JP6076536B2 - Method for producing oil-absorbing hollow fiber porous membrane - Google Patents

Method for producing oil-absorbing hollow fiber porous membrane Download PDF

Info

Publication number
JP6076536B2
JP6076536B2 JP2016504481A JP2016504481A JP6076536B2 JP 6076536 B2 JP6076536 B2 JP 6076536B2 JP 2016504481 A JP2016504481 A JP 2016504481A JP 2016504481 A JP2016504481 A JP 2016504481A JP 6076536 B2 JP6076536 B2 JP 6076536B2
Authority
JP
Japan
Prior art keywords
porous membrane
hollow fiber
oil
fiber porous
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016504481A
Other languages
Japanese (ja)
Other versions
JP2016515933A (en
Inventor
長発 肖
長発 肖
智麗 范
智麗 范
海亮 劉
海亮 劉
健 趙
健 趙
慶林 黄
慶林 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Publication of JP2016515933A publication Critical patent/JP2016515933A/en
Application granted granted Critical
Publication of JP6076536B2 publication Critical patent/JP6076536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/56Use of ultrasound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Water Treatment By Sorption (AREA)
  • Artificial Filaments (AREA)

Description

本発明は、多機能中空繊維膜の製造方法に関し、特に吸油中空繊維多孔膜の製造方法に関するものである。   The present invention relates to a method for producing a multifunctional hollow fiber membrane, and more particularly to a method for producing an oil-absorbing hollow fiber porous membrane.

近年、油性有機化合物及びこの有機廃液、廃棄液体が漏洩することと、色々な事故によって油が油船又はオイルタンクから漏洩することなどにより、河流、海洋などの水資源及び環境が汚染する問題が多発している。従来の吸油材料、例えば粘土、紙パルプ、パンヤなどは、吸油率が低く、油水分離性が悪く、油保有性が弱く、油を含有する水の資源化及び環境の清潔化の要求を満たすことができないという欠点を有している。   In recent years, oil-based organic compounds and their organic waste liquids and waste liquids have leaked, and oil has leaked from oil ships or oil tanks due to various accidents, resulting in frequent pollution of water resources and the environment such as rivers and oceans. doing. Conventional oil-absorbing materials, such as clay, paper pulp, and panya, have a low oil absorption rate, poor oil / water separation properties, poor oil retention, and meet the demands for resource-containing water and environmental cleanliness. Has the disadvantage of not being able to.

色々な吸油材料において、吸油繊維は、比表面積(specific surface area)が大きく、吸油速度が速く、効率が高く、油を容易に回収できるという利点を有しているので、人々の注目を集めている。吸油繊維に関する研究をしてきたことにより、(発明者である)肖長発たちは「共重プロピオール酸メチル(Methyl Propiolate)吸油繊維(CN200710059780.7、CN200410019338.8)」を発明し、(発明者である)劉艶萍たちは「静電紡織方法で製造する超細い吸油繊維(CN200710043566.2)」を発明した。しかし、上記吸油繊維は、貫入重合体網目構造(Corsslinked Polymer Networks)の膨張或いは繊維の間の隙間で吸油、油貯蔵を行うことができるが、この吸油繊維が油を吸収して飽和状態になると、吸油繊維の吸油機能がなくなってしまうので、連続して使用することができない欠点を有している。すなわち、吸油材料を交換するか或いは再生する必要があるので、吸油材料の使用効率が低下し、処理コストが向上する。したがって、このような吸油材料は、有機廃液、大面積の水面上に浮かんでいる油、環境の汚染などを迅速、効率的に処理することができない。   In various oil-absorbing materials, oil-absorbing fibers have the advantages of large specific surface area, high oil absorption speed, high efficiency, and easy oil recovery, attracting people's attention Yes. As a result of research on oil-absorbing fibers, Xiao Chang et al. (Inventor) invented “Methyl Propiolate oil-absorbing fibers (CN200710059780.7, CN200410019338.8)” (inventor). Liu Zhao, et al. Invented “ultra-thin oil-absorbing fiber (CN200710043566.2) produced by an electrostatic spinning method”. However, the oil-absorbing fiber can absorb oil and store oil in the expansion of the interstitial polymer network (Corsslinked Polymer Networks) or in the gaps between the fibers. When the oil-absorbing fiber absorbs oil and becomes saturated, Since the oil absorbing function of the oil absorbing fiber is lost, it has a drawback that it cannot be used continuously. That is, since it is necessary to replace or regenerate the oil absorbing material, the use efficiency of the oil absorbing material is reduced and the processing cost is improved. Therefore, such an oil-absorbing material cannot quickly and efficiently treat organic waste liquid, oil floating on a large area of water, environmental pollution, and the like.

多孔ポリマーベース型グラフェン吸油材料は新型吸油材料である。2011年、(発明者である)D. Zhaたちは、拡散方法で水又はメチルアルコールをポリフッ化ビニリデン(PolyVinylidene DiFluoride、PVDF)/グラフェンのジメチルホルムアミド(Dimethyl formamide、DMF)分散液に入れることにより、PVDF/グラフェンの凝固材を得た。また、水でその凝固材中のDMFを置換し、これを凍結することで超疎水性親油性のPVDF/グラフェン多孔材料を得た(Zha D、Mei S、Wang Z、et al. Superhydrophobic polyvinylidene fluoride/graphene porous materials[J]. Carbon、2011、49(15):5166-5172.)。2012年、D. D. Nguyenたちは、メラミン(melamine)海綿をグラフェンのアルコール分散液中に浸漬することにより、グラフェンが塗布された海綿を得て、かつジメチルポリシロキサン(dimethylpolysiloxane)表面処理を行うことにより、超疎水性、親油性の海綿ベース型グラフェン材料を得た(Nguyen D D、Tai N H、Lee S B、et al. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method[J]. Energy & Environmental Science、2012、5(7):7908-7912.)。この材料は、油性有機化合物に対して強力な吸着力を有している。例えば、クロロホルムに対する吸着倍率は自重の165倍まで達することができた。2013年、Liuたちは、ポリウレタン(polyurethane)海綿を酸化グラフェン分散液中に浸漬することで分散液のpHを調節し、かつヒドラジン(hydrazine)で酸化グラフェンを還元することにより、超疎水性、親油性の海綿ベース型グラフェン吸油材料を得た(Liu Y、Ma J、Wang T、et al. Cost-effective reduced grapheme oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent[J]. ACS Applied Materials & Interfaces、2013、5(20):10018-10026.)。この材料は、クロロホルムに対する吸着倍率が160g/gまで達することができた。上述したポリマーベース型グラフェン吸油材料は、油水分離性がよく、吸油率が高いという利点を有し、通常の合成吸油樹脂材料を遥かに上回っているので、使用者たちの注目を集めている。しかし、このような吸油材料は、連続した吸油過程をすることができず、油水分離システムの連続、効率的な吸着及び分離を実現することができないので、工業上の規模を向上させることができない。   The porous polymer-based graphene oil-absorbing material is a new oil-absorbing material. In 2011, D. Zha et al. (Inventor) put water or methyl alcohol by diffusion into Polyvinylidene fluoride (PVDF) / graphene dimethylformamide (DMF) dispersion, A PVDF / graphene solidified material was obtained. Also, water was substituted for DMF in the coagulated material and frozen to obtain a superhydrophobic lipophilic PVDF / graphene porous material (Zha D, Mei S, Wang Z, et al. Superhydrophobic polyvinylidene fluoride). / Graphene porous materials [J]. Carbon, 2011, 49 (15): 5166-5172.). In 2012, DD Nguyen et al. Obtained a sponge coated with graphene by immersing a melamine sponge in an alcohol dispersion of graphene and performing a dimethylpolysiloxane surface treatment. Superhydrophobic and lipophilic sponge-based graphene materials were obtained (Nguyen DD, Tai NH, Lee SB, et al. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method [J]. Environmental Science, 2012, 5 (7): 7908-7912.). This material has a strong adsorption power for oily organic compounds. For example, the adsorption rate for chloroform could reach 165 times its own weight. In 2013, Liu et al. Adjusted the pH of a dispersion by immersing a polyurethane sponge in the dispersion of graphene oxide, and reduced the graphene oxide with hydrazine to produce superhydrophobic, parent Oil-based sponge-based graphene oil-absorbing materials were obtained (Liu Y, Ma J, Wang T, et al. Cost-effective reduced grapheme oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent [J]. ACS Applied Materials & Interfaces, 2013, 5 (20): 10018-10026.). This material was able to reach an adsorption rate of up to 160 g / g for chloroform. The polymer-based graphene oil-absorbing material described above has the advantages of good oil-water separation and high oil absorption, and is much more than ordinary synthetic oil-absorbing resin materials, and has attracted the attention of users. However, such an oil-absorbing material cannot perform a continuous oil-absorbing process and cannot realize continuous and efficient adsorption and separation of an oil-water separation system, and thus cannot improve the industrial scale. .

