JP6141089B2 - Cold / hot water supply system and air conditioner - Google Patents

Cold / hot water supply system and air conditioner Download PDF

Info

Publication number
JP6141089B2
JP6141089B2 JP2013092229A JP2013092229A JP6141089B2 JP 6141089 B2 JP6141089 B2 JP 6141089B2 JP 2013092229 A JP2013092229 A JP 2013092229A JP 2013092229 A JP2013092229 A JP 2013092229A JP 6141089 B2 JP6141089 B2 JP 6141089B2
Authority
JP
Japan
Prior art keywords
water
air
heat source
cooled heat
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013092229A
Other languages
Japanese (ja)
Other versions
JP2014214954A (en
Inventor
和之 石田
和之 石田
靖 大越
靖 大越
拓也 伊藤
拓也 伊藤
昂仁 彦根
昂仁 彦根
祐樹 永田
祐樹 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013092229A priority Critical patent/JP6141089B2/en
Publication of JP2014214954A publication Critical patent/JP2014214954A/en
Application granted granted Critical
Publication of JP6141089B2 publication Critical patent/JP6141089B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は冷温水供給システム等に関するものである。   The present invention relates to a cold / hot water supply system and the like.

例えば、オフィスビル等の建物において、各部屋に熱負荷源として空気調和装置が設けられ、これらの空気調和装置に、冷温熱源機から冷温水を供給して、対象空間の暖房又は冷房を行うことがある。ここで、例えば、冷温熱源機(以下、熱源機という)とは、例えばヒートポンプ式冷凍サイクルを利用し、熱交換器において冷水又は温水を生成するものである。冷温水とは熱源機によって生成される冷水又は温水をいう。   For example, in a building such as an office building, an air conditioner is provided as a heat load source in each room, and cold air is supplied to the air conditioner from a cold / hot heat source machine to heat or cool the target space. There is. Here, for example, a cold / hot heat source machine (hereinafter referred to as a heat source machine) is one that generates cold water or hot water in a heat exchanger using, for example, a heat pump refrigeration cycle. Cold / hot water refers to cold water or hot water generated by a heat source machine.

このような冷温水供給システムにおいて、空冷式熱源機と水冷式熱源機とが混在するシステムがある。そして、空冷式熱源機と水冷式熱源機とをそれぞれ運転させており、現地水配管における冷温水の流れを制御しているものがある(例えば、特許文献1参照)。   In such a cold / hot water supply system, there is a system in which an air-cooled heat source machine and a water-cooled heat source machine are mixed. And the air-cooled heat source machine and the water-cooled heat source machine are each operated, and there exists what controls the flow of the cold / hot water in local water piping (for example, refer patent document 1).

また、複数台の熱源機を有するシステムにおいて、入口水温を検知して運転する熱源機台数の制御を行うものがある(例えば、特許文献2参照)。   Moreover, in a system having a plurality of heat source units, there is a system that controls the number of heat source units to be operated by detecting the inlet water temperature (see, for example, Patent Document 2).

特公昭63−027626号公報Japanese Patent Publication No. 63-027626 特許第3479861号公報Japanese Patent No. 3479861

上記の特許文献1に示されたシステムでは、例えば冷房負荷と暖房負荷とが混在し、これらの負荷に対して冷房運転と暖房運転とが同時に可能である。ここで、複数の熱源機が設置されているが、負荷が変化したときには、熱源機は圧縮機の最大周波数にて熱源機の運転台数の切り替える単純な制御を行っている。このため、消費電力を考慮した制御が行われず、COP(Coefficient Of Performance:成績係数)が悪くなってしまっていた。   In the system disclosed in Patent Document 1, for example, a cooling load and a heating load are mixed, and a cooling operation and a heating operation can be simultaneously performed for these loads. Here, a plurality of heat source units are installed, but when the load changes, the heat source unit performs simple control to switch the number of operating heat source units at the maximum frequency of the compressor. For this reason, control in consideration of power consumption is not performed, and COP (Coefficient Of Performance) has been deteriorated.

また、上記の特許文献2に示されるシステムでも、入口水温が変化したときには、圧縮機の最大周波数において熱源機の台数を切り替える単純な制御を行っているため、消費電力が多くなり、COPが悪くなっていた。   In the system disclosed in Patent Document 2 described above, when the inlet water temperature changes, simple control is performed to switch the number of heat source units at the maximum frequency of the compressor, resulting in an increase in power consumption and poor COP. It was.

本発明は、上記のような問題点を解決するためになされたものであり、高いCOPを維持し、システム全体の効率向上をはかる冷温水供給システム等を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a cold / hot water supply system that maintains a high COP and improves the efficiency of the entire system.

本発明に係る冷温水供給システムは、水が流れる2本の水配管と、冷媒を圧縮する圧縮機、冷媒と空気との熱交換を行う空気熱交換器、水配管を流れる水と冷媒とを熱交換する水熱交換器及び水熱交換器に流入する冷媒の圧力を調整する圧力調整手段を有してヒートポンプ回路を構成する複数の空冷式熱源機とを備えて複数の空冷式熱源機を水の流れに沿って水配管に接続して水を加熱又は冷却して供給する冷温水供給システムであって、圧縮機、各水配管の水がそれぞれ通過する2つの水熱交換器及び圧力調整手段を有してヒートポンプ回路を構成する水冷式熱源機と、水配管を流れる水の温度を検出する温度検出手段と、温度検出手段の検出に係る温度に基づいて空冷式熱源機の運転を制御し、1又は複数の空冷式熱源機における圧縮機の駆動周波数に基づいて、COPが高い方の空冷式熱源機の運転台数に切り替える処理を行う制御部とをさらに備え、制御部は、複数の空冷式熱源機を運転させる前に、水冷式熱源機の圧縮機が最高駆動周波数になるまで水冷式熱源機を運転させ、足りない熱量分を1又は複数の空冷式熱源機で補う制御を行うものである。 A cold / hot water supply system according to the present invention includes two water pipes through which water flows, a compressor that compresses refrigerant, an air heat exchanger that performs heat exchange between the refrigerant and air, and water and refrigerant that flow through the water pipe. A plurality of air-cooled heat source units having a water heat exchanger for heat exchange and a plurality of air-cooled heat source units having a pressure adjusting means for adjusting the pressure of refrigerant flowing into the water heat exchanger and constituting a heat pump circuit A cold / hot water supply system connected to a water pipe along the flow of water to supply water by heating or cooling, the compressor, two water heat exchangers through which water in each water pipe passes, and pressure regulation A water-cooled heat source unit that constitutes a heat pump circuit with means, a temperature detection unit that detects the temperature of the water flowing through the water pipe, and the operation of the air-cooled heat source unit based on the temperature detected by the temperature detection unit Compressor in one or more air-cooled heat source machines Based on the driving frequency, COP further comprises a control unit that performs processing of switching the higher number of operating air-cooled heat source machine, controller, prior to operating the plurality of air-cooled heat source apparatus, a water cooling type heat source machine The water-cooled heat source machine is operated until the compressor reaches the maximum drive frequency, and control is performed to compensate for the missing heat quantity with one or a plurality of air-cooled heat source machines .

本発明によれば、水配管の水の流れに沿って接続されて、水の加熱又は冷却を行う空冷式熱源機について、制御部が運転台数を切り替えた方がCOPが高くなると判断すると、運転台数を切り替える処理を行うようにしたので、高いCOPを維持しつつ、1台又は複数台の熱源機を運転して所望する温度の水を負荷側に供給することができる。   According to the present invention, for an air-cooled heat source apparatus that is connected along the flow of water in the water pipe and heats or cools the water, the controller determines that the COP is higher when the number of operating units is switched. Since the process of switching the number is performed, one or a plurality of heat source devices can be operated and water having a desired temperature can be supplied to the load side while maintaining a high COP.

本発明の実施の形態1における冷温水供給システムの概略構成を示す図である。It is a figure which shows schematic structure of the cold / hot water supply system in Embodiment 1 of this invention. 本発明の実施の形態1に係る水冷式熱源機11の構成を示す図である。It is a figure which shows the structure of the water-cooling type heat source machine 11 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空冷式熱源機21及び51の構成を示す図である。It is a figure which shows the structure of the air-cooling type heat source machine 21 and 51 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1における制御部100の処理動作のフローチャートを示す図である。It is a figure which shows the flowchart of the processing operation of the control part 100 in Embodiment 1 of this invention. 複数台の空冷式熱源機とCOPとの関係を示す図である。It is a figure which shows the relationship between several air-cooling-type heat-source equipment and COP.

実施の形態1.
図1は、本発明の実施の形態1における冷温水供給システムの概略構成を示す図である。図1に示すように、本実施の形態1における冷温水供給システムは、水冷式熱源機11、6台の空冷式熱源機21、31、41、51、61及び71、温水ポンプ81、冷水ポンプ82、温水配管83、冷水配管84、温度センサー91〜98並びに制御部100を有している。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a schematic configuration of a cold / hot water supply system according to Embodiment 1 of the present invention. As shown in FIG. 1, the cold / hot water supply system according to the first embodiment includes a water-cooled heat source unit 11, six air-cooled heat source units 21, 31, 41, 51, 61 and 71, a hot water pump 81, and a cold water pump. 82, a hot water pipe 83, a cold water pipe 84, temperature sensors 91 to 98, and a control unit 100.

温水ポンプ81は、水配管となる温水配管83内の水を加圧して配管内を循環させる。このとき、温水配管83内の水は、水冷式熱源機11等によって加熱されることで、例えば暖房対象の空間(負荷)に熱を搬送する。そして、放熱器(図示せず)により、熱交換して暖房対象空間の空気を加熱する。また、冷水ポンプ82は、水配管となる冷水配管84内の水を加圧して配管内を循環させる。このとき、冷水配管84内の水は、水冷式熱源機11等によって冷却されることで、例えば冷房対象の空間(負荷)に冷熱を搬送する。そして、冷却器(図示せず)により、熱交換して冷房対象空間の空気を冷却する。ここで、本実施の形態では、温水配管83、冷水配管84における水の流れに対して、COPがよい水冷式熱源機11を、空冷式熱源機21〜71よりも上流側に位置するように配置(接続)している。また、温水配管83の水の流れに沿って、空冷式熱源機21、31、41の順に配置し、冷水配管84の水の流れに沿って、空冷式熱源機51、61、71の順に配置しているものとする。また、温水配管83及び冷水配管84内を、水が流れるものとして説明するが、配管内を流れる液体を水に限定するものではない。例えば不凍液等であってもよいし、他の液体が流れるようにしてもよい。   The hot water pump 81 pressurizes the water in the hot water pipe 83 serving as a water pipe and circulates the pipe. At this time, the water in the hot water pipe 83 is heated by the water-cooled heat source unit 11 or the like, thereby transferring heat to, for example, a space (load) to be heated. Then, heat is exchanged by a radiator (not shown) to heat the air in the space to be heated. Moreover, the cold water pump 82 pressurizes the water in the cold water piping 84 used as water piping, and circulates the inside of piping. At this time, the water in the cold water pipe 84 is cooled by the water-cooled heat source unit 11 or the like, thereby conveying cold heat to a space (load) to be cooled, for example. Then, heat is exchanged by a cooler (not shown) to cool the air in the cooling target space. Here, in the present embodiment, the water-cooled heat source unit 11 with good COP is positioned upstream of the air-cooled heat source units 21 to 71 with respect to the flow of water in the hot water pipe 83 and the cold water pipe 84. Arranged (connected). Moreover, it arrange | positions in order of the air-cooling type heat-source equipment 21,31,41 along the flow of the water of the hot water piping 83, and arrange | positions in order of the air-cooling type heat-source equipment 51,61,71 along the flow of the water of the cold-water piping 84. Suppose you are. Moreover, although the inside of the hot water piping 83 and the cold water piping 84 is demonstrated as water flowing, the liquid which flows through the piping is not limited to water. For example, it may be antifreeze or the like, or other liquid may flow.

図2は、本発明の実施の形態1に係る水冷式熱源機11の構成を示す図である。図2において、水冷式熱源機11は、圧縮機12、水冷側凝縮器(放熱器)13、絞り装置14及び水冷側蒸発器(冷却器)15を配管接続してヒートポンプ回路(冷媒回路)を構成している。圧縮機12は冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。本実施の形態の圧縮機12は、例えばインバータ回路等により回転数(駆動周波数)を制御し、冷媒の吐出量を調整できるタイプのインバータ圧縮機で構成する。水熱交換器を有する水冷側凝縮器13は、温水配管83を流れる水と冷媒との間で熱交換を行う。このとき、冷媒は放熱し、例えば凝縮して液状の冷媒となる(凝縮液化する)。一方、水は加熱される。また、絞り装置14は、冷媒を減圧して膨張させる。例えば電子式膨張弁等の流量制御手段、例えば、感温筒を有する膨張弁、毛細管(キャピラリ)等の冷媒流量調節手段等で構成する。水熱交換器を有する水冷側蒸発器15は、冷水配管84を流れる水と冷媒との間で熱交換を行う。このとき、冷媒は吸熱し、例えば蒸発してガス状の冷媒となる(蒸発気化する)。一方、水は冷却される。   FIG. 2 is a diagram showing a configuration of the water-cooled heat source unit 11 according to Embodiment 1 of the present invention. In FIG. 2, the water-cooled heat source unit 11 includes a compressor 12, a water-cooled side condenser (heat radiator) 13, a throttling device 14, and a water-cooled side evaporator (cooler) 15 connected by piping to provide a heat pump circuit (refrigerant circuit). It is composed. The compressor 12 sucks the refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The compressor 12 of the present embodiment is configured by an inverter compressor of a type that can adjust the refrigerant discharge amount by controlling the rotation speed (drive frequency) by an inverter circuit or the like, for example. The water-cooled condenser 13 having a water heat exchanger performs heat exchange between the water flowing through the hot water pipe 83 and the refrigerant. At this time, the refrigerant dissipates heat, for example, condenses and becomes a liquid refrigerant (condensed liquid). On the other hand, water is heated. Further, the expansion device 14 expands the refrigerant by reducing the pressure. For example, it is constituted by a flow rate control means such as an electronic expansion valve, for example, an expansion valve having a temperature sensing cylinder, a refrigerant flow rate adjustment means such as a capillary tube (capillary), or the like. The water-cooled side evaporator 15 having a water heat exchanger performs heat exchange between water flowing through the cold water pipe 84 and the refrigerant. At this time, the refrigerant absorbs heat, e.g., evaporates into a gaseous refrigerant (vaporizes and vaporizes). On the other hand, the water is cooled.

図3は、本発明の実施の形態1に係る空冷式熱源機21及び51の構成を示す図である。図3(a)は空冷式熱源機21を示している。また、図3(b)は空冷式熱源機51を示している。ここでは、空冷式熱源機21〜71を代表して、空冷式熱源機21及び51について説明する。   FIG. 3 is a diagram showing the configuration of the air-cooled heat source devices 21 and 51 according to Embodiment 1 of the present invention. FIG. 3A shows an air-cooled heat source device 21. FIG. 3B shows an air-cooled heat source machine 51. Here, air cooling type heat source machines 21 and 51 will be described on behalf of air cooling type heat source machines 21 to 71.

図3(a)に示すように、空冷式熱源機21は圧縮機22、空冷側凝縮器(放熱器)23、絞り装置24及び空冷側蒸発器(冷却器)25を配管接続してヒートポンプ回路を構成している。また、送風機26を有している。圧縮機22は、圧縮機12と同様にインバータ圧縮機で構成し、冷媒を圧縮して吐出する。また、絞り装置24は、冷媒を減圧して膨張させる。空冷側凝縮器(放熱器)23は、水冷側凝縮器13と同様に、温水配管83を流れる水と冷媒との間で熱交換を行う水熱交換器である。そして、空冷側蒸発器25は、送風機26から供給される空気と冷媒との間で熱交換を行う空気熱交換器である。送風機26は、空冷側蒸発器25を通過する冷媒と空気との熱交換を促すために空気の流れを形成する。   As shown in FIG. 3A, an air-cooled heat source unit 21 is a heat pump circuit in which a compressor 22, an air-cooling side condenser (radiator) 23, an expansion device 24, and an air-cooling side evaporator (cooler) 25 are connected by piping. Is configured. Moreover, it has the air blower 26. The compressor 22 is composed of an inverter compressor like the compressor 12, and compresses and discharges the refrigerant. Further, the expansion device 24 expands the refrigerant by reducing the pressure. The air-cooling side condenser (heat radiator) 23 is a water heat exchanger that exchanges heat between the water flowing through the hot water pipe 83 and the refrigerant, similarly to the water-cooling side condenser 13. The air-cooling side evaporator 25 is an air heat exchanger that exchanges heat between the air supplied from the blower 26 and the refrigerant. The blower 26 forms an air flow in order to promote heat exchange between the refrigerant passing through the air-cooling side evaporator 25 and air.

また、図3(b)に示すように、空冷式熱源機51は圧縮機52、空冷側凝縮器53、絞り装置54及び空冷側蒸発器55を配管接続してヒートポンプ回路を構成している。また、送風機56を有している。圧縮機52は、圧縮機12と同様にインバータ圧縮機で構成し、冷媒を圧縮して吐出する。また、絞り装置54は、冷媒を減圧して膨張させる。空冷側蒸発器55は、水冷側蒸発器15と同様に、冷水配管84を流れる水と冷媒との間で熱交換を行う水熱交換器である。そして、空冷側凝縮器23は、送風機56から供給される空気と冷媒との間で熱交換を行う空気熱交換器である。送風機56は、空冷側凝縮器53を通過する冷媒と空気との熱交換を促すために空気の流れを形成する。   In addition, as shown in FIG. 3B, the air-cooling heat source unit 51 is configured by connecting a compressor 52, an air-cooling side condenser 53, an expansion device 54, and an air-cooling side evaporator 55 to form a heat pump circuit. A blower 56 is also provided. The compressor 52 is composed of an inverter compressor like the compressor 12, and compresses and discharges the refrigerant. Further, the expansion device 54 decompresses the refrigerant to expand it. The air-cooling side evaporator 55 is a water heat exchanger that exchanges heat between the water flowing through the cold water pipe 84 and the refrigerant, like the water-cooling side evaporator 15. The air-cooling side condenser 23 is an air heat exchanger that exchanges heat between the air supplied from the blower 56 and the refrigerant. The blower 56 forms an air flow in order to promote heat exchange between the refrigerant passing through the air-cooling side condenser 53 and the air.

温度センサー91〜98は、それぞれ設置された位置における温水配管83又は冷水配管84の温度(温水又は冷水の温度)を検出する温度検出手段である。温度センサー91は、水冷式熱源機11と空冷式熱源機21との間の温水配管83の温度(水冷式熱源機11から流出する温水の温度)を検出する。また、温度センサー92は、空冷式熱源機21と空冷式熱源機31との間の温水配管83の温度(空冷式熱源機21から流出する温水の温度)を検出する。さらに、温度センサー93は、空冷式熱源機31と空冷式熱源機41との間の温水配管83の温度(空冷式熱源機31から流出する温水の温度)を検出する。そして、温度センサー94は、空冷式熱源機41より下流側の温水配管83の温度(空冷式熱源機41から流出する温水の温度)を検出する。   The temperature sensors 91 to 98 are temperature detection means for detecting the temperature (temperature of hot water or cold water) of the hot water pipe 83 or the cold water pipe 84 at the respective installed positions. The temperature sensor 91 detects the temperature of the hot water pipe 83 between the water-cooled heat source device 11 and the air-cooled heat source device 21 (the temperature of hot water flowing out from the water-cooled heat source device 11). The temperature sensor 92 detects the temperature of the hot water pipe 83 between the air-cooled heat source device 21 and the air-cooled heat source device 31 (the temperature of hot water flowing out from the air-cooled heat source device 21). Further, the temperature sensor 93 detects the temperature of the hot water pipe 83 between the air-cooled heat source device 31 and the air-cooled heat source device 41 (the temperature of hot water flowing out from the air-cooled heat source device 31). The temperature sensor 94 detects the temperature of the hot water pipe 83 on the downstream side of the air-cooling heat source device 41 (the temperature of the hot water flowing out from the air-cooling heat source device 41).

一方、温度センサー95は、水冷式熱源機11と空冷式熱源機51との間の冷水配管84の温度(水冷式熱源機11から流出する冷水の温度)を検出する。また、温度センサー96は、空冷式熱源機51と空冷式熱源機61との間の冷水配管84の温度(空冷式熱源機51から流出する冷水の温度)を検出する。さらに、温度センサー97は、空冷式熱源機61と空冷式熱源機71との間の冷水配管84の温度(空冷式熱源機61から流出する冷水の温度)を検出する。そして、温度センサー98は、空冷式熱源機71より下流側の冷水配管84の温度(空冷式熱源機71から流出する冷水の温度)を検出する。   On the other hand, the temperature sensor 95 detects the temperature of the cold water pipe 84 between the water-cooled heat source device 11 and the air-cooled heat source device 51 (the temperature of the cold water flowing out from the water-cooled heat source device 11). The temperature sensor 96 detects the temperature of the chilled water pipe 84 between the air-cooled heat source device 51 and the air-cooled heat source device 61 (the temperature of the cold water flowing out from the air-cooled heat source device 51). Further, the temperature sensor 97 detects the temperature of the chilled water pipe 84 between the air-cooled heat source device 61 and the air-cooled heat source device 71 (the temperature of the cold water flowing out from the air-cooled heat source device 61). The temperature sensor 98 detects the temperature of the chilled water pipe 84 on the downstream side of the air-cooled heat source unit 71 (the temperature of the cold water flowing out from the air-cooled heat source unit 71).

制御部100は、冷温水供給システムの制御を行う。本実施の形態においては、特に温度センサー91〜98の検出に係る温度、各熱源機の圧縮機の駆動周波数等に基づいて、空冷式熱源機21〜71の運転開始(起動)の判断等を行う。ここで、本実施の形態では、制御部100は熱源機側から送られた信号に含まれる圧縮機の駆動周波数に基づいて処理等を行うが、例えば制御部100が各熱源機に圧縮機の駆動周波数を指示等する場合には、指示に係る駆動周波数を用いるようにしてもよい。   The control unit 100 controls the cold / hot water supply system. In the present embodiment, the determination of the start (start-up) of the operation of the air-cooled heat source units 21 to 71 is based on the temperature related to the detection of the temperature sensors 91 to 98, the drive frequency of the compressor of each heat source unit, and the like. Do. Here, in the present embodiment, the control unit 100 performs processing or the like based on the drive frequency of the compressor included in the signal sent from the heat source unit side. For example, the control unit 100 adds the compressor to each heat source unit. When instructing the driving frequency, the driving frequency according to the instruction may be used.

図4は、本発明の実施の形態1における制御部100の処理動作のフローチャートを示す図である。次に実施の形態1における制御部100の処理について説明する。ここでは、温水側に係る処理について説明するが、冷水側においても同様の処理を行って、目標水温の冷水を負荷側に供給できるようにする。   FIG. 4 is a diagram showing a flowchart of the processing operation of the control unit 100 according to Embodiment 1 of the present invention. Next, the process of the control part 100 in Embodiment 1 is demonstrated. Here, although the process which concerns on a hot water side is demonstrated, the same process is performed also on the cold water side, and cold water of target water temperature can be supplied to the load side.

冷温水供給システムが運転を開始すると、温水の流れに対して最上流に位置する水冷式熱源機11が運転を開始する。そして、第1所定時間が経過したかどうかを判断する(S1)。第1所定時間が経過したものと判断すると、温度センサー91の検出に基づいて、温水の温度が目標水温に達しているかどうかを判断する(S2)。目標水温に達していると判断すると、目標水温の温水を供給できる駆動周波数で圧縮機12を駆動させるようにして(S10)、処理を終了する。   When the cold / hot water supply system starts operation, the water-cooled heat source unit 11 located at the uppermost stream with respect to the flow of hot water starts operation. Then, it is determined whether or not the first predetermined time has passed (S1). If it is determined that the first predetermined time has elapsed, it is determined whether the temperature of the hot water has reached the target water temperature based on the detection of the temperature sensor 91 (S2). If it is determined that the target water temperature has been reached, the compressor 12 is driven at a drive frequency at which hot water at the target water temperature can be supplied (S10), and the process ends.

目標水温に達していないと判断すると、圧縮機12を最高駆動周波数で駆動しているかどうかを判断する(S3)。最高駆動周波数で駆動していないと判断すると、駆動周波数を上げて(S4)、S1に戻って処理を続ける。例えば、水冷式熱源機11では、圧縮機12を最高駆動周波数まで駆動させてもCOPが悪くならない。そこで、可能な限り水冷式熱源機11の運転によって水温を確保するために、圧縮機12を最高駆動周波数まで駆動させるようにする。   If it is determined that the target water temperature has not been reached, it is determined whether or not the compressor 12 is driven at the maximum drive frequency (S3). If it is determined that the drive is not performed at the maximum drive frequency, the drive frequency is increased (S4), and the process returns to S1 to continue the process. For example, in the water-cooled heat source unit 11, the COP does not deteriorate even if the compressor 12 is driven to the maximum drive frequency. Therefore, in order to ensure the water temperature by operating the water-cooled heat source unit 11 as much as possible, the compressor 12 is driven to the maximum drive frequency.

一方、圧縮機12を最高駆動周波数で駆動していると判断すると、温水の流れに対して下流側に位置する空冷式熱源機21〜41の運転開始及び制御を行って(S5)、水温を確保して供給できるようにする。ここでは、まず空冷式熱源機の中で最上流側に位置する空冷式熱源機21の運転を開始する。そして、第2所定時間が経過したかどうかを判断する(S6)。ここで第2所定時間は,前述した第1所定時間と同じ時間であってもよい。第2所定時間が経過したものと判断すると、例えば空冷式熱源機21の下流側にある温度センサー92の検出に基づいて、温水の温度が目標水温に達しているかどうかを判断する(S7)。目標水温に達していると判断すると、目標水温の温水を供給できる駆動周波数で圧縮機12、圧縮機22を駆動させるようにして(S10)、処理を終了する。一方、目標水温に達していないと判断すると、圧縮機22の駆動周波数を上げる(S8)。   On the other hand, if it is determined that the compressor 12 is driven at the maximum driving frequency, the air cooling heat source devices 21 to 41 located on the downstream side of the hot water flow are started and controlled (S5), and the water temperature is reduced. Secure and supply. Here, first, the operation of the air-cooled heat source unit 21 located on the most upstream side in the air-cooled heat source unit is started. Then, it is determined whether or not the second predetermined time has passed (S6). Here, the second predetermined time may be the same time as the first predetermined time described above. If it is determined that the second predetermined time has elapsed, for example, it is determined whether the temperature of the hot water has reached the target water temperature based on the detection of the temperature sensor 92 on the downstream side of the air-cooling heat source machine 21 (S7). If it is determined that the target water temperature has been reached, the compressor 12 and the compressor 22 are driven at a driving frequency capable of supplying hot water at the target water temperature (S10), and the process is terminated. On the other hand, if it is determined that the target water temperature has not been reached, the drive frequency of the compressor 22 is increased (S8).

図5は、複数台の空冷式熱源機とCOPとの関係を示す図である。図3では冷房能力比(熱源機8台の合計圧縮機周波数の定格周波数に対する周波数比)とシステムCOPとの関係例を示している。ここで、圧縮機の消費電力を100%とした時の定格圧縮機消費電力に対する圧縮機消費電力比10%の消費電力をポンプの消費電力として、COPを算出している。   FIG. 5 is a diagram showing the relationship between a plurality of air-cooled heat source machines and the COP. FIG. 3 shows an example of the relationship between the cooling capacity ratio (frequency ratio of the total compressor frequency of the eight heat source units to the rated frequency) and the system COP. Here, the COP is calculated with the power consumption of the compressor being 10% of the power consumption of the compressor relative to the rated compressor power consumption when the power consumption of the compressor is 100%.

空冷式熱源機の場合には、圧縮機における最高駆動周波数よりも低い駆動周波数において、COPが最大となる駆動周波数が存在する。例えば、図3において、運転する空冷式熱源機(駆動する圧縮機)の各運転台数におけるCOPは、最大が約3.2であり、上に凸の曲線となっている、そして、各運転台数において、少なくとも1台多い運転台数又は1台少ない運転台数との間に交点が存在する。このため、例えばある台数の空冷式熱源機の運転に係る合計圧縮機周波数とある台数に1台増えた台数の空冷式熱源機の運転に係る合計圧縮機周波数とが同じ場合に、1台増えた方がCOPが高くなる場合がある(1台減った場合も同じである)。ここで、空冷式熱源機の運転台数(圧縮機の駆動台数)を切り替える境界となる圧縮機の駆動周波数(図3における交点に対応する駆動周波数)を境界周波数とする(境界周波数はそれ以前の運転台数により、各空冷式熱源機において異なる場合がある)。   In the case of an air-cooled heat source machine, there is a driving frequency at which the COP becomes maximum at a driving frequency lower than the maximum driving frequency in the compressor. For example, in FIG. 3, the maximum COP in each operating number of operating air-cooled heat source devices (compressed compressors) is about 3.2, and has an upwardly convex curve. , There is an intersection between at least one more operating unit or one less operating unit. For this reason, for example, when the total compressor frequency related to the operation of a certain number of air-cooled heat source units and the total compressor frequency related to the operation of the number of air-cooled heat source units increased by one to the same number are increased by one. There is a case where the COP becomes higher (the same is true when one unit is reduced). Here, the driving frequency of the compressor (the driving frequency corresponding to the intersection in FIG. 3) that becomes the boundary for switching the number of operating air-cooled heat source units (the number of driving compressors) is the boundary frequency (the boundary frequency is the previous frequency) Depending on the number of operating units, each air-cooled heat source unit may differ)

そして、S8において駆動周波数を上げた後、境界周波数超の駆動周波数であるかどうかを判断する(S9)。境界周波数を超えていないと判断すると、S6に戻って処理を続ける。一方、境界周波数を超えていると判断すると、S5に戻って、さらに下流側に位置する空冷式熱源機の運転開始及び制御の処理を行う。これにより、空冷式熱源機はCOPが最も良い駆動周波数で運転台数を切り替えることができる。以上のようにして、温水配管83の流れる温水が目標水温になるまで処理を行う。   Then, after increasing the drive frequency in S8, it is determined whether the drive frequency is higher than the boundary frequency (S9). If it is determined that the boundary frequency is not exceeded, the process returns to S6 and continues. On the other hand, if it is determined that the boundary frequency is exceeded, the process returns to S5, and the operation start and control of the air-cooled heat source unit located further downstream are performed. As a result, the number of operating units of the air-cooled heat source machine can be switched at the drive frequency with the best COP. As described above, the processing is performed until the hot water flowing through the hot water pipe 83 reaches the target water temperature.

以上のように、本実施の形態のシステムによれば、COPの最大点が圧縮機の最大駆動周波数よりも低い駆動周波数にある空冷式熱源機21〜71の運転において、境界周波数を超えたものと判断すると運転台数を切り替えるようにしてCOPが高くなる方の運転を選択することで、COPを高く維持することができる。また、本実施の形態のような水冷式熱源機11と空冷式熱源機21〜71とが混在しているシステムにおいては、COPが優れている水冷式熱源機11を水の流れの最上流側に位置するようにして優先して運転させるようにすることで、さらに高いCOPの維持をはかることができる。このように1台又は複数台の熱源機の運転を制御して、高いCOPを維持しつつ、所望する温度の水を供給することができる。   As described above, according to the system of the present embodiment, in the operation of the air-cooled heat source devices 21 to 71 in which the maximum point of COP is lower than the maximum driving frequency of the compressor, the boundary frequency is exceeded. If it is determined that the number of operating units is switched and the driving with the higher COP is selected, the COP can be kept high. Further, in a system in which the water-cooled heat source device 11 and the air-cooled heat source devices 21 to 71 are mixed as in the present embodiment, the water-cooled heat source device 11 having excellent COP is placed on the most upstream side of the water flow. It is possible to maintain a higher COP by preferentially operating the vehicle so that it is positioned at the position. In this way, it is possible to supply water at a desired temperature while maintaining a high COP by controlling the operation of one or a plurality of heat source units.

実施の形態2.
上述した実施の形態1の冷温水供給システムは、図1に示すように、1台の水冷式熱源機11と6台の空冷式熱源機21〜71との、7台の熱源機を有しているが、構成する熱源機の台数を限定するものではない。水冷式熱源機と複数台の空冷式熱源機とを温水配管(冷水配管)に対して直列に接続するようにしていれば適用可能である。
Embodiment 2. FIG.
The cold / hot water supply system of Embodiment 1 mentioned above has seven heat source units, one water cooling type heat source unit 11 and six air cooling type heat source units 21 to 71, as shown in FIG. However, it does not limit the number of heat source devices to be configured. The present invention is applicable if a water-cooled heat source machine and a plurality of air-cooled heat source machines are connected in series to a hot water pipe (cold water pipe).

また、実施の形態1においては、各熱源機からの水の流出側に温度センサー91〜98を設置しているが、これに限定するものではない。例えば温度センサー94及び98の検出に係る温度を用いて、目標水温に達したかどうかを判断するようにしてもよい。   Moreover, in Embodiment 1, although the temperature sensors 91-98 are installed in the outflow side of the water from each heat source machine, it is not limited to this. For example, it may be determined whether or not the target water temperature has been reached using the temperature associated with detection by the temperature sensors 94 and 98.

そして、実施の形態1では、空冷式熱源機の運転台数を増やす場合の処理について適用したが、これに限定するものではなく、例えば空冷式熱源機の運転台数を減らす処理(運転停止に係る処理)についても適用することができる。   And in Embodiment 1, although applied about the process in the case of increasing the operation number of an air-cooling type heat source machine, it does not limit to this, For example, the process (process which concerns on an operation stop) which reduces the operation number of an air-cooling type heat source machine ) Can also be applied.

11 水冷式熱源機、12 圧縮機、13 水冷側凝縮器、14 絞り装置、15 水冷側蒸発器、21 空冷式熱源機、22 圧縮機、23 空冷側凝縮器、24 絞り装置、25 空冷側蒸発器、26 送風機、31 空冷式熱源機、41 空冷式熱源機、51 空冷式熱源機、52 圧縮機、53 空冷側凝縮器、54 絞り装置、55 空冷側蒸発器、56 送風機、61 空冷式熱源機、71 空冷式熱源機、81 温水ポンプ、82 冷水ポンプ、83 温水配管、84 冷水配管、91,92,93,94,95,96,97,98 温度センサー、100 制御部。   11 Water-cooled heat source machine, 12 Compressor, 13 Water-cooled side condenser, 14 Throttle device, 15 Water-cooled side evaporator, 21 Air-cooled heat source machine, 22 Compressor, 23 Air-cooled side condenser, 24 Throttle device, 25 Air-cooled side evaporation 26 Air blower, 31 Air-cooled heat source machine, 41 Air-cooled heat source machine, 51 Air-cooled heat source machine, 52 Compressor, 53 Air-cooled side condenser, 54 Throttle device, 55 Air-cooled side evaporator, 56 Blower, 61 Air-cooled heat source Machine, 71 air-cooled heat source machine, 81 hot water pump, 82 cold water pump, 83 hot water pipe, 84 cold water pipe, 91, 92, 93, 94, 95, 96, 97, 98 temperature sensor, 100 control unit.

Claims (3)

水が流れる2本の水配管と、
冷媒を圧縮する圧縮機、前記冷媒と空気との熱交換を行う空気熱交換器、前記水配管を流れる水と前記冷媒とを熱交換する水熱交換器及び該水熱交換器に流入する冷媒の圧力を調整する圧力調整手段を有してヒートポンプ回路を構成する複数の空冷式熱源機とを備えて前記複数の空冷式熱源機を前記水の流れに沿って前記水配管に接続して前記水を加熱又は冷却して供給する冷温水供給システムであって、
前記圧縮機、各水配管の水がそれぞれ通過する2つの前記水熱交換器及び前記圧力調整手段を有してヒートポンプ回路を構成する水冷式熱源機と、
前記水配管を流れる水の温度を検出する温度検出手段と、
該温度検出手段の検出に係る温度に基づいて前記空冷式熱源機の運転を制御し、1又は複数の前記空冷式熱源機における前記圧縮機の駆動周波数に基づいて、COPが高い方の前記空冷式熱源機の運転台数に切り替える処理を行う制御部と
をさらに備え
前記制御部は、前記複数の空冷式熱源機を運転させる前に、前記水冷式熱源機の前記圧縮機が最高駆動周波数になるまで前記水冷式熱源機を運転させ、足りない熱量分を1又は複数の前記空冷式熱源機で補う制御を行うことを特徴とする冷温水供給システム。
Two water pipes through which water flows,
Compressor for compressing refrigerant, air heat exchanger for exchanging heat between said refrigerant and air, water heat exchanger for exchanging heat between water flowing through said water pipe and said refrigerant, and refrigerant flowing into said water heat exchanger A plurality of air-cooled heat source devices that have a pressure adjusting means for adjusting the pressure of the heat pump circuit, and connect the plurality of air-cooled heat source devices to the water pipe along the flow of the water. A cold / hot water supply system for supplying water by heating or cooling,
A water-cooled heat source machine comprising a heat pump circuit having the compressor, the two water heat exchangers through which water in each water pipe passes, and the pressure adjusting means;
Temperature detecting means for detecting the temperature of water flowing through the water pipe;
The operation of the air-cooled heat source unit is controlled based on the temperature related to the detection by the temperature detecting means, and the air cooling with the higher COP is performed based on the driving frequency of the compressor in one or a plurality of the air-cooled heat source units. And a control unit that performs a process of switching to the number of operating heat source units .
The control unit operates the water-cooled heat source machine until the compressor of the water-cooled heat source machine reaches a maximum drive frequency before operating the plurality of air-cooled heat source machines, and the amount of heat that is insufficient is 1 or A cold / hot water supply system that performs control supplemented by a plurality of the air-cooled heat source devices .
前記温度検出手段を複数有し、各熱源機から流出する前記水の温度を検出することを特徴とする請求項1記載の冷温水供給システム。 2. The cold / hot water supply system according to claim 1 , wherein a plurality of the temperature detection units are provided, and the temperature of the water flowing out from each heat source unit is detected. 請求項1又は2に記載の冷温水供給システムにより加熱又は冷却された水により、空調対象空間の暖房又は冷房を行うことを特徴とする空気調和装置。 An air conditioner that heats or cools a space to be air-conditioned with water heated or cooled by the cold / hot water supply system according to claim 1 or 2 .
JP2013092229A 2013-04-25 2013-04-25 Cold / hot water supply system and air conditioner Expired - Fee Related JP6141089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013092229A JP6141089B2 (en) 2013-04-25 2013-04-25 Cold / hot water supply system and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013092229A JP6141089B2 (en) 2013-04-25 2013-04-25 Cold / hot water supply system and air conditioner

Publications (2)

Publication Number Publication Date
JP2014214954A JP2014214954A (en) 2014-11-17
JP6141089B2 true JP6141089B2 (en) 2017-06-07

Family

ID=51940882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013092229A Expired - Fee Related JP6141089B2 (en) 2013-04-25 2013-04-25 Cold / hot water supply system and air conditioner

Country Status (1)

Country Link
JP (1) JP6141089B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10078345B2 (en) 1997-09-19 2018-09-18 Glenn Rolus Borgward Digital book
US11384972B2 (en) 2018-08-17 2022-07-12 Mitsubishi Electric Corporation Free cooling system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6707172B2 (en) * 2017-03-03 2020-06-10 三菱電機株式会社 Refrigeration system and control device
CN106871379B (en) * 2017-03-30 2019-12-03 广东美的暖通设备有限公司 Air-conditioning system and its compressor control method and device
US11506432B2 (en) 2018-08-17 2022-11-22 Mitsubishi Electric Corporation Cold water supply system
CN109237709B (en) * 2018-08-31 2020-12-08 青岛海尔空调电子有限公司 Multi-split control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112664A (en) * 1980-12-27 1982-07-13 Takenaka Komuten Co Multi-chamber air conditioning equipment
JP2828547B2 (en) * 1992-08-14 1998-11-25 大阪瓦斯株式会社 Heat source unit number control device
JP3596347B2 (en) * 1998-04-15 2004-12-02 三菱電機株式会社 Refrigeration air conditioner and control method thereof
JP3988779B2 (en) * 2005-09-09 2007-10-10 ダイキン工業株式会社 Refrigeration equipment
JP2009192186A (en) * 2008-02-18 2009-08-27 Hitachi Appliances Inc Refrigeration system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10078345B2 (en) 1997-09-19 2018-09-18 Glenn Rolus Borgward Digital book
US10101768B2 (en) 1997-09-19 2018-10-16 Glenn Rolus Borgward Digital book
US11384972B2 (en) 2018-08-17 2022-07-12 Mitsubishi Electric Corporation Free cooling system

Also Published As

Publication number Publication date
JP2014214954A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
JP6141089B2 (en) Cold / hot water supply system and air conditioner
US20170184314A1 (en) Heat pump heating system
JP4626714B2 (en) Refrigeration equipment
KR100758902B1 (en) multi type air conditioning system and controlling method of the system
WO2013160929A1 (en) Refrigeration cycle system
US20200064031A1 (en) Chilling unit and temperature control system using water circulation
JP6413713B2 (en) Snow and ice air conditioning system
JP6950191B2 (en) Air conditioner
JP4182494B2 (en) Large temperature difference air conditioning system
JP2010025503A (en) Heat pump air conditioning system
JP6976878B2 (en) Heat pump air conditioning system
JP6548742B2 (en) Air conditioner
JP6486500B2 (en) Waste heat recovery system
JP6351478B2 (en) Air conditioning system
JP5627564B2 (en) Refrigeration cycle system
KR101321545B1 (en) Air conditioner
JP2016057014A (en) Heat pump system
JP2006010253A (en) Water-cooled exhaust heat recovering heat pump
US20100043465A1 (en) Heat pump system and method of controlling the same
JPWO2019026234A1 (en) Refrigeration cycle device
JP2013174374A (en) Chilling unit
JP5843630B2 (en) Cooling system
JP5907812B2 (en) Heat pump system and operation method thereof
JP4275570B2 (en) Heating tower defrosting method and water-cooled heat pump system
JP2009192197A (en) Heat pump cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170502

R150 Certificate of patent or registration of utility model

Ref document number: 6141089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees