発明の一態様において、水性の金属源は、窒化銀、塩素酸パラジウム、塩化金、塩化ニッケル、アンモニア水、硫酸アンモニウム、エチレンジアミンおよびエチレンジアミン四酢酸を含む群から選択される金属イオン源であってもよい。   In one embodiment of the present invention, the aqueous metal source may be a metal ion source selected from the group comprising silver nitride, palladium chlorate, gold chloride, nickel chloride, aqueous ammonia, ammonium sulfate, ethylenediamine and ethylenediaminetetraacetic acid. Good.

本発明の一態様において、第3の温度範囲は60〜100℃であってもよく、第3の時間は少なくとも1時間であってもよい。   In one embodiment of the present invention, the third temperature range may be 60-100 ° C. and the third time may be at least 1 hour.

本発明の一態様において、カーボンナノ材料は、カーボンナノチューブ、カーボンナノファイバーまたはグラフェンであってもよい。当然、他の同様の炭素系ナノ材料を使用することも可能である。さらに、同様のカーボンナノ材料は、異なる名称、たとえばナノロッド、ナノピラー、ナノワイヤなどで呼ばれていてもよい。   In one embodiment of the present invention, the carbon nanomaterial may be a carbon nanotube, a carbon nanofiber, or graphene. Of course, other similar carbon-based nanomaterials can be used. Furthermore, similar carbon nanomaterials may be referred to by different names, such as nanorods, nanopillars, nanowires, and the like.

本発明の一態様において、めっきする工程は、0.5〜24時間行われてもよい。めっき時間によって、CNM上に得られる金属性被覆の厚さが決まる。したがって、めっき時間を制御することによって、所望の被覆厚さを実現することが可能である。   In one embodiment of the present invention, the plating step may be performed for 0.5 to 24 hours. The plating time determines the thickness of the metallic coating obtained on the CNM. Therefore, it is possible to achieve a desired coating thickness by controlling the plating time.

本発明の一態様によれば、第2の還元剤は、有利には、水酸化カリウム、水素化ホウ素ナトリウム、ピロガロール、L−アスコルビン酸およびヒドラジン一水和物を含む群から選択されていてもよい。第2の還元剤は、好ましくは、強還元剤である。   According to one aspect of the present invention, the second reducing agent may advantageously be selected from the group comprising potassium hydroxide, sodium borohydride, pyrogallol, L-ascorbic acid and hydrazine monohydrate. Good. The second reducing agent is preferably a strong reducing agent.

本発明の別の特徴および利点は、添付の特許請求の範囲および以下の説明を詳しく検討すると明らかになる。当業者は、本発明の異なる特徴を組み合わせて、以下に記載される態様以外の態様を本発明の範囲から逸脱することなく作り出していてもよいことを理解する。   Other features and advantages of the present invention will become apparent from a detailed study of the appended claims and the following description. Those skilled in the art will appreciate that different features of the present invention may be combined to create embodiments other than those described below without departing from the scope of the present invention.

ここで、本発明の以上および他の側面について、本発明の例示的な態様を示す添付の図面を参照しながらさらに詳細に説明する。   These and other aspects of the invention will now be described in more detail with reference to the accompanying drawings, which illustrate exemplary embodiments of the invention.

図1は、本発明の一態様による方法の一般工程を概略する流れ図である。FIG. 1 is a flowchart outlining the general steps of a method according to one aspect of the present invention. 図2aは、本発明の一態様に従って製造された材料を示すTEM画像である。FIG. 2a is a TEM image showing a material made according to one aspect of the present invention. 図2bは、本発明の一態様に従って製造された材料を示すTEM画像である。FIG. 2b is a TEM image showing a material made according to one aspect of the present invention. 図3aは、本発明の一態様に従って製造された材料を示すTEM画像である。FIG. 3a is a TEM image showing a material made according to one aspect of the present invention. 図3bは、本発明の一態様に従って製造された材料を示すTEM画像である。FIG. 3b is a TEM image showing a material made according to one aspect of the present invention. 図4は、本発明の一態様に従って被覆した材料のXRD回折図形である。FIG. 4 is an XRD diffraction pattern of a material coated according to one embodiment of the present invention.

発明の好ましい態様の詳細な説明Detailed Description of the Preferred Embodiments of the Invention

この詳細な説明において、カーボンナノ材料(CNM)、たとえばカーボンナノチューブ、カーボンナノファイバーまたはグラフェン(以降CNMと呼ぶ)を参照しながら、本発明によるナノ材料の被覆方法の様々な態様を主に述べる。   In this detailed description, various aspects of the coating method of nanomaterials according to the present invention will be mainly described with reference to carbon nanomaterials (CNM) such as carbon nanotubes, carbon nanofibers or graphene (hereinafter referred to as CNM).

被覆したナノ材料を製造する方法について、方法の一般工程を概略する図1の流れ図を参照しながら説明する。   A method of manufacturing a coated nanomaterial will be described with reference to the flow diagram of FIG. 1 that outlines the general steps of the method.

最初に(102)、選択されたCNMをアセトンおよび脱イオン水ですすいで、いずれの不純物および保護層もCNMの表面から除去する。   Initially (102), the selected CNM is rinsed with acetone and deionized water to remove any impurities and protective layers from the surface of the CNM.

すすいだ後、CNMを複数の酸化剤と約−10〜10℃の範囲の温度で混合し(104)、続いてその温度で1〜4時間撹拌して、強酸化が起こることなく、酸化剤の分子がCNMの表面に侵入するようにする。   After rinsing, the CNM is mixed with a plurality of oxidants at a temperature in the range of about −10 to 10 ° C. (104), followed by stirring at that temperature for 1 to 4 hours without causing strong oxidation to occur. To enter the surface of the CNM.

酸化剤は、硫酸、硝酸、過マンガン酸カリウム、二クロム酸カリウムおよび窒化ナトリウムのうちの少なくとも2種を含む。硫酸および窒化ナトリウムはインターカレーション剤として働いて、酸化剤をCNTの内層に運び、過マンガン酸カリウムであってもよい酸化剤はCNTの表面酸化を行う。爆発反応を回避するために、酸化剤は、非常にゆっくり硫酸に添加されるべきである。   The oxidizing agent includes at least two of sulfuric acid, nitric acid, potassium permanganate, potassium dichromate, and sodium nitride. Sulfuric acid and sodium nitride act as an intercalating agent to carry the oxidizing agent to the inner layer of the CNT, and an oxidizing agent, which may be potassium permanganate, performs surface oxidation of the CNT. In order to avoid explosive reactions, the oxidant should be added to the sulfuric acid very slowly.

次に、約0.5時間〜3時間撹拌しながら、30〜50℃の範囲に維持するために、温度を上げて制御する。   Next, in order to maintain in the range of 30-50 degreeC, stirring for about 0.5 hour-3 hours, temperature is raised and controlled.

その後、酸化されたCNMを、真空濾過を使用することによって溶液から分離し、その後CNMを脱イオン水で濾液のPHが約7になるまで数回洗浄して、酸化剤が完全に除去されていることを確実にする。   The oxidized CNM is then separated from the solution by using vacuum filtration, and then the CNM is washed several times with deionized water until the pH of the filtrate is about 7 to remove the oxidant completely. To be sure.

洗浄後に、酸化されたCNMを増感剤水溶液に分散し、したがってCNMが増感される(106)。増感剤は、たとえばホルムアルデヒド、ポリビニルピロリドンまたは塩化スズ(II)となるように選択されていてもよい。   After washing, the oxidized CNM is dispersed in the aqueous sensitizer solution, thus sensitizing the CNM (106). The sensitizer may be selected to be, for example, formaldehyde, polyvinyl pyrrolidone or tin (II) chloride.

増感後に、CNMを、塩化パラジウムを含有する溶液に浸漬し、パラジウム粒子がCNMに付着することによって活性化した(108)後に、遠心し、濾過した溶液のpHが7.0になるまで蒸留水ですすぐ。次いで、パラジウム種で被覆したCNMを回収し、真空オーブンで乾燥する。パラジウムは銀自己めっきプロセスを引き起こすのに優れた触媒であるので、パラジウム種粒子はその後の銀の成長の核形成点として特に有利である。   After sensitization, CNM is immersed in a solution containing palladium chloride and activated by palladium particles adhering to CNM (108), then centrifuged and distilled until the pH of the filtered solution is 7.0. Rinse with water. The CNM coated with the palladium species is then recovered and dried in a vacuum oven. Palladium seed particles are particularly advantageous as a nucleation point for subsequent silver growth because palladium is an excellent catalyst for triggering the silver self-plating process.

次に、活性化したCNMを自己触媒めっき溶液に浸漬する。自己触媒めっき溶液は、金属イオン源水溶液と水性還元剤溶液の2つの別個の溶液として調製して、めっきより前に等量を混合する。めっき(110)は室温で実施し、被着時間は必要とされる被覆厚さによって決まる。たとえば、金属ナノ粒子のCNM上での成長速度は約0.5nm/時であってもよい。還元剤の酸化を回避するために、脱イオン水中の溶存酸素を超音波で除去し、溶液に窒素ガスを通しながら、被着を閉容器中で行う。それによって、外形のはっきりした均質な金属被覆を有する炭素系ナノ材料が、カーボンナノ材料の構造を損傷することなく提供される。   Next, the activated CNM is immersed in the autocatalytic plating solution. The autocatalytic plating solution is prepared as two separate solutions, an aqueous metal ion source solution and an aqueous reducing agent solution, with equal amounts mixed prior to plating. Plating (110) is performed at room temperature and the deposition time depends on the required coating thickness. For example, the growth rate of metal nanoparticles on the CNM may be about 0.5 nm / hour. In order to avoid oxidation of the reducing agent, the dissolved oxygen in the deionized water is ultrasonically removed, and the deposition is performed in a closed container while passing nitrogen gas through the solution. Thereby, a carbon-based nanomaterial having a uniform metal coating with a clear outline is provided without damaging the structure of the carbon nanomaterial.

コバルト還元剤水溶液は、以下の化学物質:硫酸コバルト、塩化第一鉄、ホルムアルデヒド、ポリビニルピロリドン、アンモニア水、エチレンジアミン、エチレンジアミン四酢酸およびベンゾトリアゾールのうちの1つまたは複数であってもよい。   The cobalt reducing agent aqueous solution may be one or more of the following chemical substances: cobalt sulfate, ferrous chloride, formaldehyde, polyvinylpyrrolidone, aqueous ammonia, ethylenediamine, ethylenediaminetetraacetic acid, and benzotriazole.

金属イオン源水溶液は、窒化銀、塩素酸パラジウム、塩化金、塩化ニッケル、アンモニア水、硫酸アンモニウム、エチレンジアミンおよびエチレンジアミン四酢酸のうちの1つまたは複数とすることができる。それによって、金属、たとえばパラジウム、銀、金およびニッケルを被覆していてもよい。典型的には、5〜100nmの範囲の厚さを有する金属被覆を設けることが望ましくてもよい。   The aqueous metal ion source solution can be one or more of silver nitride, palladium chlorate, gold chloride, nickel chloride, aqueous ammonia, ammonium sulfate, ethylenediamine and ethylenediaminetetraacetic acid. Thereby it may be coated with a metal such as palladium, silver, gold and nickel. Typically, it may be desirable to provide a metal coating having a thickness in the range of 5-100 nm.

反応が完了した後、すなわち所望の厚さに到達した後、金属被覆したCNMを濾過し、濾液の色が実質的に透明になるまで洗浄する。洗浄後に、超音波処理を使用して、CNMを脱イオン水に強還元剤と共に再分散する(112)。第2の還元性溶液を使用して、CNM上の酸素含有基を除去する。第2の還元性溶液は以下の化学物質のうちの1つまたは複数とすることができる。水酸化カリウム、水素化ホウ素ナトリウム、ピロガロール、L−アスコルビン酸およびヒドラジン一水和物。還元方法は、60〜100℃で数時間、たとえば1時間〜12時間実施される。最後に、金属被覆したCNMを濾別し、質量損失が認められなくなるまで真空オーブン中で乾燥する。   After the reaction is complete, i.e., the desired thickness has been reached, the metal coated CNM is filtered and washed until the color of the filtrate is substantially clear. After washing, sonication is used to redisperse the CNM in deionized water with a strong reducing agent (112). A second reducing solution is used to remove oxygen-containing groups on the CNM. The second reducing solution can be one or more of the following chemicals. Potassium hydroxide, sodium borohydride, pyrogallol, L-ascorbic acid and hydrazine monohydrate. The reduction method is carried out at 60 to 100 ° C. for several hours, for example, 1 to 12 hours. Finally, the metal coated CNM is filtered off and dried in a vacuum oven until no mass loss is observed.

銀層で被覆したCNMの形態を透過型電子顕微鏡(TEM)で試験した。試料の元素組成および構造分析をX線回折(XRD)で解析した。   The morphology of the CNM coated with the silver layer was examined with a transmission electron microscope (TEM). The elemental composition and structural analysis of the sample were analyzed by X-ray diffraction (XRD).

図2aは初期のカーボンナノファイバー(CNF)のTEM画像を示し、図2bは銀ナノ粒子で被覆したカーボンナノファイバーの画像である。直径50nmのCNFを選択して、被覆方法を実証した。被覆後、CNFの表面にその元の構造を破壊することなく、直径3〜5nmの銀ナノ粒子の層を均一に分散させた。   FIG. 2a shows a TEM image of the initial carbon nanofiber (CNF), and FIG. 2b is an image of the carbon nanofiber coated with silver nanoparticles. A CNF with a diameter of 50 nm was selected to demonstrate the coating method. After coating, a layer of 3-5 nm diameter silver nanoparticles was uniformly dispersed on the CNF surface without destroying its original structure.

図3a〜bは、銀被覆したグラフェンを異なる倍率で示すTEM画像である。被覆後、制御粒度2〜3nmの銀ナノ粒子の層をグラフェンシートの両側に均一に分散させて、銀/グラフェン/銀ハイブリッド材料を形成した。銀被覆層は薄かったので、グラフェンの特性に影響を及ぼさなかった。   3a-b are TEM images showing silver-coated graphene at different magnifications. After coating, a layer of silver nanoparticles with a controlled particle size of 2-3 nm was uniformly dispersed on both sides of the graphene sheet to form a silver / graphene / silver hybrid material. Since the silver coating layer was thin, it did not affect the graphene properties.

図4は、銀被覆したカーボンナノファイバー試料のX線回折(XRD)回折図形を示す。回折図形において、金属性銀の面心立方(FCC)構造に対応するピーク、最も顕著には(111)反射の出現によって、銀の存在が確認される。   FIG. 4 shows an X-ray diffraction (XRD) diffraction pattern of a silver-coated carbon nanofiber sample. In the diffraction pattern, the presence of silver is confirmed by the appearance of peaks corresponding to the face-centered cubic (FCC) structure of metallic silver, most notably the appearance of (111) reflection.

本発明をその特定の例示態様に関して説明してきたが、多くの異なる変更、修正などが当業者に明らかになる。   Although the present invention has been described with respect to specific exemplary embodiments thereof, many different changes, modifications, etc. will become apparent to those skilled in the art.

さらに、図面、開示、および添付の特許請求の範囲を詳しく検討することによって、当業者が特許請求された発明を実施する際に、開示された態様に対する改変を理解して達成することができる。特許請求の範囲において、「含む(comprising)」という単語は他の要素または工程を排除せず、不定冠詞「a」または「an」は複数を排除しない。   Further, by studying the drawings, disclosure, and appended claims in detail, those skilled in the art can appreciate and achieve modifications to the disclosed embodiments in carrying out the claimed invention. In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality.

Claims (12)

カーボンナノ材料の自己触媒めっき方法であって、前記方法は
少なくとも2種の酸化剤を含む酸化性溶液中のカーボンナノ材料を用意し、前記酸化性溶液を第1の温度範囲内に維持し、前記酸化性溶液を第1の所定の時間撹拌する工程と、
前記酸化性溶液を加熱して、前記第1の温度範囲より高い第2の温度範囲に到達させ、前記酸化性溶液を前記第2の温度範囲内に維持しながら、前記酸化性溶液を前記第1の時間より短い第2の所定の時間撹拌する工程と、
前記ナノ材料を前記酸化性溶液から取り出す工程と、
ホルムアルデヒド、ポリビニルピロリドンまたは塩化スズ(II)を含む増感剤を含む増感水溶液に前記ナノ材料を分散する工程と、
前記ナノ材料を前記増感溶液から取り出す工程と、
パラジウムを含む溶液に前記ナノ材料を浸漬することで、前記ナノ材料にパラジウム種粒子を付着させる工程と、
前記ナノ材料を前記パラジウムを含む溶液から取り出す工程と、
水性の金属源および第1の水性還元剤を含むめっき溶液に前記ナノ材料を浸漬することによって、金属性層が前記パラジウム種粒子から前記ナノ材料上に成長するように前記ナノ材料をめっきする工程と、
前記ナノ材料を前記めっき溶液から取り出す工程と、
第2の還元剤を含む水溶液に前記ナノ材料を分散する工程と、
前記第2の還元剤を含む水溶液を加熱して、第3の温度範囲に到達させ、前記第2の還元剤を含む水溶液を前記第3の温度範囲内に維持しながら、加熱した前記第2の還元剤を含む水溶液の超音波処理を第3の所定の時間行うことにより第2の還元剤で還元する工程と
を含み、
前記酸化剤が、過マンガン酸カリウムおよび硫酸を含み、
前記第1の温度範囲が、−10〜10℃であり、前記第1の時間が、1時間〜8時間であり、
前記第2の温度範囲が、30〜50℃であり、前記第2の時間が、10〜60分である方法。
A method for autocatalytic plating of carbon nanomaterials, the method comprising preparing a carbon nanomaterial in an oxidizing solution containing at least two oxidizing agents, and maintaining the oxidizing solution within a first temperature range; Stirring the oxidizing solution for a first predetermined time;
The oxidizing solution is heated to reach a second temperature range higher than the first temperature range, and the oxidizing solution is kept in the second temperature range while maintaining the oxidizing solution within the second temperature range. Stirring for a second predetermined time shorter than one time;
Removing the nanomaterial from the oxidizing solution;
Dispersing the nanomaterial in a sensitized aqueous solution containing a sensitizer comprising formaldehyde, polyvinylpyrrolidone or tin (II) chloride ;
Removing the nanomaterial from the sensitizing solution;
Immersing the nanomaterial in a solution containing palladium to attach palladium seed particles to the nanomaterial ; and
Removing the nanomaterial from the palladium-containing solution ;
Plating the nanomaterial such that a metallic layer is grown from the palladium seed particles on the nanomaterial by immersing the nanomaterial in a plating solution comprising an aqueous metal source and a first aqueous reducing agent. When,
Removing the nanomaterial from the plating solution;
Dispersing the nanomaterial in an aqueous solution containing a second reducing agent;
By heating water solution containing the second reducing agent, to reach a third temperature range, while maintaining a water solution containing the second reducing agent in the third temperature range, heated pressurized look including a step of reducing the second reducing agent by ultrasonic treatment of water solution containing the second reducing agent third predetermined time,
The oxidizing agent comprises potassium permanganate and sulfuric acid;
The first temperature range is −10 to 10 ° C., the first time is 1 hour to 8 hours,
The method wherein the second temperature range is 30 to 50 ° C. and the second time is 10 to 60 minutes .
前記酸化剤が、二クロム酸カリウムおよび窒化ナトリウムのうちの少なくとも種を更に含む、請求項に記載の方法。 The oxidizing agent further comprises at least one of potassium dichromate and sodium nitride The method according to Motomeko 1. 前記ナノ材料を前記酸化性溶液から取り出す前記工程が、前記ナノ材料を濾過し、すすぎ液のpH値が約7になるまで脱イオン水ですすぐことを含む、請求項1又は2に記載の方法。 Wherein the step of extracting the nanomaterial from the oxidizing solution, the nano material was filtered until the pH value of the rinsing solution is about 7 comprises rinsing with deionized water, according to Motomeko 1 or 2 Method. 前記第1の還元剤が、硫酸コバルト、塩化第一鉄、ホルムアルデヒド、ポリビニルピロリドン、アンモニア水、エチレンジアミン、エチレンジアミン四酢酸またはベンゾトリアゾールを含む、請求項1〜3のいずれか一項に記載の方法。 It said first reducing agent is cobalt sulfate, ferrous chloride, formaldehyde, polyvinyl pyrrolidone, aqueous ammonia, ethylenediamine, ethylenediaminetetraacetic acid or benzotriazole The method of any one of Motomeko 1-3 . 前記めっきする工程が、前記めっき溶液中の溶存酸素を超音波で除去し、したがって前記還元剤の酸化を回避することを含む、請求項1〜4のいずれか一項に記載の方法。 Wherein the step of plating, the dissolved oxygen of the plating solution was removed by ultrasonic, thus including avoiding oxidation of the reducing agent, the method according to any one of Motomeko 1-4. 前記めっきする工程が、前記めっき溶液に窒素ガスを通しながら閉容器中で行われる、請求項1〜5のいずれか一項に記載の方法。 Process, the plating solution is performed in a nitrogen, while passing the gas closed container during method according to any one of Motomeko 1-5 to the plating. 前記水性の金属源が、パラジウム、銀、金またはニッケルを含む、請求項1〜6のいずれか一項に記載の方法。 Metal source of the aqueous, palladium, silver, including gold or nickel, the method according to any one of Motomeko 1-6. 前記水性の金属源が、窒化銀、塩素酸パラジウム、塩化金及び塩化ニッケルを含む群から選択される金属イオン源である、請求項1〜7のいずれか一項に記載の方法。 Metal source of the aqueous silver nitride, chlorate palladium, a metal ion source selected from the group comprising gold chloride and nickel chloride method according to any one of Motomeko 1-7. 前記第3の温度範囲が、60〜100℃であり、前記第3の時間が、少なくとも1時間である、請求項1〜8のいずれか一項に記載の方法。 The third temperature range is 60 to 100 [° C., the third time, at least 1 hour A method according to any one of Motomeko 1-8. 前記カーボンナノ材料が、カーボンナノチューブ、カーボンナノファイバーまたはグラフェンである、請求項1〜9のいずれか一項に記載の方法。 The carbon nanomaterials, carbon nanotubes, carbon nanofibers, or graphene method according to any one of Motomeko 1-9. 前記めっきする工程が、0.5時間〜24時間行われる、請求項1〜10のいずれか一項に記載の方法。 Step is carried out for 0.5 hours to 24 hours, A method according to any one of Motomeko 1 to 10 wherein the plating. 前記第2の還元剤が、水酸化カリウム、水素化ホウ素ナトリウム、ピロガロール、L−アスコルビン酸およびヒドラジン一水和物を含む群から選択される、請求項1〜11のいずれか一項に記載の方法。 The second reducing agent, potassium hydroxide, sodium borohydride, pyrogallol, is selected from the group comprising L- ascorbic acid and hydrazine monohydrate, according to any one of Motomeko 1-11 the method of.
JP2016509398A 2013-04-21 2014-04-17 Carbon nanomaterial coating method Active JP6415540B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1330038 2013-04-21
SE1330038-9 2013-04-21
PCT/EP2014/057859 WO2014173793A1 (en) 2013-04-21 2014-04-17 Method for coating of carbon nanomaterials

Publications (2)

Publication Number Publication Date
JP2016526092A JP2016526092A (en) 2016-09-01
JP6415540B2 true JP6415540B2 (en) 2018-10-31

Family

ID=50513279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016509398A Active JP6415540B2 (en) 2013-04-21 2014-04-17 Carbon nanomaterial coating method

Country Status (5)

Country Link
US (1) US10156015B2 (en)
JP (1) JP6415540B2 (en)
KR (1) KR102326994B1 (en)
CN (1) CN105209660B (en)
WO (1) WO2014173793A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170267532A1 (en) * 2014-12-22 2017-09-21 Sht Smart High-Tech Ab Multi-functionalized carbon nanotubes
KR20160137178A (en) * 2015-05-22 2016-11-30 성균관대학교산학협력단 METHOD FOR ELECTRICAL CONTACT MATERIALS INCLUDING AG PLATED CNTs
KR101693600B1 (en) * 2015-12-02 2017-01-09 한국생산기술연구원 Surface treatment using aqueous plating solution to the carbon surface for metal plating
FR3078898B1 (en) 2018-03-16 2023-10-13 Nexans METHOD FOR MANUFACTURING A CARBON-METAL COMPOSITE MATERIAL AND ITS USE TO MANUFACTURE AN ELECTRIC CABLE

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650708A (en) * 1970-03-30 1972-03-21 Hooker Chemical Corp Metal plating of substrates
US4833040A (en) * 1987-04-20 1989-05-23 Trw Inc. Oxidation resistant fine metal powder
JPH0497912A (en) * 1990-08-10 1992-03-30 Tanaka Kikinzoku Kogyo Kk Production of titanium oxide fine particle coated with silver
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
JP4611341B2 (en) * 1998-11-09 2011-01-12 株式会社荏原製作所 Plating method and apparatus
KR100836538B1 (en) * 2002-04-12 2008-06-10 나노-프로프리어터리, 인크. Metallization of carbon nanotubes for field emission applications
US6975063B2 (en) * 2002-04-12 2005-12-13 Si Diamond Technology, Inc. Metallization of carbon nanotubes for field emission applications
US6798127B2 (en) 2002-10-09 2004-09-28 Nano-Proprietary, Inc. Enhanced field emission from carbon nanotubes mixed with particles
US7087104B2 (en) * 2003-06-26 2006-08-08 Intel Corporation Preparation of electroless deposition solutions
CN100432015C (en) * 2005-05-27 2008-11-12 上海大学 Preparation method of multi-wall nanometer carbon tube conductive material for switch contact device
US7972652B2 (en) * 2005-10-14 2011-07-05 Lam Research Corporation Electroless plating system
WO2009119563A1 (en) * 2008-03-25 2009-10-01 東レ株式会社 Electrically conductive complex and process for production thereof
CN101481107B (en) * 2009-01-23 2010-11-17 东华大学 Preparation of nickel-zine ferrite (Ni1-xZnxFe2O4) coated carbon nano-tube magnetic nano composite material
KR101082932B1 (en) * 2009-05-14 2011-11-11 주식회사 엑사이엔씨 method for manufacturing metal coated carbon nano tube and metal coated carbon nano tube manufactured by the method
CN102166523B (en) * 2011-01-20 2013-06-26 北京化工大学 Preparation method of nickel nanoparticles-loaded multi-wall carbon nanotube catalytic agent
KR101365457B1 (en) * 2012-03-15 2014-02-21 한국기계연구원 Method of Manufacturing Ni-coated Nano- carbons

Also Published As

Publication number Publication date
US20160068965A1 (en) 2016-03-10
KR20160002912A (en) 2016-01-08
WO2014173793A1 (en) 2014-10-30
CN105209660A8 (en) 2017-04-12
KR102326994B1 (en) 2021-11-15
CN105209660B (en) 2018-04-13
JP2016526092A (en) 2016-09-01
US10156015B2 (en) 2018-12-18
CN105209660A (en) 2015-12-30

Similar Documents

Publication Publication Date Title
JP6379228B2 (en) Silver-coated copper nanowire and method for producing the same
Ang et al. Decoration of activated carbon nanotubes with copper and nickel
Jagannatham et al. Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites
JP2019517625A (en) Method for producing core-shell silver-coated copper nanowires using chemical reduction method
CN108698849B (en) Production of graphene-based composite nanostructures by growing zinc oxide nanorods or nanorods on suspended non-loaded graphene nanoplates
JP6415540B2 (en) Carbon nanomaterial coating method
JP5270632B2 (en) Method for producing composite material of nanocarbon and metal or ceramic
Peng et al. Ultrasound-assisted fabrication of dispersed two-dimensional copper/reduced graphene oxide nanosheets nanocomposites
WO2004106224A1 (en) Metal nanoparticle with support, continuous metal nanoparticle body, and methods for producing these
JP6518307B2 (en) Metal nanospring and method of manufacturing the same
CN102732863A (en) Method for preparing magnetic-field-assisted graphite carbon material chemical plating magnetic metal
TW201643102A (en) Producing method of nano composite and nano-composite thereof
WO2016013219A1 (en) Plating solution and method for producing same, composite material, copper composite material, and method for producing same
Wu et al. Synthesis of palladium dendritic nanostructures on amidoxime modified polyacrylonitrile fibers through a complexing-reducing method
Peng et al. Ultrasonic-assisted fabrication of highly dispersed copper/multi-walled carbon nanotube nanowires
KR101202017B1 (en) Method for manufacturing Ag nano-wire by using plasma sputtering
CN111074243A (en) Method for plating silver on surface of carbon material
KR20110033652A (en) Manufacturing method of highly electrically conductive carbon nanotube-metal composite
KR102532424B1 (en) Carbon nano material-nano metal complex and method for fabricating the same
Levi et al. Synthesis and characterization of copper–silver core–shell nanowires obtained by electrodeposition followed by a galvanic replacement reaction in aqueous solution; comparison with a galvanic replacement reaction in ionic media
JP4526270B2 (en) Manufacturing method of composite material
KR20160099513A (en) Method of Preapring Silver Coated Copper Nanowire
Hwang et al. High-speed synthesis of rice-ear-shaped cu dendritic particles at room temperature via galvanic displacement using zn particles
JP2008031518A (en) Nanorod, and method for producing nanorod
KR102115232B1 (en) fabricating method including sonicating for metal nanowire dispersed solution

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170410

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R150 Certificate of patent or registration of utility model

Ref document number: 6415540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250