中国特許出願第CN200710059780.7号公報Chinese Patent Application No. CN200710059780.7 中国特許出願第CN200410019338.8号公報Chinese Patent Application No. CN200410019338.8 中国特許出願第CN200710043566.2号公報Chinese Patent Application No. CN200710043566.2

従来の吸油材料の問題を解決するために本発明が解決しようとする課題は、吸油中空繊維多孔膜の製造方法を提供することである。この製造方法は、吸油材料の吸油過程に基づいて、疎水性、親油性のグラフェンを吸着層にし、親油(非膨張)性のポリマー中空繊維多孔膜をベース層にする。製造して得た中空繊維多孔膜は、油吸着性と油水分離機能を同時に具備し、かつ油を連続して吸収し水を連続して排斥する特徴と油及び水を連続して分離することができる特徴とを具備する。また、本発明の吸油中空繊維多孔膜は、これを色々な形状の製品にすることができ、かつこの製造工程が簡単であり、コストが低く、工業上の実用性がよい利点を有している。   The problem to be solved by the present invention in order to solve the problems of conventional oil-absorbing materials is to provide a method for producing an oil-absorbing hollow fiber porous membrane. In this production method, hydrophobic and lipophilic graphene are used as an adsorbing layer and a lipophilic (non-expandable) polymer hollow fiber porous membrane is used as a base layer based on the oil absorbing process of the oil absorbing material. The produced hollow fiber porous membrane has oil adsorption and oil / water separation functions at the same time, and continuously absorbs oil and continuously discharges water, and continuously separates oil and water. It has the feature that can be. Moreover, the oil-absorbing hollow fiber porous membrane of the present invention can be made into products of various shapes, and has the advantages that the manufacturing process is simple, the cost is low, and the industrial practicality is good. Yes.

本発明が上記問題を解決するために採用する技術手段は、吸油中空繊維多孔膜の製造方法を提供することである。該製造方法は、グラフェンを表面吸着層にし、中空繊維多孔膜をベース層にし、かつ下記製造ステップを採用する。
(1)グラフェン分散液を製造するステップにおいて、0.1〜1gのグラフェンと200〜1000mLの分散剤とを混合し、超音波分散を10〜50min行うことによりグラフェン分散液を製造する。グラフェンの厚さは10nmより小さく、直径は0.1〜5μmである。分散剤は、無糖アルコール、N−メチルピロリドン、テトラヒドロフラン、ジメチルホルムアミド又はジメチルアセトアミドのうちいずれかの一種である。
(2)吸油中空繊維多孔膜を製造するステップにおいて、まず、ポリマー中空繊維多孔膜をセットにした後、これをステップ(1)で製造して得たグラフェン分散液中に浸漬して、0.02〜0.08MPaの負圧でデッドエンドポンピング濾過(dead-end pumping filtration)を5〜30min行う。次に、このセットを空気中で自然乾燥させ、かつ中空繊維多孔膜の表面の余計なグラフェンが脱落すると、これを負圧が0.1MPaである真空乾燥装置に入れて、常温で6〜12時間乾燥させる。前記ポリマー中空繊維多孔膜は、ポリ塩化ビニル中空繊維多孔膜、ポリビニリデンフルオリド中空繊維多孔膜、ポリプロピレン中空繊維多孔膜又はポリアクリロニトリル繊維中空編織管(filaments braided hollow tube)であり、前記グラフェン分散液の温度は20〜30℃である。
(3)グラフェンと中空繊維多孔膜との間の接触面の結合強度を強化するステップにおいて、グラフェンと中空繊維多孔膜との間の接触面の結合強度を強化することは下記二種の方法で行うことができる。(A)1つ目の方法は溶剤処理方法である。この場合、まず20〜100wt%の溶剤水溶液を用意する。次にステップ(2)で製造して得た吸油中空多孔膜を溶剤水溶液中に1〜20s程浸漬した後、これを取り出して凝固用プールに入れて固化させることにより前記吸油中空繊維多孔膜を製造する。前記溶剤は、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド又はジメチルベンゼンであり、前記凝固用プールの媒介は水であり、(B)2つ目の方法は低濃度溶液処理方法である。この場合、まずポリマーの低濃度溶液を用意する。次にステップ(2)で製造して得た吸油中空多孔膜を前記低濃度溶液に浸漬し、0.02〜0.08MPaの負圧でポンピング濾過を3〜20s行った後、これを取り出して凝固用プールに入れて固化させることにより、前記吸油中空繊維多孔膜を製造する。前記低濃度ポリマー溶液は、ポリマー、添加剤、溶剤で構成され、これらはそれぞれ低濃度溶液の総質量の0.5〜6wt%、0〜12wt%、82〜99wt%を占める。前記ポリマーは、ポリ塩化ビニル、ポリビニリデンフルオリド、ポリプロピレン又はポリアクリロニトリルである。前記添加剤は、蒸留水、無水塩化リチウム(anhydrous lithium chloride)、ポリビニルピロリドン(Polyvinylpyrrolidone)又はポリエチレングリコール(polyethylene glycol)である。前記溶剤は、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン又はデカヒドロナフタレンである。前記凝固用プールの媒介は上述した溶剤の水溶液又は水である。
The technical means employed by the present invention to solve the above problems is to provide a method for producing an oil-absorbing hollow fiber porous membrane. The production method employs graphene as a surface adsorption layer, a hollow fiber porous membrane as a base layer, and the following production steps.
(1) In the step of producing a graphene dispersion, 0.1 to 1 g of graphene and 200 to 1000 mL of a dispersant are mixed, and the graphene dispersion is produced by performing ultrasonic dispersion for 10 to 50 minutes. The thickness of graphene is less than 10 nm and the diameter is 0.1-5 μm. The dispersant is any one of sugar-free alcohol, N-methylpyrrolidone, tetrahydrofuran, dimethylformamide, or dimethylacetamide.
(2) In the step of producing the oil-absorbing hollow fiber porous membrane, first, after setting the polymer hollow fiber porous membrane as a set, the polymer hollow fiber porous membrane is immersed in the graphene dispersion obtained in step (1). Dead-end pumping filtration is performed at a negative pressure of 02 to 0.08 MPa for 5 to 30 minutes. Next, this set is naturally dried in the air, and when excess graphene on the surface of the hollow fiber porous membrane is dropped, it is put in a vacuum drying apparatus having a negative pressure of 0.1 MPa, and at a room temperature, 6 to 12 Let dry for hours. The polymer hollow fiber porous membrane is a polyvinyl chloride hollow fiber porous membrane, a polyvinylidene fluoride hollow fiber porous membrane, a polypropylene hollow fiber porous membrane or a polyacrylonitrile fiber hollow woven tube (filaments braided hollow tube), and the graphene dispersion liquid The temperature is 20-30 ° C.
(3) In the step of enhancing the bond strength of the contact surface between the graphene and the hollow fiber porous membrane, the bond strength of the contact surface between the graphene and the hollow fiber porous membrane is strengthened by the following two methods. It can be carried out. (A) The first method is a solvent treatment method. In this case, first, a 20-100 wt% solvent aqueous solution is prepared. Next, after immersing the oil-absorbing hollow porous membrane obtained in step (2) in a solvent aqueous solution for about 1 to 20 s, the oil-absorbing hollow fiber porous membrane is taken out by taking it out and putting it in a coagulation pool. To manufacture. The solvent is dimethylformamide, dimethylacetamide, dimethyl sulfoxide, or dimethylbenzene, the mediation of the coagulation pool is water, and (B) the second method is a low-concentration solution processing method. In this case, first, a low-concentration polymer solution is prepared. Next, the oil-absorbing hollow porous membrane produced in step (2) is immersed in the low-concentration solution, subjected to pumping filtration at a negative pressure of 0.02 to 0.08 MPa for 3 to 20 seconds, and then taken out. The oil-absorbing hollow fiber porous membrane is produced by putting it in a coagulation pool and solidifying it. The low concentration polymer solution is composed of a polymer, an additive, and a solvent, which occupy 0.5 to 6 wt%, 0 to 12 wt%, and 82 to 99 wt% of the total mass of the low concentration solution, respectively. The polymer is polyvinyl chloride, polyvinylidene fluoride, polypropylene or polyacrylonitrile. The additive is distilled water, anhydrous lithium chloride, polyvinylpyrrolidone or polyethylene glycol. The solvent is dimethylformamide, dimethylacetamide, tetrahydrofuran or decahydronaphthalene. The medium of the coagulation pool is an aqueous solution of water or water as described above.

本発明は、吸油中空繊維多孔膜の特殊な形状を提供することにより、吸油機能と油水分離機能が協同作用するようにする設計理念に関するものである。従来技術と比較してみると、本発明の吸油中空繊維多孔膜は、吸油機能と油水分離機能を連続に行うことができ、かつ比表面積が大きく、吸油速度が速く、油水分離の効率が高く、油を容易に回収できるという利点を有している。本発明の吸油中空繊維多孔膜は実際の需要により色々な形状の製品又は色々な用途の製品にすることができ、特にこの製品で油性有機化合物の汚染を受けた水域を処理するとき、この製品を油水臨界面に浮かすことによって吸油を行うことができるので、吸油中空繊維多孔膜の応用範囲及び応用分野を広げることができる。本発明の方法(吸油中空繊維多孔膜の製造方法)は、製造過程が簡単であり、コストが低く、工業上の実施が簡単であるという利点を有しており、良好な経済及び社会的効果を出すことができる。   The present invention relates to a design philosophy that allows an oil absorption function and an oil / water separation function to cooperate by providing a special shape of an oil-absorbing hollow fiber porous membrane. Compared with the prior art, the oil-absorbing hollow fiber porous membrane of the present invention can perform the oil-absorbing function and oil-water separation function continuously, has a large specific surface area, high oil absorption speed, and high efficiency of oil-water separation. The oil can be easily recovered. The oil-absorbing hollow fiber porous membrane of the present invention can be made into a product of various shapes or a product of various uses according to actual demand, especially when treating a water area contaminated with an oily organic compound with this product. Oil can be absorbed by floating the oil on the critical surface of the oil and water, so that the application range and field of application of the oil-absorbing hollow fiber porous membrane can be expanded. The method of the present invention (method for producing an oil-absorbing hollow fiber porous membrane) has the advantages that the production process is simple, the cost is low, and the industrial implementation is simple, and has good economic and social effects. Can be issued.

本発明の構造を示す図である。It is a figure which shows the structure of this invention.

以下、具体的な実施例と図面により本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples and drawings.

本発明は、グラフェンを表面吸着層にしかつ中空繊維多孔膜をベース層にする吸油中空繊維多孔膜の製造方法(以下製造方法と略称)に関するものである。この製造方法は下記のような製造ステップを含む。   The present invention relates to a method for producing an oil-absorbing hollow fiber porous membrane having graphene as a surface adsorption layer and a hollow fiber porous membrane as a base layer (hereinafter referred to as production method). This manufacturing method includes the following manufacturing steps.

(1)グラフェン分散液を製造する。0.1〜1gグラフェンと200〜1000mL分散剤とを混合し、超音波分散を10〜50min行うことによりグラフェン分散液を製造する。前記グラフェンの厚さは10nmより小さく、直径は0.1〜5μmである。前記分散剤は、無糖アルコール、N−メチルピロリドン(N−Methyl pyrrolidone)、テトラヒドロフラン(tetrahydrofuran)、ジメチルホルムアミド(Dimethyl formamide、DMF)又はジメチルアセトアミド(Dimethylacetamide)である。   (1) A graphene dispersion is produced. A graphene dispersion liquid is manufactured by mixing 0.1-1 g graphene and 200-1000 mL dispersant and performing ultrasonic dispersion for 10-50 min. The graphene has a thickness of less than 10 nm and a diameter of 0.1 to 5 μm. The dispersant is sugar-free alcohol, N-Methylpyrrolidone, tetrahydrofuran, tetramethylformamide (DMF), or dimethylacetamide.

(2)吸油中空繊維多孔膜を製造する。まず、ポリマー中空繊維多孔膜をセットにした後、これをステップ(1)で製造して得たグラフェン分散液中に浸漬して、0.02〜0.08MPaの負圧でデッドエンドポンピング濾過(dead-end pumping filtration)を5〜30min行う。次に、このセットを空気中で自然乾燥させる。中空繊維多孔膜の表面の余計なグラフェンが脱落すると、これを負圧が0.1MPaである真空乾燥装置に入れて、常温で6〜12時間乾燥させる。前記グラフェン分散液の温度は20〜30℃である。   (2) An oil-absorbing hollow fiber porous membrane is produced. First, after setting a polymer hollow fiber porous membrane as a set, it was immersed in the graphene dispersion obtained by producing in step (1), and dead end pumping filtration (at a negative pressure of 0.02 to 0.08 MPa) ( Dead-end pumping filtration is performed for 5 to 30 minutes. The set is then air dried in air. When extra graphene on the surface of the hollow fiber porous membrane falls off, it is put in a vacuum drying apparatus having a negative pressure of 0.1 MPa and dried at room temperature for 6 to 12 hours. The temperature of the graphene dispersion is 20-30 ° C.

(3)グラフェンと中空繊維多孔膜との間の接触面の結合強度を強化する。グラフェンと中空繊維多孔膜との間の接触面の結合強度の強化は下記二種の方法で行うことができる。(A)1つ目の方法は溶剤処理方法である。この場合、まず20〜100wt%の溶剤水溶液を用意する。次に、ステップ(2)で製造して得た吸油中空繊維多孔膜を溶剤水溶液中に1〜20s程浸漬した後、これを取り出して凝固用プールに入れて固化させることにより、前記吸油中空繊維多孔膜を製造する。この方法において、前記溶剤はジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド(Dimethyl sulfoxide)及びジメチルベンゼン(dimethylbenzene)のうちいずれか一種であり、前記凝固用プールの媒介は水である。(B)2つ目の方法は低濃度溶液処理方法である。この場合、まず低濃度溶液を用意する。次に、ステップ(2)で製造して得た吸油中空繊維多孔膜を前記低濃度溶液に浸漬し、0.02〜0.08MPaの負圧でポンピング濾過を3〜20s行った後、これを取り出して凝固用プールに入れて固化させることにより、前記吸油中空繊維多孔膜を製造する。前記低濃度溶液は、ポリマーの低濃度溶液であり、かつポリマー、添加剤、溶剤で構成され、これらはそれぞれ低濃度溶液の総質量の0.5〜6wt%、0〜12wt%、82〜99wt%を占める。前記ポリマーは、ポリ塩化ビニル(Polyvinyl chloride)、ポリビニリデンフルオリド(Polyvinylidene fluoride)、ポリプロピレン(polypropylene)又はポリアクリロニトリル(polyacrylonitrile)である。前記添加剤は、蒸留水、無水塩化リチウム、ポリビニルピロリドン又はポリエチレングリコールである。前記溶剤は、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン及びデカヒドロナフタレン(decahydronaphthalene)のうちいずれかの一種であり、前記凝固用プールの媒介は上述した溶剤の水溶液又は水である。   (3) Strengthen the bond strength of the contact surface between the graphene and the hollow fiber porous membrane. Strengthening of the bond strength of the contact surface between the graphene and the hollow fiber porous membrane can be performed by the following two methods. (A) The first method is a solvent treatment method. In this case, first, a 20-100 wt% solvent aqueous solution is prepared. Next, after immersing the oil-absorbing hollow fiber porous membrane produced in step (2) in a solvent aqueous solution for about 1 to 20 s, the oil-absorbing hollow fiber is taken out and placed in a coagulation pool to be solidified. A porous membrane is produced. In this method, the solvent is one of dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and dimethylbenzene, and the coagulation pool mediates water. (B) The second method is a low concentration solution processing method. In this case, a low concentration solution is first prepared. Next, the oil-absorbing hollow fiber porous membrane produced in step (2) is immersed in the low-concentration solution and subjected to pumping filtration at a negative pressure of 0.02 to 0.08 MPa for 3 to 20 seconds. The oil-absorbing hollow fiber porous membrane is produced by taking it out and putting it in a coagulation pool for solidification. The low-concentration solution is a low-concentration solution of a polymer and is composed of a polymer, an additive, and a solvent, which are 0.5 to 6 wt%, 0 to 12 wt%, and 82 to 99 wt% of the total mass of the low-concentration solution, respectively. %. The polymer may be polyvinyl chloride, polyvinylidene fluoride, polypropylene, or polyacrylonitrile. The additive is distilled water, anhydrous lithium chloride, polyvinyl pyrrolidone or polyethylene glycol. The solvent is one of dimethylformamide, dimethylacetamide, tetrahydrofuran, and decahydronaphthalene, and the coagulation pool is an aqueous solution or water of the above-described solvent.

本発明の製造方法において、グラフェンを分離させる分散剤は、無糖アルコール、N−メチルピロリドン、テトラヒドロフラン、ジメチルホルムアミド又はジメチルアセトアミドなどを含む。本発明の分散剤として無糖アルコールを選択することが好ましい。   In the production method of the present invention, the dispersant for separating graphene includes sugar-free alcohol, N-methylpyrrolidone, tetrahydrofuran, dimethylformamide, dimethylacetamide, or the like. It is preferred to select a sugar-free alcohol as the dispersant of the present invention.

効率的な吸収及び分離を確保するため、本発明の製造方法は下記特徴を更に含む。前記中空繊維多孔膜の規格(サイズ)において、孔の直径範囲は0.1〜10μmであり、孔の隙間率は50%より大きい。前記ポリアクリロニトリル繊維中空編織管の規格(サイズ)において、編織ピッチは400〜600μmである。   In order to ensure efficient absorption and separation, the production method of the present invention further includes the following features. In the standard (size) of the hollow fiber porous membrane, the pore diameter range is 0.1 to 10 μm, and the pore gap ratio is larger than 50%. In the standard (size) of the polyacrylonitrile fiber hollow knitted tube, the knitted pitch is 400 to 600 μm.

本発明の製造方法で前記吸油中空繊維多孔膜を製造することができる。該吸油中空繊維多孔膜は、連続して吸油を行うことができ、かつ油水分離機能を具備している。本発明の製造方法で獲得した中空繊維多孔膜は油を処理(吸収)するとき膨張しない特徴を有している。前記中空繊維多孔膜が処理できる油は、主にメチルベンゼン、トリクロロメタン(Trichloromethane)などのような油性低分子有機液体であるか或いはケロシン、ディーゼルなどのような一部分の炭化水素混合物である。   The oil-absorbing hollow fiber porous membrane can be produced by the production method of the present invention. The oil-absorbing hollow fiber porous membrane can continuously absorb oil and has an oil-water separation function. The hollow fiber porous membrane obtained by the production method of the present invention has a feature that it does not expand when oil is treated (absorbed). The oil that can be processed by the hollow fiber porous membrane is mainly an oily low-molecular organic liquid such as methylbenzene or trichloromethane, or a partial hydrocarbon mixture such as kerosene or diesel.

本発明の製造方法で獲得した吸油中空繊維膜が安定、連続的な吸油機能を具備する1つ目の理由は次のとおりである。溶剤水溶液で、ステップ(2)で製造して得た吸油中空繊維膜の表面を処理するとき、前記溶剤が中空繊維多孔膜ポリマー材料を容易に溶解することができるので、吸油中空繊維多孔膜と溶剤水溶液とが接触するとき、溶剤によって中空繊維膜表面孔が膨張するとともに溶解し、この後凝固プールによってこれらを再固化する。これにより、グラフェンを中空繊維膜の孔に嵌入させ、かつグラフェンと中空繊維膜との間の接触面の結合強度を向上させることができるからである。   The first reason why the oil-absorbing hollow fiber membrane obtained by the production method of the present invention has a stable and continuous oil-absorbing function is as follows. When treating the surface of the oil-absorbing hollow fiber membrane obtained in step (2) with a solvent aqueous solution, the solvent can easily dissolve the hollow fiber porous membrane polymer material. When contacting with the aqueous solvent solution, the surface pores of the hollow fiber membrane are expanded and dissolved by the solvent, and then re-solidified by the coagulation pool. This is because the graphene can be fitted into the hole of the hollow fiber membrane and the bonding strength of the contact surface between the graphene and the hollow fiber membrane can be improved.

本発明の製造方法で獲得した吸油中空繊維多孔膜が安定、連続的な吸油機能を具備する2つ目の理由は次のとおりである。低濃度溶液で、ステップ(2)で製造して得た吸油中空繊維多孔膜の表面を処理するとき、当該低濃度溶液が低濃度のポリマー溶液であり、一定の粘着性を具備しているので、グラフェンを吸油中空繊維多孔膜の表面に安定に粘着させ、かつグラフェンがベース層の表面に露出することを確保することができる。これにより、グラフェンと吸油中空繊維多孔膜との間の接触面の結合強度を向上させることができるからである。   The second reason why the oil-absorbing hollow fiber porous membrane obtained by the production method of the present invention has a stable and continuous oil-absorbing function is as follows. When treating the surface of the oil-absorbing hollow fiber porous membrane obtained in step (2) with a low-concentration solution, the low-concentration solution is a low-concentration polymer solution and has a certain adhesive property. The graphene can be stably adhered to the surface of the oil-absorbing hollow fiber porous membrane, and the graphene can be ensured to be exposed on the surface of the base layer. This is because the bonding strength of the contact surface between the graphene and the oil-absorbing hollow fiber porous membrane can be improved.

本発明の製造方法で獲得した吸油中空繊維多孔膜は、疎水性のグラフェンを吸着層にし、親油(非膨張)性の中空繊維多孔膜をベース層にする。これらで構成された膜セットを油/水混合溶液に入れ、一端を密閉させ、他端に適当な負圧を付加する場合、グラフェン吸着層は油を吸収し水を排斥する作用を奏し、負圧は油を連続に吸着、輸送する動力になる。吸油中空膜が連続な吸油及び分離を行う原理は次のとおりである。油が吸油中空繊維膜外表面のグラフェンに吸着された後、負圧の吸引力によって中空繊維多孔膜の壁を通過し、かつ中空管に沿って油貯蔵装置に輸送されるので、吸油中空繊維多孔膜が油を吸着するとともに分離することができる。   In the oil-absorbing hollow fiber porous membrane obtained by the production method of the present invention, hydrophobic graphene is used as the adsorption layer, and the lipophilic (non-expandable) hollow fiber porous membrane is used as the base layer. When a membrane set composed of these is put into an oil / water mixed solution, one end is sealed, and an appropriate negative pressure is applied to the other end, the graphene adsorption layer absorbs oil and drains water. Pressure is the power to continuously adsorb and transport oil. The principle that the oil-absorbing hollow membrane performs continuous oil absorption and separation is as follows. After the oil is adsorbed on the graphene on the outer surface of the oil-absorbing hollow fiber membrane, it passes through the wall of the hollow fiber porous membrane by negative pressure suction force and is transported along the hollow tube to the oil storage device. The fiber porous membrane can adsorb and separate oil.

本発明に記載されていない技術は従来の技術を採用することができる。以下、具体的な実施例により、本発明の事項をより詳細に説明する。しかし、本発明の特許請求の範囲は下記の具体的な実施例にのみ限定されるものではない。   Techniques not described in the present invention can adopt conventional techniques. Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the scope of the claims of the present invention is not limited to the following specific examples.

(実施例1)
(1)グラフェン分散液を製造する。容器に分散剤である800mLのジメチルアセトアミドと0.24gのグラフェンとを入れ、超音波分散処理を30min行うことにより、均質なグラフェン分散液を製造する。
Example 1
(1) A graphene dispersion is produced. A homogeneous graphene dispersion is produced by placing 800 mL of dimethylacetamide as a dispersant and 0.24 g of graphene in a container and performing ultrasonic dispersion treatment for 30 minutes.

(2)吸油中空繊維多孔膜を製造する。まず、ポリアクリロニトリル繊維中空編織管をセットにし、これを25℃のグラフェン分散液中に浸漬し、0.08MPaの負圧でデッドエンドポンピング濾過を10min行う。次に、このセットを空気で自然乾燥をさせる。中空繊維編織管表面の余計なグラフェンが脱落すると、これを負圧が0.1MPaである真空乾燥装置に入れて、常温で10時間乾燥させる。   (2) An oil-absorbing hollow fiber porous membrane is produced. First, a polyacrylonitrile fiber hollow knitted tube is set, and this is immersed in a graphene dispersion at 25 ° C., and subjected to dead end pumping filtration at a negative pressure of 0.08 MPa for 10 minutes. The set is then air dried with air. When extra graphene on the surface of the hollow fiber knitted tube falls off, it is put in a vacuum drying apparatus having a negative pressure of 0.1 MPa and dried at room temperature for 10 hours.

(3)吸油中空繊維多孔膜の表面処理を行う。まずポリマーの低濃度溶液を用意する。すなわち、低濃度溶液の総質量の1%を占めるポリアクリロニトリルと、低濃度溶液の総質量の6%を占めるポリビニルピロリドンと、低濃度溶液の総質量の93%を占めるジメチルホルムアミドとを混合した後、70℃の温度下で1h撹拌することにより、透明な溶液を形成する。次に、ステップ(2)で製造して得た吸油中空繊維多孔膜を該低濃度溶液に浸漬し、0.08MPaの負圧でポンピング濾過を7s行った後、これを取り出して水に入れて固化させる。   (3) Surface treatment of the oil-absorbing hollow fiber porous membrane is performed. First, a low concentration solution of a polymer is prepared. That is, after mixing polyacrylonitrile occupying 1% of the total mass of the low-concentration solution, polyvinylpyrrolidone occupying 6% of the total mass of the low-concentration solution, and dimethylformamide occupying 93% of the total mass of the low-concentration solution A clear solution is formed by stirring for 1 h at a temperature of 70 ° C. Next, the oil-absorbing hollow fiber porous membrane obtained in step (2) is immersed in the low-concentration solution and subjected to pumping filtration at a negative pressure of 0.08 MPa for 7 s, then taken out and put in water. Solidify.

性能の測定:前記製造して得た中空繊維膜に水が入る圧力は0.016MPaであり、0.01MPa下で測定して得たケロシン通過量は12733L/m・hである。 Measurement of performance: The pressure at which water enters the hollow fiber membrane produced as described above is 0.016 MPa, and the kerosene passage amount obtained by measurement under 0.01 MPa is 12733 L / m 2 · h.

(実施例2)
(1)グラフェン分散液を製造する。容器に分散剤である600mLの無糖アルコールと0.3gのグラフェンとを入れ、超音波分散処理を30min行うことにより、均質なグラフェン分散液を製造する。
(Example 2)
(1) A graphene dispersion is produced. A homogeneous graphene dispersion is produced by placing 600 mL of sugar-free alcohol as a dispersant and 0.3 g of graphene in a container and performing an ultrasonic dispersion treatment for 30 minutes.

(2)吸油中空繊維多孔膜を製造する。まず、ポリ塩化ビニル中空繊維多孔膜をセットにし、これを20℃のグラフェン分散液中に浸漬し、0.06MPaの負圧でデッドエンドポンピング濾過を30min行う。次に、このセットを空気で自然乾燥させる。中空繊維多孔膜表面の余計なグラフェンが脱落すると、これを負圧が0.1MPaである真空乾燥装置に入れて、常温で12時間乾燥させる。   (2) An oil-absorbing hollow fiber porous membrane is produced. First, a polyvinyl chloride hollow fiber porous membrane is set, immersed in a graphene dispersion at 20 ° C., and subjected to dead end pumping filtration at a negative pressure of 0.06 MPa for 30 minutes. The set is then air dried with air. When extra graphene on the surface of the hollow fiber porous membrane falls off, it is put in a vacuum drying apparatus having a negative pressure of 0.1 MPa and dried at room temperature for 12 hours.

(3)吸油中空繊維多孔膜の表面処理を行う。ステップ(2)で製造して得た吸油中空膜を80wt%のメチルベンゼン水溶液に浸漬し、3s過ぎた後、これを取り出して水に入れて固化させる。   (3) Surface treatment of the oil-absorbing hollow fiber porous membrane is performed. The oil-absorbing hollow membrane produced in step (2) is immersed in an 80 wt% methylbenzene aqueous solution, and after 3 s, it is taken out and placed in water to solidify.

性能の測定:前記製造して得た中空繊維膜に水が入る圧力は0.065MPaであり、0.056MPa下で測定して得たケロシン通過量は126.32L/m・hである。 Measurement of performance: The pressure at which water enters the hollow fiber membrane produced as described above is 0.065 MPa, and the kerosene passage amount obtained by measurement under 0.056 MPa is 126.32 L / m 2 · h.

(実施例3)
(1)グラフェン分散液を製造する。容器に分散剤である800mLの無糖アルコールと0.32gのグラフェンとを入れ、超音波分散処理を35min行うことにより、均質なグラフェン分散液を製造する。
(Example 3)
(1) A graphene dispersion is produced. A homogeneous graphene dispersion is produced by placing 800 mL of sugar-free alcohol as a dispersant and 0.32 g of graphene in a container and performing ultrasonic dispersion for 35 minutes.

(2)吸油中空繊維多孔膜を製造する。まず、ポリビニリデンフルオリド中空繊維膜をセットにし、これを20℃のグラフェン分散液中に浸漬し、0.08MPaの負圧でデッドエンドポンピング濾過を20min行う。次に、このセットを空気で自然乾燥させる。中空繊維多孔膜表面の余計なグラフェンが脱落すると、これを負圧が0.1MPaである真空乾燥装置に入れて、常温で12時間乾燥させる。   (2) An oil-absorbing hollow fiber porous membrane is produced. First, a polyvinylidene fluoride hollow fiber membrane is used as a set, which is immersed in a 20 ° C. graphene dispersion, and subjected to dead end pumping filtration at a negative pressure of 0.08 MPa for 20 minutes. The set is then air dried with air. When extra graphene on the surface of the hollow fiber porous membrane falls off, it is put in a vacuum drying apparatus having a negative pressure of 0.1 MPa and dried at room temperature for 12 hours.

(3)吸油中空繊維多孔膜の表面処理を行う。ステップ(2)で製造して得た吸油中空繊維多孔膜を100wt%のジメチルアセトアミド溶液に浸漬し、1s過ぎた後、これを取り出して水に入れて固化させる。   (3) Surface treatment of the oil-absorbing hollow fiber porous membrane is performed. The oil-absorbing hollow fiber porous membrane produced in step (2) is immersed in a 100 wt% dimethylacetamide solution, and after 1 s, it is taken out and put in water to solidify.

性能の測定:前記製造して得た中空繊維膜に水が入る圧力は0.06MPaであり、0.044MPa下で測定して得たケロシン通過量は88.24L/m・hである。 Measurement of performance: The pressure at which water enters the hollow fiber membrane produced as described above is 0.06 MPa, and the kerosene passage amount obtained by measurement under 0.044 MPa is 88.24 L / m 2 · h.

(実施例4)
(1)グラフェン分散液を製造する。容器に分散剤である500mLの無糖アルコールと0.20gのグラフェンとを入れ、超音波分散処理を20min行うことにより、均質なグラフェン分散液を製造する。
Example 4
(1) A graphene dispersion is produced. A homogeneous graphene dispersion is produced by placing 500 mL of sugar-free alcohol as a dispersant and 0.20 g of graphene in a container and performing an ultrasonic dispersion treatment for 20 minutes.

(2)吸油中空繊維多孔膜を製造する。まず、ポリプロピレン中空繊維膜をセットにし、これを20℃のグラフェン分散液中に浸漬し、0.08MPaの負圧でデッドエンドポンピング濾過を20min行う。次に、このセットを空気中で自然乾燥させる。   (2) An oil-absorbing hollow fiber porous membrane is produced. First, a polypropylene hollow fiber membrane is used as a set, which is immersed in a graphene dispersion at 20 ° C., and subjected to dead end pumping filtration at a negative pressure of 0.08 MPa for 20 minutes. The set is then air dried in air.

(3)吸油中空繊維多孔膜の表面処理を行う。まず低濃度溶液を用意する。すなわち、低濃度溶液の総質量の1%を占めるポリプロピレンと、低濃度溶液の総質量の99%を占めるデカヒドロナフタレンとを混合した後、80℃の温度で1h撹拌することにより、透明な溶液を形成する。次に、ステップ(2)で製造して得た吸油中空繊維多孔膜を低濃度溶液に浸漬し、0.08MPaの負圧でポンピング濾過を7s行った後、これを取り出してアルコールに入れて固化させる。   (3) Surface treatment of the oil-absorbing hollow fiber porous membrane is performed. First, a low concentration solution is prepared. That is, after mixing polypropylene occupying 1% of the total mass of the low-concentration solution and decahydronaphthalene occupying 99% of the total mass of the low-concentration solution, the mixture is stirred for 1 h at a temperature of 80 ° C. Form. Next, the oil-absorbing hollow fiber porous membrane produced in step (2) is immersed in a low-concentration solution, subjected to pumping filtration at a negative pressure of 0.08 MPa for 7 s, and then taken out and placed in alcohol for solidification. Let

性能の測定:前記製造して得た中空繊維膜に水が入る圧力は0.13MPaであり、0.0844MPa下で測定して得たケロシン通過量は1398.86L/m・hである。 Measurement of performance: The pressure at which water enters the hollow fiber membrane produced as described above is 0.13 MPa, and the kerosene passage amount obtained by measurement under 0.0844 MPa is 1398.86 L / m 2 · h.

本発明の実施例1〜4で製造して得た吸油中空繊維多孔膜に対して、連続的な油吸着テスト及び油水分離テストを行った。連続吸油装置は常用膜濾過装置(図1を参照)である。まず、吸油中空繊維多孔膜で構成された膜セット3をケロシン2と水1との間の臨界場所に浮かし、水循環式真空ポンプ7が適度な負圧を提供することで油水を吸入する。この場合、油は、吸油中空繊維膜外表面のグラフェンに先に吸着され、負圧の吸引力によって吸油中空繊維膜から離れ、中空繊維多孔膜の壁を通過した後、中空管に沿って輸送される。次に、圧力表4とバルブ5を通して油貯蔵装置6中に輸送される。油貯蔵装置6と水循環式真空ポンプ7とは管路によって連結される。   Continuous oil adsorption tests and oil-water separation tests were performed on the oil-absorbing hollow fiber porous membranes produced in Examples 1 to 4 of the present invention. The continuous oil absorption device is a regular membrane filtration device (see FIG. 1). First, the membrane set 3 composed of the oil-absorbing hollow fiber porous membrane is floated at a critical location between the kerosene 2 and the water 1, and the water circulation vacuum pump 7 provides an appropriate negative pressure to suck in the oil water. In this case, the oil is first adsorbed on the graphene on the outer surface of the oil-absorbing hollow fiber membrane, separated from the oil-absorbing hollow fiber membrane by a negative pressure suction force, passes through the wall of the hollow fiber porous membrane, and then along the hollow tube. Transported. Next, it is transported into the oil storage device 6 through the pressure table 4 and the valve 5. The oil storage device 6 and the water circulation vacuum pump 7 are connected by a pipe line.

吸油中空繊維膜のケロシン通過量を測定する前、まず水が吸油中空繊維膜に入る臨界圧力を測定する。次に、臨界圧力より小さい条件でケロシン通過量を測定することにより、吸油中空繊維多孔膜が油だけを吸収し水を吸収しないことを確保する。測定結果は表1に示されるとおりである。前記連続吸油装置の測定結果は、吸油中空繊維多孔膜が連続に油を吸着するとともに油と水を分離することができ、吸油中空繊維多孔膜の連続的に吸油を行うことができることを表す。表1の吸油中空繊維多孔膜のケロシン通過量は、吸油中空繊維多孔膜が連続的な吸油機能を具備することを表す。   Before measuring the amount of kerosene passing through the oil-absorbing hollow fiber membrane, first, the critical pressure at which water enters the oil-absorbing hollow fiber membrane is measured. Next, by measuring the amount of kerosene passing under a condition smaller than the critical pressure, it is ensured that the oil-absorbing hollow fiber porous membrane absorbs only oil and does not absorb water. The measurement results are as shown in Table 1. The measurement result of the continuous oil absorbing device indicates that the oil-absorbing hollow fiber porous membrane can adsorb oil continuously and can separate oil and water, and the oil-absorbing hollow fiber porous membrane can continuously absorb oil. The amount of kerosene passing through the oil-absorbing hollow fiber porous membrane in Table 1 indicates that the oil-absorbing hollow fiber porous membrane has a continuous oil absorbing function.

表1 実施例で製造して得た吸油中空繊維多孔膜のケロシン通過量

Table 1 Kerosene passage through oil-absorbing hollow fiber porous membranes produced in the examples

1 水
2 ケロシン
3 膜セット
4 圧力表
5 バルブ
6 油貯蔵装置
7 水循環式真空ポンプ
1 Water 2 Kerosene 3 Membrane Set 4 Pressure Table 5 Valve 6 Oil Storage 7 Water Circulation Vacuum Pump

Claims (2)

吸油中空繊維多孔膜の製造方法であり、該製造方法はグラフェンを表面吸着層にし、中空繊維多孔膜をベース層にし、かつ下記製造ステップ、すなわち
(1)グラフェン分散液を製造するステップであって、0.1〜1gグラフェンと200〜1000mL分散剤とを混合し、超音波分散を10〜50min行うことによりグラフェン分散液を製造し、前記グラフェンの厚さは10nmより小さく、直径は0.1〜5μmであり、分散剤は、無糖アルコール、N−メチルピロリドン、テトラヒドロフラン、ジメチルホルムアミド又はジメチルアセトアミドのうちいずれかの一種であるステップと、
(2)吸油中空繊維多孔膜を製造するステップであって、まずポリマー中空繊維多孔膜をセットにした後、これをステップ(1)で製造して得たグラフェン分散液中に浸漬して、0.02〜0.08MPaの負圧でデッドエンドポンピング濾過を5〜30min行い、次にこのセットを空気中で自然乾燥させ、かつ中空繊維多孔膜の表面の余計なグラフェンが脱落すると、これを負圧が0.1MPaである真空乾燥装置に入れて常温で6〜12時間乾燥させ、前記ポリマー中空繊維多孔膜は、ポリ塩化ビニル中空繊維多孔膜、ポリビニリデンフルオリド中空繊維多孔膜、ポリプロピレン中空繊維多孔膜又はポリアクリロニトリル繊維中空編織管であり、前記グラフェン分散液の温度は20〜30℃であるステップと、
(3)グラフェンと中空繊維多孔膜との間の接触面の結合強度を強化するステップであって、グラフェンと中空繊維多孔膜との間の接触面の結合強度を強化することは下記二種の方法で行うことができ、(A)1つ目の方法は溶剤処理方法であり、この場合、まず20〜100wt%の溶剤水溶液を用意し、次にステップ(2)で製造して得た吸油中空多孔膜を溶剤水溶液中に1〜20s程浸漬した後、これを取り出して凝固用プールに入れて固化させることにより前記吸油中空多孔膜を製造し、この方法において、前記溶剤は、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド又はジメチルベンゼンであり、前記凝固用プールの媒介は水であり、(B)2つ目の方法は低濃度溶液処理方法であり、この場合、まず低濃度溶液を用意し、次にステップ(2)で製造して得た吸油中空多孔膜を前記低濃度溶液に浸漬し、0.02〜0.08MPaの負圧でポンピング濾過を3〜20s行った後、これを取り出して凝固用プールに入れて固化させることにより、前記吸油中空多孔膜を製造し、前記低濃度溶液は、ポリマーの低濃度溶液であり、かつポリマー、添加剤、溶剤で構成され、これらはそれぞれ低濃度溶液の総質量の0.5〜6wt%、0〜12wt%、82〜99wt%を占め、前記ポリマーは、ポリ塩化ビニル、ポリビニリデンフルオリド、ポリプロピレン又はポリアクリロニトリルであり、前記溶剤は、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン又はデカヒドロナフタレンであり、前記添加剤は、蒸留水、無水塩化リチウム、ポリビニルピロリドン又はポリエチレングリコールであり、前記凝固用プールの媒介は上述した溶剤の水溶液又は水であるステップとを採用することを特徴とする吸油中空繊維多孔膜の製造方法。
A method for producing an oil-absorbing hollow fiber porous membrane, which comprises graphene as a surface adsorption layer, a hollow fiber porous membrane as a base layer, and the following production steps: (1) producing a graphene dispersion The graphene dispersion is prepared by mixing 0.1 to 1 g graphene and 200 to 1000 mL dispersant and performing ultrasonic dispersion for 10 to 50 min. The thickness of the graphene is less than 10 nm and the diameter is 0.1 A step in which the dispersant is any one of sugar-free alcohol, N-methylpyrrolidone, tetrahydrofuran, dimethylformamide or dimethylacetamide;
(2) A step of producing an oil-absorbing hollow fiber porous membrane. First, after setting a polymer hollow fiber porous membrane as a set, the polymer hollow fiber porous membrane is immersed in the graphene dispersion obtained in step (1), and 0 The dead end pumping filtration is performed at a negative pressure of 0.02 to 0.08 MPa for 5 to 30 minutes, and then the set is naturally dried in the air, and when the excess graphene on the surface of the hollow fiber porous membrane falls off, The polymer hollow fiber porous membrane is dried in a vacuum drying apparatus having a pressure of 0.1 MPa at room temperature for 6 to 12 hours. The polymer hollow fiber porous membrane is a polyvinyl chloride hollow fiber porous membrane, a polyvinylidene fluoride hollow fiber porous membrane, or a polypropylene hollow fiber. A porous membrane or a polyacrylonitrile fiber hollow woven tube, and the temperature of the graphene dispersion is 20 to 30 ° C .;
(3) The step of strengthening the bond strength of the contact surface between the graphene and the hollow fiber porous membrane, and strengthening the bond strength of the contact surface between the graphene and the hollow fiber porous membrane includes the following two types (A) The first method is a solvent treatment method. In this case, first, an aqueous solution of 20 to 100 wt% is prepared, and then the oil absorption obtained in step (2) is obtained. After immersing the hollow porous membrane in a solvent aqueous solution for about 1 to 20 seconds, the oil-absorbing hollow porous membrane is produced by taking it out and putting it in a coagulation pool, where the solvent is dimethylformamide, Dimethylacetamide, dimethyl sulfoxide or dimethylbenzene, the medium of the pool for coagulation is water, and (B) the second method is a low concentration solution treatment method. Next, the oil-absorbing hollow porous membrane produced in step (2) is immersed in the low-concentration solution and subjected to pumping filtration at a negative pressure of 0.02 to 0.08 MPa for 3 to 20 seconds. The oil-absorbing hollow porous membrane is produced by taking out and solidifying it in a coagulation pool.The low-concentration solution is a low-concentration solution of a polymer, and is composed of a polymer, an additive, and a solvent. Respectively occupy 0.5-6 wt%, 0-12 wt%, 82-99 wt% of the total mass of the low-concentration solution, the polymer is polyvinyl chloride, polyvinylidene fluoride, polypropylene or polyacrylonitrile, the solvent is , Dimethylformamide, dimethylacetamide, tetrahydrofuran or decahydronaphthalene, and the additive includes distilled water, anhydrous lithium chloride, poly A Nirupiroridon or polyethylene glycol, wherein the mediation of coagulation pool manufacturing method of oil hollow fiber porous membrane characterized by employing the step is an aqueous solution or water solvents mentioned.
前記中空繊維多孔膜の規格において、孔の直径範囲は0.1〜10μmであり、孔の隙間率は50%より高く、ポリアクリロニトリル繊維中空編織管の規格において、編織ピッチは400〜600μmであることを特徴とする請求項1に記載の吸油中空繊維多孔膜の製造方法。   In the standard of the hollow fiber porous membrane, the pore diameter range is 0.1 to 10 μm, the pore gap ratio is higher than 50%, and in the standard of the polyacrylonitrile fiber hollow woven tube, the knitting pitch is 400 to 600 μm. The method for producing an oil-absorbing hollow fiber porous membrane according to claim 1.
JP2016504481A 2014-02-28 2014-10-28 Method for producing oil-absorbing hollow fiber porous membrane Expired - Fee Related JP6076536B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410070073.8A CN103801274B (en) 2014-02-28 2014-02-28 Preparation method of oil-absorbing hollow fiber porous membrane
CN201410070073.8 2014-02-28
PCT/CN2014/089681 WO2015127792A1 (en) 2014-02-28 2014-10-28 Method for preparing oil-absorbing hollow fiber porous membrane

Publications (2)

Publication Number Publication Date
JP2016515933A JP2016515933A (en) 2016-06-02
JP6076536B2 true JP6076536B2 (en) 2017-02-08

Family

ID=50698948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016504481A Expired - Fee Related JP6076536B2 (en) 2014-02-28 2014-10-28 Method for producing oil-absorbing hollow fiber porous membrane

Country Status (4)

Country Link
JP (1) JP6076536B2 (en)
CN (1) CN103801274B (en)
CA (1) CA2898815A1 (en)
WO (1) WO2015127792A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801274B (en) * 2014-02-28 2015-07-08 天津工业大学 Preparation method of oil-absorbing hollow fiber porous membrane
CN104128166B (en) * 2014-07-22 2016-04-06 天津工业大学 A kind of hollow tubular oil absorption material and preparation method thereof
CN104313552A (en) * 2014-10-22 2015-01-28 湖南元素密码石墨烯研究院(有限合伙) Preparation method of chemical nickel-graphene antirust coating
CN104525098A (en) * 2014-12-04 2015-04-22 常州大学 Preparation method of hollow aluminum-silicon sphere adsorption material
CN105080356B (en) * 2015-08-04 2018-01-19 天津工业大学 Hydrophobic oleophilic oil hollow fiber composite membrane and preparation method thereof
CN105251459A (en) * 2015-11-05 2016-01-20 南京理工大学 Preparation method of graphene composite material having high oil absorption performance
CN105544019A (en) * 2015-12-16 2016-05-04 华南理工大学 High oil-absorbing polyacrylonitrile hollow activated carbon fiber and preparation method thereof
CN106757531B (en) * 2016-12-08 2019-10-11 东南大学 A method of using the filtering graphene-based doughnut of film preparation
CN106759198A (en) * 2017-03-02 2017-05-31 中国科学技术大学 Spilled-oil recovery unit and method
CN107349802A (en) * 2017-07-04 2017-11-17 联合环境技术(厦门)有限公司 A kind of reinforced graphene is modified PVDF hollow-fibre membranes and preparation method thereof
CN108179732A (en) * 2017-12-18 2018-06-19 天津膜天膜科技股份有限公司 Fast and efficiently sea oil spill recovery system and its application method
CN109095550A (en) * 2018-07-25 2018-12-28 深圳全钰环保科技有限公司 Leachate treatment process and leachate processing system
CN110182898A (en) * 2019-07-03 2019-08-30 青岛科技大学 A kind of water-oil separating experimental provision
CN210528841U (en) * 2019-08-09 2020-05-15 河南烯力新材料科技有限公司 Adhesive structure and electronic device
WO2021255758A1 (en) * 2020-06-15 2021-12-23 Log 9 Materials Scientific Private Limited High gravimetric sorption capacity oil/chemical/dye sorbent pads and a method of manufacturing the same
CN112221478A (en) * 2020-10-09 2021-01-15 哈尔滨工程大学 Graphene oil-absorbing fiber with efficient oil-water separation performance and preparation method thereof
CN114824342A (en) * 2021-01-28 2022-07-29 上海神力科技有限公司 Preparation method of graphite polar plate, fuel cell and vehicle
CN113318611B (en) * 2021-05-31 2022-11-11 天津工业大学 Hollow fiber ultrafiltration membrane with lasting high pollution resistance and preparation method thereof
CN113363668A (en) * 2021-06-08 2021-09-07 浙江理工大学 Graphene-loaded glass fiber membrane with excimer ultraviolet irradiation modification and preparation method thereof
CN113856244B (en) * 2021-10-21 2023-03-21 国网浙江省电力有限公司检修分公司 Porous composite material with gradient structure and preparation method and application thereof
CN113975978B (en) * 2021-12-10 2023-05-26 江苏巨之澜科技有限公司 Graphene-enhanced photo-thermal evaporation membrane, membrane module and sewage concentration treatment device
CN114870632B (en) * 2022-05-12 2024-02-20 浙江师范大学 Coupling film for improving decoloration rate of printing and dyeing wastewater and preparation method thereof
CN114990683A (en) * 2022-06-06 2022-09-02 华北电力大学(保定) Graphene coating stainless steel array microporous fiber and preparation method thereof
CN115779700B (en) * 2023-02-07 2023-06-27 天津膜天膜科技股份有限公司 Rapid oil-absorbing hollow fiber membrane and preparation method and application thereof
CN117019118B (en) * 2023-10-08 2024-01-05 西安金沃泰环保科技有限公司 Filtering material for benzene series waste gas and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337969B1 (en) * 2011-10-26 2013-12-06 주식회사 아이디티인터내셔널 mixture of multi-layered graphene for adsorbing organic material
CN102580571B (en) * 2012-03-15 2014-04-16 上海交通大学 Method for preparing ultra high molecular weight polyethylene micro-filtration membrane
CN102600734B (en) * 2012-03-27 2014-12-10 南京工业大学 Enhanced graphene oxide hollow fiber composite membrane and preparation method thereof
CN102617853B (en) * 2012-03-27 2013-08-07 大连理工大学 Preparation method of foamed porous graphene/polypyrrole composite oil absorption material
CN102671549A (en) * 2012-04-10 2012-09-19 浙江大学 Preparation method of graphene-based composite separation membrane device
GB201214565D0 (en) * 2012-08-15 2012-09-26 Univ Manchester Membrane
CN103521199B (en) * 2013-10-26 2015-08-26 天津工业大学 A kind of preparation method of hollow tubular composite oil absorption material
CN103801274B (en) * 2014-02-28 2015-07-08 天津工业大学 Preparation method of oil-absorbing hollow fiber porous membrane

Also Published As

Publication number Publication date
JP2016515933A (en) 2016-06-02
WO2015127792A1 (en) 2015-09-03
CN103801274A (en) 2014-05-21
CN103801274B (en) 2015-07-08
CA2898815A1 (en) 2015-08-28

Similar Documents

Publication Publication Date Title
JP6076536B2 (en) Method for producing oil-absorbing hollow fiber porous membrane
Lee et al. Water purification: oil–water separation by nanotechnology and environmental concerns
Ge et al. Biomimetic multilayer nanofibrous membranes with elaborated superwettability for effective purification of emulsified oily wastewater
Hong et al. An underwater superoleophobic nanofibrous cellulosic membrane for oil/water separation with high separation flux and high chemical stability
Wang et al. Electrospun nanofibrous materials: a versatile medium for effective oil/water separation
Jiang et al. Removal of oil from water using magnetic bicomponent composite nanofibers fabricated by electrospinning
US10252224B2 (en) Hydrophobic-oleophilic hollow fiber composite membrane and preparing method thereof
Zhang et al. Bioinspired superwettable covalent organic framework nanofibrous composite membrane with a spindle-knotted structure for highly efficient oil/water emulsion separation
Ma et al. Recent development of advanced materials with special wettability for selective oil/water separation
Raza et al. In situ cross-linked superwetting nanofibrous membranes for ultrafast oil–water separation
Gu et al. Sandwich-structured composite fibrous membranes with tunable porous structure for waterproof, breathable, and oil-water separation applications
Wang et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature
Gong et al. A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions
US10710027B2 (en) Reinforced oil-absorptive membrane material, unit and preparation method thereof
Liu et al. Flexible macroporous carbon nanofiber film with high oil adsorption capacity
Udayakumar et al. Foamed materials for oil-water separation
KR101826451B1 (en) Porous hollow fiber membrane and method for manufacturing same
Tian et al. Novel reusable porous polyimide fibers for hot-oil adsorption
Xu et al. Facile ZIF‐8 functionalized hierarchical micronanofiber membrane for high‐efficiency separation of water‐in‐oil emulsions
Wu et al. Continuous oil–water separation with surface modified sponge for cleanup of oil spills
A Shirazi et al. Electrospun membranes for desalination and water/wastewater treatment: a comprehensive review
Ghaffar et al. Underwater superoleophobic PVA–GO nanofibrous membranes for emulsified oily water purification
CN101947415A (en) Combination of electrostatic spinning and electrostatic spraying for preparing nanofibre base composite separation membrane
JP2015100777A (en) Membrane distillation module and waste water processing apparatus
Wang et al. Hierarchical composite membrane with multiscale roughness structures for water-in-oil emulsion separation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170110

R150 Certificate of patent or registration of utility model

Ref document number: 6076536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees