JP6125182B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6125182B2
JP6125182B2 JP2012202928A JP2012202928A JP6125182B2 JP 6125182 B2 JP6125182 B2 JP 6125182B2 JP 2012202928 A JP2012202928 A JP 2012202928A JP 2012202928 A JP2012202928 A JP 2012202928A JP 6125182 B2 JP6125182 B2 JP 6125182B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
current collector
electrode
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012202928A
Other languages
Japanese (ja)
Other versions
JP2014059971A (en
Inventor
稔英 有川
稔英 有川
張愛 石井
張愛 石井
室 直人
直人 室
正光 宇留野
正光 宇留野
友希 大谷
友希 大谷
菊間 祐一
祐一 菊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012202928A priority Critical patent/JP6125182B2/en
Publication of JP2014059971A publication Critical patent/JP2014059971A/en
Application granted granted Critical
Publication of JP6125182B2 publication Critical patent/JP6125182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明の実施形態は、電極及び電池に関する。   Embodiments described herein relate generally to an electrode and a battery.

リチウムイオン二次電池は、正極と、負極と、セパレータと、電解液とを備えるもので、正極と負極の間にセパレータが配置され、セパレータに電解液が保持される。実際の電池においては、正極、セパレータ、負極を積層し、これらを捲回して大きな電気容量を得ていることが多い。   The lithium ion secondary battery includes a positive electrode, a negative electrode, a separator, and an electrolytic solution. The separator is disposed between the positive electrode and the negative electrode, and the electrolytic solution is held in the separator. In an actual battery, in many cases, a positive electrode, a separator, and a negative electrode are stacked and wound to obtain a large electric capacity.

セパレータは正極と負極間の直接の接触を防止するとともに電解液を保持する目的で使用されている。セパレータはその厚さは小さいほうがインピーダンスを小さくでき、また電解液量を少なくできるので望ましいが、一方、セパレータを薄くすると機械的強度が低下し、製造時や実使用時にセパレータが切れて正極と負極とが直接接触するリスクが高まる。   The separator is used for the purpose of preventing the direct contact between the positive electrode and the negative electrode and holding the electrolytic solution. It is desirable that the thickness of the separator is small because the impedance can be reduced and the amount of electrolyte can be reduced. On the other hand, the thinner the separator, the lower the mechanical strength, and the separator breaks during manufacturing and actual use. Increases the risk of direct contact.

また、一般的に上述の電池に用いられる電極群は、正極、第1セパレータ、負極、第2セパレータの各部品を積層しながらこれらを捲回して製造される。その際、製造効率を上げるために捲回速度を上げることが望ましいが、そうすると正極、第1セパレータ、負極、第2セパレータに個別にかかる機械的負荷が大きくなる。一方、大きな電池容量を得るためにはセパレータや各電極の集電体に使用される金属箔(例えばアルミニウム箔)の厚さは薄くすることが望ましく、製造効率の向上と電池容量の向上の両立は難しい。また、正極と負極とが直接接触しないようにセパレータは両極間の適切な位置に存在しなければならず、捲回時に高度な位置制御を必要とすることから捲回装置のコストダウンや捲回速度向上の障害になっている。   Moreover, the electrode group generally used for the above-described battery is manufactured by winding the positive electrode, the first separator, the negative electrode, and the second separator while laminating them. At this time, it is desirable to increase the winding speed in order to increase the production efficiency, but if so, the mechanical load applied individually to the positive electrode, the first separator, the negative electrode, and the second separator increases. On the other hand, in order to obtain a large battery capacity, it is desirable to reduce the thickness of the metal foil (for example, aluminum foil) used for the current collector of the separator and each electrode, so that both production efficiency and battery capacity can be improved. Is difficult. In addition, the separator must be in an appropriate position between the two electrodes so that the positive electrode and the negative electrode are not in direct contact with each other, and since advanced position control is required during winding, the cost of the winding device can be reduced and the winding can be performed. It is an obstacle to speed improvement.

特開平10−50348号公報Japanese Patent Laid-Open No. 10-50348 特開2003−59486号公報JP 2003-59486 A 特開2008−103310号公報JP 2008-103310 A

本発明が解決しようとする課題は、安全で製造効率の高い電極及び電池を提供することにある。   The problem to be solved by the present invention is to provide an electrode and a battery that are safe and have high production efficiency.

実施形態によれば、正極と、負極と、正極及び負極の間に介在したセパレータと、電解液とを備えた非水電解質二次電池が提供される。正極は、正極集電体と、正極集電体に形成される正極活物質含有層と、正極集電体と電気的に接続される正極集電タブとを含んでいる。負極は、負極集電体と、負極集電体に形成される負極活物質含有層と、負極集電体と電気的に接続される負極集電タブとを含んでいる。セパレータは、正極活物質含有層の表面及び正極集電タブの表面の一部に、複数箇所に分散して付着した絶縁性物質と、負極活物質含有層の表面及び負極集電タブの表面の一部に、複数箇所に分散して付着した絶縁性物質とからなる。正極の絶縁性物質の一部と負極の絶縁性物質の一部とは、交差するように重なっている。正極及び負極の絶縁性物質は、電解液に不溶性の材料からなる。 According to the embodiment, a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution is provided. The positive electrode includes a positive electrode current collector, a positive electrode active material-containing layer formed on the positive electrode current collector, and a positive electrode current collector tab electrically connected to the positive electrode current collector. The negative electrode includes a negative electrode current collector, a negative electrode active material-containing layer formed on the negative electrode current collector, and a negative electrode current collector tab electrically connected to the negative electrode current collector. Separator, a part of the surface of the surface and the positive electrode current collector tabs of the positive electrode active material-containing layer, an insulating material dispersed attached to a plurality of locations, the surface及beauty anode current collector tabs of the negative electrode active material-containing layer It consists of an insulating substance dispersed and attached to a part of the surface at a plurality of locations. Part of the positive insulating material and part of the negative insulating material overlap each other so as to intersect. The insulating materials for the positive electrode and the negative electrode are made of a material that is insoluble in the electrolyte.

実施形態に係る電極を示す断面図。Sectional drawing which shows the electrode which concerns on embodiment. 図1のA部の拡大断面図。The expanded sectional view of the A section of FIG. 実施形態に係る電池に用いられる電極群を示す断面図。Sectional drawing which shows the electrode group used for the battery which concerns on embodiment. 実施形態に係る電極を示す平面図。The top view which shows the electrode which concerns on embodiment. 実施形態に係る電極を示す平面図。The top view which shows the electrode which concerns on embodiment. 一方極の絶縁性物質と他方極の絶縁性物質を接触させた状態を示す平面図。The top view which shows the state which contacted the insulating substance of the one pole, and the insulating substance of the other pole. 実施形態に係る電池の部分切欠斜視図。The partial notch perspective view of the battery which concerns on embodiment.

以下、実施の形態について、図面を参照して説明する。実施形態によれば、集電体と、活物質含有層と、集電タブと、絶縁性物質(電気伝導性が無い物質)と含む電極が提供される。活物質含有層は、集電体の片面または両面に形成される。集電タブは、集電体と電気的に接続される。絶縁性物質は、活物質含有層及び集電タブの表面の一部に付着している。   Hereinafter, embodiments will be described with reference to the drawings. According to the embodiment, an electrode including a current collector, an active material-containing layer, a current collecting tab, and an insulating material (a material having no electrical conductivity) is provided. The active material-containing layer is formed on one side or both sides of the current collector. The current collecting tab is electrically connected to the current collector. The insulating material is attached to part of the surfaces of the active material-containing layer and the current collecting tab.

絶縁性物質はセパレータとして機能するため、電極にセパレータの機能を付与することにより、単独の部品としてのセパレータを省略できる。また、電極にセパレータに相当する物質を付着させることにより機械的強度が増すので電極捲回時に電極が切れにくくなり、捲回速度を上げたり、電極の集電体の厚さを薄くしたりできる。また、電極にセパレータが付着して常に追随するので捲回時に電極とセパレータの位置関係が変化することがなく捲回時の捲きズレ不良を低減させることが可能である。さらに、活物質含有層の表面とセパレータが一体であるため、捲回時にセパレータが単独で切れて電極群内で正極と負極が接触することがなくなり、電池の安全性を向上することができる。   Since the insulating substance functions as a separator, the separator as a single component can be omitted by providing the electrode with a separator function. Moreover, since the mechanical strength is increased by attaching a substance corresponding to the separator to the electrode, it is difficult to cut the electrode when winding the electrode, and it is possible to increase the winding speed or reduce the thickness of the current collector of the electrode. . In addition, since the separator adheres to the electrode and always follows, the positional relationship between the electrode and the separator does not change during winding, and it is possible to reduce the misalignment during winding. Furthermore, since the surface of the active material-containing layer and the separator are integrated, the separator is not cut off at the time of winding, and the positive electrode and the negative electrode are not contacted in the electrode group, so that the safety of the battery can be improved.

絶縁性物質は、電解液に不溶性のものが好ましく、具体例には、セルロース、ポリエチレン、ポリプロピレンなどが含まれる。ポリプロピレン、ポリエチレンは、球状、繊維状に加工しやすく、電解液に不溶性であるため、望ましい。また、熱可塑性樹脂、熱硬化性樹脂も使用可能である。熱可塑性樹脂及び/または熱硬化性樹脂を使用することにより、絶縁性物質を加熱して溶融させることで付着させることが可能である。使用する絶縁性物質の種類は、1種類または2種類以上にすることができる。   The insulating material is preferably insoluble in the electrolytic solution, and specific examples include cellulose, polyethylene, polypropylene, and the like. Polypropylene and polyethylene are desirable because they are easily processed into a spherical or fibrous shape and are insoluble in the electrolyte. A thermoplastic resin and a thermosetting resin can also be used. By using a thermoplastic resin and / or a thermosetting resin, the insulating material can be attached by heating and melting. The type of insulating material used can be one type or two or more types.

絶縁性物質は、単体の粒子、複合粒子、これらの粒子の集合体等の形態にすることができる。粒子の形態は、1種類のみにしても、複数種を組み合わせても良い。   The insulating substance can be in the form of simple particles, composite particles, aggregates of these particles, and the like. The shape of the particles may be only one type or a combination of multiple types.

絶縁性物質粒子の形状は特に限定されないが、充放電による電荷の移動を阻害しないように活物質との接触面積が極力小さくなる形状であることが望ましい。同時に、正極と負極との接触を防止し、また、捲回時に伸縮する電極に追随できずに剥離する部分が発生するのを抑えるため、絶縁性物質の複数個所が電極に付着していることが望ましい。これらを考慮すると、たとえば、球形、円柱形、繊維状の形状が挙げられる。粒子形状は、1種類または2種類以上にすることができる。   The shape of the insulating material particles is not particularly limited, but it is desirable that the contact area with the active material be as small as possible so as not to hinder the movement of charges due to charge and discharge. At the same time, in order to prevent contact between the positive electrode and the negative electrode, and to prevent the occurrence of exfoliating parts that cannot follow the electrode that expands and contracts during winding, the insulating material should have multiple points attached to the electrode. Is desirable. Considering these, for example, a spherical shape, a cylindrical shape, and a fibrous shape can be mentioned. The particle shape can be one type or two or more types.

絶縁性物質の長さは0.001μm以上1mm以下が望ましい。長さを0.001μm以上にすることにより、正極と負極の接触の可能性をより低くすることができる。また、長さを1mm以下にすることにより、抵抗を小さくすることができる。長さのより好ましい範囲は、2μm以上50μm以下の範囲である。   The length of the insulating material is preferably 0.001 μm or more and 1 mm or less. By setting the length to 0.001 μm or more, the possibility of contact between the positive electrode and the negative electrode can be further reduced. Moreover, resistance can be made small by making length into 1 mm or less. A more preferable range of the length is a range of 2 μm or more and 50 μm or less.

絶縁性物質の短辺方向の幅は0.001μm以上1mm以下が望ましい。短辺方向の幅を0.001μm以上にすることにより、正極と負極の接触の可能性をより低くすることができる。また、短辺方向の幅を1mm以下にすることにより、抵抗を小さくすることができる。短辺方向の幅のより好ましい範囲は、2μm以上50μm以下の範囲である。   The width in the short side direction of the insulating material is preferably 0.001 μm or more and 1 mm or less. By setting the width in the short side direction to 0.001 μm or more, the possibility of contact between the positive electrode and the negative electrode can be further reduced. Further, the resistance can be reduced by setting the width in the short side direction to 1 mm or less. A more preferable range of the width in the short side direction is a range of 2 μm or more and 50 μm or less.

絶縁性物質の長辺方向の幅は、0.001μm以上1000mm以下が望ましい。長辺方向の幅を0.001μm以上にすることにより、正極と負極の接触の可能性をより低くすることができる。また、長辺方向の幅を1000mm以下にすることにより、抵抗を小さくすることができる。長辺方向の幅のより好ましい範囲は、2μm以上50μm以下の範囲である。   The width in the long side direction of the insulating material is preferably 0.001 μm or more and 1000 mm or less. By setting the width in the long side direction to 0.001 μm or more, the possibility of contact between the positive electrode and the negative electrode can be further reduced. Moreover, resistance can be made small by making the width | variety of a long side direction into 1000 mm or less. A more preferable range of the width in the long side direction is a range of 2 μm or more and 50 μm or less.

絶縁性物質は、直径0.001μm以上1mm以下の球状粒子、直径0.001μm以上1mm以下で、かつ長さ0.001μm以上1000mm以下の繊維状粒子、もしくは該球状粒子と該繊維状粒子の混合物であることが望ましい。これにより、抵抗及び正極と負極の接触の可能性をさらに小さくすることができる。   The insulating material is a spherical particle having a diameter of 0.001 μm to 1 mm, a fibrous particle having a diameter of 0.001 μm to 1 mm and a length of 0.001 μm to 1000 mm, or a mixture of the spherical particle and the fibrous particle. It is desirable that This can further reduce the resistance and the possibility of contact between the positive electrode and the negative electrode.

絶縁性物質の付着方法には、絶縁性物質をバインダーと共に活物質表面または集電タブ表面に塗工する、スプレー、静電塗装、印刷、転写を用いることができ、また、絶縁性物質を活物質表面または集電タブ表面に塗工、印刷、スプレーなどの手段によって位置させた後、加熱して溶着させる方法等を挙げることができ、いずれを用いてもよい。印刷の例には、インクジェット、グラビア印刷、オフセット印刷、スクリーン印刷が含まれる。また、熱溶着は絶縁性物質の融点を利用して電極に付着させる方法である。バインダーには、PVDFなどの電解液に溶解しない材料等を挙げることができる。中でも、インクジェット、グラビア印刷、オフセット印刷、スクリーン印刷、転写は、絶縁性物質を任意の位置や任意の方向に配列させるのに適しており、望ましい。グラビア印刷によると、製造コストを低く抑えることも可能である。   As the method for attaching the insulating material, spraying, electrostatic coating, printing, or transfer, in which the insulating material is applied to the active material surface or the current collecting tab surface together with the binder, can be used. Examples of the method include a method of heating and welding the material surface or the current collecting tab surface after being positioned by means of coating, printing, spraying, or the like, and any of them may be used. Examples of printing include inkjet, gravure printing, offset printing, and screen printing. Thermal welding is a method of adhering to the electrode using the melting point of the insulating material. Examples of the binder include a material that does not dissolve in an electrolytic solution such as PVDF. Among these, ink jet, gravure printing, offset printing, screen printing, and transfer are preferable because they are suitable for arranging insulating substances in arbitrary positions and directions. According to gravure printing, the manufacturing cost can be kept low.

絶縁性物質の量に関しては、絶縁性物質が付着した後においても電極活物質が露出して電解液と十分に接することで十分な電池特性を発揮し、かつ正極と負極を重ねて捲回した際に正極と負極とが接することが無いようにすることが望ましい。   Regarding the amount of the insulating material, the electrode active material is exposed even after the insulating material is adhered, and sufficient battery characteristics are exhibited by sufficiently contacting the electrolytic solution, and the positive electrode and the negative electrode are stacked and wound. It is desirable to prevent the positive electrode and the negative electrode from coming into contact with each other.

絶縁性物質を付着させる範囲は、正負極の片面もしくは両面にすることができ、片面の場合には、相手極と接触する可能性のある部分を含むことが望ましい。付着量が十分な場合、どちらか一方の電極のみ絶縁性物質を付着しても良い。   The range to which the insulating substance is attached can be one or both sides of the positive and negative electrodes. In the case of one side, it is desirable to include a portion that may come into contact with the counterpart electrode. When the adhesion amount is sufficient, the insulating material may be adhered to only one of the electrodes.

絶縁性物質は、活物質含有層及び集電タブの表面の一部に散在(複数箇所に分散)して付着していることが望ましい。活物質含有層の表面を露出させることによって、活物質と電解液との接触面積を十分に確保することができると共に、電極間のイオン拡散を円滑にすることができる。また、電極を捲回する際、その表面に付着された絶縁性物質は付着部分が伸縮の力を受けて付着状態を維持できずに剥離する可能性がある。その際、絶縁性物質が複数個所で電極表面に付着していることにより一部の付着部分が剥離した場合においても絶縁性物質全体としては電極表面への付着状態を維持できる。   It is desirable that the insulating material is scattered (dispersed in a plurality of locations) and attached to part of the surface of the active material-containing layer and the current collecting tab. By exposing the surface of the active material-containing layer, a sufficient contact area between the active material and the electrolytic solution can be ensured, and ion diffusion between the electrodes can be made smooth. Further, when the electrode is wound, the insulating substance attached to the surface may peel off without being able to maintain the attached state due to the attached portion receiving the expansion and contraction force. At this time, even when some of the adhering parts are peeled off due to the insulating material adhering to the electrode surface at a plurality of places, the insulating material as a whole can maintain the adhering state to the electrode surface.

絶縁性物質は、活物質含有層及び集電タブの表面の一部にランダムに配置されていても、規則性をもって配置されていても良い。絶縁性物質の配列の向きは、電極の幅方向、長さ方向、前記以外の方向のいずれの方向も選択可能である。絶縁性物質の間隔を広くして絶縁性物質が付着していない活物質を多くするためには正極と負極とが対向した際、絶縁性物質が交差するように配列されていることが望ましい。さらに、電極の幅方向に近い角度(幅方向とほぼ平行)で絶縁性物質が配列していると、電極を捲回し、捲回された電極に電解液を浸透させた際、電解液の浸透を妨げないため、さらに望ましい。   The insulating material may be randomly arranged on a part of the surface of the active material containing layer and the current collecting tab or may be arranged with regularity. The direction of the arrangement of the insulating material can be selected from any of the width direction, the length direction, and the other direction of the electrode. In order to increase the active material to which the insulating material is not adhered by increasing the interval between the insulating materials, it is desirable that the insulating materials are arranged so that they intersect when the positive electrode and the negative electrode face each other. Furthermore, if the insulating material is arranged at an angle close to the width direction of the electrode (substantially parallel to the width direction), when the electrode is wound and the electrolyte is permeated into the wound electrode, the electrolyte permeates. It is more desirable because it does not disturb.

電極がゆがんだり捲回による変形を受けたりしても正極と負極が直接接触しないような間隔にすることが望ましい。   It is desirable that the gap be such that the positive electrode and the negative electrode are not in direct contact even if the electrode is distorted or deformed by winding.

また、絶縁性物質の単位粒子同士は互いに付着しないか、もしくは電極表面との付着強度よりも弱い強度で互いが付着していることにより、電極が破断した際にも絶縁性物質が電極に追随して電極の絶縁性を維持することが可能となる。   Also, since the insulating substance unit particles do not adhere to each other or adhere to each other with an intensity lower than the adhesion strength to the electrode surface, the insulating substance follows the electrode even when the electrode breaks. Thus, it is possible to maintain the insulation of the electrode.

実施形態の電極を図1及び図2を参照して説明する。図1に示すように、電極1は、シート状の集電体2と、活物質含有層3と、帯状の集電タブ4と、絶縁性物質5と含む。活物質含有層3は、集電体2の両面に形成される。集電タブ4は、集電体2のうち活物質含有層3が形成されていない部分からなることにより、集電体2と電気的に接続されている。絶縁性物質5は、活物質含有層3及び集電タブ4の表面の一部に付着している。絶縁性物質5は、図2に示すように、絶縁性物質粒子5aと、絶縁性物質粒子5aの表面に部分的に接着したバインダー5bとを有する複合粒子である。絶縁性物質粒子5aは、バインダー5bによって活物質含有層3(または集電タブ4)の表面に接合される。複合粒子の一部は、単独で、他の一部は複数個が凝集した状態で表面に付着している。   The electrode of the embodiment will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the electrode 1 includes a sheet-shaped current collector 2, an active material-containing layer 3, a strip-shaped current collecting tab 4, and an insulating material 5. The active material-containing layer 3 is formed on both surfaces of the current collector 2. The current collecting tab 4 is electrically connected to the current collector 2 by being formed of a portion of the current collector 2 where the active material containing layer 3 is not formed. The insulating material 5 is attached to part of the surfaces of the active material-containing layer 3 and the current collecting tab 4. As shown in FIG. 2, the insulating material 5 is a composite particle having insulating material particles 5a and a binder 5b partially bonded to the surface of the insulating material particles 5a. The insulating material particles 5a are bonded to the surface of the active material containing layer 3 (or the current collecting tab 4) by the binder 5b. Some of the composite particles are attached to the surface alone, and some of the other particles are aggregated.

この図1に示す電極1を一方極1及び他方極6とし、図3に示すように、一方極1の絶縁性物質5と他方極6の絶縁性物質5とを接触させると、一方極1と他方極6を絶縁性物質5によって絶縁させることができ、絶縁性物質5をセパレータとして機能させることができる。なお、絶縁性物質5は、一方極1または他方極6の一方のみに形成しても良い。   When the electrode 1 shown in FIG. 1 is used as one electrode 1 and the other electrode 6 and the insulating material 5 of the one electrode 1 and the insulating material 5 of the other electrode 6 are brought into contact with each other as shown in FIG. And the other electrode 6 can be insulated by the insulating material 5, and the insulating material 5 can function as a separator. The insulating material 5 may be formed only on one of the one electrode 1 and the other electrode 6.

実施例の電極及び電池を以下に説明する。   The electrode and battery of an Example are demonstrated below.

リチウムイオン二次電池の正極及び負極の表面に、繊維直径10μm、繊維長さ50μmのポリプロピレン繊維をPVDFを介して付着させる。付着させる範囲は、正負極それぞれの活物質含有層の全面とそれに続く幅3mmにわたる集電タブ表面とする。これにより、正極と負極を積層し、これらを高速で捲回しても正負極間の絶縁性を維持することができる。   A polypropylene fiber having a fiber diameter of 10 μm and a fiber length of 50 μm is attached to the surfaces of the positive electrode and the negative electrode of the lithium ion secondary battery via PVDF. The range to be adhered is the current collecting tab surface over the entire surface of the active material containing layer of each of the positive and negative electrodes and the subsequent width of 3 mm. Thereby, even if it laminates | stacks a positive electrode and a negative electrode and winds these at high speed, the insulation between positive and negative electrodes can be maintained.

また、図4に示すように、正極7の表面において、ポリプロピレン繊維8を正極7の幅方向(捲回軸と平行な方向)Xに対して角度θ傾斜させて配置する。一方、図5に示すように、負極9の表面において、ポリプロピレン繊維8を負極9の幅方向(捲回軸と平行な方向)Xに対して角度θ傾斜させて配置する。なお、負極9のポリプロピレン繊維8は、正極7と反対向きに傾斜させる。ポリプロピレン繊維8の配列は、例えば、グラビア印刷により行なうことができる。正極7と負極9を重ねると、図6に示すように、正極7のポリプロピレン繊維8と負極9のポリプロピレン繊維8が交差して接触するため、正負極間の絶縁性の確実性をより高めることができる。角度θは、正負極で同じでも異なっていても良いが、0°〜45°の範囲にすることが望ましい(0°は正極7または負極9の幅方向Xに平行に配置する場合である)。これにより、正負極への電解液の浸透性を確保することができる。   As shown in FIG. 4, on the surface of the positive electrode 7, the polypropylene fibers 8 are arranged at an angle θ with respect to the width direction (direction parallel to the winding axis) X of the positive electrode 7. On the other hand, as shown in FIG. 5, on the surface of the negative electrode 9, the polypropylene fibers 8 are arranged with an angle θ inclined with respect to the width direction (direction parallel to the winding axis) X of the negative electrode 9. The polypropylene fiber 8 of the negative electrode 9 is inclined in the opposite direction to the positive electrode 7. The arrangement of the polypropylene fibers 8 can be performed by gravure printing, for example. When the positive electrode 7 and the negative electrode 9 are overlapped, as shown in FIG. 6, the polypropylene fiber 8 of the positive electrode 7 and the polypropylene fiber 8 of the negative electrode 9 intersect and come into contact with each other, thereby further increasing the certainty of insulation between the positive and negative electrodes. Can do. The angle θ may be the same or different between the positive and negative electrodes, but is preferably in the range of 0 ° to 45 ° (0 ° is a case where the positive electrode 7 or the negative electrode 9 is arranged in parallel with the width direction X). . Thereby, the permeability of the electrolyte solution to the positive and negative electrodes can be ensured.

絶縁性物質の長さ、幅(長辺方向及び短辺方向)、間隔、角度等は、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)、光学顕微鏡等による観測で測定した値の平均値が使用される。   The length, width (long side direction and short side direction), interval, angle, etc. of the insulating material are values measured by observation with a transmission electron microscope (TEM), a scanning electron microscope (SEM), an optical microscope, etc. The average value is used.

非水電解質電池の一例を図7に示す。図7に示す角型非水電解質電池において、捲回電極群13は、金属製の有底矩形筒状容器(外装部材)11内に収納されている。捲回電極群13は、例えば、負極、セパレータ、正極、セパレータの順で積層した積層物を渦巻状に捲回し、プレス成型することにより形成される。   An example of the nonaqueous electrolyte battery is shown in FIG. In the prismatic nonaqueous electrolyte battery shown in FIG. 7, the wound electrode group 13 is housed in a metal bottomed rectangular cylindrical container (exterior member) 11. The wound electrode group 13 is formed, for example, by winding a laminate in the order of a negative electrode, a separator, a positive electrode, and a separator in a spiral shape and press molding.

負極タブ18は、その一端が負極集電体に電気的に接続され、他端が負極端子20に電気的に接続されている。負極端子20は、矩形蓋体12に負極ガスケット21を介して固定されている。正極タブ17は、その一端が正極集電体に電気的に接続され、他端が矩形蓋体12に固定された正極端子19に電気的に接続されている。正極タブ17と負極タブ18は、それぞれ、正負極集電体との接触抵抗を低減するために、正負極集電体と同様の材料であることが好ましい。   The negative electrode tab 18 has one end electrically connected to the negative electrode current collector and the other end electrically connected to the negative electrode terminal 20. The negative terminal 20 is fixed to the rectangular lid 12 via a negative gasket 21. One end of the positive electrode tab 17 is electrically connected to the positive electrode current collector, and the other end is electrically connected to the positive electrode terminal 19 fixed to the rectangular lid 12. The positive electrode tab 17 and the negative electrode tab 18 are preferably made of the same material as the positive and negative electrode current collectors, respectively, in order to reduce the contact resistance with the positive and negative electrode current collectors.

非水電解液は、例えば容器11の開口部から注入されて、容器11内に収容されている。容器11の開口部に矩形蓋体12を溶接することにより、捲回電極群13及び非水電解液が容器11内に封止されている。   The nonaqueous electrolytic solution is injected from, for example, an opening of the container 11 and accommodated in the container 11. The wound electrode group 13 and the non-aqueous electrolyte are sealed in the container 11 by welding the rectangular lid 12 to the opening of the container 11.

なお、図7では、電極群を収納する容器に金属製容器を用いたが、金属製容器の代りにラミネートフィルム製容器を用いることができる。また、図7では、捲回型電極群を用いたが、正極と負極がセパレータを介して交互に積層された積層型電極群を用いても良い。   In FIG. 7, a metal container is used as the container for housing the electrode group, but a laminate film container can be used instead of the metal container. In FIG. 7, a wound electrode group is used. However, a stacked electrode group in which positive electrodes and negative electrodes are alternately stacked via separators may be used.

以下、正極、負極、非水電解液について説明する。   Hereinafter, the positive electrode, the negative electrode, and the non-aqueous electrolyte will be described.

正極は、例えば、正極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗着し、乾燥し、必要に応じて裁断及びプレスすることにより作製される。正極活物質としては、特に限定されるものではないが、リチウムを吸蔵放出できる酸化物や硫化物、ポリマーなどが使用できる。好ましい活物質としては、高い正極電位が得られるリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウム燐酸鉄等が挙げられる。また、負極は、負極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗着、乾燥し、必要に応じて裁断及びプレスすることにより作製される。負極活物質としては、特に限定されるものではないが、リチウムを吸蔵放出できる金属酸化物、金属硫化物、金属窒化物、合金等が使用でき、好ましくは、リチウムイオンの吸蔵放出電位が金属リチウム電位に対して0.4V以上貴となる物質である。このようなリチウムイオン吸蔵放出電位を有する負極活物質は、アルミニウムもしくはアルミニウム合金とリチウムとの合金反応を抑えられることから、負極集電体および負極関連構成部材へのアルミニウムもしくはアルミニウム合金の使用を可能とする。たとえば、チタン酸化物、リチウムチタン酸化物、タングステン酸化物、アモルファススズ酸化物、スズ珪素酸化物、酸化珪素などがあり、中でもリチウムチタン複合酸化物が好ましい。   The positive electrode is produced, for example, by applying a slurry containing a positive electrode active material to a current collector made of an aluminum foil or an aluminum alloy foil, drying, and cutting and pressing as necessary. Although it does not specifically limit as a positive electrode active material, The oxide, sulfide, polymer, etc. which can occlude / release lithium can be used. Preferable active materials include lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium iron phosphate, and the like that can obtain a high positive electrode potential. The negative electrode is produced by applying a slurry containing a negative electrode active material to a current collector made of an aluminum foil or an aluminum alloy foil, drying, and cutting and pressing as necessary. The negative electrode active material is not particularly limited, and metal oxides, metal sulfides, metal nitrides, alloys, and the like that can occlude and release lithium can be used. Preferably, the lithium ion occlusion and release potential is metal lithium. It is a substance that becomes noble 0.4V or more with respect to the potential. Since the negative electrode active material having such a lithium ion storage / release potential can suppress the alloy reaction between aluminum or an aluminum alloy and lithium, it is possible to use aluminum or an aluminum alloy for a negative electrode current collector and a negative electrode related component. And For example, there are titanium oxide, lithium titanium oxide, tungsten oxide, amorphous tin oxide, tin silicon oxide, silicon oxide, etc. Among them, lithium titanium composite oxide is preferable.

非水電解液は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製された非水電解液が用いられる。非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ過リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L〜3mol/Lとすることが望ましい。 As the non-aqueous electrolyte, a non-aqueous electrolyte prepared by dissolving an electrolyte (for example, a lithium salt) in a non-aqueous solvent is used. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more. Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), and trifluorometa. A lithium salt such as lithium sulfonate (LiCF 3 SO 3 ) can be given. The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / L to 3 mol / L.

これら実施形態の電極によれば、活物質含有層及び集電タブの表面の一部に付着した絶縁性物質を含むため、安全で製造効率の高い電極を提供することができる。   According to the electrodes of these embodiments, since the insulating material attached to a part of the surface of the active material containing layer and the current collecting tab is included, a safe and highly efficient electrode can be provided.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1]
集電体と、
前記集電体に形成される活物質含有層と、
前記集電体と電気的に接続される集電タブと、
前記活物質含有層及び前記集電タブの表面の一部に付着した絶縁性物質と
を含むことを特徴とする電極。
[2]
前記絶縁性物質は、前記活物質含有層及び前記集電タブの表面の一部に散在して付着していることを特徴とする[1]記載の電極。
[3]
前記絶縁性物質は、前記活物質含有層及び前記集電タブの表面の一部に規則性をもって付着していることを特徴とする[1]記載の電極。
[4]
前記絶縁性物質は、熱可塑性樹脂または熱硬化性樹脂であることを特徴とする[2]または[3]記載の電極。
[5]
前記絶縁性物質の付着は、バインダー、塗工、スプレー、静電塗装、インクジェット、グラビア印刷、オフセット印刷、スクリーン印刷または転写によるものであることを特徴とする[2]または[3]記載の電極。
[6]
前記絶縁性物質は、直径0.001μm以上1mm以下の球状粒子、または直径0.001μm以上1mm以下で、かつ長さ0.001μm以上1000mm以下の繊維状粒子、もしくは前記球状粒子と前記繊維状粒子の混合物であることを特徴とする[2]または[3]記載の電極。
[7]
前記絶縁性物質は、単独の粒子か、複数の粒子の集合体の形態で前記活物質含有層及び前記集電タブの表面の一部に付着していることを特徴とする[2]または[3]記載の電極。
[8]
正極及び負極のうち少なくとも一方の電極に、[1]〜[7]いずれか1項記載の電極を用いることを特徴とする電池。
[9]
前記正極及び前記負極に[1]〜[7]いずれか1項記載の電極を用い、前記正極の前記絶縁性物質と前記負極の前記絶縁性物質が互いに接触するように前記正極と前記負極が積層されていることを特徴とする[8]記載の電池。
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
Hereinafter, the invention described in the scope of claims of the present application will be appended.
[1]
A current collector,
An active material-containing layer formed on the current collector;
A current collecting tab electrically connected to the current collector;
An insulating material attached to a part of the surface of the active material-containing layer and the current collecting tab;
An electrode comprising:
[2]
The electrode according to [1], wherein the insulating material is scattered and attached to part of the surfaces of the active material-containing layer and the current collecting tab.
[3]
The electrode according to [1], wherein the insulating material is regularly attached to part of the surfaces of the active material-containing layer and the current collecting tab.
[4]
The electrode according to [2] or [3], wherein the insulating substance is a thermoplastic resin or a thermosetting resin.
[5]
The electrode according to [2] or [3], wherein the insulating substance is attached by binder, coating, spraying, electrostatic coating, inkjet, gravure printing, offset printing, screen printing or transfer. .
[6]
The insulating substance is a spherical particle having a diameter of 0.001 μm to 1 mm, or a fibrous particle having a diameter of 0.001 μm to 1 mm and a length of 0.001 μm to 1000 mm, or the spherical particle and the fibrous particle. The electrode according to [2] or [3], which is a mixture of
[7]
The insulating material is attached to a part of the surface of the active material-containing layer and the current collecting tab in the form of a single particle or an aggregate of a plurality of particles [2] or [ 3] The electrode according to the above.
[8]
A battery comprising the electrode according to any one of [1] to [7] as at least one of a positive electrode and a negative electrode.
[9]
The electrode according to any one of [1] to [7] is used for the positive electrode and the negative electrode, and the positive electrode and the negative electrode are arranged so that the insulating substance of the positive electrode and the insulating substance of the negative electrode are in contact with each other. The battery according to [8], which is laminated.

1,6…電極、2…集電体、3…活物質含有層、4…集電タブ、5…絶縁性物質、5a…絶縁性物質粒子、5b…バインダー、7…正極、8…ポリプロピレン繊維、9…負極、11…容器、13…電極群、17…正極タブ、18…負極タブ、19…正極端子、20…負極端子、21…負極ガスケット。   DESCRIPTION OF SYMBOLS 1,6 ... Electrode, 2 ... Current collector, 3 ... Active material containing layer, 4 ... Current collection tab, 5 ... Insulating material, 5a ... Insulating material particle, 5b ... Binder, 7 ... Positive electrode, 8 ... Polypropylene fiber , 9 ... negative electrode, 11 ... container, 13 ... electrode group, 17 ... positive electrode tab, 18 ... negative electrode tab, 19 ... positive electrode terminal, 20 ... negative electrode terminal, 21 ... negative electrode gasket.

Claims (6)

正極と、負極と、前記正極及び前記負極の間に介在したセパレータと、電解液とを備え、
前記正極は、正極集電体と、前記正極集電体に形成される正極活物質含有層と、前記正極集電体と電気的に接続される正極集電タブとを含み、
前記負極は、負極集電体と、前記負極集電体に形成される負極活物質含有層と、前記負極集電体と電気的に接続される負極集電タブとを含み、
前記セパレータは、前記正極活物質含有層の表面及び前記正極集電タブの表面の一部に、複数箇所に分散して付着した絶縁性物質と、前記負極活物質含有層の表面及び前記負極集電タブの表面の一部に、複数箇所に分散して付着した絶縁性物質とからなり、
前記正極の絶縁性物質の一部と前記負極の絶縁性物質の一部とは、交差するように重なっており、
前記正極及び負極の絶縁性物質は、前記電解液に不溶性の材料からなる非水電解質二次電池。
A positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution ,
The positive electrode includes a positive electrode current collector, a positive electrode active material-containing layer formed on the positive electrode current collector, and a positive electrode current collector tab electrically connected to the positive electrode current collector,
The negative electrode includes a negative electrode current collector, a negative electrode active material-containing layer formed on the negative electrode current collector, and a negative electrode current collector tab electrically connected to the negative electrode current collector,
The separator includes an insulating material dispersed and attached to a part of the surface of the positive electrode active material-containing layer and the surface of the positive electrode current collecting tab, and the surface of the negative electrode active material-containing layer and the negative electrode collector. A part of the surface of the electric tab consists of an insulating material dispersed and attached to multiple locations,
A part of the insulating material of the positive electrode and a part of the insulating material of the negative electrode overlap so as to intersect ,
The insulating material for the positive electrode and the negative electrode is a non-aqueous electrolyte secondary battery made of a material insoluble in the electrolytic solution .
前記正極及び負極の絶縁性物質の少なくとも一方は、前記正極活物質含有層又は前記負極活物質含有層並びに前記正極集電タブ又は前記負極集電タブの表面の一部に規則性をもって付着している請求項1記載の非水電解質二次電池。 Wherein at least one of the positive and negative electrodes of the insulating material is adhered with regularity to a portion of the positive electrode active material-containing layer or the anode active material-containing layer and the positive electrode current collector tab or the negative electrode current collector tab surface non-aqueous electrolyte secondary battery of Motomeko 1, wherein that. 前記正極及び負極の絶縁性物質の少なくとも一方は、熱可塑性樹脂または熱硬化性樹脂である請求項1または2記載の非水電解質二次電池。 At least one of the heat Ru thermoplastic resin or thermosetting resin der Motomeko 1 or 2 non-aqueous electrolyte secondary battery according insulating material of the positive electrode and the negative electrode. 前記正極及び負極の絶縁性物質の少なくとも一方の付着は、バインダー、塗工、スプレー、静電塗装、インクジェット、グラビア印刷、オフセット印刷、スクリーン印刷または転写によるものである請求項1乃至3のいずれか1項に記載の非水電解質二次電池。 Wherein at least one of adhesion of the positive electrode and the negative electrode of the insulating material, binder, coating, spraying, electrostatic coating, inkjet, gravure printing, offset printing, Ru der by screen printing or transfer Motomeko 1 to 3 The nonaqueous electrolyte secondary battery according to any one of the above. 前記正極及び負極の絶縁性物質の少なくとも一方は、直径0.001μm以上1mm以下の球状粒子、または直径0.001μm以上1mm以下で、かつ長さ0.001μm以上1000mm以下の繊維状粒子、もしくは前記球状粒子と前記繊維状粒子の混合物である請求項1乃至4のいずれか1項に記載の非水電解質二次電池。 At least one of the positive and negative electrode insulating materials is a spherical particle having a diameter of 0.001 μm to 1 mm, or a fibrous particle having a diameter of 0.001 μm to 1 mm and a length of 0.001 μm to 1000 mm, or non-aqueous electrolyte secondary battery according to any one of mixtures der Ru請 Motomeko 1 to 4 of the spherical particles and the fibrous particles. 前記正極及び負極の絶縁性物質の少なくとも一方は、単独の粒子か、複数の粒子の集合体の形態にある請求項1乃至4のいずれか1項に記載の非水電解質二次電池。 5. The non-aqueous electrolyte secondary battery according to claim 1, wherein at least one of the positive and negative electrode insulating materials is in the form of a single particle or an aggregate of a plurality of particles.
JP2012202928A 2012-09-14 2012-09-14 Nonaqueous electrolyte secondary battery Active JP6125182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012202928A JP6125182B2 (en) 2012-09-14 2012-09-14 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012202928A JP6125182B2 (en) 2012-09-14 2012-09-14 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2014059971A JP2014059971A (en) 2014-04-03
JP6125182B2 true JP6125182B2 (en) 2017-05-10

Family

ID=50616286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012202928A Active JP6125182B2 (en) 2012-09-14 2012-09-14 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6125182B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084162A1 (en) * 2016-11-04 2018-05-11 株式会社Gsユアサ Power storage element electrode, power storage element, and production method for power storage element electrode
JP7157619B2 (en) * 2018-10-17 2022-10-20 株式会社日立製作所 Secondary batteries, battery packs and power systems

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241655A (en) * 1997-02-27 1998-09-11 Asahi Chem Ind Co Ltd Battery
KR100344686B1 (en) * 1997-02-28 2002-07-25 아사히 가세이 가부시키가이샤 Nonaqueous Secondary Battery and Method for Manufacturing the Same
JP4392881B2 (en) * 1998-11-04 2010-01-06 アオイ電子株式会社 Lithium secondary battery
JP3937422B2 (en) * 2000-03-23 2007-06-27 ソニー株式会社 Lithium ion battery and manufacturing method thereof
JP2003157823A (en) * 2001-11-20 2003-05-30 Matsushita Battery Industrial Co Ltd Secondary battery and manufacturing method therefor
JP3953026B2 (en) * 2003-12-12 2007-08-01 松下電器産業株式会社 Electrode plate for lithium ion secondary battery, lithium ion secondary battery and method for producing the same
JP4529511B2 (en) * 2004-03-30 2010-08-25 パナソニック株式会社 Lithium ion battery
JP2005310619A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP4649993B2 (en) * 2005-01-12 2011-03-16 パナソニック株式会社 Lithium secondary battery and manufacturing method thereof
TWI344235B (en) * 2005-12-06 2011-06-21 Lg Chemical Ltd Electrode with enhanced safety and electrochemical device having the same
JP5365842B2 (en) * 2009-02-20 2013-12-11 トヨタ自動車株式会社 Lithium ion battery
JP2012033312A (en) * 2010-07-29 2012-02-16 Konica Minolta Holdings Inc Separator electrode assembly, method of manufacturing the same and nonaqueous electrode secondary battery

Also Published As

Publication number Publication date
JP2014059971A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5690575B2 (en) Non-aqueous secondary battery
CN106104901B (en) Sheet-laminated lithium ion secondary battery and method for manufacturing sheet-laminated lithium ion secondary battery
JP5693982B2 (en) Non-aqueous secondary battery
US10270121B2 (en) Secondary battery
JP6640690B2 (en) Electrode structure, secondary battery, battery pack and vehicle
JP5784928B2 (en) Non-aqueous secondary battery
JP6572204B2 (en) Secondary battery and manufacturing method thereof
JP6504158B2 (en) Stacked battery and method of manufacturing the same
KR101829528B1 (en) Electrode, nonaqueous electrolyte battery and battery pack
US9876257B2 (en) Secondary battery and electrode production method
US20130177788A1 (en) Nonaqueous secondary battery
JPWO2010010717A1 (en) Bipolar battery
CN107851768B (en) Method for manufacturing electrochemical device
JP2010086780A (en) Square secondary battery
JP2008243672A (en) Winding electrode for secondary battery, lithium-ion secondary battery, and secondary battery pack
US10431846B2 (en) Energy storage device
WO2012093588A1 (en) Non-aqueous secondary battery
JP6125182B2 (en) Nonaqueous electrolyte secondary battery
JP7047842B2 (en) A bag-shaped separator for a power storage device, its heat bonding method and heat bonding device, and a power storage device.
JP2017091677A (en) Nonaqueous electrolyte battery
JP2010251151A (en) Laminate battery
JP5954339B2 (en) Rectangular secondary battery and manufacturing method thereof
EP4142011A1 (en) Secondary battery
CN112753111A (en) Electrode for lithium ion secondary battery, method for producing same, and lithium ion secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170405

R151 Written notification of patent or utility model registration

Ref document number: 6125182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151