JP5831009B2 - MICROSTRUCTURE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL - Google Patents

MICROSTRUCTURE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL Download PDF

Info

Publication number
JP5831009B2
JP5831009B2 JP2011162516A JP2011162516A JP5831009B2 JP 5831009 B2 JP5831009 B2 JP 5831009B2 JP 2011162516 A JP2011162516 A JP 2011162516A JP 2011162516 A JP2011162516 A JP 2011162516A JP 5831009 B2 JP5831009 B2 JP 5831009B2
Authority
JP
Japan
Prior art keywords
carbon
ionomer
fiber
containing fibers
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011162516A
Other languages
Japanese (ja)
Other versions
JP2013026158A (en
Inventor
理一郎 太田
理一郎 太田
達也 畑中
達也 畑中
岡本 篤人
篤人 岡本
西川 恒一
恒一 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2011162516A priority Critical patent/JP5831009B2/en
Publication of JP2013026158A publication Critical patent/JP2013026158A/en
Application granted granted Critical
Publication of JP5831009B2 publication Critical patent/JP5831009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、微細構造材料及びその製造方法、並びに、燃料電池用膜電極接合体に関し、さらに詳しくは、表面の全部又は一部がアイオノマで被覆された炭素含有繊維の配列体からなり、炭素含有繊維間に空隙を有する微細構造材料及びその製造方法、並びに、このような微細構造材料を用いた燃料電池用膜電極接合体に関する。   The present invention relates to a microstructure material, a method for producing the same, and a membrane electrode assembly for a fuel cell. More specifically, the present invention comprises an array of carbon-containing fibers whose entire surface or part is coated with an ionomer, and contains carbon. The present invention relates to a microstructure material having voids between fibers, a manufacturing method thereof, and a membrane electrode assembly for a fuel cell using such a microstructure material.

カーボンナノチューブ(CNT)とは、黒鉛の一層に相当するグラフェンシート(炭素原子が六角網目状に配列したシート)を筒状に丸めた立体構造を持ち、直径がnmオーダーである中空の繊維状物質をいう。また、カーボンナノファイバー(CNF)とは、炭素からなり、直径がnmオーダーである中実の繊維状物質、筒状グラフェンの一端の直径が他端よりも狭い立体構造を持つカップ状グラフェンを積み重ねた「カップスタック型」の繊維状物質、あるいは、CNTのチューブの途中に竹の節のようなものがあり、チューブ内壁で囲まれた空洞が途中で閉塞している「バンブー型」の繊維状物質をいう。「カップスタック型」や「バンブー型」の繊維状物質は、それらの構造においてチューブ内壁で囲まれた空洞の占める割合が大きい場合、CNTに分類されることもある。
カーボンナノチューブ(CNT)やカーボンナノファイバー(CNF)などの炭素含有繊維を一方向に配列させると、配列方向の電子伝導性やガス透過性が向上する。そのため、この種の配列体は、燃料電池用の電極などへの応用が検討されている。
A carbon nanotube (CNT) is a hollow fibrous substance having a three-dimensional structure in which a graphene sheet (sheet in which carbon atoms are arranged in a hexagonal network) corresponding to one layer of graphite is rolled into a cylindrical shape and having a diameter on the order of nm. Say. Carbon nanofiber (CNF) is a solid fibrous substance made of carbon and having a diameter of the order of nm, and cup-shaped graphene having a three-dimensional structure in which the diameter of one end of cylindrical graphene is narrower than the other end. There is also a “cup stack type” fibrous material, or a “bamboo type” fibrous shape in which there is something like a bamboo node in the middle of a CNT tube, and the cavity surrounded by the inner wall of the tube is blocked in the middle A substance. “Cup stack type” and “bamboo type” fibrous materials may be classified as CNTs when the proportion of the cavity surrounded by the inner wall of the tube is large in their structure.
When carbon-containing fibers such as carbon nanotubes (CNT) and carbon nanofibers (CNF) are arranged in one direction, electron conductivity and gas permeability in the arrangement direction are improved. Therefore, application of this type of array to an electrode for a fuel cell is being studied.

炭素含有繊維からなる配列体の構造や製造方法に関しては、従来から種々の提案がなされている。
例えば、特許文献1には、
(1)チューブ状の電解質膜の膜面にほぼ垂直に配向するように、長さ約500μm、外径約10nmのCNTの一端を接合し、CNTの表面に触媒金属及びプロトン伝導性物質を担持させた燃料電池用セルモジュール、及び、
(2)基板表面に対してほぼ垂直に配向するように、基板上にCNTを生成させ、CNTの表面にPtを担持させた後、プロトン伝導性物質を溶解させた溶液を用いて、層厚約10nmのプロトン伝導性物質からなる層を形成する方法
が開示されている。
また、同文献には、CNTのチューブ平均径は10〜50nmが好ましいと記載されている。
Conventionally, various proposals have been made regarding the structure and manufacturing method of an array of carbon-containing fibers.
For example, Patent Document 1 discloses that
(1) One end of a CNT having a length of about 500 μm and an outer diameter of about 10 nm is bonded so as to be oriented substantially perpendicular to the membrane surface of the tubular electrolyte membrane, and a catalytic metal and a proton conductive material are supported on the surface of the CNT. A cell module for a fuel cell, and
(2) The CNTs are formed on the substrate so as to be oriented substantially perpendicular to the substrate surface, Pt is supported on the surface of the CNTs, and then a layer thickness is used using a solution in which a proton conductive material is dissolved. A method of forming a layer of about 10 nm proton conductive material is disclosed.
Further, the same document describes that the tube average diameter of CNT is preferably 10 to 50 nm.

特許文献2には、セパレータ表面に対して垂直に配向させたCNTの先端(電解質膜側)付近にのみ触媒物質を担持させた燃料電池用電極が開示されている。   Patent Document 2 discloses a fuel cell electrode in which a catalyst material is supported only near the tip (electrolyte membrane side) of a CNT oriented perpendicular to the separator surface.

特許文献3には、
(1)外径10nmのCNTを高分子電解質膜の膜面に略垂直に配向させ、CNTの表面に電極触媒金属を担持させた膜電極接合体、及び、
(2)基板表面に対してほぼ垂直に配向するように、基板上にCNTを生成させ、CNTの表面にPtを担持させた後、プロトン伝導性物質を溶解させた溶液を用いて、層厚約10nmのプロトン伝導性物質からなる層を形成する方法
が開示されている。
また、同文献には、CNTのチューブ外径は10〜100nmが好ましいと記載されている。
In Patent Document 3,
(1) A membrane electrode assembly in which CNTs having an outer diameter of 10 nm are oriented substantially perpendicularly to the membrane surface of the polymer electrolyte membrane, and an electrode catalyst metal is supported on the surface of the CNTs, and
(2) The CNTs are formed on the substrate so as to be oriented substantially perpendicular to the substrate surface, Pt is supported on the surface of the CNTs, and then a layer thickness is used using a solution in which a proton conductive material is dissolved. A method of forming a layer of about 10 nm proton conductive material is disclosed.
Further, the same document describes that the tube outer diameter of CNT is preferably 10 to 100 nm.

特許文献4には、
(1)基板表面に対して垂直に配向するように、基板上に波型形状を有するCNTを生成させ、
(2)CNTに触媒金属塩溶液を滴下し、乾燥・焼成還元することにより、CNT表面に触媒金属を担持させ、
(3)触媒金属を担持したCNTにアイオノマ分散液を滴下し、乾燥させる
触媒電極の製造方法が開示されている。
Patent Document 4 includes
(1) generating CNTs having a corrugated shape on a substrate so as to be oriented perpendicular to the substrate surface;
(2) The catalyst metal salt solution is dropped on the CNT, dried and baked to reduce the catalyst metal on the CNT surface,
(3) A method for producing a catalyst electrode is disclosed in which an ionomer dispersion is dropped onto a CNT carrying a catalyst metal and dried.

特許文献5には、燃料電池用の触媒層の形成方法ではないが、ポリマーの溶媒溶液中に超臨界状態の流体を溶解させることによって、溶媒溶液をポリマーに対して貧溶媒化してポリマーの一部を析出させ、系内に存在させた固体表面に析出したポリマーを付着させる固体表面へのポリマー皮膜形成方法が開示されている。   Patent Document 5 does not describe a method for forming a catalyst layer for a fuel cell. However, by dissolving a fluid in a supercritical state in a solvent solution of the polymer, the solvent solution is made a poor solvent with respect to the polymer, thereby A method of forming a polymer film on a solid surface is disclosed in which a polymer is deposited on a solid surface that is deposited in the system and deposited on the solid surface.

特許文献6には、
(1)密閉容器内に触媒を担持させた垂直配向CNT、電解質溶液、及び、トリフルオロメタンを封入し、
(2)リアクタ内の圧力を30MPaまで加圧した後、トリフルオロメタンの温度を60℃に上昇させることにより、トリフルオロメタンを超臨界状態とし、超臨界トリフルオロメタンに電解質を溶解させ、
(3)垂直配向CNTの温度が20℃になるまで冷却して超臨界トリフルオロメタンを液体状態とし、CNT上に電解質を析出させる
電極触媒層の製造方法が開示されている。
同文献には、超臨界トリフルオロメタンは極性が高く、電解質を溶解しやすいので、CNT間の奥まで電解質を浸透させることができ、CNTの周囲に形成される電解質の均一性を向上させることができる点が記載されている。
In Patent Document 6,
(1) Enclose the vertically aligned CNT carrying the catalyst in an airtight container, the electrolyte solution, and trifluoromethane,
(2) After pressurizing the pressure in the reactor to 30 MPa, the temperature of trifluoromethane is raised to 60 ° C., so that trifluoromethane is brought into a supercritical state, and the electrolyte is dissolved in supercritical trifluoromethane,
(3) A method for producing an electrode catalyst layer in which the temperature of vertically aligned CNTs is cooled to 20 ° C. to make supercritical trifluoromethane in a liquid state and an electrolyte is deposited on the CNTs is disclosed.
According to this document, supercritical trifluoromethane has a high polarity and easily dissolves the electrolyte, so that the electrolyte can penetrate deeply between the CNTs, and the uniformity of the electrolyte formed around the CNTs can be improved. The points that can be done are described.

さらに、非特許文献1には、基板表面に直径20nmのCNTを垂直配向させ、CNT表面にPtを担持させた後、ナフィオン(登録商標)溶液を用いて、Pt担持CNTの表面をナフィオン(登録商標)樹脂でコートする方法が開示されている。   Further, Non-Patent Document 1 discloses that CNTs having a diameter of 20 nm are vertically aligned on a substrate surface and Pt is supported on the CNT surface, and then the surface of the Pt-supported CNT is Nafion (registered) using a Nafion (registered trademark) solution. A method of coating with a trademark resin is disclosed.

垂直配向CNTを燃料電池用の電極に応用する場合、CNT表面にアイオノマを担持させる必要がある。従来、アイオノマの担持には、アイオノマ溶液を垂直配向CNTの上に滴下し、CNT間にアイオノマ溶液を浸透させ、溶媒を除去する方法が用いられている。CNTの直径が10nm以上である場合、このような方法でも、垂直配向CNTの配向構造を壊すことなく、アイオノマを担持させることができる。
しかしながら、CNTの外径が10nm未満である場合、CNT間にアイオノマ溶液を浸透させた後、溶媒を除去すると、溶媒の表面張力によってCNTが凝集し、配向構造が壊れるという問題がある。
When vertically aligned CNT is applied to an electrode for a fuel cell, it is necessary to support an ionomer on the CNT surface. Conventionally, for carrying an ionomer, a method is used in which an ionomer solution is dropped on vertically aligned CNTs, the ionomer solution is infiltrated between the CNTs, and the solvent is removed. When the diameter of the CNT is 10 nm or more, even with such a method, the ionomer can be supported without breaking the alignment structure of the vertically aligned CNT.
However, when the outer diameter of the CNT is less than 10 nm, there is a problem in that if the solvent is removed after the ionomer solution is infiltrated between the CNTs, the CNT aggregates due to the surface tension of the solvent and the alignment structure is broken.

一方、特許文献6には、CNT間の奥まで電解質を浸透させるために、電解質溶液にトリフルオロメタンを加えてトリフルオロメタンを超臨界状態とし、超臨界トリフルオロメタンを液体状態に戻すことで電解質を析出させる方法が記載されている。
しかしながら、外径が10nm未満の炭素含有繊維が略平行に配列している配列体にアイオノマを担持させる場合において、炭素含有繊維の凝集を防ぐために、超臨界流体を応用した例は、従来にはない。
On the other hand, in Patent Document 6, in order to infiltrate the electrolyte deeply between the CNTs, trifluoromethane is added to the electrolyte solution to bring the trifluoromethane to the supercritical state, and the supercritical trifluoromethane is returned to the liquid state to deposit the electrolyte. Is described.
However, in the case where an ionomer is supported on an array in which carbon-containing fibers having an outer diameter of less than 10 nm are arranged in parallel, an example in which a supercritical fluid is applied in order to prevent aggregation of carbon-containing fibers is conventionally known. Absent.

特許第4438525号公報Japanese Patent No. 4438525 特開2005−004967号公報JP-A-2005-004967 特開2005−203332号公報JP 2005-203332 A 特開2010−272437号公報JP 2010-272437 A 特開平04−222662号公報Japanese Unexamined Patent Publication No. 04-222626 特開2011−003531号公報JP 2011-003531 A

T.Hatanaka et al., ECS Transactions 3(1) 277-284(2006)T. Hatanaka et al., ECS Transactions 3 (1) 277-284 (2006)

本発明が解決しようとする課題は、繊維外径が10nm未満である炭素含有繊維が略平行に配列した配列体の繊維表面にアイオノマを担持させる場合において、繊維間の凝集を抑制することにある。   The problem to be solved by the present invention is to suppress aggregation between fibers when an ionomer is supported on the fiber surface of an array in which carbon-containing fibers having an outer fiber diameter of less than 10 nm are arranged substantially in parallel. .

上記課題を解決するために本発明に係る微細構造材料は、以下の構成を備えていることを要旨とする。
(1)前記微細構造材料は、
基板表面に形成された、複数の炭素含有繊維からなり、前記炭素含有繊維の繊維軸が略平行に配列している配列体と、
前記炭素含有繊維の側壁と接触しているアイオノマと、
前記炭素含有繊維及び前記アイオノマが存在していない空隙と
を備え、
前記アイオノマは、イオン交換基を備えた高分子材料からなる
(2)前記配列体の繊維軸方向と略垂直な任意の断面において、隣接する前記炭素含有繊維同士の距離が1μm未満である領域の面積の総和が全断面積の50%以上である
(3)前記炭素含有繊維は、その繊維外径が0.4nm以上10nm未満である。
In order to solve the above problems, the gist of the microstructure material according to the present invention is as follows.
(1) The microstructure material is
Formed on the substrate surface, consisting of carbon containing fibers for several, and array of fiber axis of the carbon-containing fibers are arranged substantially parallel to,
An ionomer in contact with a side wall of the carbon-containing fiber;
E Bei and the gap does not exist carbon-containing fibers and the ionomer,
The ionomer is made of a polymer material having an ion exchange group .
(2) In an arbitrary cross section substantially perpendicular to the fiber axis direction of the array, the total area of regions where the distance between adjacent carbon-containing fibers is less than 1 μm is 50% or more of the total cross-sectional area.
(3) The carbon-containing fiber has a fiber outer diameter of 0.4 nm or more and less than 10 nm.

本発明に係る燃料電池用膜電極接合体は、本発明に係る微細構造材料の繊維軸と略垂直な面に電解質膜を接合することにより得られるものからなる。   The membrane electrode assembly for a fuel cell according to the present invention is obtained by bonding an electrolyte membrane to a surface substantially perpendicular to the fiber axis of the microstructure material according to the present invention.

本発明に係る微細構造材料の製造方法は、以下の構成を備えていることを要旨とする。
(1)基板表面に形成された、複数の炭素含有繊維からなり、前記炭素含有繊維の繊維軸が略平行に配列している配列体に、イオン交換基を備えた高分子材料からなるアイオノマを溶媒に溶解させた溶液を接触させるアイオノマ溶液含浸工程。
(2)密閉容器内に前記配列体及び大過剰の液体CO2を入れ、前記配列体を前記液体CO2に浸漬する液体CO2添加工程。
但し、「大過剰」とは、前記密閉容器内にある前記アイオノマ溶液から前記アイオノマを析出させることができ、かつ、前記炭素含有繊維の非凝集率(=前記配列体の繊維軸方向と略垂直な任意の断面において、全断面積に対する隣接する前記炭素含有繊維同士の距離が1μm未満である領域の面積の総和の割合)が50%以上となるように前記炭素含有繊維間に侵入している前記溶媒の全部又は一部を除去することができる下限量以上の量をいう。
(3)前記密閉容器内を温度:31℃以上、圧力:7.4MPa以上にし、前記液体CO2を超臨界化させる超臨界工程。
(4)前記密閉容器内から超臨界CO2を除去する除去工程。
The gist of the manufacturing method of the microstructure material according to the present invention is as follows.
(1) formed on the substrate surface, consisting of carbon containing fibers for multiple, the the array of fiber axis is arranged substantially parallel to the carbon-containing fibers, A made of a polymer material having an ion exchange group An ionomer solution impregnation step in which a solution in which an ionomer is dissolved in a solvent is brought into contact.
(2) sealing the putting array and a large excess of liquid CO 2 into the container, the liquid CO 2 addition step of immersing the array in the liquid CO 2.
However, “large excess” means that the ionomer can be precipitated from the ionomer solution in the closed container, and the non-aggregation rate of the carbon-containing fibers (= substantially perpendicular to the fiber axis direction of the arrayed body). In any arbitrary cross section, the carbon-containing fibers penetrate between the carbon-containing fibers so that the ratio of the total area of the regions where the distance between the adjacent carbon-containing fibers to the entire cross-sectional area is less than 1 μm is 50% or more. The amount is equal to or higher than the lower limit amount capable of removing all or part of the solvent.
(3) A supercritical process in which the inside of the closed container is temperature: 31 ° C. or higher, pressure: 7.4 MPa or higher, and the liquid CO 2 is made supercritical.
(4) A removal step of removing supercritical CO 2 from the sealed container.

本発明に係る方法を用いると、炭素含有繊維の繊維外径が10nm未満であっても配列体の配向構造を壊すことなく、炭素含有繊維の表面にアイオノマを担持させることができる。これは、以下の理由によると考えられる。
すなわち、配列体とアイオノマ溶液とが接触している状態で、アイオノマの貧溶媒である液体CO2を加えると、アイオノマが炭素含有繊維の表面に析出すると同時に、炭素含有繊維間に液体CO2が侵入する。この状態で、密閉容器内を所定の温度及び圧力にすると、繊維間の液体CO2が超臨界CO2となる。超臨界CO2は、液体CO2やアイオノマ溶液の溶媒に比べて表面張力が小さい。例えば、エタノールの表面張力は21.82mN/m(25℃)、1−プロパノールの表面張力は23.28mN/m(25℃)、2−プロパノールの表面張力は21.22mN/m(25℃)、液体CO2の表面張力は0.59mN/m(25℃)であるのに対して、超臨界CO2の表面張力はほとんどゼロである。一般に、流体の表面張力が小さいほど、流体と接触している繊維から流体を除去する際の繊維の凝集が抑制される。そのため、超臨界CO2を液体CO2に戻すことなく繊維間から超臨界CO2を除去すると、繊維の凝集が抑制される。その結果、配列体の配向構造を壊すことなく、炭素含有繊維の表面にアイオノマを担持させることができる。
When the method according to the present invention is used, the ionomer can be supported on the surface of the carbon-containing fiber without breaking the alignment structure of the array even if the fiber outer diameter of the carbon-containing fiber is less than 10 nm. This is considered to be due to the following reason.
That is, when liquid CO 2 , which is a poor solvent for ionomer, is added while the array is in contact with the ionomer solution, the ionomer is deposited on the surface of the carbon-containing fiber, and at the same time, the liquid CO 2 is formed between the carbon-containing fibers. invade. In this state, when the inside of the sealed container is set to a predetermined temperature and pressure, the liquid CO 2 between the fibers becomes supercritical CO 2 . Supercritical CO 2 has a lower surface tension than liquid CO 2 or a solvent of an ionomer solution. For example, the surface tension of ethanol is 21.82 mN / m (25 ° C.), the surface tension of 1-propanol is 23.28 mN / m (25 ° C.), and the surface tension of 2-propanol is 21.22 mN / m (25 ° C.). The surface tension of liquid CO 2 is 0.59 mN / m (25 ° C.), whereas the surface tension of supercritical CO 2 is almost zero. Generally, the smaller the surface tension of the fluid, the more the fiber aggregation is suppressed when the fluid is removed from the fiber in contact with the fluid. Therefore, if supercritical CO 2 is removed from between the fibers without returning the supercritical CO 2 to liquid CO 2 , fiber aggregation is suppressed. As a result, the ionomer can be supported on the surface of the carbon-containing fiber without breaking the orientation structure of the array.

炭素含有繊維の凝集が生じた微細構造材料の繊維軸方向に対して略垂直な断面の模式図である。It is a schematic diagram of a cross section substantially perpendicular to the fiber axis direction of the microstructure material in which the aggregation of the carbon-containing fibers has occurred. 垂直配向CNTの側面(劈開断面)の電界放射型走査電子顕微鏡(FESEM)像である。It is a field emission scanning electron microscope (FESEM) image of the side surface (cleavage cross section) of vertical alignment CNT. 実施例1、2及び比較例1で作製したアイオノマ担持垂直配向CNTの表面(左列)、表面端部(中列)、及び、劈開断面(右列)のFESEM像である。It is a FESEM image of the surface (left column), surface edge part (middle column), and cleavage section (right column) of the ionomer carrying vertically aligned CNTs prepared in Examples 1 and 2 and Comparative Example 1. 実施例1で作製したアイオノマ担持垂直配向CNTの劈開断面のFESEM像(左図)、並びに、断面FESEM像の上部(右上図)、中央部(右中図)及び下部(右下図)から得られたEDXスペクトルである。It is obtained from the FESEM image (left figure) of the cleaved cross section of the ionomer-supported vertically aligned CNT produced in Example 1 and the upper part (upper right figure), the center part (middle right figure), and the lower part (lower right figure) of the sectional FESEM image. EDX spectrum. 実施例3及び比較例2で作製した膜電極接合体の電流−電圧特性である。It is a current-voltage characteristic of the membrane electrode assembly produced in Example 3 and Comparative Example 2.

以下に、本発明の一実施の形態について詳細に説明する。
[1. 微細構造材料]
本発明に係る微細構造材料は、以下の構成を備えている。
(1)前記微細構造材料は、
複数の炭素含有繊維からなり、前記炭素含有繊維の繊維軸が略平行に配列している配列体と、
前記炭素含有繊維の側壁と接触しているアイオノマと、
前記炭素含有繊維及び前記アイオノマが存在していない空隙と
を備えている。
(2)前記配列体の繊維軸方向と略垂直な任意の断面において、隣接する前記炭素含有繊維同士の距離が1μm未満である領域の面積の総和が全断面積の20%より大きい。
(3)前記炭素含有繊維は、その繊維外径が0.4nm以上10nm未満である。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Microstructure material]
The microstructure material according to the present invention has the following configuration.
(1) The microstructure material is
An array of a plurality of carbon-containing fibers, wherein the fiber axes of the carbon-containing fibers are arranged substantially in parallel;
An ionomer in contact with a side wall of the carbon-containing fiber;
The carbon-containing fiber and the void where the ionomer is not present.
(2) In an arbitrary cross section substantially perpendicular to the fiber axis direction of the array, the total area of the regions where the distance between adjacent carbon-containing fibers is less than 1 μm is greater than 20% of the total cross-sectional area.
(3) The carbon-containing fiber has a fiber outer diameter of 0.4 nm or more and less than 10 nm.

[1.1. 配列体]
「配列体」とは、複数の炭素含有繊維からなり、炭素含有繊維の繊維軸が略平行に配列しているものをいう。
「炭素含有繊維」とは、炭素を主構成元素として含む繊維状物質をいう。炭素含有繊維は、炭素のみからなるものでも良く、あるいは、他の元素を含むものでも良い。他の元素としては、例えば、窒素、酸素、水素、ホウ素などがある。
炭素含有繊維は、中空の繊維であっても良く、あるいは、中実の繊維であっても良い。また、炭素含有繊維は、直線状の繊維であっても良く、あるいは、繊維の長手方向に沿って所定の周期で湾曲している波形の繊維であっても良い。
[1.1. Array]
The “array” refers to a structure composed of a plurality of carbon-containing fibers in which the fiber axes of the carbon-containing fibers are arranged substantially in parallel.
“Carbon-containing fiber” refers to a fibrous material containing carbon as a main constituent element. The carbon-containing fiber may be made of only carbon or may contain other elements. Examples of other elements include nitrogen, oxygen, hydrogen, and boron.
The carbon-containing fiber may be a hollow fiber or a solid fiber. The carbon-containing fiber may be a straight fiber, or may be a corrugated fiber that is curved at a predetermined period along the longitudinal direction of the fiber.

「繊維軸」とは、炭素含有繊維を微視的(長さが数μm程度の領域)に見たときに、炭素含有繊維の中心を通る長手方向にほぼ平行な軸をいう。波形の繊維の場合、「中心」とは、炭素含有繊維を微視的に見たときに、炭素含有繊維の両側面に接する一対の平行線の中心をいう。炭素含有繊維の繊維軸は、微視的に見ると直線であるが、巨視的にみると必ずしも直線であるとは限らず、一箇所以上で湾曲していることもある。
「繊維軸が略平行に配列している」とは、炭素含有繊維の繊維軸に対して平行方向の断面を見たときに、繊維軸がほぼ同一方向を向いていると視認できる程度に各繊維が並んでいることをいい、厳密に平行でなくても良い。繊維軸が基板に対して傾斜角を有する場合や、繊維軸がほぼ同一方向に湾曲している場合も含む。
“Fiber axis” refers to an axis substantially parallel to the longitudinal direction passing through the center of the carbon-containing fiber when the carbon-containing fiber is viewed microscopically (region having a length of about several μm). In the case of a corrugated fiber, the “center” refers to the center of a pair of parallel lines in contact with both side surfaces of the carbon-containing fiber when the carbon-containing fiber is viewed microscopically. The fiber axis of the carbon-containing fiber is a straight line when viewed microscopically, but is not always a straight line when viewed macroscopically, and may be curved at one or more locations.
“The fiber axes are arranged substantially in parallel” means that when the cross section in the direction parallel to the fiber axis of the carbon-containing fiber is viewed, it can be visually recognized that the fiber axes are oriented in substantially the same direction. It means that the fibers are lined up and does not have to be strictly parallel. This includes the case where the fiber axis has an inclination angle with respect to the substrate and the case where the fiber axis is curved in substantially the same direction.

炭素含有繊維としては、具体的には、
(1)1層の筒状グラフェンからなる単層カーボンナノチューブ又は2層以上の筒状グラフェンが入れ子状に重なっている多層カーボンナノチューブ、
(2)炭素からなるカーボンナノファイバー、
などがある。
特に、単層CNT又は多層CNTは、機械的にも強靱で、化学的・熱的安定性に優れ、円筒部のらせん構造に応じて金属にも半導体にもなるので、配列体を構成する炭素含有繊維として好適である。
Specifically, as carbon-containing fiber,
(1) Single-walled carbon nanotubes made of single-layered cylindrical graphene or multi-walled carbon nanotubes in which two or more layers of tubular graphene are nested,
(2) carbon nanofiber made of carbon,
and so on.
In particular, single-walled CNTs or multi-walled CNTs are mechanically tough, have excellent chemical and thermal stability, and can be either metal or semiconductor depending on the helical structure of the cylindrical part. Suitable as a contained fiber.

本発明において、炭素含有繊維は、その繊維外径が0.4nm以上10nm未満であるものからなる。この点が、従来とは異なる。
炭素含有繊維の長さは、特に限定されるものではなく、目的に応じて任意に選択することができる。一般に、繊維外径に対する繊維長さの比(アスペクト比)が大きくなるほど、アイオノマ担持後に繊維が凝集しやすくなるが、本発明に係る方法を用いると、アスペクト比が相対的に大きい場合であっても繊維間の凝集を抑制することができる。
In the present invention, the carbon-containing fiber is composed of a fiber having an outer diameter of 0.4 nm or more and less than 10 nm. This point is different from the conventional one.
The length of the carbon-containing fiber is not particularly limited and can be arbitrarily selected according to the purpose. In general, as the ratio of the fiber length to the fiber outer diameter (aspect ratio) increases, the fibers tend to aggregate after supporting the ionomer. However, when the method according to the present invention is used, the aspect ratio is relatively large. Can also suppress aggregation between fibers.

[1.2. アイオノマ]
「アイオノマ」とは、イオン交換基を備えた高分子材料をいう。アイオノマは、フッ素系高分子にイオン交換基が結合しているフッ素系アイオノマであっても良く、あるいは、炭化水素系高分子にイオン交換基が結合している炭化水素系アイオノマであっても良い。
アイオノマは、炭素含有繊維の側壁と接触している。アイオノマは、炭素含有繊維の側壁の全面を被覆するように、炭素含有繊維と接触していても良く、あるいは、炭素含有繊維の側壁の一部を被覆するように、炭素含有繊維と接触していても良い。
[1.2. Ionoma]
“Ionoma” refers to a polymer material having an ion exchange group. The ionomer may be a fluorine ionomer in which an ion exchange group is bonded to a fluorine polymer, or may be a hydrocarbon ionomer in which an ion exchange group is bonded to a hydrocarbon polymer. .
The ionomer is in contact with the sidewall of the carbon-containing fiber. The ionomer may be in contact with the carbon-containing fiber so as to cover the entire side wall of the carbon-containing fiber, or may be in contact with the carbon-containing fiber so as to cover a part of the side wall of the carbon-containing fiber. May be.

[1.3. 空隙]
側壁の全面又は一部がアイオノマで被覆された炭素含有繊維の間には、空隙がある。空隙は、後述するように、炭素含有繊維の側壁にアイオノマを析出させる際に、繊維間に液体CO2が侵入し、液体CO2を超臨界CO2として除去することで形成される。配列体に含まれる空隙の量は、アイオノマの担持量、析出条件等により制御することができる。
[1.3. Air gap]
There are voids between the carbon-containing fibers whose whole or part of the side wall is coated with ionomer. Air gap, as will be described later, when precipitating the ionomer in the side wall of the carbon-containing fibers, liquid CO 2 to penetrate between the fibers, are formed by removing the liquid CO 2 as the supercritical CO 2. The amount of voids contained in the array can be controlled by the amount of ionomer supported, the deposition conditions, and the like.

[1.4. 触媒金属粒子]
炭素含有繊維の表面には、さらに触媒金属粒子が担持されていても良い。触媒金属粒子は、炭素含有繊維とアイオノマの間に担持される。触媒金属粒子は、アイオノマで完全に覆われていても良く、あるいは、その先端がアイオノマ表面から露出していても良い。
触媒金属粒子としては、例えば、Pt粒子のほか、PtCoなどのPtと他の金属元素との合金粒子、PdやAuなどをコア材とするPtシェル粒子、中空のPtシェル粒子などがある。あるいは、Pt以外の粒子として、Pd及びその合金などがある。
触媒金属粒子の粒径は、特に限定されるものではなく、目的に応じて任意に選択することができる。一般に、触媒金属粒子は、表面の原子のみが触媒として機能するので、触媒金属粒子の粒径が小さくなるほど、触媒金属の利用効率が向上する。触媒金属粒子の粒径は、担持方法にもよるが、通常、5nm未満である。
[1.4. Catalytic metal particles]
Further, catalytic metal particles may be supported on the surface of the carbon-containing fiber. The catalytic metal particles are supported between the carbon-containing fiber and the ionomer. The catalytic metal particles may be completely covered with an ionomer, or the tip thereof may be exposed from the ionomer surface.
Examples of the catalytic metal particles include Pt particles, alloy particles of Pt such as PtCo and other metal elements, Pt shell particles using Pd or Au as a core material, and hollow Pt shell particles. Alternatively, particles other than Pt include Pd and its alloys.
The particle diameter of the catalyst metal particles is not particularly limited, and can be arbitrarily selected according to the purpose. In general, only the atoms on the surface of the catalyst metal particles function as a catalyst. Therefore, the use efficiency of the catalyst metal improves as the particle size of the catalyst metal particles decreases. The particle diameter of the catalyst metal particles is usually less than 5 nm, although it depends on the loading method.

[1.5. 非凝集率]
炭素含有繊維が略平行に並んでいる配列体にアイオノマを担持させる場合において、アイオノマの担持条件が適切でないと、繊維間の凝集が起こる。図1に、炭素含有繊維の凝集が生じた微細構造材料の繊維軸方向に対して略垂直な断面の模式図を示す。
図1に示すように、略平行に並んでいた炭素含有繊維間に凝集が生じると、微細構造材料の垂直断面において、炭素含有繊維の疎密が生ずる。図1中、ハッチングを施した領域Aは、炭素含有繊維が密集している密集領域を表す。一方、白抜きの領域Bは、炭素含有繊維がほとんど存在しない空白領域を表す。
[1.5. Non-aggregation rate]
In the case where an ionomer is supported on an array body in which carbon-containing fibers are arranged substantially in parallel, if the ionomer support conditions are not appropriate, aggregation between fibers occurs. FIG. 1 shows a schematic diagram of a cross section substantially perpendicular to the fiber axis direction of a fine structure material in which aggregation of carbon-containing fibers has occurred.
As shown in FIG. 1, when agglomeration occurs between carbon-containing fibers arranged substantially in parallel, the density of carbon-containing fibers is increased in the vertical cross section of the microstructure material. In FIG. 1, a hatched region A represents a dense region where carbon-containing fibers are densely packed. On the other hand, the white area B represents a blank area in which almost no carbon-containing fiber exists.

隣接する炭素繊維間の距離が1μm未満である領域を「密集領域A」、密集領域A以外の領域を「非密集領域B」と定義する。
また、配列体の繊維軸方向と略垂直な任意の断面において、全断面積(密集領域Aの総面積+非密集領域Bの総面積)に対する密集領域Aの面積の総和の割合を「非凝集率」と定義する。
本発明に係る微細構造材料は、非凝集率が20%より大きいことを特徴とする。製造条件を最適化すると、非凝集率は、50%以上、70%以上あるいは90%以上となる。
A region where the distance between adjacent carbon fibers is less than 1 μm is defined as “dense region A”, and a region other than the dense region A is defined as “non-dense region B”.
Further, in an arbitrary cross section substantially perpendicular to the fiber axis direction of the array, the ratio of the total area of the dense region A to the total cross sectional area (total area of the dense region A + total area of the non-dense region B) is expressed as “non-aggregation”. Rate ".
The microstructure material according to the present invention is characterized in that the non-aggregation rate is greater than 20%. When the manufacturing conditions are optimized, the non-aggregation rate is 50% or more, 70% or more, or 90% or more.

[2. 燃料電池用膜電極接合体]
本発明に係る燃料電池用膜電極接合体は、本発明に係る微細構造材料の繊維軸と略垂直な面に電解質膜を接合することにより得られるものからなる。
[2. Membrane electrode assembly for fuel cells]
The membrane electrode assembly for a fuel cell according to the present invention is obtained by bonding an electrolyte membrane to a surface substantially perpendicular to the fiber axis of the microstructure material according to the present invention.

[2.1. 微細構造材料]
微細構造材料は、
複数の炭素含有繊維からなり、前記炭素含有繊維の繊維軸が略平行に配列している配列体と、
前記炭素含有繊維の側壁と接触しているアイオノマと、
前記炭素含有繊維及び前記アイオノマが存在していない空隙と、
前記炭素含有繊維の表面と前記アイオノマとの間に担持された触媒金属粒子と
を備えている。
配列体、アイオノマ、空隙及び触媒金属粒子の詳細については、上述した通りであるので、説明を省略する。
[2.1. Microstructure material]
The microstructure material is
An array of a plurality of carbon-containing fibers, wherein the fiber axes of the carbon-containing fibers are arranged substantially in parallel;
An ionomer in contact with a side wall of the carbon-containing fiber;
Voids in which the carbon-containing fiber and the ionomer are not present;
Catalytic metal particles supported between the surface of the carbon-containing fiber and the ionomer.
The details of the array, the ionomer, the voids, and the catalytic metal particles are as described above, and thus the description thereof is omitted.

[2.2. 電解質膜]
電解質膜は、微細構造材料の繊維軸と略垂直な面に接合される。
電解質膜の材料は、特に限定されるものではなく、フッ素系電解質又は炭化水素系電解質のいずれであっても良い。
[2.2. Electrolyte membrane]
The electrolyte membrane is bonded to a surface substantially perpendicular to the fiber axis of the microstructure material.
The material for the electrolyte membrane is not particularly limited, and may be either a fluorine-based electrolyte or a hydrocarbon-based electrolyte.

[2.3. 接合]
電解質膜と微細構造材料を接合する方法としては、
(1)微細構造材料の表面に電解質溶液を塗布して乾燥させる方法、
(2)微細構造材料と電解質膜を重ね合わせ、ホットプレスする方法
などがある。
電解質膜と微細構造材料とを接合する場合において、微細構造材料に過度の圧力が加わらない方法(例えば、塗布法)を用いた時には、微細構造材料の配向構造を備えた膜電極接合体が得られる。
一方、接合時に微細構造材料に過度の圧力が加わる方法(例えば、ホットプレス法)を用いたときには、加圧の程度により微細構造材料の配向構造が崩れる場合がある。しかしながら、このような場合であっても、従来の電極を用いた場合に比べて、高電流密度域におけるセル電圧が向上する。
[2.3. Joining]
As a method of joining the electrolyte membrane and the microstructure material,
(1) A method of applying an electrolyte solution to the surface of a microstructure material and drying it,
(2) There is a method in which a microstructure material and an electrolyte membrane are superposed and hot pressed.
When joining an electrolyte membrane and a fine structure material, when a method that does not apply excessive pressure to the fine structure material (for example, a coating method) is used, a membrane electrode assembly having an oriented structure of the fine structure material is obtained. It is done.
On the other hand, when a method in which an excessive pressure is applied to the fine structure material at the time of joining (for example, a hot press method), the orientation structure of the fine structure material may collapse depending on the degree of pressurization. However, even in such a case, the cell voltage in the high current density region is improved as compared with the case where the conventional electrode is used.

[3. 微細構造材料の製造方法]
本発明に係る微細構造材料の製造方法は、触媒金属粒子担持工程と、アイオノマ溶液含浸工程と、液体CO2添加工程と、超臨界工程と、除去工程とを備えている。
[3. Manufacturing method of microstructure material]
The method for producing a microstructure material according to the present invention includes a catalyst metal particle supporting step, an ionomer solution impregnation step, a liquid CO 2 addition step, a supercritical step, and a removal step.

[3.1. 触媒金属粒子担持工程]
触媒金属粒子担持工程は、複数の炭素含有繊維からなり、前記炭素含有繊維の繊維軸が略平行に配列している配列体に触媒金属粒子を担持させる工程である。なお、微細構造材料の用途によっては、触媒金属粒子担持工程を省略しても良い。
[3.1. Catalyst metal particle loading process]
The catalyst metal particle supporting step is a step of supporting the catalyst metal particles on an array composed of a plurality of carbon-containing fibers and in which the fiber axes of the carbon-containing fibers are arranged substantially in parallel. Depending on the use of the microstructure material, the catalyst metal particle supporting step may be omitted.

配列体は、種々の方法により製造することができる。
例えば、配列体が垂直配向CNTである場合、垂直配向CNTは、基板表面に微細な触媒(例えば、Fe−Ti−O系触媒)を密に担持させ、基板表面に炭素源を導入し、炭素源を熱分解させることにより製造することができる。
また、例えば、配列体が垂直配向CNFである場合、垂直配向CNFは、基板表面にNi系触媒を蒸着し、基板表面に炭素源(例えば、メタンなどの炭化水素ガス)を導入するプラズマ支援化学気相成長法により製造することができる。
The array can be produced by various methods.
For example, when the array is a vertically aligned CNT, the vertically aligned CNT has a fine catalyst (for example, an Fe—Ti—O-based catalyst) densely supported on the substrate surface, introduces a carbon source on the substrate surface, and carbon It can be produced by pyrolyzing the source.
In addition, for example, when the array is vertically aligned CNF, the vertically aligned CNF deposits a Ni-based catalyst on the substrate surface and introduces a carbon source (for example, a hydrocarbon gas such as methane) to the substrate surface. It can be manufactured by a vapor deposition method.

また、触媒金属粒子を担持させた配列体は、例えば、
(1)貴金属錯体(例えば、白金ジニトロジアンミン錯体)及びナフタレンのエタノール溶液を配列体に含浸させ、
(2)配列体にナフタレンの貧溶媒である水を滴下して繊維間にナフタレン微粒子を析出させ、
(3)配列体を減圧してエタノール及び水の蒸発、並びに、ナフタレンの昇華を行い、
(4)貴金属を還元する
方法(以下、これを「ナフタレン法」という)により製造することができる。
The array on which the catalytic metal particles are supported is, for example,
(1) An array is impregnated with an ethanol solution of a noble metal complex (for example, platinum dinitrodiammine complex) and naphthalene,
(2) Water, which is a poor solvent for naphthalene, is dropped into the array to precipitate naphthalene fine particles between the fibers,
(3) Depressurize the array to evaporate ethanol and water, and sublimate naphthalene;
(4) It can be produced by a method of reducing a noble metal (hereinafter referred to as “naphthalene method”).

あるいは、気相法により配列体の炭素含有繊維の表面に触媒金属粒子を担持させることもできる。気相法としては、例えば、真空チャンバー内に触媒金属のターゲットを設置し、高電圧の印加によってイオン化させた希ガス元素(例えば、Ar)をターゲットに衝突させて、ターゲットから弾き飛ばされた触媒金属を配列体に堆積させる方法(スパッタリング法)などがある。   Alternatively, catalytic metal particles can be supported on the surface of the carbon-containing fibers of the array by a vapor phase method. As the gas phase method, for example, a catalyst metal target is installed in a vacuum chamber, a rare gas element (for example, Ar) ionized by application of a high voltage is collided with the target, and the catalyst is blown off from the target. There is a method of depositing metal on the array (sputtering method).

[3.2. アイオノマ溶液含浸工程]
アイオノマ溶液含浸工程は、複数の炭素含有繊維からなり、前記炭素含有繊維の繊維軸が略平行に配列している配列体に、アイオノマを溶媒に溶解させた溶液を接触させる工程である。
[3.2. Ionomer solution impregnation process]
The ionomer solution impregnation step is a step of bringing a solution in which an ionomer is dissolved in a solvent into contact with an array composed of a plurality of carbon-containing fibers and in which the fiber axes of the carbon-containing fibers are arranged substantially in parallel.

アイオノマを溶解させる溶媒は、特に限定されるものではなく、目的に応じて最適な溶媒を選択することができる。炭素含有繊維は、通常、疎水性であるので、溶媒には、エタノール、プロパノール、シクロヘキサノールなどを用いるのが好ましい。   The solvent for dissolving the ionomer is not particularly limited, and an optimum solvent can be selected according to the purpose. Since carbon-containing fibers are usually hydrophobic, it is preferable to use ethanol, propanol, cyclohexanol or the like as the solvent.

アイオノマ溶液中のアイオノマ濃度は、特に限定されるものではなく、目的に応じて最適な濃度を選択することができる。一般に、アイオノマ濃度が高くなるほど、炭素含有繊維表面に担持されるアイオノマ量が多くなる。但し、アイオノマ濃度が過剰になると、配列体表面にアイオノマが厚く堆積する場合がある。
従って、アイオノマ濃度は、10重量%以下が好ましい。アイオノマ濃度は、さらに好ましくは5重量%以下、さらに好ましくは1重量%以下である。
The ionomer concentration in the ionomer solution is not particularly limited, and an optimum concentration can be selected according to the purpose. In general, the higher the ionomer concentration, the greater the amount of ionomer supported on the carbon-containing fiber surface. However, if the ionomer concentration becomes excessive, the ionomer may be deposited thickly on the surface of the array.
Therefore, the ionomer concentration is preferably 10% by weight or less. The ionomer concentration is more preferably 5% by weight or less, and still more preferably 1% by weight or less.

配列体とアイオノマ溶液とを接触させる方法としては、
(1)配列体表面に適量のアイオノマ溶液を滴下し、繊維間にアイオノマ溶液を浸透させる方法、
(2)配列体を適量のアイオノマ溶液中に浸漬する方法、
などがある。本発明においては、いずれの方法を用いても良い。
アイオノマ溶液との接触は、超臨界処理に用いられる密閉容器内で行っても良く、あるいは、別個の容器内で行っても良い。
また、超臨界処理に用いられる密閉容器内で配列体とアイオノマ溶液との接触を行う場合において、過剰のアイオノマ溶液が密閉容器内に残っているときには、過剰のアイオノマ溶液が残った状態のまま次工程に移行しても良く、あるいは、過剰のアイオノマ溶液を廃棄した後で次工程に移行しても良い。
As a method of contacting the array and the ionomer solution,
(1) A method of dripping an appropriate amount of ionomer solution onto the surface of the array and allowing the ionomer solution to penetrate between the fibers;
(2) A method of immersing the array in an appropriate amount of ionomer solution,
and so on. Any method may be used in the present invention.
The contact with the ionomer solution may be performed in a closed container used for supercritical processing, or may be performed in a separate container.
In the case where the array and the ionomer solution are contacted in a closed container used for supercritical processing, if the excess ionomer solution remains in the sealed container, the next step is to leave the excess ionomer solution remaining. You may transfer to a process, or you may transfer to the next process, after discarding an excess ionomer solution.

[3.3. 液体CO2添加工程]
液体CO2添加工程は、密閉容器内に前記配列体及び大過剰の液体CO2を入れ、前記配列体を前記液体CO2に浸漬する工程である。
アイオノマ溶液と接触している配列体に、アイオノマの貧溶媒である液体CO2を添加すると、アイオノマ溶液と液体CO2が相溶し、炭素含有繊維の表面にアイオノマが析出する。また、これと同時に、炭素含有繊維間に残存している溶媒の全部又は一部が液体CO2で置換される。
ここで、「大過剰」とは、密閉容器内にあるアイオノマ溶液からアイオノマを析出させることができ、かつ、炭素含有繊維の非凝集率が20%超となるように炭素含有繊維間に侵入している溶媒の全部又は一部を除去することができる下限量以上の量をいう。
[3.3. Liquid CO 2 addition process]
The liquid CO 2 addition step is a step in which the array body and a large excess of liquid CO 2 are placed in an airtight container and the array body is immersed in the liquid CO 2 .
When liquid CO 2 , which is a poor solvent for ionomer, is added to the array in contact with the ionomer solution, the ionomer solution and liquid CO 2 are compatible with each other, and ionomer is deposited on the surface of the carbon-containing fiber. At the same time, all or part of the solvent remaining between the carbon-containing fibers is replaced with liquid CO 2 .
Here, “large excess” means that the ionomer can be precipitated from the ionomer solution in the sealed container, and the carbon-containing fiber penetrates between the carbon-containing fibers so that the non-aggregation rate exceeds 20%. An amount equal to or higher than the lower limit amount capable of removing all or a part of the solvent.

[3.4. 超臨界工程]
超臨界工程は、前記密閉容器内を温度:31℃以上、圧力:7.4MPa以上にし、前記液体CO2を超臨界化させる工程である。
液体CO2を超臨界CO2とすると、その表面張力は、液体CO2やアイオノマ溶液の溶媒より小さくなる。
液体CO2を超臨界CO2とするためには、密閉容器内を温度:31℃以上、圧力:7.4MPa以上にする必要がある。但し、必要以上の温度上昇及び/又は圧力の付与は、効果に差が無く、実益がない。
[3.4. Supercritical process]
The supercritical process is a process of making the liquid CO 2 supercritical by setting the inside of the sealed container to a temperature of 31 ° C. or higher and a pressure of 7.4 MPa or higher.
When the liquid CO 2 is supercritical CO 2 , its surface tension is smaller than that of the liquid CO 2 or the solvent of the ionomer solution.
In order to change the liquid CO 2 to supercritical CO 2 , it is necessary to set the temperature in the sealed container to 31 ° C. or higher and the pressure to 7.4 MPa or higher. However, an increase in temperature and / or application of pressure more than necessary does not have a difference in effect and has no actual benefit.

[3.4. 除去工程]
除去工程は、前記密閉容器内から超臨界CO2を除去する工程である。
超臨界CO2の除去は、密閉容器内の温度を一定に保った状態で、圧力を常圧まで下げることにより行う。
炭素含有繊維間の液体CO2を超臨界CO2とした後、圧力を下げると、超臨界CO2が液体CO2に戻ることなく繊維間の超臨界CO2がそのまま気化する。この点が、従来とは異なる。超臨界CO2は表面張力が小さいので、液体CO2をそのまま気化させる場合に比べて、炭素含有繊維の非凝集率が高くなる。
[3.4. Removal process]
The removing step is a step of removing supercritical CO 2 from the sealed container.
Supercritical CO 2 is removed by lowering the pressure to normal pressure while keeping the temperature in the sealed container constant.
After the liquid CO 2 between the carbon-containing fibers with supercritical CO 2, lowering the pressure, the supercritical CO 2 between fibers is vaporized directly without supercritical CO 2 is returned to the liquid CO 2. This point is different from the conventional one. Since supercritical CO 2 has a low surface tension, the non-aggregation rate of the carbon-containing fiber is higher than when vaporizing liquid CO 2 as it is.

[4. 微細構造材料及びその製造方法、並びに、燃料電池用膜電極接合体の作用]
炭素含有繊維(特に、CNT)は、繊維外径が太くなると電子状態がグラファイトに近づくが、外径が細くなると固有の電子状態を持つようになる。そのため、繊維外径の細い炭素含有繊維を、例えば、燃料電池用の電極の触媒担体に用いた場合には、電子移動性の向上が期待できる。また、繊維外径が細い方が反応界面積の拡大や燃料電池装置の小型化に有利である。
しかしながら、繊維外径が10nm未満である炭素含有繊維からなる配列体に対し、アイオノマ溶液の含浸・乾燥によりアイオノマを担持させると、溶媒が揮発する際に繊維間の凝集が起こる。
[4. Microstructure material, manufacturing method thereof, and action of membrane electrode assembly for fuel cell]
Carbon-containing fibers (particularly CNTs) have an electronic state close to that of graphite when the fiber outer diameter is thick, but have a unique electronic state when the outer diameter is thin. Therefore, when a carbon-containing fiber having a small fiber outer diameter is used as, for example, a catalyst carrier of an electrode for a fuel cell, an improvement in electron mobility can be expected. In addition, a thinner fiber outer diameter is advantageous for increasing the reaction interface area and reducing the size of the fuel cell device.
However, when an ionomer is supported on an array of carbon-containing fibers having an outer fiber diameter of less than 10 nm by impregnation and drying with an ionomer solution, aggregation between fibers occurs when the solvent volatilizes.

これに対し、本発明に係る方法を用いると、炭素含有繊維の繊維外径が10nm未満であっても配列体の配向構造を壊すことなく、炭素含有繊維の表面にアイオノマを担持させることができる。これは、以下の理由によると考えられる。
すなわち、配列体とアイオノマ溶液とが接触している状態で、アイオノマの貧溶媒である液体CO2を加えると、アイオノマが炭素含有繊維の表面に析出すると同時に、炭素含有繊維間に液体CO2が侵入する。この状態で、密閉容器内を所定の温度及び圧力にすると、繊維間の液体CO2が超臨界CO2となる。超臨界CO2は、液体CO2やアイオノマ溶液の溶媒に比べて表面張力が小さいので、超臨界CO2を液体CO2に戻すことなく繊維間から超臨界CO2を除去すると、繊維の凝集が抑制される。その結果、配列体の配向構造を壊すことなく、炭素含有繊維の表面にアイオノマを担持させることができる。
On the other hand, when the method according to the present invention is used, the ionomer can be supported on the surface of the carbon-containing fiber without breaking the orientation structure of the array even if the fiber outer diameter of the carbon-containing fiber is less than 10 nm. . This is considered to be due to the following reason.
That is, when liquid CO 2 , which is a poor solvent for ionomer, is added while the array is in contact with the ionomer solution, the ionomer is deposited on the surface of the carbon-containing fiber, and at the same time, the liquid CO 2 is formed between the carbon-containing fibers. invade. In this state, when the inside of the sealed container is set to a predetermined temperature and pressure, the liquid CO 2 between the fibers becomes supercritical CO 2 . Supercritical CO 2 has a smaller surface tension than liquid CO 2 or the solvent of ionomer solution. Therefore, if supercritical CO 2 is removed from between the fibers without returning the supercritical CO 2 to liquid CO 2 , fiber agglomeration occurs. It is suppressed. As a result, the ionomer can be supported on the surface of the carbon-containing fiber without breaking the orientation structure of the array.

さらに、凝集が緩和された微細構造材料をカソード触媒層に用いた膜電極接合体は、凝集が激しい微細構造材料を用いた場合よりも発電特性に優れている。これは、酸素ガスやプロトン等の移動性が改善されたためと考えられる。   Furthermore, a membrane electrode assembly using a microstructure material with relaxed aggregation for the cathode catalyst layer has better power generation characteristics than when a microstructure material with severe aggregation is used. This is thought to be due to the improved mobility of oxygen gas, protons, and the like.

(実施例1〜2、比較例1)
[1. 試料の作製]
[1.1 垂直配向CNTの作製]
垂直配向CNTは、文献(特開2007−268319号公報)に記載されている手法に従って作製した。Fe−Ti−O触媒微粒子を担持した1cm四方のSi基板を触媒基板とし、熱化学気相成長(CVD)法により垂直配向CNT膜を作製した。CVD条件は、水素流量:45sccm、アセチレン流量:30sccm、温度:600℃、圧力:400MPaとした。
図2に、得られた垂直配向CNTの側面(劈開断面)の電界放射型走査電子顕微鏡(FESEM)像を示す。図2より、CNTのチューブ外径は約5nm以上10nm未満で、波型形状(波長:数100nm〜1μm)を有するCNTと直線状のCNTとが混在していた。
(Examples 1-2, Comparative Example 1)
[1. Preparation of sample]
[1.1 Fabrication of vertically aligned CNT]
Vertically aligned CNTs were produced according to the technique described in the literature (Japanese Patent Laid-Open No. 2007-268319). A vertically aligned CNT film was prepared by thermal chemical vapor deposition (CVD) using a 1 cm square Si substrate carrying Fe—Ti—O catalyst fine particles as a catalyst substrate. The CVD conditions were as follows: hydrogen flow rate: 45 sccm, acetylene flow rate: 30 sccm, temperature: 600 ° C., pressure: 400 MPa.
FIG. 2 shows a field emission scanning electron microscope (FESEM) image of the side surface (cleavage cross section) of the obtained vertically aligned CNT. From FIG. 2, the tube outer diameter of the CNT was about 5 nm or more and less than 10 nm, and CNT having a wave shape (wavelength: several 100 nm to 1 μm) and linear CNT were mixed.

[1.2. アイオノマの担持]
[1.2.1. 実施例1]
市販アイオノマ溶液(ナフィオン(登録商標)溶液DE2020、デュポン社製、アイオノマ濃度20〜22wt%)をエタノールに溶解し、アイオノマ濃度約0.5wt%のアイオノマ溶液を作製した。次に、この溶液を垂直配向CNT(膜厚:150〜200μm)に30μL含浸させた。試料を耐圧容器に入れた後、容器内に液体CO2を導入した。続いて、容器内を約37℃、かつ約7.5MPaとして、液体CO2を超臨界化した後、容器内から超臨界CO2を除去した。
[1.2. Ionoma carrying]
[1.2.1. Example 1]
A commercially available ionomer solution (Nafion (registered trademark) solution DE2020, manufactured by DuPont, ionomer concentration 20 to 22 wt%) was dissolved in ethanol to prepare an ionomer solution having an ionomer concentration of about 0.5 wt%. Next, 30 μL of this solution was impregnated into vertically aligned CNT (film thickness: 150 to 200 μm). After putting the sample in a pressure vessel, liquid CO 2 was introduced into the vessel. Subsequently, the inside of the container was set to about 37 ° C. and about 7.5 MPa to supercriticalize liquid CO 2, and then supercritical CO 2 was removed from the inside of the container.

[1.2.2. 実施例2]
アイオノマ濃度約5wt%のアイオノマ溶液を作製した以外は、実施例1と同様にして、垂直配向CNTにアイオノマを担持させた。
[1.2.3. 比較例1]
実施例1と同様にして、アイオノマ濃度約0.5wt%のアイオノマ溶液を作製した。次に、この溶液を垂直配向CNT(膜厚:150〜200μm)に30μL含浸させた。続いて、大気中で溶媒を自然蒸発させた。
[1.2.2. Example 2]
Except for producing an ionomer solution having an ionomer concentration of about 5 wt%, the ionomer was supported on the vertically aligned CNT in the same manner as in Example 1.
[1.2.3. Comparative Example 1]
In the same manner as in Example 1, an ionomer solution having an ionomer concentration of about 0.5 wt% was prepared. Next, 30 μL of this solution was impregnated into vertically aligned CNT (film thickness: 150 to 200 μm). Subsequently, the solvent was naturally evaporated in the atmosphere.

[2. 試験方法]
[2.1. FESEM観察]
アイオノマ担持垂直配向CNTの表面、表面端部、及び、劈開断面をFESEMで観察した。
[2.2. EDX分析]
アイオノマ担持垂直配向CNTの劈開断面を、エネルギー分散型X線分光法(EDX)によって分析した。
[2. Test method]
[2.1. FESEM observation]
The surface of the ionomer-supported vertically aligned CNT, the surface edge, and the cleaved cross section were observed with FESEM.
[2.2. EDX analysis]
The cleavage cross section of the ionomer-supported vertically aligned CNT was analyzed by energy dispersive X-ray spectroscopy (EDX).

[3. 結果]
[3.1. FESEM観察]
実施例1〜2及び比較例1で作製したアイオノマ担持垂直配向CNTの形態を、各々、FESEMで観察した。図3に、各試料の表面(左列)、表面端部(中列)、及び、劈開断面(右列)のFESEM像を示す。
実施例1の試料では、数μm程度の大きさの細孔を有していたが、凝集が少なく垂直配向性が維持されていた(図3(a))。細孔は、アイオノマ溶液含浸時の凝集によって形成されたと推定される。垂直配向CNTの繊維軸方向と垂直な断面において、細孔の面積は、全面積の1%以下であった(非凝集率:99%超)。微視的尺度では、隣接するアイオノマ担持CNT間の接触箇所や約500nmまでの間隔で空隙によって隔てられている箇所があった(図3(c))。
[3. result]
[3.1. FESEM observation]
The forms of the ionomer-supported vertically aligned CNTs produced in Examples 1 and 2 and Comparative Example 1 were each observed with FESEM. FIG. 3 shows FESEM images of the surface (left column), surface end (middle column), and cleaved cross section (right column) of each sample.
The sample of Example 1 had pores with a size of several μm, but the aggregation was small and the vertical alignment was maintained (FIG. 3A). It is presumed that the pores were formed by agglomeration during impregnation with the ionomer solution. In the cross section perpendicular to the fiber axis direction of the vertically aligned CNTs, the area of the pores was 1% or less of the total area (non-aggregation rate: more than 99%). On a microscopic scale, there were contact points between adjacent ionomer-carrying CNTs and parts separated by gaps at intervals of up to about 500 nm (FIG. 3C).

実施例2の試料でも、凝集が少なく垂直配向性が維持されていた(図3(d))。また、膜状アイオノマが析出して垂直配向CNT上部を覆っていた(図3(e))。
比較例1の試料では、溶媒蒸発時に働く表面張力によってCNTが激しく凝集して網目状組織が形成されていた(図3(g))。この網目状組織では、アイオノマ担持垂直配向CNTの繊維軸方向と垂直な断面において、アイオノマ担持垂直配向CNTの端部からなる壁最上部の面積は全面積の約15%を占めていた(非凝集率:約15%)。
Even in the sample of Example 2, the vertical alignment was maintained with little aggregation (FIG. 3D). Further, a film-like ionomer was deposited to cover the upper part of the vertically aligned CNT (FIG. 3 (e)).
In the sample of Comparative Example 1, CNTs aggregated vigorously due to the surface tension acting during solvent evaporation to form a network structure (FIG. 3 (g)). In this network structure, in the cross section perpendicular to the fiber axis direction of the ionomer-supported vertically aligned CNT, the area of the uppermost wall composed of the end portions of the ionomer-supported vertically aligned CNT occupied about 15% of the total area (non-aggregated) Rate: about 15%).

[3.2. EDX分析]
図4に、実施例1で作製したアイオノマ担持垂直配向CNTの劈開断面のFESEM像(左図)、並びに、断面FESEM像の上部(右上図)、中央部(右中図)及び下部(右下図)から得られたEDXスペクトルを示す。
図4より、試料の劈開断面の上部、中央部及び下部のいずれからもアイオノマ中に含まれるフッ素(F)が検出されていることがわかる。
[3.2. EDX analysis]
FIG. 4 shows an FESEM image (left figure) of the cleaved cross section of the ionomer-supported vertically aligned CNT produced in Example 1, and an upper part (upper right figure), a central part (middle right figure), and a lower part (lower right figure) of the sectional FESEM image. The EDX spectrum obtained from FIG.
FIG. 4 shows that fluorine (F) contained in the ionomer is detected from any of the upper part, the central part, and the lower part of the cleavage cross section of the sample.

(実施例3、比較例2)
[1. 試料の作製]
[1.1. Pt及びアイオノマ担持垂直配向CNT]
[1.1.1. 実施例3]
実施例1で得られたアイオノマ濃度0.5wt%のアイオノマ溶液をPt担持垂直配向CNT(膜厚:40〜60μm、Pt粒径<5nm、Pt担持量:0.04〜0.06mg)に30μL含浸させた。試料を耐圧容器に入れた後、容器内に液体CO2を導入した。続いて、容器内を約37℃、かつ約7.5MPaとして液体CO2を超臨界化した後、容器内から超臨界CO2を除去した。
(Example 3, Comparative Example 2)
[1. Preparation of sample]
[1.1. Vertically aligned CNT supported on Pt and ionomer]
[1.1.1. Example 3]
30 μL of the ionomer solution having an ionomer concentration of 0.5 wt% obtained in Example 1 was added to Pt-supported vertically aligned CNT (film thickness: 40 to 60 μm, Pt particle size <5 nm, Pt support amount: 0.04 to 0.06 mg). Impregnated. After putting the sample in a pressure vessel, liquid CO 2 was introduced into the vessel. Subsequently, after supercriticalizing the liquid CO 2 at about 37 ° C. and about 7.5 MPa, the supercritical CO 2 was removed from the container.

[1.1.2. 比較例2]
実施例1で得られたアイオノマ濃度0.5wt%のアイオノマ溶液をPt担持垂直配向CNT(膜厚:40〜60μm、Pt粒径<5nm、Pt担持量:0.04〜0.06mg)に30μL含浸させた。続いて、大気中で溶媒を自然蒸発させた。
[1.1.2. Comparative Example 2]
30 μL of the ionomer solution having an ionomer concentration of 0.5 wt% obtained in Example 1 was added to Pt-supported vertically aligned CNT (film thickness: 40 to 60 μm, Pt particle size <5 nm, Pt support amount: 0.04 to 0.06 mg). Impregnated. Subsequently, the solvent was naturally evaporated in the atmosphere.

[1.2. 燃料電池用膜電極接合体]
実施例3及び比較例2で作製したPt及びアイオノマ担持垂直配向CNTを、それぞれカソード触媒層として含む燃料電池用膜電極接合体(MEA)を作製した。Pt及びアイオノマ担持垂直配向CNTと電解質膜とは、熱圧着(120℃、50kgf/cm2(4.9MPa))によって接合させ、チューブ軸が電解質膜に対して略垂直に配向し、かつ、チューブ端が電解質膜と接合するように、Pt及びアイオノマ担持垂直配向CNTを配置した。アノード触媒層には、Pt/C+アイオノマからなる従来の触媒層を用いた。
[1.2. Membrane electrode assembly for fuel cells]
Membrane electrode assemblies (MEA) for fuel cells each containing the Pt and ionomer-supported vertically aligned CNTs produced in Example 3 and Comparative Example 2 as cathode catalyst layers were produced. The vertically aligned CNTs supporting Pt and ionomer and the electrolyte membrane are joined by thermocompression bonding (120 ° C., 50 kgf / cm 2 (4.9 MPa)), the tube axis is oriented substantially perpendicular to the electrolyte membrane, and the tube Pt and ionomer-supporting vertically aligned CNTs were arranged so that the ends were joined to the electrolyte membrane. As the anode catalyst layer, a conventional catalyst layer made of Pt / C + ionomer was used.

[2. 試験方法及び結果]
各MEAの発電性能として、電流−電圧特性(I−V特性)を評価した。セル温度:80℃、アノード極雰囲気:H2、カソード極雰囲気:大気(21%O2)、両極の圧力:0.14MPaとした。
図5に、I−V特性を示す。図5中、実線はセル電圧を表し、破線は抵抗を表す。図5より、比較例2で作製したカソード触媒層を用いたMEAと比べ、実施例3で作製したカソード触媒層を用いたMEAでは、高電流域のセル電圧が高く、発電性能が優れていることがわかる。
[2. Test method and results]
Current-voltage characteristics (IV characteristics) were evaluated as the power generation performance of each MEA. Cell temperature: 80 ° C., anode electrode atmosphere: H 2 , cathode electrode atmosphere: air (21% O 2 ), pressure at both electrodes: 0.14 MPa.
FIG. 5 shows the IV characteristics. In FIG. 5, the solid line represents the cell voltage, and the broken line represents the resistance. FIG. 5 shows that the MEA using the cathode catalyst layer prepared in Example 3 has a higher cell voltage in the high current region and the power generation performance is superior to the MEA using the cathode catalyst layer prepared in Comparative Example 2. I understand that.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

本発明に係る微細構造材料及びその製造方法は、燃料電池用膜電極接合体の触媒層及びその製造方法として使用することができる。   The microstructure material and the manufacturing method thereof according to the present invention can be used as a catalyst layer of a membrane electrode assembly for a fuel cell and a manufacturing method thereof.

Claims (5)

以下の構成を備えた微細構造材料。
(1)前記微細構造材料は、
基板表面に形成された、複数の炭素含有繊維からなり、前記炭素含有繊維の繊維軸が略平行に配列している配列体と、
前記炭素含有繊維の側壁と接触しているアイオノマと、
前記炭素含有繊維及び前記アイオノマが存在していない空隙と
を備え、
前記アイオノマは、イオン交換基を備えた高分子材料からなる
(2)前記配列体の繊維軸方向と略垂直な任意の断面において、隣接する前記炭素含有繊維同士の距離が1μm未満である領域の面積の総和が全断面積の50%以上である
(3)前記炭素含有繊維は、その繊維外径が0.4nm以上10nm未満である。
A microstructure material with the following structure.
(1) The microstructure material is
Formed on the substrate surface, consisting of carbon containing fibers for several, and array of fiber axis of the carbon-containing fibers are arranged substantially parallel to,
An ionomer in contact with a side wall of the carbon-containing fiber;
E Bei and the gap does not exist carbon-containing fibers and the ionomer,
The ionomer is made of a polymer material having an ion exchange group .
(2) In an arbitrary cross section substantially perpendicular to the fiber axis direction of the array, the total area of regions where the distance between adjacent carbon-containing fibers is less than 1 μm is 50% or more of the total cross-sectional area.
(3) The carbon-containing fiber has a fiber outer diameter of 0.4 nm or more and less than 10 nm.
前記炭素含有繊維は、1層の筒状グラフェンからなる単層カーボンナノチューブ又は2層以上の前記筒状グラフェンが入れ子状に重なっている多層カーボンナノチューブを含む請求項1に記載の微細構造材料。   2. The microstructure material according to claim 1, wherein the carbon-containing fiber includes a single-walled carbon nanotube made of one layer of cylindrical graphene or a multi-walled carbon nanotube in which two or more layers of the cylindrical graphene are nested. 前記炭素含有繊維の表面と前記アイオノマとの間に、触媒金属粒子が担持されている請求項1又は2に記載の微細構造材料。   The microstructure material according to claim 1 or 2, wherein catalytic metal particles are supported between a surface of the carbon-containing fiber and the ionomer. 請求項3に記載の微細構造材料の繊維軸と略垂直な面に電解質膜を接合することにより得られる燃料電池用膜電極接合体。   A membrane electrode assembly for a fuel cell obtained by joining an electrolyte membrane to a surface substantially perpendicular to the fiber axis of the microstructure material according to claim 3. 以下の構成を備えた微細構造材料の製造方法。
(1)基板表面に形成された、複数の炭素含有繊維からなり、前記炭素含有繊維の繊維軸が略平行に配列している配列体に、イオン交換基を備えた高分子材料からなるアイオノマを溶媒に溶解させた溶液を接触させるアイオノマ溶液含浸工程。
(2)密閉容器内に前記配列体及び大過剰の液体CO2を入れ、前記配列体を前記液体CO2に浸漬する液体CO2添加工程。
但し、「大過剰」とは、前記密閉容器内にある前記アイオノマ溶液から前記アイオノマを析出させることができ、かつ、前記炭素含有繊維の非凝集率(=前記配列体の繊維軸方向と略垂直な任意の断面において、全断面積に対する隣接する前記炭素含有繊維同士の距離が1μm未満である領域の面積の総和の割合)が50%以上となるように前記炭素含有繊維間に侵入している前記溶媒の全部又は一部を除去することができる下限量以上の量をいう。
(3)前記密閉容器内を温度:31℃以上、圧力:7.4MPa以上にし、前記液体CO2を超臨界化させる超臨界工程。
(4)前記密閉容器内から超臨界CO2を除去する除去工程。
A manufacturing method of a microstructure material having the following configuration.
(1) formed on the substrate surface, a plurality of carbon-containing fibers, the fiber axis is arranged body are substantially parallel arrangement of the carbon-containing fibers, A ionomers made of a polymer material having an ion exchange group An ionomer solution impregnation step in which a solution obtained by dissolving a sol is dissolved in a solvent.
(2) sealing the putting array and a large excess of liquid CO 2 into the container, the liquid CO 2 addition step of immersing the array in the liquid CO 2.
However, “large excess” means that the ionomer can be precipitated from the ionomer solution in the closed container, and the non-aggregation rate of the carbon-containing fibers (= substantially perpendicular to the fiber axis direction of the arrayed body). In any arbitrary cross section, the carbon-containing fibers penetrate between the carbon-containing fibers so that the ratio of the total area of the regions where the distance between the adjacent carbon-containing fibers to the entire cross-sectional area is less than 1 μm is 50% or more. The amount is equal to or higher than the lower limit amount capable of removing all or part of the solvent.
(3) A supercritical process in which the inside of the closed container is temperature: 31 ° C. or higher, pressure: 7.4 MPa or higher, and the liquid CO 2 is made supercritical.
(4) A removal step of removing supercritical CO 2 from the sealed container.
JP2011162516A 2011-07-25 2011-07-25 MICROSTRUCTURE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL Active JP5831009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162516A JP5831009B2 (en) 2011-07-25 2011-07-25 MICROSTRUCTURE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162516A JP5831009B2 (en) 2011-07-25 2011-07-25 MICROSTRUCTURE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL

Publications (2)

Publication Number Publication Date
JP2013026158A JP2013026158A (en) 2013-02-04
JP5831009B2 true JP5831009B2 (en) 2015-12-09

Family

ID=47784244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162516A Active JP5831009B2 (en) 2011-07-25 2011-07-25 MICROSTRUCTURE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL

Country Status (1)

Country Link
JP (1) JP5831009B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5408209B2 (en) * 2011-08-30 2014-02-05 トヨタ自動車株式会社 Catalyst production method, fuel cell electrode catalyst produced by the method, and catalyst production apparatus
CN105209383B (en) * 2013-03-01 2018-07-06 国立大学法人东京大学 Film and its manufacturing method comprising the single-layer carbon nano-tube with extensive part and sparse part and material and its manufacturing method with the film
CN104609405B (en) * 2015-01-09 2017-03-15 上海大学 A kind of preparation method of vertical array graphene film
JP2019151510A (en) * 2018-03-01 2019-09-12 日立造船株式会社 Method for producing carbon nanotube composite and method for producing porous metal material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110836B2 (en) * 2006-09-11 2012-12-26 独立行政法人物質・材料研究機構 Catalyst electrode for fuel cell, membrane / electrode assembly using the same, and fuel cell
JP5130778B2 (en) * 2007-04-23 2013-01-30 トヨタ自動車株式会社 Manufacturing method of membrane electrode assembly
JP5412848B2 (en) * 2009-01-27 2014-02-12 株式会社豊田中央研究所 Manufacturing method of microstructure material
JP5417038B2 (en) * 2009-05-25 2014-02-12 トヨタ自動車株式会社 Method for producing catalyst electrode used for membrane electrode assembly, catalyst electrode used for membrane electrode assembly, method for producing membrane electrode assembly, membrane electrode assembly, and fuel cell

Also Published As

Publication number Publication date
JP2013026158A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
Hu et al. Enhanced Electrocatalysis via 3D Graphene Aerogel Engineered with a Silver Nanowire Network for Ultrahigh‐Rate Zinc–Air Batteries
JP5108240B2 (en) Fuel cell and fuel cell manufacturing method
US8333948B2 (en) Carbon nanotube for fuel cell, nanocomposite comprising the same, method for making the same, and fuel cell using the same
US7351444B2 (en) Low platinum fuel cell catalysts and method for preparing the same
US7842432B2 (en) Nanowire structures comprising carbon
KR101071778B1 (en) Fabrication method of Nano Structured Surface(NSS) on Proton Exchange Membrane(PEM) and Membrane Electrode Assembly(MEA) for Fuel Cells
KR101287891B1 (en) Method for manufacturing catalyst for fuel cell
US20050112450A1 (en) Low platinum fuel cell catalysts and method for preparing the same
US11271220B2 (en) Multilayer structure incorporating a mat of carbon nanotubes as diffusion layer in a PEMFC
CN104916853B (en) The conformal thin-film of noble metal on carrier
JP5110836B2 (en) Catalyst electrode for fuel cell, membrane / electrode assembly using the same, and fuel cell
US20080008925A1 (en) Applications of double-walled nanotubes
Atwa et al. Scalable nanoporous carbon films allow line-of-sight 3D atomic layer deposition of Pt: towards a new generation catalyst layer for PEM fuel cells
JP2010272437A (en) Method of manufacturing catalyst electrode used for membrane electrode conjugant, catalyst electrode used for membrane electrode conjugant, method of manufacturing membrane electrode conjugant, membrane electrode conjugant, and fuel cell
JP5831009B2 (en) MICROSTRUCTURE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL
Prehn et al. Catalytically active CNT–polymer-membrane assemblies: From synthesis to application
WO2013073641A1 (en) Substrate with substantially vertically aligned carbon nanotubes
CN103259023A (en) Preparation method of hydrogen cell electrode material
JPWO2013065396A1 (en) Membrane / electrode assembly for fuel cells
Jafri et al. Multi walled carbon nanotubes based micro direct ethanol fuel cell using printed circuit board technology
Soehn et al. Design of gas diffusion electrodes using nanocarbon
WO2012039305A1 (en) Carbon nanotube production method
JP5074662B2 (en) Method and apparatus for producing catalyst layer for fuel cell
JP2010027574A (en) Electrode for fuel cell, and manufacturing method of electrode for fuel cell
JP5052314B2 (en) Electrode for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R150 Certificate of patent or registration of utility model

Ref document number: 5831009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150