JP6006623B2 - Oxidation method - Google Patents

Oxidation method Download PDF

Info

Publication number
JP6006623B2
JP6006623B2 JP2012253960A JP2012253960A JP6006623B2 JP 6006623 B2 JP6006623 B2 JP 6006623B2 JP 2012253960 A JP2012253960 A JP 2012253960A JP 2012253960 A JP2012253960 A JP 2012253960A JP 6006623 B2 JP6006623 B2 JP 6006623B2
Authority
JP
Japan
Prior art keywords
ozone
oxidation
solvent
phase
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012253960A
Other languages
Japanese (ja)
Other versions
JP2014101249A (en
Inventor
良樹 西脇
良樹 西脇
阿部 俊文
阿部  俊文
宏紀 天野
宏紀 天野
太田 英俊
英俊 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2012253960A priority Critical patent/JP6006623B2/en
Publication of JP2014101249A publication Critical patent/JP2014101249A/en
Application granted granted Critical
Publication of JP6006623B2 publication Critical patent/JP6006623B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

本発明は、酸化処理方法に関し、詳しくは、繊維状、粉状、カーボンナノチューブといった炭素材や、繊維状、粉状の無機材を湿式酸化処理するための酸化処理方法に関する。   The present invention relates to an oxidation treatment method, and more particularly to an oxidation treatment method for wet oxidation treatment of carbon materials such as fibers, powders, and carbon nanotubes, and fibrous and powdery inorganic materials.

カーボンナノチューブやカーボンナノファイバーといったナノカーボン類は、一般に、マトリックス樹脂などと組み合わせた複合材料として用いられているが、ナノカーボン類自体の凝集性の高さから、通常は、分散材と呼ばれる添加物を加え、種々の溶媒の分散液を調製している。しかし、二次電池等の用途によっては、添加した分散材が悪影響を及ぼすことがあるため、分散材を用いない分散手法が求められている。   Nanocarbons such as carbon nanotubes and carbon nanofibers are generally used as composite materials in combination with matrix resins, etc., but because of the high cohesiveness of nanocarbons themselves, additives that are usually called dispersion materials And various solvent dispersions are prepared. However, depending on the use of the secondary battery or the like, the added dispersion material may have an adverse effect, and therefore, a dispersion method that does not use the dispersion material is required.

分散材を用いない分散手法として、ナノカーボン類自体を酸化処理する方法があり、オゾンが注目されており、オゾンガスを用いた乾式法や、オゾンが溶解した溶液を用いる湿式法が知られている。近年は、低コストでナノカーボン類の処理を行う方法として、オゾンを水に溶解したオゾン溶液を用いたり、オゾンをフッ素系溶媒に溶解したオゾン溶液を用いたりして酸化を行う湿式の処理方法が採用されつつある(例えば、特許文献1,2参照。)。   As a dispersion method that does not use a dispersing material, there is a method of oxidizing nanocarbons themselves, and ozone is attracting attention, and a dry method using ozone gas and a wet method using a solution in which ozone is dissolved are known. . In recent years, as a method for treating nanocarbons at low cost, a wet treatment method in which an ozone solution in which ozone is dissolved in water or an ozone solution in which ozone is dissolved in a fluorine-based solvent is used for oxidation. Are being adopted (see, for example, Patent Documents 1 and 2).

特開2009−79344号公報JP 2009-79344 A 特開2012−31559号公報JP 2012-31559 A

しかし、特許文献1に記載されているように、溶媒として水を使用したオゾン溶液の場合は、ナノカーボン類が疎水性を有していることから、水中に溶解しているオゾンとナノカーボン類とを十分に接触させることができず、酸化反応の効率が低いという問題がある。また、水は、オゾンの溶解度が低いことから、溶解度を上げるためには温度を下げる必要があるにもかかわらず、酸化反応を完結させるためには反応条件を厳しく設定する必要があり、反応条件の設定が非常に困難である。   However, as described in Patent Document 1, in the case of an ozone solution using water as a solvent, since nanocarbons are hydrophobic, ozone and nanocarbons dissolved in water. Cannot be sufficiently brought into contact with each other, and the efficiency of the oxidation reaction is low. In addition, since water has low ozone solubility, it is necessary to set the reaction conditions strictly in order to complete the oxidation reaction, although it is necessary to lower the temperature in order to increase the solubility. Setting is very difficult.

また、特許文献2に記載されているように、フッ素系溶媒を使用したオゾン溶液の場合、フッ素系溶媒は、オゾンの溶解度が高いため、温和な条件で反応を進行させることが可能であり、ナノカーボン類とフッ素系溶媒との親和性が高いため、初期の酸化反応は効率よく行うことができるが、ある程度酸化が進行するとフッ素系溶媒との親和性が失われてしまうため、それ以上酸化反応が進行しなくなってしまうという問題や、水に比べてフッ素系溶媒が高価であることから、処理コストが上昇するという問題もあった。   In addition, as described in Patent Document 2, in the case of an ozone solution using a fluorine-based solvent, the fluorine-based solvent has a high solubility of ozone, and thus the reaction can proceed under mild conditions. The initial oxidation reaction can be performed efficiently because the affinity between the nanocarbons and the fluorinated solvent is high, but if the oxidation proceeds to some extent, the affinity with the fluorinated solvent is lost, so that the further oxidation occurs. There was also a problem that the reaction did not proceed and a problem that the processing cost increased because the fluorinated solvent was more expensive than water.

そこで本発明は、酸化反応の効率を向上できるとともに、コストの上昇も抑えることができ、かつ、反応処理後の工程が簡便な湿式の酸化処理方法を提供することを目的としている。   Therefore, an object of the present invention is to provide a wet oxidation method that can improve the efficiency of the oxidation reaction, suppress an increase in cost, and have a simple process after the reaction treatment.

上記目的を達成するため、本発明の酸化処理方法は、酸化反応処理前は疎水性であり、酸化反応処理後に親水性となる酸化対象物と、水とフッ素系溶媒との二相系溶媒にオゾンを溶解させたオゾン溶液とを接触させて前記酸化対象物を酸化処理する酸化処理方法において、前記酸化対象物をフッ素系溶媒相で酸化処理した後に、前記フッ素系溶媒槽相から水相側に移動させて更に酸化処理をし、酸化処理後の酸化対象物を水相に保持した状態で前記フッ素系溶媒を分離して水分散液として取り出すことを特徴としている。 In order to achieve the above object, the oxidation treatment method of the present invention is a two-phase solvent consisting of an object to be oxidized that is hydrophobic before the oxidation reaction treatment and becomes hydrophilic after the oxidation reaction treatment, and water and a fluorinated solvent. In the oxidation treatment method of oxidizing the object to be oxidized by contacting with an ozone solution in which ozone is dissolved, after oxidizing the object to be oxidized in a fluorine-based solvent phase, the water-phase side from the fluorine-based solvent tank phase The fluorinated solvent is separated and taken out as an aqueous dispersion in a state where the oxidation target after the oxidation treatment is held in an aqueous phase .

さらに、本発明の酸化処理方法は、前記二相系溶媒における混合割合は、フッ素系溶媒の体積を1とした場合に、水の体積が0.1〜10の割合であること、前記オゾン溶液のオゾン濃度が120〜500mg/Lの範囲であること、前記フッ素系溶媒がパーフルオロカーボンであること、前記酸化対象物がカーボンナノチューブであることを特徴としている。 Furthermore, in the oxidation treatment method of the present invention, the mixing ratio in the two-phase solvent is such that the volume of water is 0.1 to 10 when the volume of the fluorinated solvent is 1 , the ozone solution The ozone concentration is in the range of 120 to 500 mg / L, the fluorine-based solvent is perfluorocarbon, and the oxidation target is a carbon nanotube.

本発明によれば、酸化処理前の疎水性の状態ではオゾン溶液におけるフッ素系溶媒中のオゾンが反応し、ある程度酸化反応が進んで親水性の状態になるとオゾン溶液における水中のオゾンが反応するので、ナノカーボン類のような酸化対象物を効率よく酸化処理することができる。   According to the present invention, ozone in the fluorine-based solvent in the ozone solution reacts in a hydrophobic state before the oxidation treatment, and ozone in water in the ozone solution reacts when the oxidation reaction proceeds to some extent and becomes hydrophilic. In addition, an object to be oxidized such as nanocarbons can be efficiently oxidized.

また、酸化対象物は、酸化の度合いに従ってフッ素系溶媒相から水相へと移動するため、反応の進行具合を容易に観察することができる。さらに、酸化処理終了後は、酸化が進行しているため、酸化対象物が水相へと移動しているので、酸化対象物の分離が容易であり、フッ素系溶媒を分離するだけで酸化処理後の酸化対象物を水分散液として回収することが可能である。   Moreover, since the oxidation target moves from the fluorine-based solvent phase to the aqueous phase according to the degree of oxidation, the progress of the reaction can be easily observed. Furthermore, after the oxidation treatment is completed, the oxidation is progressing, so that the object to be oxidized moves to the aqueous phase, so that the object to be oxidized is easily separated, and the oxidation treatment is performed simply by separating the fluorine-based solvent. It is possible to recover the later oxidation target as an aqueous dispersion.

本発明の酸化処理装置の一形態例を示す説明図である。It is explanatory drawing which shows one example of the oxidation processing apparatus of this invention.

図1に示す酸化処理装置11は、本発明の基本的な装置構成を示すものであって、オゾンを発生させるオゾン発生手段としてのオゾナイザ12と、該オゾナイザ12で発生したオゾンを溶媒に溶解させるオゾン溶解手段13と、オゾンが溶解したオゾン溶液14と酸化対象物15とを接触させて酸化反応処理を行う酸化反応槽16と、酸化反応槽16から導出される排ガス中の未反応のオゾンを無害化処理するためのオゾン処理手段17とを備えている。   An oxidation treatment apparatus 11 shown in FIG. 1 shows a basic apparatus configuration of the present invention, and an ozonizer 12 as ozone generating means for generating ozone, and ozone generated by the ozonizer 12 are dissolved in a solvent. The ozone dissolving means 13, the ozone solution 14 in which ozone is dissolved, and the oxidation target object 15 are brought into contact with each other, an oxidation reaction tank 16 for performing an oxidation reaction treatment, and unreacted ozone in the exhaust gas derived from the oxidation reaction tank 16 And ozone treatment means 17 for detoxifying treatment.

オゾナイザ12は、酸素を原料としてオゾンを発生させるもので、例えば、無声放電により酸素からオゾンを発生させ、酸素中にオゾンを含むオゾン含有酸素を生成する。本発明で使用するオゾン含有酸素中のオゾン濃度は特に限定されるものではないが、通常は、6〜10体積%の範囲のオゾン濃度を有するオゾン含有酸素を用いることが好ましい。オゾナイザ12は、供給するオゾン含有酸素の流量を自動的に調節する流量調整装置を備えているものであってもよい。   The ozonizer 12 generates ozone using oxygen as a raw material. For example, the ozonizer 12 generates ozone from oxygen by silent discharge, and generates ozone-containing oxygen containing ozone in oxygen. The ozone concentration in the ozone-containing oxygen used in the present invention is not particularly limited, but it is usually preferable to use ozone-containing oxygen having an ozone concentration in the range of 6 to 10% by volume. The ozonizer 12 may include a flow rate adjusting device that automatically adjusts the flow rate of the ozone-containing oxygen to be supplied.

酸化反応槽16は、フッ素系溶媒と水との混合溶媒(二相系溶媒)中にオゾンを溶解したオゾン溶液を貯留するもので、酸化反応槽16の底部には、オゾン溶液内にオゾン含有酸素をバブリングするオゾン溶解手段13が設けられている。   The oxidation reaction tank 16 stores an ozone solution in which ozone is dissolved in a mixed solvent (two-phase solvent) of a fluorine-based solvent and water, and the bottom of the oxidation reaction tank 16 contains ozone in the ozone solution. Ozone dissolving means 13 for bubbling oxygen is provided.

フッ素系溶媒と水との二相系溶媒における両者の混合割合は、特に限定されるものではなく、フッ素系溶媒の体積を1とした場合に、水の体積が0.01〜100の割合で混合していればよく、通常は、フッ素系溶媒の体積1に対して水の体積が0.1〜10の割合で混合した二相系溶媒を使用することが望ましい。   The mixing ratio of the fluorine-based solvent and water in the two-phase solvent is not particularly limited. When the volume of the fluorine-based solvent is 1, the volume of water is 0.01 to 100. In general, it is desirable to use a two-phase solvent in which the volume of water is mixed at a ratio of 0.1 to 10 with respect to the volume 1 of the fluorine-based solvent.

フッ素系溶媒は、オゾン含有酸素中のオゾンを選択的に溶解するものであり、例えば、フルオロカーボン類、フルオロケトン類、フルオロエーテル類又はこれらの混合物等を用いることができる。また、使用するフッ素系溶媒は、沸点が40〜100℃で、常温で液体状態となっているものを選択することが好ましい。   The fluorine-based solvent selectively dissolves ozone in ozone-containing oxygen. For example, fluorocarbons, fluoroketones, fluoroethers, or a mixture thereof can be used. Moreover, it is preferable to select the fluorine-type solvent to be used that has a boiling point of 40 to 100 ° C. and is in a liquid state at room temperature.

好ましいフッ素系溶媒として、具体的に、前記フルオロカーボン類としては、例えば、ペンタフルオロプロパン(CHFCHCF)等のハイドロフルオロカーボン、パーフルオロペンタン(C12)、パーフルオロヘキサン(C14)等のパーフルオロカーボンを挙げることができる。また、前記フルオロケトン類としては、例えば、1,1,1,2,2,4,5,5,5−ノナフルオロ−4−(トリフルオロメチル)−3−ペンタノン(C12O)等のパーフルオロケトンを挙げることができる。フルオロエーテル類としては、例えば、COC等を挙げることができる。 Specific examples of preferred fluorocarbon solvents include the fluorocarbons such as hydrofluorocarbons such as pentafluoropropane (CHF 2 CH 2 CF 3 ), perfluoropentane (C 5 F 12 ), and perfluorohexane (C 6). Examples thereof include perfluorocarbons such as F 14 ). Examples of the fluoroketones include 1,1,1,2,2,4,5,5,5-nonafluoro-4- (trifluoromethyl) -3-pentanone (C 6 F 12 O) and the like. Of perfluoroketone. Examples of fluoroethers include C 4 F 9 OC 2 H 5 and the like.

これらのフッ素系溶媒の中でも、特にパーフルオロペンタン(C12)、パーフルオロヘキサン(C14)等のパーフルオロカーボンは、燃焼防止効果を有しているため好ましく、さらに、例えば、パーフルオロヘキサンは、常温状態の液体1リットル当たり、酸素の溶解量が約0.6リットルであるのに対して、オゾンの溶解量が約2リットルであることから、オゾンを選択的に溶解することができ、オゾンによる酸化対象物の酸化反応を効果的に行うことができる。 Among these fluorine-based solvents, perfluorocarbons such as perfluoropentane (C 5 F 12 ) and perfluorohexane (C 6 F 14 ) are particularly preferable because they have a combustion preventing effect. Fluorohexane selectively dissolves ozone because the amount of dissolved ozone is about 2 liters while the amount of dissolved oxygen is about 0.6 liters per liter of liquid at room temperature. Thus, the oxidation reaction of the object to be oxidized by ozone can be effectively performed.

オゾン溶液におけるオゾン濃度は、従来から用いられているオゾン水におけるオゾン濃度の最高値である120mg/L以上に設定することによって反応効率を向上させて反応時間の短縮を図ることができるが、オゾン濃度を高くし過ぎると、オゾン自身の分解反応が促進されてしまうため、通常は、120〜500mg/Lの範囲に設定することが好ましい。   The ozone concentration in the ozone solution can be set to 120 mg / L or more, which is the highest ozone concentration in the conventionally used ozone water, to improve the reaction efficiency and shorten the reaction time. If the concentration is too high, the decomposition reaction of ozone itself is promoted, so it is usually preferable to set the concentration within the range of 120 to 500 mg / L.

また、酸化反応槽16は、オゾン含有酸素を酸化反応槽16内に導入するための導入経路16aと、酸化反応槽16内から排ガスを導出する導出経路16bとを備えるとともに、酸化対象物の出し入れが可能で、かつ、密閉可能な蓋を備えていればよく、さらに、適宜な撹拌手段や温度調整手段、圧力調整手段を備えたものあってもよい。撹拌手段は、酸化対象物とオゾン溶液とを効果的に接触させることができれば特に規定されるものではないが、マグネット式や機械式のスターラーを用いることが望ましい。   The oxidation reaction tank 16 includes an introduction path 16a for introducing ozone-containing oxygen into the oxidation reaction tank 16, and a lead-out path 16b for deriving exhaust gas from the oxidation reaction tank 16, and allows the oxidation target to be taken in and out. However, it may be provided with a lid that can be sealed, and may further include an appropriate stirring means, temperature adjusting means, and pressure adjusting means. The stirring means is not particularly defined as long as the object to be oxidized and the ozone solution can be effectively brought into contact with each other, but it is desirable to use a magnet type or mechanical type stirrer.

酸化反応槽16の材質は、反応を常圧で行う場合は、ガラスなどの透明な材料を選択することにより、酸化反応槽16内の状態を視認することが可能となる。一方、加圧下で反応させる場合は、耐圧性及び耐オゾン性を備えたステンレス鋼などを選択すればよい。   When the reaction is performed at normal pressure, the state of the oxidation reaction tank 16 can be visually confirmed by selecting a transparent material such as glass. On the other hand, when the reaction is performed under pressure, stainless steel having pressure resistance and ozone resistance may be selected.

さらに、オゾン溶解手段13として、前記バブリングの他、前記導入経路16aの途中に、バブリング手段やマイクロバブル発生手段を備えたオゾン溶解槽を設けたり、スタティックミキサーやアスピレーター等のオゾン溶解器を設けたりして、フッ素系溶媒と水との混合液にあらかじめオゾンを溶解してから酸化反応槽16に導入することもできる。また、酸化反応槽16内のオゾン溶液を外部に取り出して循環させる循環経路を設け、この循環経路に前記オゾン溶解槽やオゾン溶解器を設けることもできる。さらに、酸化対象物を自動的に連続して酸化反応槽16内に出し入れする搬送手段を設けることもでき、酸化反応槽16内からオゾン溶液を抜き出す経路やオゾン溶液を酸化反応槽16内に補充する経路を設けることもできる。   Further, as the ozone dissolving means 13, in addition to the bubbling, an ozone dissolving tank provided with a bubbling means or a microbubble generating means is provided in the middle of the introduction path 16a, or an ozone dissolver such as a static mixer or an aspirator is provided. Then, ozone can be previously dissolved in a mixed solution of a fluorinated solvent and water and then introduced into the oxidation reaction tank 16. Further, a circulation path for taking out and circulating the ozone solution in the oxidation reaction tank 16 may be provided, and the ozone dissolution tank and the ozone dissolver may be provided in the circulation path. Furthermore, it is possible to provide a conveying means for automatically and continuously taking the object to be oxidized into and out of the oxidation reaction tank 16, and a route for extracting the ozone solution from the oxidation reaction tank 16 and replenishing the oxidation reaction tank 16 with the ozone solution. It is also possible to provide a route for this.

酸化反応槽16における酸化反応やオゾンの溶解は、常温、常圧で行うことも可能であるが、オゾン溶液中のオゾンの溶解量を増大させて酸化反応効率を向上させるため、0.05〜1.0MPaG、好ましくは0.1〜0.3MPaGの加圧下で行うことが望ましい。酸化反応槽16内の圧力の保持は、導出経路16bに所定の圧力に設定した圧力制御弁を設けるとともに、導入経路16aから導入されるオゾン含有酸素の圧力を所定圧力以上に設定することで容易に行うことができる。   The oxidation reaction and ozone dissolution in the oxidation reaction tank 16 can be performed at room temperature and normal pressure. However, in order to improve the oxidation reaction efficiency by increasing the amount of ozone dissolved in the ozone solution, 0.05 to It is desirable to carry out under a pressure of 1.0 MPaG, preferably 0.1 to 0.3 MPaG. Maintaining the pressure in the oxidation reaction tank 16 is facilitated by providing a pressure control valve set to a predetermined pressure in the lead-out path 16b and setting the pressure of the ozone-containing oxygen introduced from the introduction path 16a to a predetermined pressure or higher. Can be done.

オゾン処理手段17は、オゾン溶液中に溶解しなかったり、酸化反応に寄与しなかったりして酸化反応槽16から排出されたオゾンを分解したり、吸着したりするなどして排ガスを無害化するものであって、従来から用いられている各種処理手段を採用することができる。また、導入経路16aや導出経路16bにオゾン濃度を測定するオゾン濃度計を設け、オゾン濃度計が測定したオゾン濃度に基づいてオゾナイザ12におけるオゾン含有酸素の発生量や酸化反応槽16へのオゾン含有酸素の供給量を調整することにより、酸化反応槽16内のオゾン溶液中のオゾン濃度を最適な範囲に保持することができる。   The ozone treatment means 17 detoxifies the exhaust gas by decomposing or adsorbing ozone discharged from the oxidation reaction tank 16 because it does not dissolve in the ozone solution or does not contribute to the oxidation reaction. Various processing means conventionally used can be employed. Further, an ozone concentration meter that measures the ozone concentration is provided in the introduction route 16a and the lead-out route 16b, and the amount of ozone-containing oxygen generated in the ozonizer 12 based on the ozone concentration measured by the ozone concentration meter and the ozone content in the oxidation reaction tank 16 By adjusting the supply amount of oxygen, the ozone concentration in the ozone solution in the oxidation reaction tank 16 can be maintained in an optimum range.

このように形成した酸化処理装置11で酸化処理を行う酸化対象物としては、可燃性を有するなどの理由で気相での酸化処理が困難な物質、例えば、炭素繊維やナノカーボン類、金属微粉等を挙げることができる。具体的には、炭素繊維としては、PAN系繊維やピッチ系繊維、セルロース系繊維を挙げることができ、ナノカーボン類としては、カーボンナノチューブ、カーボンナノファイバー、カーボンナノコイル、カーボンナノホーン、アセチレンブラック、グラフェン等を挙げることができ、金属微粉としては、ニッケル、銅、チタン、コバルト等の微粉を挙げることができる。   Examples of the oxidation target to be oxidized by the oxidation processing apparatus 11 formed in this way include substances that are difficult to oxidize in the gas phase because they are flammable, such as carbon fibers, nanocarbons, and metal fine powders. Etc. Specifically, examples of carbon fibers include PAN-based fibers, pitch-based fibers, and cellulose-based fibers. Examples of nanocarbons include carbon nanotubes, carbon nanofibers, carbon nanocoils, carbon nanohorns, acetylene black, Graphene etc. can be mentioned, As metal fine powder, fine powder, such as nickel, copper, titanium, cobalt, can be mentioned.

前記酸化対象物は、酸化反応槽16内でオゾン含有酸素のバブリングで混合状態となっているオゾン溶液中に投入され、オゾン溶液に溶解しているオゾンと酸化対象物とが接触することにより、酸化対象物がオゾンによって酸化される。このとき、酸化反応処理前には疎水性を有し、フッ素系溶媒に親和性を有する酸化対象物は、オゾン溶液中に投入されたときに、二相系溶媒のうちのフッ素系溶媒相でフッ素系溶媒と接触し、フッ素系溶媒中に溶解しているオゾンによって酸化され、この酸化反応によって親水性を有する酸化官能基が導入されたり、酸化皮膜が生成したりする。親水性を有する酸化官能基が導入されたり、酸化皮膜が生成したりした状態になった酸化対象物は、二相系溶媒のうちの水相に移動し、水と接触することによって水中のオゾンにより更に酸化されるので、酸化対象物に十分な量の酸化官能基を導入したり、十分な膜厚の酸化皮膜を形成することができる。   The oxidation object is put into an ozone solution that is mixed by bubbling ozone-containing oxygen in the oxidation reaction tank 16, and ozone dissolved in the ozone solution comes into contact with the oxidation object. The object to be oxidized is oxidized by ozone. At this time, the object to be oxidized that has hydrophobicity before the oxidation treatment and has affinity for the fluorinated solvent is the fluorinated solvent phase of the two-phase solvent when put into the ozone solution. It comes into contact with the fluorinated solvent and is oxidized by ozone dissolved in the fluorinated solvent, and this oxidation reaction introduces a hydrophilic oxidizing functional group or generates an oxide film. The object to be oxidized in a state in which an oxidized functional group having hydrophilicity is introduced or an oxide film is formed moves to the aqueous phase of the two-phase solvent, and comes into contact with water to form ozone in the water. Therefore, it is possible to introduce a sufficient amount of an oxidizing functional group into the object to be oxidized or to form an oxide film having a sufficient film thickness.

酸化処理後の酸化対象物は、水相側に移動しているので、周知の適宜な手法でフッ素系溶媒を分離するだけで、水分散液として取り出すことができる。その後、周知の適宜な乾燥手段で酸化対象物を乾燥させて水分を除去することにより、酸化処理した酸化対象物を取り出すことができる。さらに、処理後の酸化対象物を水分散液で使用する場合は、フッ素系溶媒を分離するだけでよく、乾燥工程を省略することができる。また、分離したフッ素系溶媒は、オゾン溶液に再利用することができる。   Since the oxidation target after the oxidation treatment has moved to the aqueous phase side, it can be taken out as an aqueous dispersion simply by separating the fluorinated solvent by a known appropriate method. Thereafter, the oxidized object can be taken out by drying the object to be oxidized by a known appropriate drying means to remove moisture. Furthermore, when using the oxidation target after treatment with an aqueous dispersion, it is only necessary to separate the fluorinated solvent, and the drying step can be omitted. The separated fluorine-based solvent can be reused in the ozone solution.

図1に示す酸化処理装置を使用してカーボンナノチューブを酸化処理する実験を行った。フッ素系溶媒にはパーフルオロドデカンを使用し、パーフルオロドデカンの1に対して水を0.25の体積割合で混合してフッ素系溶媒と水との二相系溶媒とした。この二相系溶媒と酸化対象物であるカーボンナノチューブとマグネット式の回転子とを酸化反応槽16内に封入した。酸化反応槽16内の圧力を0.06MPaGに設定した状態で、オゾナイザ12からオゾン7体積%、酸素93体積%のオゾン含有酸素を供給し、液中でバブリングさせて二相系溶媒にオゾンを溶解させた。   An experiment for oxidizing carbon nanotubes using the oxidation processing apparatus shown in FIG. 1 was conducted. Perfluorododecane was used as the fluorine-based solvent, and water was mixed at a volume ratio of 0.25 to 1 of perfluorododecane to obtain a two-phase solvent of fluorine-based solvent and water. The two-phase solvent, the carbon nanotubes to be oxidized, and the magnet type rotor were sealed in the oxidation reaction tank 16. In a state where the pressure in the oxidation reaction tank 16 is set to 0.06 MPaG, ozone-containing oxygen of ozone 7 volume% and oxygen 93 volume% is supplied from the ozonizer 12 and bubbled in the liquid to make ozone into the two-phase solvent. Dissolved.

回転子を回転させて二相系溶媒を撹拌しながら、オゾン含有酸素のバブリングを25℃で1時間継続して酸化反応を進行させた。反応終了後、酸化対象物はすべて水相へ移動しており、水相で分散した状態になっていたため、パーフルオロドデカンを分離して回収した。処理後の酸化対象物が水中に分散した状態のままで粒度分布を測定したところ、D50(平均粒径)は26.3ナノメートルであった。この水分散液を24時間静置したところ、カーボンナノチューブの沈殿は見られず、酸化処理によって水への分散度が向上していることが判明した。また、水分散液を乾燥させて得られた酸化カーボンナノチューブの酸素量を、酸素窒素同時分析装置で測定したところ、5.74重量%であった。   While rotating the rotor and stirring the two-phase solvent, bubbling of ozone-containing oxygen was continued at 25 ° C. for 1 hour to advance the oxidation reaction. After completion of the reaction, all the oxidation target substances had moved to the aqueous phase and were dispersed in the aqueous phase, so perfluorododecane was separated and recovered. When the particle size distribution was measured with the treated oxidation target dispersed in water, the D50 (average particle size) was 26.3 nanometers. When this aqueous dispersion was allowed to stand for 24 hours, no precipitation of carbon nanotubes was observed, and it was found that the degree of dispersion in water was improved by oxidation treatment. Further, the oxygen content of the oxidized carbon nanotubes obtained by drying the aqueous dispersion was measured with an oxygen-nitrogen simultaneous analyzer and found to be 5.74% by weight.

なお、酸化処理前のカーボンナノチューブの水分散液におけるD50は44.1ナノメートルであり、24時間静置した水分散液では、全てのカーボンナノチューブが沈殿していた。また、酸素量は1.34重量%であった。   In addition, D50 in the aqueous dispersion of carbon nanotubes before the oxidation treatment was 44.1 nanometers, and all the carbon nanotubes were precipitated in the aqueous dispersion that was allowed to stand for 24 hours. The oxygen content was 1.34% by weight.

さらに、水を使用しないで、パーフルオロドデカンのみを使用して同じ操作を行ったところ、D50は33.5ナノメートルであり、24時間静置した水分散液では、凝集が始まっており、50%のカーボンナノチューブが沈殿していた。また、酸素量は4.70重量%であった。   Further, when the same operation was performed using only perfluorododecane without using water, D50 was 33.5 nanometers, and aggregation was started in the aqueous dispersion that was allowed to stand for 24 hours. % Carbon nanotubes were precipitated. The oxygen content was 4.70% by weight.

フッ素系溶媒としてパーフルオロヘキサンを用いた以外は実施例1と同じ操作を行った。酸化処理後に粒度分布を測定したところ、D50は26.0ナノメートルであり、酸素量は5.72重量%であった。   The same operation as in Example 1 was performed except that perfluorohexane was used as the fluorine-based solvent. When the particle size distribution was measured after the oxidation treatment, D50 was 26.0 nanometers and the oxygen content was 5.72% by weight.

パーフルオロドデカンの1に対して水を1、5,10の体積割合で混合した各二相系溶媒を使用し、実施例1と同じ操作を行った。その結果、水の割合が1のときのD50は34.1ナノメートル、酸素量は4.68重量%、水の割合が5のときのD50は36.8ナノメートル、酸素量は4.65重量%、水の割合が10のときのD50は38.3ナノメートル、酸素量は4.50重量%であった。   The same operation as in Example 1 was performed using each two-phase solvent in which water was mixed at a volume ratio of 1, 5, 10 to 1 of perfluorododecane. As a result, when the water ratio is 1, the D50 is 34.1 nanometers, the oxygen amount is 4.68% by weight, and when the water ratio is 5, the D50 is 36.8 nanometers, and the oxygen amount is 4.65. When the weight percentage and the water ratio were 10, D50 was 38.3 nanometers, and the oxygen amount was 4.50 weight percent.

実施例1で回収したパーフルオロドデカンを、2回目以降の実験にそのまま利用した以外は実施例1と同じ操作を行った。その結果、2回目のD50は25.9ナノメートル、酸素は5.60重量%、3回目のD50は25.2ナノメートル、酸素は5.60重量%、4回目のD50は25.6ナノメートル、酸素は5.58重量%、5回目のD50は27.0ナノメートル、酸素は5.62重量%、6回目のD50は25.4ナノメートル、酸素は5.57重量%であった。   The same operation as in Example 1 was performed except that the perfluorododecane recovered in Example 1 was directly used in the second and subsequent experiments. As a result, the second D50 was 25.9 nanometers, oxygen was 5.60% by weight, the third D50 was 25.2 nanometers, the oxygen was 5.60% by weight, and the fourth D50 was 25.6 nanometers. Meter, oxygen was 5.58% by weight, 5th D50 was 27.0 nanometers, oxygen was 5.62% by weight, 6th D50 was 25.4 nanometers, oxygen was 5.57% by weight .

11…酸化処理装置、12…オゾナイザ、13…オゾン溶解手段、14…オゾン溶液、15…酸化対象物、16…酸化反応槽、16a…導入経路、16b…導出経路、17…オゾン処理手段   DESCRIPTION OF SYMBOLS 11 ... Oxidation processing apparatus, 12 ... Ozonizer, 13 ... Ozone dissolution means, 14 ... Ozone solution, 15 ... Oxidation object, 16 ... Oxidation reaction tank, 16a ... Introduction path, 16b ... Derivation path, 17 ... Ozone treatment means

Claims (5)

酸化反応処理前は疎水性であり、酸化反応処理後に親水性となる酸化対象物と、水とフッ素系溶媒との二相系溶媒にオゾンを溶解させたオゾン溶液とを接触させて前記酸化対象物を酸化処理する酸化処理方法において、
前記酸化対象物をフッ素系溶媒相で酸化処理した後に、前記フッ素系溶媒槽相から水相側に移動させて更に酸化処理をし、酸化処理後の酸化対象物を水相に保持した状態で前記フッ素系溶媒を分離して水分散液として取り出す酸化処理方法。
The object to be oxidized is brought into contact with an oxidation object that is hydrophobic before the oxidation reaction treatment and becomes hydrophilic after the oxidation reaction treatment, and an ozone solution in which ozone is dissolved in a two-phase solvent of water and a fluorine-based solvent. In an oxidation treatment method for oxidizing a product,
After the oxidation object is oxidized in the fluorine-based solvent phase, the oxidation object is further moved by moving from the fluorine-based solvent tank phase to the water phase side, and the oxidation object after the oxidation treatment is held in the water phase. An oxidation treatment method in which the fluorinated solvent is separated and taken out as an aqueous dispersion .
前記二相系溶媒における混合割合は、フッ素系溶媒の体積を1とした場合に、水の体積が0.1〜10の割合である請求項1記載の酸化処理方法。 The oxidation treatment method according to claim 1, wherein the mixing ratio in the two-phase solvent is such that the volume of water is 0.1 to 10 when the volume of the fluorinated solvent is 1 . 前記オゾン溶液は、オゾン濃度が120〜500mg/Lの範囲である請求項1又は2記載の酸化処理方法。 The oxidation treatment method according to claim 1 or 2 , wherein the ozone solution has an ozone concentration in a range of 120 to 500 mg / L. 前記フッ素系溶媒は、パーフルオロカーボンである請求項1乃至のいずれか1項記載の酸化処理方法。 The fluorine-based solvent, oxidation processing method according to any one of claims 1 to 3 is a perfluorocarbon. 前記酸化対象物は、カーボンナノチューブである請求項1乃至のいずれか1項記載の酸化処理方法。 The oxidation object, oxidation processing method according to any one of claims 1 to 4 carbon nanotubes.
JP2012253960A 2012-11-20 2012-11-20 Oxidation method Expired - Fee Related JP6006623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012253960A JP6006623B2 (en) 2012-11-20 2012-11-20 Oxidation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012253960A JP6006623B2 (en) 2012-11-20 2012-11-20 Oxidation method

Publications (2)

Publication Number Publication Date
JP2014101249A JP2014101249A (en) 2014-06-05
JP6006623B2 true JP6006623B2 (en) 2016-10-12

Family

ID=51024115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012253960A Expired - Fee Related JP6006623B2 (en) 2012-11-20 2012-11-20 Oxidation method

Country Status (1)

Country Link
JP (1) JP6006623B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101982572B1 (en) 2016-01-20 2019-05-27 주식회사 엘지화학 Method for manufacturing carbon nanotube pellet
JPWO2023032677A1 (en) * 2021-09-03 2023-03-09

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965026A (en) * 1989-01-13 1990-10-23 Ciba-Geigy Corporation Process for hydroxylating hydrophobic polymer surfaces
JP4634192B2 (en) * 2005-03-10 2011-02-16 日東電工株式会社 Method for producing porous membrane
JP5191322B2 (en) * 2007-09-06 2013-05-08 三菱レイヨン株式会社 Carbon fiber surface treatment method
EP2062853A1 (en) * 2007-11-23 2009-05-27 Nanoledge Polymer carbon nanotube composites
JP5254078B2 (en) * 2009-02-26 2013-08-07 大陽日酸株式会社 Method and apparatus for decomposing and discharging ozone mixture
TWI558876B (en) * 2010-07-05 2016-11-21 大陽日酸股份有限公司 Surface oxidation treatment method and surface oxidation treatment apparatus
JP5719193B2 (en) * 2010-09-08 2015-05-13 大陽日酸株式会社 Ozone decomposition discharge method and ozone decomposition discharge apparatus

Also Published As

Publication number Publication date
JP2014101249A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
Jalilov et al. Mechanistic study of the conversion of superoxide to oxygen and hydrogen peroxide in carbon nanoparticles
JP7131543B2 (en) Method for producing surface-treated carbon nanostructure
CN103053059B (en) Composite membrane comprising the titanium dioxide doped with fluorine
JP5848905B2 (en) Oxidation treatment method and oxidation treatment apparatus
US10040688B2 (en) Method for manufacturing graphite oxide and apparatus therefor
JP6006623B2 (en) Oxidation method
JP2014009104A (en) Graphene-dispersed liquid and preparation method thereof
Dyachkova et al. Functionalization of carbon nanotubes: methods, mechanisms and technological realization
CN111001413A (en) Catalyst for oxidizing and degrading ibuprofen by sulfate radical and preparation method thereof
CN107778529A (en) The method of liquid phase Ozone modified Nano carbon black
Kim et al. Sulfonated graphene oxide/Nafion composite membrane for vanadium redox flow battery
JP2007084597A (en) Surface-treated carbon black composition and method for producing the same
CN104609636A (en) Method for removing endocrine disruptors in water by using iron and manganese double-phase-doped graphene to activate single persulfate
JP6294656B2 (en) Method for oxidizing nanocarbons
JP2008195837A (en) Surface treated carbon black and its manufacturing method, water dispersion formed by dispersing same, and cosmetic, ink and coating containing the dispersion
CN114057182A (en) Method for dispersing nano material
Kim et al. Tailor‐Made Charged Catechol‐Based Polymeric Ligands to Build Robust Fuel Cells Containing Antioxidative Nanoparticles
Gao et al. High-efficiency recovery of palladium and platinum using black phosphorus for in-situ synthesis of long-term stable hydrogen evolution catalysts
CN107684904A (en) A kind of chitose magnetic fluid water quality purification material, preparation method and applications
JP2022090385A (en) Additive for resin, additive for resin-dispersed composition, and resin composition
JP2008019101A (en) Surface-modified carbon material and its producing method
Tavakoli et al. Aqueous solution of Oxone as new oxidizing agent for multi-walled carbon nanotube functionalization
TWI712558B (en) Treating method of sulfuric acid waste liquid
KR102441127B1 (en) Method for enhance water-dispersibility of conductivity carbon powder and method for colloidal solution of conductivity carbon powder
TWI537208B (en) A method for producing a glass-like carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160909

R150 Certificate of patent or registration of utility model

Ref document number: 6006623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees