JP6111671B2 - Power converter using drive signal isolation circuit - Google Patents

Power converter using drive signal isolation circuit Download PDF

Info

Publication number
JP6111671B2
JP6111671B2 JP2013002341A JP2013002341A JP6111671B2 JP 6111671 B2 JP6111671 B2 JP 6111671B2 JP 2013002341 A JP2013002341 A JP 2013002341A JP 2013002341 A JP2013002341 A JP 2013002341A JP 6111671 B2 JP6111671 B2 JP 6111671B2
Authority
JP
Japan
Prior art keywords
circuit
series
semiconductor switch
photocoupler
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013002341A
Other languages
Japanese (ja)
Other versions
JP2014135838A (en
Inventor
滝沢 聡毅
聡毅 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013002341A priority Critical patent/JP6111671B2/en
Publication of JP2014135838A publication Critical patent/JP2014135838A/en
Application granted granted Critical
Publication of JP6111671B2 publication Critical patent/JP6111671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)

Description

本発明は、インバータなどの電力変換装置に適用する電力用半導体スイッチ素子を駆動する信号の絶縁回路を適用した電力変換装置に関する。
The present invention relates to a power conversion apparatus using the insulating circuits of the signal for driving the semiconductor switching element for power to be applied to the power converter such as an inverter.

図11に電力変換回路の代表回路である直流から交流に電力変換する2レベルインバータの主回路構成図を示す。1は直流電源,2は負荷としての交流電動機,3は電力用半導体素子で構成するインバータ回路で,直流電源1の直流電圧Edを交流電圧に変換し、電圧と周波数の可変出力が可能である。但し一般には直流電源1は,図示していない交流電源とダイオード整流器などを介して,大容量のコンデンサで構成される。また前記直流電圧Edが前記コンデンサ単体の電圧定格よりも高いときはコンデンサを複数個直列に接続する。   FIG. 11 shows a main circuit configuration diagram of a two-level inverter that performs power conversion from direct current to alternating current, which is a representative circuit of the power conversion circuit. Reference numeral 1 is a DC power source, 2 is an AC motor as a load, and 3 is an inverter circuit composed of a semiconductor element for power. The DC voltage Ed of the DC power source 1 is converted into an AC voltage, and variable output of voltage and frequency is possible. . However, in general, the DC power source 1 is composed of a large-capacity capacitor via an AC power source (not shown) and a diode rectifier. When the DC voltage Ed is higher than the voltage rating of the capacitor alone, a plurality of capacitors are connected in series.

ここに示すインバータ回路3は3相出力の回路であり、U相用のアーム直列回路3U、V相用のアーム直列回路3V、W相用のアーム直列回路3Wを直流電源1と並列接続して構成される。各アーム直列回路の直列接続点は交流出力となり、負荷としての交流電動機2に接続される。アーム各々は、U相用のアーム直列回路3Uの上アームの例に示すように、スイッチ素子であるIGBT4,IGBT4と逆並列に接続されるダイオード5,ゲート駆動回路6で構成され、これらが6回路で3相インバータ回路となる。7は電力変換装置の制御回路で,制御回路7で各IGBTのオンオフ指令信号(ゲート駆動信号)が生成される。IGBT4を駆動するためのゲート駆動回路6では,制御回路7からのオンオフ信号を絶縁してIGBT4のゲートに供給する。通常制御回路が置かれている基準電位側と,IGBT及びそのゲート駆動回路間には電位差があるため,両者間で信号伝送を行う場合は絶縁器が必要となる。   The inverter circuit 3 shown here is a circuit with a three-phase output. The U-phase arm series circuit 3U, the V-phase arm series circuit 3V, and the W-phase arm series circuit 3W are connected in parallel with the DC power source 1. Composed. A series connection point of each arm series circuit is an AC output and is connected to an AC motor 2 as a load. As shown in the example of the upper arm of the U-phase arm series circuit 3U, each arm is composed of a diode 5 and a gate drive circuit 6 connected in reverse parallel to the IGBT 4 and IGBT 4 as switch elements. The circuit becomes a three-phase inverter circuit. Reference numeral 7 denotes a control circuit of the power converter, and the control circuit 7 generates an on / off command signal (gate drive signal) for each IGBT. In the gate drive circuit 6 for driving the IGBT 4, the on / off signal from the control circuit 7 is insulated and supplied to the gate of the IGBT 4. Since there is a potential difference between the reference potential side where the control circuit is normally placed and the IGBT and its gate drive circuit, an insulator is required when signal transmission is performed between the two.

上記システムにおいて従来から適用されている絶縁器を用いた回路例として,図12に示すフォトカプラ9を用いた回路構成,図13に示すパルストランス10,11を用いた回路構成,図14に示す光ファイバケーブル12を用いた回路構成がある。   As a circuit example using an isolator conventionally applied in the above system, a circuit configuration using a photocoupler 9 shown in FIG. 12, a circuit configuration using pulse transformers 10 and 11 shown in FIG. 13, and a circuit configuration shown in FIG. There is a circuit configuration using the optical fiber cable 12.

図12に示すフォトカプラを用いた回路は、制御回路7からのオンオフ信号をスイッチ回路16を介してフォトカプラ回路9のフォトダイオードを駆動し、フォトカプラの2次回路であるフォトトランジスタを用いたゲート駆動回路でゲート駆動回路用電源GPSからIGBTQ1のゲートにオン用順バイアス電圧とオフ用逆バイアス電圧を供給する。ここで使用されている抵抗Rpは、制御電源Vcからフォトダイードに流れる電流を所定値に制限するための制限抵抗である。また、抵抗Rgはゲート抵抗と呼ばれ、オン信号の電圧立上り時間の調整や、オフ信号の立下り時間の調整の役割を担う。   The circuit using the photocoupler shown in FIG. 12 uses a phototransistor, which is a secondary circuit of the photocoupler, by driving the photodiode of the photocoupler circuit 9 through the switch circuit 16 with the on / off signal from the control circuit 7. The gate drive circuit supplies a forward bias voltage for turning on and a reverse bias voltage for turning off to the gate of the IGBT Q1 from the gate drive circuit power supply GPS. The resistor Rp used here is a limiting resistor for limiting the current flowing from the control power supply Vc to the photodiode to a predetermined value. The resistor Rg is called a gate resistor and plays a role of adjusting the voltage rise time of the ON signal and adjusting the fall time of the OFF signal.

図13に示す絶縁トランス(パルストランスとも呼ぶ)を用いた回路は、二つの絶縁トランス10、11を用いた変調−復調回路の構成である。絶縁トランスを小型化するために、制御回路7からのオンオフ信号をスイッチ回路17内で、位相の180度ずれた二つの高周波信号に変調して、絶縁トランス10の1次巻線n1と11の1次巻線n1を駆動し、各絶縁トランスの2次巻線n2の電圧を整流ダイオードRDで整流して、復調する構成である。復調された信号はスイッチ回路13でゲート駆動回路用電源GPSからIGBTQ1のゲートにオン用順バイアス電圧とオフ用逆バイアス電圧を供給する。抵抗Rgはゲート抵抗と呼ばれ、オン信号の電圧立上り時間の調整や、オフ信号の立下り時間の調整の役割を担う。   A circuit using an insulating transformer (also called a pulse transformer) shown in FIG. 13 has a configuration of a modulation / demodulation circuit using two insulating transformers 10 and 11. In order to reduce the size of the insulation transformer, the on / off signal from the control circuit 7 is modulated into two high-frequency signals that are 180 degrees out of phase in the switch circuit 17, and the primary windings n 1 and 11 of the insulation transformer 10 are modulated. The primary winding n1 is driven, and the voltage of the secondary winding n2 of each insulating transformer is rectified by a rectifier diode RD and demodulated. The demodulated signal is supplied from the gate drive circuit power supply GPS to the gate of the IGBT Q1 by the switch circuit 13 to the ON forward bias voltage and the OFF reverse bias voltage. The resistor Rg is called a gate resistor and plays a role of adjusting the voltage rise time of the on signal and adjusting the fall time of the off signal.

図14に示す光ファイバケーブル12を用いた回路は、制御回路7からのオンオフの電気信号を電気−光変換器(E/O)14で光信号に変換し、光ファイバケーブル12で半導体スイッチ素子駆動回路まで光伝送し、この光信号を光−電気変換器(O/E)15で電気信号に変換する。この電気信号はスイッチ回路13でゲート駆動回路用電源GPSからIGBTQ1のゲートにオン用順バイアス電圧とオフ用逆バイアス電圧を供給する。抵抗Rgはゲート抵抗と呼ばれ、オン信号の電圧立上り時間の調整や、オフ信号の立下り時間の調整の役割を担う。   The circuit using the optical fiber cable 12 shown in FIG. 14 converts an on / off electrical signal from the control circuit 7 into an optical signal by the electrical-optical converter (E / O) 14, and the optical fiber cable 12 converts the semiconductor switch element. The optical signal is transmitted to the drive circuit, and this optical signal is converted into an electrical signal by an optical-electrical converter (O / E) 15. This electrical signal is supplied from the gate drive circuit power supply GPS to the gate of the IGBT Q1 by the switch circuit 13 to the forward bias voltage for turning on and the reverse bias voltage for turning off. The resistor Rg is called a gate resistor and plays a role of adjusting the voltage rise time of the on signal and adjusting the fall time of the off signal.

これら方式はそれぞれ一長一短の特徴がある。フォトカプラは安価で,実装面積および体積が小さいというメリットがあるが,光絶縁部の伝送効率の点で1次−2次間の距離を離すことができず,1次−2次間の絶縁耐圧を高くすることに限界があることや,ある程度の伝送時間が必要で,その伝送時間にも個体差(ばらつき)がある,といったデメリットがある。   Each of these methods has advantages and disadvantages. The photocoupler is inexpensive and has the advantages of a small mounting area and volume, but the primary-secondary insulation cannot be separated from the primary-secondary distance in terms of transmission efficiency of the optical insulation part. There is a demerit that there is a limit to increasing the withstand voltage, a certain amount of transmission time is required, and there is an individual difference (variation) in the transmission time.

絶縁トランスは,フォトカプラに比べて高価であり,実装面積,体積も大きい,さらには増幅機能を備えたスイッチ回路13が必要といったデメリットもある。一方,大きさに制約がなければ絶縁電圧を高くすることが可能であり,また伝送時間もほぼゼロであるといったメリットがある。   The insulating transformer is expensive compared to the photocoupler, has a large mounting area and volume, and further has a demerit that a switch circuit 13 having an amplification function is necessary. On the other hand, if there is no restriction on the size, the insulation voltage can be increased and the transmission time is almost zero.

光ファイバケーブルはこれら3者の中では最も高価であり,また電気−光変換器(E/O)14,光−電気変換器(O/E)15が必要で,増幅機能を備えたスイッチ回路13が必要といったデメリットがあるが,絶縁電圧を考慮する必要がなく,また長距離信号伝送も可能といったメリットがある。   An optical fiber cable is the most expensive of these three, and an electric-optical converter (E / O) 14 and an optical-electrical converter (O / E) 15 are necessary, and a switch circuit having an amplification function. 13 is necessary, but there is an advantage that it is not necessary to consider the insulation voltage and long-distance signal transmission is possible.

上記の特徴を活かして、一般に,200V系や400V系の低圧の装置にはフォトカプラが,装置を並列接続するような大容量のシステムには信号伝送時間ばらつきが問題とならないパルストランスが,また高絶縁耐量が必要となる数1000V系以上の高圧装置には光ファイバケーブルが適用されることが多い。
フォトカプラを適用した例は,特許文献1に、パルストランスを適用した例は特許文献2に,光ファイバケーブルを適用した例として,特許文献3に、各々記載されている。
Taking advantage of the above features, photocouplers are generally used for 200V and 400V low-voltage devices, pulse transformers that do not cause variations in signal transmission time for large-capacity systems where devices are connected in parallel, and In many cases, an optical fiber cable is applied to a high-voltage apparatus of several thousand volts or more that requires high insulation resistance.
An example in which a photocoupler is applied is described in Patent Document 1, an example in which a pulse transformer is applied is described in Patent Document 2, and an example in which an optical fiber cable is applied is described in Patent Document 3.

特開2004−312796号公報JP 2004-312796 A 特開平7−15949号公報JP 7-15949 A 特開2006−109686号公報JP 2006-109686 A

電気学会技術報告 第1093号IEEJ Technical Report No. 1093

上述のように、数1000Vクラスの高圧の装置では,一般的に信号絶縁手段として光ファイバケーブルを適用しているため,コストアップ要因となる。
また図11の回路方式をベースに高圧回路を構成する場合の例を図15に示す。本回路例は非特許文献1に記載されているフライングキャパシタ形電力変換回路と呼ばれ,高耐圧の半導体スイッチ素子を適用せずに,低耐圧の半導体スイッチ素子を直列に接続(Q1〜Q4)し,さらに半導体スイッチ素子Q1とQ2の接続点とQ3とQ4の接続点との間にコンデンサ21,22の直列回路を接続する構成である。例えば、直流単電源1a〜1dで構成された直流電源電圧を4Edとした場合,フライングキャパシタC1、C2の各々の電圧をEd(合計で2Ed)とすることで交流出力点Auには,M電位を基準に2Ed,M,−2Edの3つのレベルの電位を出力可能となるため,本回路は3レベルのインバータとなる。本回路例のように3レベル以上のマルチレベルインバータの場合,一般にスイッチ素子数が多くなるため,その数に応じて光ファイバケーブルの数も必要となり,さらなるコストアップ要因となる。
従って、本発明の課題は、高電圧の電力変換回路を構成する半導体スイッチ素子に制御回路から駆動信号を絶縁して伝送する回路方式として、光ファイバケーブルなどの高価な絶縁手段を用いない低価格の絶縁回路方式とそれを用いた低価格の電力変換装置を提供することである。
As described above, a high-voltage device of several thousand volts class generally uses an optical fiber cable as a signal insulation means, which increases the cost.
FIG. 15 shows an example in which a high voltage circuit is configured based on the circuit system of FIG. This circuit example is called a flying capacitor type power conversion circuit described in Non-Patent Document 1, and low-voltage semiconductor switch elements are connected in series without applying a high-voltage semiconductor switch element (Q1 to Q4). In addition, a series circuit of capacitors 21 and 22 is connected between the connection point of the semiconductor switch elements Q1 and Q2 and the connection point of Q3 and Q4. For example, when the DC power supply voltage constituted by the DC single power supplies 1a to 1d is 4Ed, the voltage of each of the flying capacitors C1 and C2 is set to Ed (2Ed in total), so that the AC output point Au has an M potential. Therefore, this circuit can be a three-level inverter because potentials of three levels of 2Ed, M, and -2Ed can be output. In the case of a multi-level inverter with three or more levels as in this circuit example, the number of switch elements generally increases, so the number of optical fiber cables is also required according to the number of switch elements, which further increases the cost.
Accordingly, an object of the present invention is to provide a low cost without using expensive insulating means such as an optical fiber cable as a circuit system for insulating and transmitting a drive signal from a control circuit to a semiconductor switch element constituting a high voltage power conversion circuit. Insulation circuit system and a low-cost power converter using the same.

上述の課題を解決するために、第1の発明においては、半導体スイッチ素子直列回路と、半導体スイッチ素子をオンオフ制御する駆動信号絶縁回路と、キャパシタとからなるフライングキャパシタ形電力変換装置として、前記駆動信号絶縁回路は、駆動信号を異電位間で絶縁して伝送し、絶縁トランスを用いた信号絶縁回路とフォトカプラを用いた信号絶縁回路とを直列接続して二重絶縁した直列絶縁回路にて構成され、前記半導体スイッチ素子直列回路は、直流電源と並列に2n(nは2以上の整数)個の半導体スイッチ素子が直列接続されており、前記半導体スイッチ素子直列回路の中間点を中心に2N(Nは1〜n−1までの整数)個のキャパシタが半導体スイッチ素子直列回路と並列に接続されており、前記駆動信号絶縁回路は、前記半導体スイッチ素子の各々に適用されており、前記いずれかのフライングキャパシタの中間電位点に、前記半導体スイッチ素子の各々に適用された前記絶縁トランスを用いた信号絶縁回路と前記フォトカプラを用いた信号絶縁回路とを直列接続した駆動信号絶縁回路の直列接続点が接続される。
第2の発明においては、第1の半導体スイッチ素子直列回路と、第2の半導体スイッチ素子直列回路と、半導体スイッチ素子をオンオフ制御する駆動信号絶縁回路と、キャパシタとからなるフライングキャパシタ形電力変換装置として、前記駆動信号絶縁回路は、駆動信号を異電位間で絶縁して伝送し、絶縁トランスを用いた信号絶縁回路とフォトカプラを用いた信号絶縁回路とを直列接続して二重絶縁した直列絶縁回路にて構成され、前記第1の半導体スイッチ素子直列回路は、直流電源と並列に2n(nは2以上の整数)個の半導体スイッチ素子が直列接続されており、前記第1の半導体スイッチ素子直列回路の中間点を中心に2N(Nは1〜n−1までの整数)個のキャパシタが第1の半導体スイッチ素子直列回路と並列に接続されており、前記第2の半導体スイッチ素子直列回路は、前記Nの最大値で決められたキャパシタと並列に複数の半導体素子が直列接続されており、前記第2の半導体スイッチ素子直列回路の中間接続点と前記直流電源の中間電位点との間に双方向のスイッチングが可能な双方向スイッチを接続されており、前記半導体スイッチ素子の各々に前記駆動信号絶縁回路が適用されており、前記いずれかのフライングキャパシタの中間電位点に、前記半導体スイッチ素子の各々に適用された前記絶縁トランスを用いた信号絶縁回路と前記フォトカプラを用いた信号絶縁回路とを直列接続した駆動信号絶縁回路の直列接続点が接続される。
In order to solve the above-mentioned problem, in the first invention, the driving capacitor type power conversion device comprising a semiconductor switch element series circuit, a drive signal insulating circuit for controlling on / off of the semiconductor switch element, and a capacitor is provided. The signal insulation circuit is a series insulation circuit that transmits and transmits drive signals between different potentials, and double-insulates the signal insulation circuit using an insulation transformer and the signal insulation circuit using a photocoupler in series. In the semiconductor switch element series circuit, 2n (n is an integer of 2 or more) semiconductor switch elements are connected in series in parallel with a DC power source, and 2N centering on an intermediate point of the semiconductor switch element series circuit. (N is an integer from 1 to n-1) capacitors are connected in parallel with the semiconductor switch element series circuit, and the drive signal insulation circuit A signal insulating circuit that is applied to each of the semiconductor switch elements, and that uses the isolation transformer applied to each of the semiconductor switch elements at an intermediate potential point of any one of the flying capacitors, and a signal that uses the photocoupler A series connection point of the drive signal insulation circuit in which the insulation circuit is connected in series is connected.
In a second invention, a flying capacitor type power converter comprising a first semiconductor switch element series circuit, a second semiconductor switch element series circuit, a drive signal insulation circuit for controlling on / off of the semiconductor switch element, and a capacitor As described above, the drive signal isolation circuit transmits a drive signal by insulating between different potentials, and a signal isolation circuit using an isolation transformer and a signal isolation circuit using a photocoupler are connected in series and double-insulated. The first semiconductor switch element series circuit includes 2n (n is an integer of 2 or more) semiconductor switch elements connected in series with the DC power source, and the first semiconductor switch element series circuit 2N (N is an integer from 1 to n-1) capacitors are connected in parallel with the first semiconductor switch element series circuit, centering on the intermediate point of the element series circuit. In the second semiconductor switch element series circuit, a plurality of semiconductor elements are connected in series with the capacitor determined by the maximum value of N, and an intermediate connection point of the second semiconductor switch element series circuit. And a bidirectional switch capable of bidirectional switching is connected between the DC power supply and the intermediate potential point of the DC power supply, and the drive signal isolation circuit is applied to each of the semiconductor switch elements, A series connection point of a drive signal insulation circuit in which a signal insulation circuit using the insulation transformer applied to each of the semiconductor switch elements and a signal insulation circuit using the photocoupler are connected in series to an intermediate potential point of a flying capacitor. Is connected.

第3の発明においては、第1〜第2の発明における電力変換装置の駆動信号絶縁回路において、前記駆動信号の送信元となる基準電位側を絶縁トランスを用いた信号絶縁回路とし、前記半導体スイッチ素子側をフォトカプラを用いた信号絶縁回路とする。
According to a third aspect of the present invention, in the drive signal isolation circuit of the power conversion device according to the first to second aspects of the invention, the reference potential side serving as the transmission source of the drive signal is a signal isolation circuit using an isolation transformer, and the semiconductor switch The element side is a signal insulation circuit using a photocoupler.

の発明においては、第の発明における電力変換装置の駆動信号絶縁回路において、前記絶縁トランスの1次巻線を前記基準電位側で駆動し、前記絶縁トランスの2次巻線から前記フォトカプラのフォトダイオードにオン信号時の電流を供給する。
According to a fourth aspect of the invention, in the drive signal isolation circuit for the power conversion device according to the third aspect of the invention, the primary winding of the isolation transformer is driven on the reference potential side, and the photovoltaic is supplied from the secondary winding of the isolation transformer. The current at the ON signal is supplied to the photodiode of the coupler.

第5の発明においては、第〜第4の発明における電力変換装置の駆動信号絶縁回路において、前記絶縁トランスを用いた信号絶縁回路と前記フォトカプラを用いた信号絶縁回路とを直列接続する直列接続点を、前記基準電位と前記直列絶縁回路を介して駆動する半導体スイッチ素子のエミッタ電位との間の中間電位点に接続する。
According to a fifth aspect of the present invention, in the drive signal isolation circuit of the power conversion device according to the third to fourth aspects, the signal isolation circuit using the isolation transformer and the signal isolation circuit using the photocoupler are connected in series. A connection point is connected to an intermediate potential point between the reference potential and the emitter potential of the semiconductor switch element driven through the series insulating circuit.

本発明では、高電圧の電力変換装置に適用するゲート駆動信号の絶縁器として光ファイバケーブルを使用せず,絶縁トランスと低廉のフォトカプラのみを使用し、絶縁トランスによる信号絶縁回路とフォトカプラによる信号絶縁回路を直列接続構成とし、直列接続点を前記基準電位と前記直列絶縁回路を介して駆動する半導体スイッチ素子のエミッタ電位との間の中間電位点に接続するようにしている。
この結果、絶縁器として低耐圧の絶縁トランスと低耐圧のフォトカプラで、高電圧の回路に信号を絶縁伝送することが可能となり、高電圧回路に適用可能な低価格の信号絶縁回路とそれを用いた低価格の高電圧の電力変換装置を提供することが可能となる。
In the present invention, an optical fiber cable is not used as an insulator for a gate drive signal applied to a high-voltage power converter, only an insulating transformer and a low-cost photocoupler are used, and a signal insulating circuit using an insulating transformer and a photocoupler are used. The signal insulation circuit has a series connection configuration, and the series connection point is connected to an intermediate potential point between the reference potential and the emitter potential of the semiconductor switch element driven via the series insulation circuit.
As a result, a low-voltage isolation transformer and a low-voltage photocoupler can be used as an isolator to insulate and transmit a signal to a high-voltage circuit. It is possible to provide a low-cost, high-voltage power converter that is used.

本発明の第1の実施例を示す回路図である。1 is a circuit diagram showing a first embodiment of the present invention. 第1の実施例を適用したフライングキャパシタ形3レベルインバータ回路例である。It is an example of a flying capacitor type three-level inverter circuit to which the first embodiment is applied. 図2の各部の電位又は電圧を示す図である。It is a figure which shows the electric potential or voltage of each part of FIG. 第1の実施例を適用したフライングキャパシタ形4レベルインバータ回路例である。It is an example of a flying capacitor type 4 level inverter circuit to which the first embodiment is applied. 図4の各部の電位又は電圧を示す図である。It is a figure which shows the electric potential or voltage of each part of FIG. 第1の実施例を適用したフライングキャパシタ形5レベルインバータ回路例である。It is an example of a flying capacitor type 5 level inverter circuit to which the first embodiment is applied. 図6の各部の電位又は電圧を示す図である。It is a figure which shows the electric potential or voltage of each part of FIG. 第1の実施例を適用したフライングキャパシタ形7レベルインバータ回路例である。It is an example of a flying capacitor type 7-level inverter circuit to which the first embodiment is applied. 図8の各部の電位又は電圧を示す図である。It is a figure which shows the electric potential or voltage of each part of FIG. 第1の実施例を適用した2レベルインバータ回路例である。It is an example of a two-level inverter circuit to which the first embodiment is applied. 一般的な2レベルインバータの主回路構成図である。It is a main circuit block diagram of a general 2 level inverter. フォトカプラを用いた駆動信号絶縁伝送回路例である。It is an example of the drive signal insulation transmission circuit using a photocoupler. 絶縁トランスを用いた駆動信号絶縁伝送回路例である。It is an example of a drive signal insulation transmission circuit using an insulation transformer. 光ファイバケーブルを用いた駆動信号絶縁伝送回路例である。It is an example of the drive signal insulation transmission circuit using an optical fiber cable. フライングキャパシタ形3レベルインバータ回路例である。It is an example of a flying capacitor type 3 level inverter circuit.

本発明の要点は、電力変換装置に適用する半導体スイッチ素子をオンオフ制御する駆動信号を、異電位間で絶縁して伝送する手段として、絶縁トランスを用いた信号絶縁回路とフォトカプラを用いた信号絶縁回路とを直列接続して二重絶縁した直列絶縁回路にて構成し、前記直列絶縁回路の直列接続点を、基準電位と前記直列絶縁回路を介して駆動する半導体スイッチ素子のエミッタ電位との間の中間電位点に接続し、絶縁器として低耐圧の絶縁トランスと低耐圧のフォトカプラを適用可能としている点である。   The gist of the present invention is that a signal using an insulating transformer and a signal using a photocoupler as means for transmitting a drive signal for controlling on / off of a semiconductor switch element applied to a power conversion device between different potentials. The insulation circuit is connected in series to form a double insulation series insulation circuit, and the series connection point of the series insulation circuit is defined as a reference potential and an emitter potential of a semiconductor switch element driven through the series insulation circuit. It is connected to an intermediate potential point between them, and a low-voltage insulating transformer and a low-voltage photocoupler can be applied as an insulator.

図1に、本発明の第1の実施例を示す。絶縁トランス10と11を用いたトランス絶縁回路PTCとフォトカプラ回路9を用いたフォトカプラ絶縁回路PCCとを直列接続した二重絶縁回路で、制御回路からのオンオフ信号を絶縁して半導体スイッチ素子としてのIGBTのゲートに伝送する回路である。トランス絶縁回路PTCは、制御回路からのオンオフ信号を端子INからスイッチ回路17に入力し、スイッチ回路17では入力されたオンオフ信号を位相が180度ずれた二つの高周波信号に変調して、絶縁トランス10の1次巻線n1と11の1次巻線n1を駆動し、各絶縁トランスの2次巻線n2の電圧を整流ダイオードRDで整流して、復調する構成である。トランス絶縁回路PTCの出力端子SPとSN間にはIN端子のオンオフ信号が絶縁されたオンオフ信号として出力される。   FIG. 1 shows a first embodiment of the present invention. A double insulation circuit in which a transformer insulation circuit PTC using the insulation transformers 10 and 11 and a photocoupler insulation circuit PCC using the photocoupler circuit 9 are connected in series to isolate an on / off signal from the control circuit as a semiconductor switch element This is a circuit for transmitting to the gate of the IGBT. The transformer insulation circuit PTC inputs an on / off signal from the control circuit to the switch circuit 17 from the terminal IN, and the switch circuit 17 modulates the inputted on / off signal into two high-frequency signals whose phases are shifted by 180 degrees, and the insulation transformer The primary winding n1 of 10 and the primary winding n1 of 11 are driven, and the voltage of the secondary winding n2 of each insulating transformer is rectified by a rectifier diode RD and demodulated. An ON / OFF signal of the IN terminal is output as an insulated ON / OFF signal between the output terminals SP and SN of the transformer insulation circuit PTC.

このオンオフ信号はフォトカプラ絶縁回路PCCの入力端子PAとPBに入力され、オン信号時はフォトカプラ回路9の1次回路であるフォトダイオードを抵抗Rpを介して駆動し、フォトカプラの2次回路であるフォトトランジスタを用いたゲート駆動回路でゲート駆動回路用電源GPSからゲート抵抗Rgを介してIGBTQ1のゲートにオン用順バイアス電圧を供給する。オフ信号時は、ゲート駆動回路用電源GPSからゲート抵抗Rgを介してIGBTQ1のゲートにオフ用逆バイアス電圧を供給する。   This on / off signal is inputted to the input terminals PA and PB of the photocoupler insulation circuit PCC. When the on signal is turned on, the photodiode which is the primary circuit of the photocoupler circuit 9 is driven via the resistor Rp, and the photocoupler secondary circuit is driven. A gate drive circuit using a phototransistor as described above supplies a turn-on forward bias voltage from the gate drive circuit power supply GPS to the gate of the IGBT Q1 through the gate resistor Rg. When the signal is off, a reverse bias voltage for off is supplied from the gate drive circuit power supply GPS to the gate of the IGBT Q1 through the gate resistor Rg.

この様な構成において、前記絶縁トランスを用いたトランス絶縁回路PTCと前記フォトカプラを用いたフォトカプラ絶縁回路PCCとを直列接続する端子SNとPBとの直列接続点8を、制御回路側の基準電位と前記直列絶縁回路を介して駆動する半導体スイッチ素子(IGBT)Q1のエミッタ電位との間の中間電位点に接続することにより、基準電位とエミッタ電位との電位差の半分が絶縁トランス10と11の1次巻線と2次巻線との間、及びフォトカプラの1次フォトダイオードと2次フォトトランジスタとの間に印加されることになる。従って、絶縁器として、従来の回路構成に比べて半分の電位差に耐える絶縁トランスとフォトカプラを適用することが可能となる。また、基準電位側にフォトカプラを用いた回路を適用し、半導体スイッチ素子側に絶縁トランスを用いた構成も実現可能であるが、フォトカプラの2次側回路を駆動するための電源が必要となり、コスト的に不利となる。本実施例の構成では、絶縁トランスの2次巻線からフォトダイオードに電流を流すことができるため、絶縁トランスの2次回路(中間回路部)に電源は不要となる。   In such a configuration, the series connection point 8 of the terminals SN and PB for connecting the transformer insulation circuit PTC using the insulation transformer and the photocoupler insulation circuit PCC using the photocoupler in series is defined as a reference on the control circuit side. By connecting to an intermediate potential point between the potential and the emitter potential of the semiconductor switch element (IGBT) Q1 driven through the series insulation circuit, half of the potential difference between the reference potential and the emitter potential is reduced to the isolation transformers 10 and 11. Between the primary winding and secondary winding of the photocoupler and between the primary photodiode and secondary phototransistor of the photocoupler. Therefore, it is possible to apply an insulating transformer and a photocoupler that can withstand a half potential difference as compared with a conventional circuit configuration as an insulator. In addition, a circuit using a photocoupler on the reference potential side and an insulating transformer on the semiconductor switch element side can be realized. However, a power source for driving the secondary side circuit of the photocoupler is required. This is disadvantageous in terms of cost. In the configuration of this embodiment, since a current can flow from the secondary winding of the insulation transformer to the photodiode, a power source is not required for the secondary circuit (intermediate circuit portion) of the insulation transformer.

図2に、本発明の第2の実施例を示す。3レベル出力のフライングキャパシタ形インバータ回路に、実施例1で説明した二重絶縁した直列絶縁回路を用いたゲート駆動回路を適用した3レベル3相インバータの回路である。回路構成は同じ1相分の回路を3回路分(U相用、V相用、W相用)用いて構成しているので、U相について説明する。直流単電源1a〜1dを直列接続した直流電源と並列にダイオードを逆並列接続したIGBTを4個(Q1〜Q4)直列接続したIGBT直列回路を接続し、IGBTQ1とQ2の接続点とIGBTQ3とQ4の接続点との間にコンデンサC1とC2の直列回路を接続し、IGBTQ2とQ3との接続点を交流出力とした回路が1相分の主回路構成である。IGBTQ1〜Q4の各ゲートには実施例1で説明した二重絶縁した直列絶縁回路を用いたゲート駆動回路が接続されており、各ゲート駆動回路の入力INには制御回路7から各々オンオフ信号が供給される。
ここで、各ゲート駆動回路の入力INと制御回路7からのオンオフ信号との接続線に4wと記載されているのは、4個分の信号線が配線されていることを意味する。
FIG. 2 shows a second embodiment of the present invention. This is a three-level three-phase inverter circuit in which the gate drive circuit using the double-insulated series insulating circuit described in the first embodiment is applied to the three-level output flying capacitor inverter circuit. Since the circuit configuration is the same one-phase circuit using three circuits (for U phase, V phase, and W phase), the U phase will be described. An IGBT series circuit in which four (Q1 to Q4) series-connected IGBTs having anti-parallel diodes connected in parallel with a DC power source connected in series with DC single power sources 1a to 1d are connected, and a connection point between IGBTs Q1 and Q2 and IGBTs Q3 and Q4. A circuit in which a series circuit of capacitors C1 and C2 is connected between the connection points and the connection point between the IGBTs Q2 and Q3 is an AC output is the main circuit configuration for one phase. Each of the gates of the IGBTs Q1 to Q4 is connected to a gate drive circuit using the double-insulated series insulation circuit described in the first embodiment, and an ON / OFF signal is supplied from the control circuit 7 to the input IN of each gate drive circuit. Supplied.
Here, 4w is written on the connection line between the input IN of each gate drive circuit and the on / off signal from the control circuit 7, which means that four signal lines are wired.

この様な回路構成において、直流単電源の電圧を各々Ed、コンデンサC1とC2の電圧を各々Edとすると、直流電源の中間点Mの電圧を零として、例えば、IGBTQ1とQ2をオンすると交流出力には2Edが、IGBTQ1とQ3をオンすると交流出力には零が、IGBTQ3とQ4をオンすると交流出力には−2Edが、各々出力され、3レベルの変換動作となる。   In such a circuit configuration, assuming that the voltage of the single DC power supply is Ed and the voltages of the capacitors C1 and C2 are Ed respectively, the voltage at the intermediate point M of the DC power supply is set to zero. For example, when IGBTs Q1 and Q2 are turned on, AC output 2Ed, when IGBTs Q1 and Q3 are turned on, zero is output to the AC output, and when IGBTs Q3 and Q4 are turned on, -2Ed is output to the AC output, respectively, and a three-level conversion operation is performed.

一般に数kVクラス以上の高圧回路の場合,安全性の観点から浮遊電位となる回路は作らず,全ての回路や金属物はいずれかの電位に接続する必要がある。図1における端子SNとPBとの直列接続点8をいずれかの電位に接続する必要がある。
図2に示すフライングキャパシタ形のインバータ回路においては,絶縁トランスの1次側(制御回路側の基準電位)をM点(0電位)に接続した場合,図1における絶縁トランスとフォトカプラ間の直列接続点8は,Q1用はEd電位のE1に,Q2用,Q3用はフライングキャパシタC1とC2の接続点E3に,T4用は−Ed電位のE2に、各々接続する。
In general, in the case of a high-voltage circuit of several kV class or more, a circuit having a floating potential is not made from the viewpoint of safety, and all circuits and metal objects need to be connected to any potential. It is necessary to connect the serial connection point 8 between the terminals SN and PB in FIG. 1 to any potential.
In the flying capacitor type inverter circuit shown in FIG. 2, when the primary side of the insulation transformer (reference potential on the control circuit side) is connected to point M (0 potential), the series connection between the insulation transformer and the photocoupler in FIG. The connection point 8 is connected to E1 of the Ed potential for Q1, to the connection point E3 of the flying capacitors C1 and C2 for Q2 and Q3, and to E2 of -Ed potential for T4.

本回路構成とした場合の各ゲート駆動回路の,ゲート駆動回路が動作する基準電位,絶縁トランス回路PTCの出力とフォトカプラ回路PCCの入力との接続点である中間回路の電位(絶縁トランスの1次と2次間に印加される電圧),およびフォトカプラの1次と2次間に印加される最大電圧値のまとめを図3に示す。本図から判るように,全ての絶縁トランス及びフォトカプラの1次と2次間に印加される電圧の絶対値はEdとなる。すなわち,Edの電圧に対して必要となる絶縁耐量を有した絶縁トランス及びフォトカプラを選定すればよいことが判る。   In the case of this circuit configuration, each gate drive circuit has a reference potential at which the gate drive circuit operates, an intermediate circuit potential (1 of the isolation transformer) that is a connection point between the output of the isolation transformer circuit PTC and the input of the photocoupler circuit PCC. FIG. 3 shows a summary of the maximum voltage value applied between the primary and secondary of the photocoupler. As can be seen from this figure, the absolute value of the voltage applied between the primary and secondary of all the insulating transformers and photocouplers is Ed. That is, it can be understood that an insulating transformer and a photocoupler having a dielectric strength required for the voltage of Ed may be selected.

図4に、本発明の第3の実施例を示す。4レベル出力のフライングキャパシタ形インバータ回路に、実施例1で説明した二重絶縁した直列絶縁回路を用いたゲート駆動回路を適用した4レベル3相インバータの回路の1相分の回路構成である。直流単電源1a〜1fを直列接続した直流電源と並列にダイオードを逆並列接続したIGBTを6個(Q1〜Q6)直列接続したIGBT直列回路を接続し、IGBTQ2とQ3の接続点とIGBTQ4とQ5の接続点との間にコンデンサC1とC2の直列回路を、IGBTQ1とQ2の接続点とIGBTQ5とQ6の接続点との間にコンデンサC3とC4の直列回路を、各々接続し、IGBTQ3とQ4との接続点を交流出力とした回路が1相分の主回路構成である。IGBTQ1〜Q6の各ゲートには実施例1で説明した二重絶縁した直列絶縁回路を用いたゲート駆動回路が接続されており、各ゲート駆動回路の入力INには制御回路7から各々オンオフ信号が供給される。
ここで、各ゲート駆動回路の入力INと制御回路7からのオンオフ信号との接続線に6wと記載されているのは、6個分の信号線が配線されていることを意味する。
FIG. 4 shows a third embodiment of the present invention. This is a circuit configuration for one phase of a four-level three-phase inverter circuit in which the gate drive circuit using the double-insulated series insulating circuit described in the first embodiment is applied to a four-level output flying capacitor inverter circuit. An IGBT series circuit having six (Q1 to Q6) series-connected IGBTs having anti-parallel diodes connected in parallel to a DC power source connected in series with single DC power sources 1a to 1f is connected, and a connection point between IGBTs Q2 and Q3 and IGBTs Q4 and Q5. A series circuit of capacitors C1 and C2 is connected between the connection points of IGBTs Q1 and Q2, and a series circuit of capacitors C3 and C4 is connected between a connection point of IGBTs Q5 and Q6, and IGBTs Q3 and Q4, respectively. A circuit having an AC output at the connection point is the main circuit configuration for one phase. Each of the gates of the IGBTs Q1 to Q6 is connected to a gate drive circuit using the double-insulated series insulation circuit described in the first embodiment, and an ON / OFF signal is supplied from the control circuit 7 to the input IN of each gate drive circuit. Supplied.
Here, 6w is described as a connection line between the input IN of each gate drive circuit and the on / off signal from the control circuit 7, which means that 6 signal lines are wired.

この様な回路構成において、直流単電源1a〜1fの電圧を各々Ed、コンデンサC1とC2の電圧を各々Ed、コンデンサC3とC4の電圧を各々2Edとすると、直流電源の中間点Mの電圧を零として、例えば、IGBTQ1〜Q3をオンすると交流出力には3Edが、IGBTQ1、Q2、Q4をオンすると交流出力にはEdが、IGBTQ3、Q5、Q6をオンすると交流出力には−Edが、IGBTQ4、Q5、Q6をオンすると−3Edが、各々出力され、4レベルの変換動作となる。   In such a circuit configuration, assuming that the voltages of the single DC power sources 1a to 1f are Ed, the voltages of the capacitors C1 and C2 are Ed, and the voltages of the capacitors C3 and C4 are 2Ed, respectively, the voltage at the intermediate point M of the DC power source is For example, when the IGBTs Q1 to Q3 are turned on, 3Ed is output to the AC output, and when the IGBTs Q1, Q2, and Q4 are turned ON, Ed is output to the AC output, and when the IGBTs Q3, Q5, and Q6 are turned on, , Q5 and Q6 are turned on, -3Ed is output, and a four-level conversion operation is performed.

この様な構成における各ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8の接続点と、絶縁トランス1次−2次間電圧と、フォトカプラ1次−2次間電圧と、の関係を図5に示す。接続点E1は直流単電源1aと1bの接続点、接続点E2は直流単電源1bと1cの接続点、接続点E3は直流単電源1dと1eの接続点、接続点E4は直流単電源1eと1fの接続点、接続点E5はコンデンサC1とC2の接続点、接続点E6はコンデンサC3とC4の接続点、である。Q1用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8をE1に、Q2用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8をE5に、Q3用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8をE5に、Q4用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8をE4に、Q5用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8をE4に、Q6用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8をE5に、各々接続すると、絶縁トランス10、11の1次−2次間電圧は2Edに、フォトカプラの1次−2次間電圧はEdとなる。また、Q1用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8をE2に、Q2用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8をE2に、Q3用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8をE3に、Q4用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8をE6に、Q5用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8をE3に、Q6用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8をE6に、各々接続すると、絶縁トランス10、11の1次−2次間電圧はEdに、フォトカプラの1次−2次間電圧は2Edとなる。   In such a configuration, the relationship between the connection point of the insulation transformer of each gate drive circuit and the intermediate circuit potential 8 of the photocoupler, the insulation transformer primary-secondary voltage, and the photocoupler primary-secondary voltage is expressed as follows. As shown in FIG. Connection point E1 is a connection point between DC single power sources 1a and 1b, connection point E2 is a connection point between DC single power sources 1b and 1c, connection point E3 is a connection point between DC single power sources 1d and 1e, and connection point E4 is a DC single power source 1e. And 1f, a connection point E5 is a connection point between capacitors C1 and C2, and a connection point E6 is a connection point between capacitors C3 and C4. Q1 gate drive circuit isolation transformer and photocoupler intermediate circuit potential 8 is E1, Q2 gate drive circuit isolation transformer and photocoupler intermediate circuit potential 8 is E5, Q3 gate drive circuit isolation transformer and photocoupler The intermediate circuit potential 8 of the coupler is set to E5, the intermediate circuit potential 8 of the Q4 gate drive circuit and the photocoupler is set to E4, and the intermediate circuit potential 8 of the Q5 gate drive circuit and the photocoupler is set to E4. When the intermediate circuit potential 8 of the Q6 gate drive circuit and the photocoupler is connected to E5, the primary-secondary voltage of the isolation transformers 10 and 11 is 2 Ed, and the primary-secondary of the photocoupler The voltage is Ed. The Q1 gate drive circuit isolation transformer and photocoupler intermediate circuit potential 8 is set to E2, the Q2 gate drive circuit isolation transformer and photocoupler intermediate circuit potential 8 is set to E2, and the Q3 gate drive circuit isolation transformer is set to E2. The intermediate circuit potential 8 of the Q4 gate drive circuit and the intermediate circuit potential 8 of the photocoupler are set to E6, and the intermediate circuit potential 8 of the Q5 gate drive circuit and the photocoupler is set to E3. When the intermediate circuit potential 8 of the Q6 gate drive circuit and the photocoupler is connected to E6, the primary-secondary voltage of the isolation transformers 10 and 11 is Ed, and the primary-2 of the photocoupler is primary-2. The inter-next voltage is 2Ed.

図6に、本発明の第4の実施例を示す。実施例2で説明した3レベル出力のフライングキャパシタ形インバータ回路のコンデンサC1とC2の直列回路と並列に半導体スイッチ素子(IGBT)Q5、Q6を直列接続した第2の半導体スイッチ直列回路を接続し、前記第2の半導体スイッチ直列回路の直列接続点と直流電源の中間電位点との間に双方向の電流をオンオフ可能な逆阻止形IGBTQ11とQ12で構成した双方向スイッチを接続し、さらにIGBTQ1を3個のIGBT(Q1a、Q1b、Q1c)の直列回路に、IGBTQ4を3個のIGBT(Q4a、Q4b、Q4c)の直列回路に変更したものである。この回路は5レベル出力のフライングキャパシタ形インバータ回路と呼ばれる。詳細は特開2012−182974号公報に記載されているので、動作説明は省略する。   FIG. 6 shows a fourth embodiment of the present invention. A second semiconductor switch series circuit in which semiconductor switch elements (IGBTs) Q5 and Q6 are connected in series is connected in parallel with the series circuit of the capacitors C1 and C2 of the three-level output flying capacitor type inverter circuit described in the second embodiment. A bidirectional switch composed of reverse blocking IGBTs Q11 and Q12 capable of turning on and off a bidirectional current is connected between a series connection point of the second semiconductor switch series circuit and an intermediate potential point of the DC power supply. The IGBT Q4 is changed to a series circuit of three IGBTs (Q4a, Q4b, Q4c) in a series circuit of three IGBTs (Q1a, Q1b, Q1c). This circuit is called a 5-level output flying capacitor type inverter circuit. Since details are described in Japanese Patent Application Laid-Open No. 2012-182974, description of the operation is omitted.

この様な構成において、直流単電源1a〜1dの電圧を各々Ed、コンデンサC1とC2の電圧を各々Ed/2とし、直流電源の中間電位点Mを零、直流単電源1aと1bの接続点をE1、直流単電源1cと1dの接続点をE2、コンデンサC1とC2の接続点をE3とした時の、各ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8の接続点と、絶縁トランス1次−2次間電圧と、フォトカプラ1次−2次間電圧と、の関係を図7に示す。Q1a用とQ1b用のゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8の接続点をE1に、Q1c用、Q2用、Q3用及びQ6用のゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8の接続点をE3に、Q4a用、Q4b用及びQ4c用ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8の接続点をE2に、各々接続することにより、絶縁トランスの1次−2次間電圧とフォトカプラの1次−2次間電圧は図7に示すようになる。絶縁トランスの1次−2次間電圧とフォトカプラの1次−2次間電圧合計値は2Edであるが、EdとEdに分割して負担、3/2EdとEd/2に分担して負担する何れかとなる。ここで、Q7用、Q8用及びQ5用のゲート駆動回路の入出力間には電圧Edが印加されるだけであるので、二重絶縁の必要性はない。   In such a configuration, the voltages of the DC single power supplies 1a to 1d are each Ed, the voltages of the capacitors C1 and C2 are each Ed / 2, the intermediate potential point M of the DC power supply is zero, and the connection point of the DC single power supplies 1a and 1b. Is E1, the connection point of the single DC power supplies 1c and 1d is E2, and the connection point of the capacitors C1 and C2 is E3. The insulation transformer of each gate drive circuit and the connection point of the intermediate circuit potential 8 of the photocoupler are isolated from each other. The relationship between the transformer primary-secondary voltage and the photocoupler primary-secondary voltage is shown in FIG. Q1a and Q1b gate drive circuit isolation transformer and photocoupler intermediate circuit potential 8 connection point is E1, intermediate between Q1c, Q2, Q3 and Q6 gate drive circuit isolation transformer and photocoupler By connecting the connection point of the circuit potential 8 to E3 and the connection point of the intermediate transformer potential 8 of the gate drive circuit for Q4a, Q4b and Q4c and the intermediate circuit potential 8 of the photocoupler to E2, respectively, the primary of the insulation transformer The -secondary voltage and the photocoupler primary-secondary voltage are as shown in FIG. The total value of the primary-secondary voltage of the isolation transformer and the primary-secondary voltage of the photocoupler is 2Ed, but it is divided into Ed and Ed, and is divided into 3 / 2Ed and Ed / 2. It becomes either. Here, since only the voltage Ed is applied between the input and output of the gate drive circuits for Q7, Q8, and Q5, there is no need for double insulation.

図8に、本発明の第5の実施例を示す。実施例3で説明した4レベル出力のフライングキャパシタ形インバータ回路のコンデンサC3とC4の直列回路と並列に半導体スイッチ素子(IGBT)Q7〜Q10を直列接続した第2の半導体スイッチ直列回路を接続し、前記第2の半導体スイッチ直列回路の中間接続点と直流電源の中間電位点との間に、逆阻止形IGBTQ11とQ12で構成した双方向の電流をオンオフ可能な双方向スイッチを接続し、さらにIGBTQ1を4個のIGBT(Q1a、Q1b、Q1c、Q1d)の直列回路に、IGBTQ6を4個のIGBT(Q6a、Q6b、Q6c、Q6d)の直列回路に変更したものである。また、IGBTQ8とQ9の直列回路と並列にコンデンサC5が接続される。この回路は7レベル出力のフライングキャパシタ形インバータ回路と呼ばれる。詳細は特願2012−004723号に記載されているので、動作説明は省略する。   FIG. 8 shows a fifth embodiment of the present invention. A second semiconductor switch series circuit in which semiconductor switch elements (IGBTs) Q7 to Q10 are connected in series is connected in parallel with the series circuit of the capacitors C3 and C4 of the four-level output flying capacitor type inverter circuit described in the third embodiment, Between the intermediate connection point of the second semiconductor switch series circuit and the intermediate potential point of the DC power supply, a bidirectional switch configured by reverse blocking IGBTs Q11 and Q12 capable of turning on and off a bidirectional current is connected, and further, IGBTQ1 Is changed to a series circuit of four IGBTs (Q1a, Q1b, Q1c, Q1d), and IGBTQ6 is changed to a series circuit of four IGBTs (Q6a, Q6b, Q6c, Q6d). A capacitor C5 is connected in parallel with the series circuit of IGBTs Q8 and Q9. This circuit is called a 7-level output flying capacitor type inverter circuit. Since details are described in Japanese Patent Application No. 2012-004723, description of the operation is omitted.

このような構成において、直流単電源1a〜1fの電圧をEd,コンデンサC1、C3〜C5の電圧をEdとし、直流単電源1bと1cの接続点をE1、直流単電源1dと1eの接続点をE2、コンデンサC3とC4の接続点をE3とした時の各ゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8の接続点と、絶縁トランス1次−2次間電圧と、フォトカプラ1次−2次間電圧と、の関係を図9に示す。
IGBTQ1a〜Q1d用のゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8の接続点をE1に、IGBTQ2〜Q4用のゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8の接続点をE3に、IGBTQ5、Q10、Q6a〜Q6d用のゲート駆動回路の絶縁トランスとフォトカプラの中間回路電位8の接続点をE2に、各々接続することにより、絶縁トランスの1次−2次間電圧とフォトカプラの1次−2次間電圧は図9に示すようになる。合計値は3Edであるが、Edと2Edに分割して負担する。ここで、IGBTQ8用、Q11用及びQ12用のゲート駆動回路の入出力間には電圧Edが、IGBT7と9用のゲート駆動回路の入出力間には電圧2Edが、印加されるだけであるので、二重絶縁の必要性はない。上述の例の他に、コンデンサC1やC5を分割する方法があり、絶縁トランスとフォトカプラの絶縁電圧分担を変更することができる。
In such a configuration, the voltage of the DC single power supplies 1a to 1f is Ed, the voltage of the capacitors C1 and C3 to C5 is Ed, the connection point of the DC single power supplies 1b and 1c is E1, and the connection point of the DC single power supplies 1d and 1e. , E2, the connection point of the capacitors C3 and C4 is E3, the connection point of the intermediate circuit potential 8 of the isolation transformer and the photocoupler of each gate drive circuit, the isolation transformer primary-secondary voltage, and the photocoupler 1 FIG. 9 shows the relationship between the secondary and secondary voltages.
The connection point between the insulation transformer of the gate drive circuit for IGBTs Q1a to Q1d and the intermediate circuit potential 8 of the photocoupler is E1, and the connection point of the insulation transformer of the gate drive circuit for IGBTs Q2 to Q4 and the intermediate circuit potential 8 of the photocoupler is E3. In addition, by connecting the connection point of the isolation transformer of the gate drive circuit for IGBTs Q5, Q10, and Q6a to Q6d and the intermediate circuit potential 8 of the photocoupler to E2, respectively, the primary-secondary voltage of the isolation transformer and the photo The primary-secondary voltage of the coupler is as shown in FIG. The total value is 3Ed, but it is divided into Ed and 2Ed. Here, only the voltage Ed is applied between the input and output of the gate drive circuits for the IGBT Q8, Q11 and Q12, and the voltage 2Ed is applied between the input and output of the gate drive circuits for the IGBTs 7 and 9. There is no need for double insulation. In addition to the above-described example, there is a method of dividing the capacitors C1 and C5, and the insulation voltage sharing between the insulation transformer and the photocoupler can be changed.

図10に、本発明の第6の実施例を示す。直流単電源1aと1bの直列回路で構成された直流電源と並列に半導体スイッチ素子Q1とQ2の直列接続回路を接続する2レベルインバータ回路の1相分の回路に、実施例1で説明した二重絶縁した直列絶縁回路を用いたゲート駆動回路を適用した2レベルインバータの回路の1相分の回路構成である。上下アーム(Q1用、Q2用)ともに同じゲート駆動回路が記載されているが、制御回路の基準電位を直流電源の負極Nに接続すれば、下アームのIGBTQ2は基準電位となるので、二重絶縁した直列絶縁回路を用いる必要はない。上アームのIGBTQ1は負極Nと正極Pの電位間で動作するので、ゲート駆動回路は絶縁トランスを用いた回路PTCとフォトカプラを用いた回路PCCを直列接続した構成とし、実施例1に示した直列接続点8は直流電源の中間接続点に接続する。この結果、IGBTQ1用のゲート駆動回路の絶縁トランスを用いた回路PTCとフォトカプラを用いた回路PCCへの印加電圧はEd/2となり、絶縁器の小型化が図れる。
尚、本実施例の説明では、インバータ回路について説明したが、PWM整流回路、直流−変換回路、マトリクスコンバータなどの周波数変換回路などの回路についても、適用可能である。
FIG. 10 shows a sixth embodiment of the present invention. A circuit for one phase of a two-level inverter circuit in which a series connection circuit of semiconductor switch elements Q1 and Q2 is connected in parallel with a DC power source constituted by a series circuit of DC single power sources 1a and 1b is described in the first embodiment. This is a circuit configuration for one phase of a circuit of a two-level inverter to which a gate drive circuit using a series insulated circuit that is heavily insulated is applied. Although the same gate drive circuit is described for the upper and lower arms (for Q1 and Q2), if the reference potential of the control circuit is connected to the negative electrode N of the DC power supply, the IGBT Q2 of the lower arm becomes the reference potential. There is no need to use an isolated series isolation circuit. Since the IGBT Q1 of the upper arm operates between the potential of the negative electrode N and the positive electrode P, the gate drive circuit has a configuration in which a circuit PTC using an insulating transformer and a circuit PCC using a photocoupler are connected in series, as shown in the first embodiment. The series connection point 8 is connected to the intermediate connection point of the DC power source. As a result, the voltage applied to the circuit PTC using the isolation transformer of the gate drive circuit for the IGBT Q1 and the circuit PCC using the photocoupler becomes Ed / 2, and the insulator can be miniaturized.
In the description of the present embodiment, the inverter circuit has been described. However, the present invention can also be applied to a circuit such as a PWM rectifier circuit, a DC-converter circuit, a frequency converter circuit such as a matrix converter.

本発明は、高電圧の電力変換回路のゲート駆動信号の絶縁技術に関し、電力変換装置全般に適用可能である。特に、高電圧を取り扱う高圧電動機駆動装置、系統連系用変換装置、鉄道車両駆動装置などへの適用が可能である。   The present invention relates to a technology for insulating a gate drive signal of a high-voltage power conversion circuit, and can be applied to all power conversion devices. In particular, the present invention can be applied to a high-voltage motor driving device that handles high voltage, a grid interconnection conversion device, a railway vehicle driving device, and the like.

1・・・直流電源 1a〜1f・・・直流単電源
2・・・交流電動機(負荷) 3・・・3相インバータ回路
4、Q1〜Q10、Q1a〜Q1d、Q4a〜Q4c、Q6a〜Q6d・・・IGBT
Q11、Q12・・・逆阻止形IGBT 7・・・制御回路
C1〜C5・・・コンデンサ 9・・・フォトカプラ回路
10、11・・・絶縁トランス 13、16、17・・・スイッチ回路
RD・・・整流回路 Rp、Rg・・・抵抗 5・・・ダイオード
6・・・ゲート駆動回路 GPS・・・駆動回路電源
12・・・光ファイバケーブル 14・・・電気−光変換器
15・・・光−電気変換器 PTC・・・トランス絶縁回路
PCC・・・フォトカプラ絶縁回路
DESCRIPTION OF SYMBOLS 1 ... DC power source 1a-1f ... DC single power source 2 ... AC motor (load) 3 ... Three-phase inverter circuit 4, Q1-Q10, Q1a-Q1d, Q4a-Q4c, Q6a-Q6d. ..IGBT
Q11, Q12 ... Reverse blocking IGBT 7 ... Control circuit C1-C5 ... Capacitor 9 ... Photocoupler circuit 10, 11 ... Insulation transformer 13, 16, 17 ... Switch circuit RD / ..Rectifier circuit Rp, Rg ... Resistance 5 ... Diode 6 ... Gate drive circuit GPS ... Drive circuit power supply 12 ... Optical fiber cable 14 ... Electric-optical converter 15 ... Photoelectric converter PTC ・ ・ ・ Transformer insulation circuit PCC ・ ・ ・ Photocoupler insulation circuit

Claims (5)

半導体スイッチ素子直列回路と、半導体スイッチ素子をオンオフ制御する駆動信号絶縁回路と、キャパシタとからなるフライングキャパシタ形電力変換装置であって、
前記駆動信号絶縁回路は、駆動信号を異電位間で絶縁して伝送し、絶縁トランスを用いた信号絶縁回路とフォトカプラを用いた信号絶縁回路とを直列接続して二重絶縁した直列絶縁回路にて構成され、
前記半導体スイッチ素子直列回路は、直流電源と並列に2n(nは2以上の整数)個の半導体スイッチ素子が直列接続されており、
前記半導体スイッチ素子直列回路の中間点を中心に2N(Nは1〜n−1までの整数)個のキャパシタが半導体スイッチ素子直列回路と並列に接続されており、
前記駆動信号絶縁回路は、前記半導体スイッチ素子の各々に適用されており、
前記いずれかのフライングキャパシタの中間電位点に、前記半導体スイッチ素子の各々に適用された前記絶縁トランスを用いた信号絶縁回路と前記フォトカプラを用いた信号絶縁回路とを直列接続した駆動信号絶縁回路の直列接続点が接続されていることを特徴とするフライングキャパシタ形電力変換装置。
A flying capacitor type power converter comprising a semiconductor switch element series circuit, a drive signal insulation circuit for controlling on / off of the semiconductor switch element, and a capacitor,
The drive signal isolation circuit is a series isolation circuit in which a drive signal is insulated and transmitted between different potentials, and a signal isolation circuit using an isolation transformer and a signal isolation circuit using a photocoupler are connected in series to double-insulate Composed of
In the semiconductor switch element series circuit, 2n (n is an integer of 2 or more) semiconductor switch elements are connected in series with a DC power supply,
2N (N is an integer from 1 to n-1) capacitors are connected in parallel with the semiconductor switch element series circuit, centering on the midpoint of the semiconductor switch element series circuit,
The drive signal isolation circuit is applied to each of the semiconductor switch elements,
A drive signal isolation circuit in which a signal isolation circuit using the isolation transformer applied to each of the semiconductor switch elements and a signal isolation circuit using the photocoupler are connected in series to an intermediate potential point of any of the flying capacitors A flying capacitor type power conversion device characterized in that a series connection point is connected.
第1の半導体スイッチ素子直列回路と、第2の半導体スイッチ素子直列回路と、半導体スイッチ素子をオンオフ制御する駆動信号絶縁回路と、キャパシタとからなるフライングキャパシタ形電力変換装置であって、
前記駆動信号絶縁回路は、駆動信号を異電位間で絶縁して伝送し、絶縁トランスを用いた信号絶縁回路とフォトカプラを用いた信号絶縁回路とを直列接続して二重絶縁した直列絶縁回路にて構成され、
前記第1の半導体スイッチ素子直列回路は、直流電源と並列に2n(nは2以上の整数)個の半導体スイッチ素子が直列接続されており、
前記第1の半導体スイッチ素子直列回路の中間点を中心に2N(Nは1〜n−1までの整数)個のキャパシタが第1の半導体スイッチ素子直列回路と並列に接続されており、
前記第2の半導体スイッチ素子直列回路は、前記Nの最大値で決められたキャパシタと並列に複数の半導体素子が直列接続されており、
前記第2の半導体スイッチ素子直列回路の中間接続点と前記直流電源の中間電位点との間に双方向のスイッチングが可能な双方向スイッチを接続されており、
前記半導体スイッチ素子の各々に前記駆動信号絶縁回路が適用されており、
前記いずれかのフライングキャパシタの中間電位点に、前記半導体スイッチ素子の各々に適用された前記絶縁トランスを用いた信号絶縁回路と前記フォトカプラを用いた信号絶縁回路とを直列接続した駆動信号絶縁回路の直列接続点が接続されていることを特徴とするフライングキャパシタ形電力変換装置。
A flying capacitor type power converter comprising a first semiconductor switch element series circuit, a second semiconductor switch element series circuit, a drive signal insulation circuit for controlling on / off of the semiconductor switch element, and a capacitor,
The drive signal isolation circuit is a series isolation circuit in which a drive signal is insulated and transmitted between different potentials, and a signal isolation circuit using an isolation transformer and a signal isolation circuit using a photocoupler are connected in series to double-insulate Composed of
In the first semiconductor switch element series circuit, 2n (n is an integer of 2 or more) semiconductor switch elements are connected in series with the DC power supply,
2N (N is an integer from 1 to n-1) capacitors are connected in parallel with the first semiconductor switch element series circuit, centering on an intermediate point of the first semiconductor switch element series circuit,
In the second semiconductor switch element series circuit, a plurality of semiconductor elements are connected in series with a capacitor determined by the maximum value of N,
A bidirectional switch capable of bidirectional switching is connected between an intermediate connection point of the second semiconductor switch element series circuit and an intermediate potential point of the DC power supply;
The drive signal isolation circuit is applied to each of the semiconductor switch elements,
A drive signal isolation circuit in which a signal isolation circuit using the isolation transformer applied to each of the semiconductor switch elements and a signal isolation circuit using the photocoupler are connected in series to an intermediate potential point of any of the flying capacitors A flying capacitor type power conversion device characterized in that a series connection point is connected.
請求項1または2に記載のフライングキャパシタ形電力変換装置において、駆動信号絶縁回路は、前記駆動信号の送信元となる基準電位側を絶縁トランスを用いた信号絶縁回路とし、前記半導体スイッチ素子側をフォトカプラを用いた信号絶縁回路とすることを特徴とするフライングキャパシタ形電力変換装置。 3. The flying capacitor type power converter according to claim 1, wherein the drive signal isolation circuit is configured such that a reference potential side serving as a transmission source of the drive signal is a signal isolation circuit using an isolation transformer, and the semiconductor switch element side is A flying capacitor type power conversion device characterized in that it is a signal insulation circuit using a photocoupler. 請求項3に記載のフライングキャパシタ形電力変換装置において、駆動信号絶縁回路は、前記絶縁トランスの1次巻線を前記基準電位側で駆動し、前記絶縁トランスの2次巻線から前記フォトカプラのフォトダイオードにオン信号時の電流を供給することを特徴とするフライングキャパシタ形電力変換装置。 4. The flying capacitor type power converter according to claim 3, wherein the drive signal isolation circuit drives the primary winding of the isolation transformer on the reference potential side, and from the secondary winding of the isolation transformer to the photocoupler. A flying capacitor type power converter characterized by supplying a current at the time of an on signal to a photodiode. 請求項3または4項に記載のフライングキャパシタ形電力変換装置において、駆動信号絶縁回路は、前記絶縁トランスを用いた信号絶縁回路と前記フォトカプラを用いた信号絶縁回路とを直列接続する直列接続点を、前記基準電位と前記直列絶縁回路を介して駆動する半導体スイッチ素子のエミッタ電位との間の中間電位点に接続することを特徴とするフライングキャパシタ形電力変換装置。
5. The flying capacitor type power converter according to claim 3 , wherein the drive signal isolation circuit is a series connection point in which the signal isolation circuit using the isolation transformer and the signal isolation circuit using the photocoupler are connected in series. Is connected to an intermediate potential point between the reference potential and the emitter potential of the semiconductor switch element driven through the series insulating circuit.
JP2013002341A 2013-01-10 2013-01-10 Power converter using drive signal isolation circuit Expired - Fee Related JP6111671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002341A JP6111671B2 (en) 2013-01-10 2013-01-10 Power converter using drive signal isolation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002341A JP6111671B2 (en) 2013-01-10 2013-01-10 Power converter using drive signal isolation circuit

Publications (2)

Publication Number Publication Date
JP2014135838A JP2014135838A (en) 2014-07-24
JP6111671B2 true JP6111671B2 (en) 2017-04-12

Family

ID=51413743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002341A Expired - Fee Related JP6111671B2 (en) 2013-01-10 2013-01-10 Power converter using drive signal isolation circuit

Country Status (1)

Country Link
JP (1) JP6111671B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105958811B (en) * 2016-06-12 2018-09-07 珠海格力电器股份有限公司 A kind of optical fiber connection fault tolerant control method and device
JP6949569B2 (en) 2017-06-15 2021-10-13 ラピスセミコンダクタ株式会社 Signal transmission circuit, battery monitoring device and battery monitoring method
JP7038511B2 (en) * 2017-09-25 2022-03-18 三菱電機株式会社 Semiconductor integrated circuit
CN108365744A (en) * 2018-01-03 2018-08-03 浙江正泰电器股份有限公司 The IGBT drive circuit of frequency converter
JP2019170033A (en) * 2018-03-22 2019-10-03 パナソニックIpマネジメント株式会社 Power converter
CN109274252A (en) * 2018-09-03 2019-01-25 杭州中恒电气股份有限公司 A kind of follow-on Switching Power Supply loop compensation circuit
CN113054861B (en) * 2021-03-08 2022-03-29 东南大学 Series MMC converter topological structure with few modules
US20230231504A1 (en) * 2022-01-20 2023-07-20 Hamilton Sundstrand Corporation Gate drive grounding scheme in motor drive systems for wide input dc link voltage

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223A (en) * 1982-06-25 1984-01-05 Chino Works Ltd Zero crossing controlling circuit
WO2005122423A2 (en) * 2004-06-03 2005-12-22 Silicon Laboratories Inc. Spread spectrum isolator
JP4779549B2 (en) * 2005-10-04 2011-09-28 富士電機株式会社 A gate driving circuit of a voltage driven semiconductor element.
JP2008092651A (en) * 2006-09-29 2008-04-17 Mitsubishi Electric Corp Power converter and power conversion system
JP5360543B2 (en) * 2008-12-01 2013-12-04 富士電機株式会社 Gate drive circuit for power converter
JP2010200403A (en) * 2009-02-23 2010-09-09 Denso Corp Power unit and power conversion system
EP2487786A3 (en) * 2011-02-08 2015-06-03 Fuji Electric Co., Ltd. Five-level power conversion device

Also Published As

Publication number Publication date
JP2014135838A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP6111671B2 (en) Power converter using drive signal isolation circuit
KR102600766B1 (en) Modular multi-level converter
US9036379B2 (en) Power converter based on H-bridges
US8289736B2 (en) Conversion of AC lines to HVDC lines
JP6809769B2 (en) Power converter control system and method
US10003279B2 (en) System and method for power conversion
US9722505B2 (en) Wind power conversion system with plural first converting circuits and a second converting circuit
KR101698940B1 (en) Power electronic converter
CN105337521A (en) Multi-level converter
JP2014079145A (en) Bidirectional DC/DC converter
JP6027060B2 (en) Multi-level inverter
WO2015056571A1 (en) Power conversion device and power conversion method
JP6104736B2 (en) Power converter
US8248828B2 (en) Medium voltage inverter system
US9379627B2 (en) Power conversion circuit arrangements utilizing resonant alternating current linkage
US20160380551A1 (en) Converter arrangement having multi-step converters connected in parallel and method for controlling these
EP0886912A1 (en) A converter device
Gierschner et al. Fault-Tolerant Behaviour of the Three-Level Advanced-Active-Neutral-Point-Clamped Converter
JP2014045566A (en) Ac-ac bidirectional power converter
KR20180132114A (en) Converter and power converter using it
JPWO2019156192A1 (en) Power converter, power generation system, motor drive system and power interconnection system
JP2017042013A (en) Electric power conversion system
WO2021146995A1 (en) Apparatus and method of power transmission
WO2023281668A1 (en) Power conversion device, aircraft, and power conversion method
JP2020080583A (en) Power conversion device and polyphase ac power conversion device using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6111671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees