JP5829956B2 - Method and system for controlling microbial reaction in bottom soil - Google Patents

Method and system for controlling microbial reaction in bottom soil Download PDF

Info

Publication number
JP5829956B2
JP5829956B2 JP2012058694A JP2012058694A JP5829956B2 JP 5829956 B2 JP5829956 B2 JP 5829956B2 JP 2012058694 A JP2012058694 A JP 2012058694A JP 2012058694 A JP2012058694 A JP 2012058694A JP 5829956 B2 JP5829956 B2 JP 5829956B2
Authority
JP
Japan
Prior art keywords
electrode
soil
potential
microbial reaction
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012058694A
Other languages
Japanese (ja)
Other versions
JP2013188727A (en
Inventor
嘉之 上野
嘉之 上野
洋二 北島
洋二 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2012058694A priority Critical patent/JP5829956B2/en
Priority to PCT/JP2013/056385 priority patent/WO2013137122A1/en
Publication of JP2013188727A publication Critical patent/JP2013188727A/en
Application granted granted Critical
Publication of JP5829956B2 publication Critical patent/JP5829956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/28CH4
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

本発明は水底土壌の微生物反応制御方法及びシステムに関し、とくに水底の嫌気性土壌中の微生物反応を電気化学的に制御する方法及びシステムに関する。   The present invention relates to a microbial reaction control method and system for bottom soil, and more particularly, to a method and system for electrochemically controlling a microbial reaction in bottom anaerobic soil.

地球の大気圏温度を上昇させる可能性のある二酸化炭素(CO)、メタン(CH)、亜酸化窒素(NO)その他の温室効果ガス(以下、温暖化ガスということがある)は、人間生活に悪影響を与える洪水・異常気象等の原因になりうるため、その発生量を抑制・削減することが求められている。例えば工業プロセスにおいて発生する温暖化ガスは、投入エネルギーと生産性とを考慮したうえでプロセスの運用方法(運転時間や間隔等)を最適化することで発生量を抑制・削減する努力が図られている。また、工業プロセスにおいて発生した温暖化ガスを例えば触媒等で分解することにより、プロセス全体からの発生量を抑制する技術の開発も進められている。 Carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and other greenhouse gases (hereinafter sometimes referred to as greenhouse gases) that may increase the Earth's atmospheric temperature Since it may cause floods and abnormal weather that adversely affect human life, it is required to reduce or reduce the amount of such occurrences. For example, for greenhouse gases generated in industrial processes, efforts are made to reduce or reduce the generation amount by optimizing the process operation method (operating time, interval, etc.) in consideration of input energy and productivity. ing. In addition, development of a technique for suppressing the amount of generation from the entire process by decomposing the greenhouse gas generated in the industrial process with, for example, a catalyst or the like is also in progress.

温暖化ガスは、工業プロセスだけでなく、湖沼、河川等の自然水域、水田等の農耕作地、下水処理場や廃棄物の処分場・埋立地その他の自然的環境からも相当量が発生している。工業プロセスで発生する温暖化ガスは主に燃焼・改質等の物理化学的反応で発生するのに対し、自然的環境等で発生する温暖化ガスは主に微生物反応を起源としている。例えば湖沼・河川等では、周辺地域から流入する廃水中に含まれる汚染物質(有機物や窒素系化合物等)が水底で嫌気的に微生物分解されることで温暖化ガスが発生する。このため、湖沼・河川等に流入する廃水に対して適切な廃水処理を施して有機物等の汚染物質を除去することにより温暖化ガスの発生量を抑制・削減する努力が図られている。また、水田等では嫌気的な水底に堆積した有機物が微生物に分解されてメタンが発生する。このため、水田の土壌中に酸化マグネシウム粉末及び/又は水酸化マグネシウム粉末を添加してメタンの発生量を削減する方法等が提案されている(特許文献1参照)。   Greenhouse gases are generated not only from industrial processes, but also from natural waters such as lakes and rivers, agricultural land such as paddy fields, sewage treatment plants, waste disposal sites, landfills, and other natural environments. ing. Warming gases generated in industrial processes are mainly generated by physicochemical reactions such as combustion and reforming, whereas warming gases generated in natural environments are mainly originated from microbial reactions. For example, in lakes, rivers, etc., pollutants (organic matter, nitrogen compounds, etc.) contained in wastewater flowing from the surrounding area are decomposed anaerobically at the bottom of the water to generate greenhouse gases. For this reason, efforts are being made to suppress and reduce the amount of greenhouse gases generated by appropriately treating wastewater flowing into lakes, rivers, etc. to remove pollutants such as organic matter. In paddy fields and the like, organic matter deposited on the anaerobic bottom is decomposed into microorganisms to generate methane. For this reason, a method of reducing the amount of methane generated by adding magnesium oxide powder and / or magnesium hydroxide powder to paddy soil has been proposed (see Patent Document 1).

特開2010−115572号公報JP 2010-115572 A 特開2007−227216号公報JP 2007-227216 A 特開2004−266629号公報JP 2004-266629 A

渡辺正・中林誠一郎「電子移動の化学−電気化学入門」朝倉書店、1996年4月25日発行、1〜73頁Tadashi Watanabe and Seiichiro Nakabayashi "Chemistry of Electron Transfer-Introduction to Electrochemistry", Asakura Shoten, April 25, 1996, pp. 1-73 社団法人電気化学会「電気化学測定マニュアル・基礎編」丸善出版、平成14年4月5日発行、3〜52頁The Electrochemical Society of Japan “Electrochemical Measurement Manual / Basic”, published by Maruzen, April 5, 2002, pages 3-52

湖沼・河川等において発生する温暖化ガスは、上述した廃水処理によりある程度抑制することができる。しかし、湖沼・河川等では、周辺から流入する汚染物質以外にも自然発生的にヘドロ、底泥、落葉等の有機物泥が堆積し、その堆積泥からも嫌気的分解によってメタンその他の温暖化ガスが発生するので、上述した廃水処理だけでは水底の堆積泥から発生する温暖化ガスを充分に抑制できない問題点がある。現状では人為的に浚渫等して除去する以外に堆積泥から温暖化ガスの発生を抑える適当な方法がなく、堆積した原位置において温暖化ガスの発生を抑える適当な技術は未だ開発されていない。また、最近の水田等では生産性向上のため過剰な窒素肥料が施される傾向にあり、水田の嫌気的な底泥からメタン以外に亜酸化窒素等の温暖化ガスも発生しているが、従来のメタンの削減対策では必ずしも亜酸化窒素等の発生を適切に抑制できない問題点がある。更に、下水処理場や廃棄物の処分場・埋立地等においても、濾過槽・放流池等の水底の嫌気的な堆積物からメタンや亜酸化窒素等を含む相当量の温暖化ガスが発生している。   Warming gas generated in lakes and rivers can be suppressed to some extent by the above-described wastewater treatment. However, in lakes, rivers, etc., organic matter mud such as sludge, bottom mud, and fallen leaves naturally accumulates in addition to pollutants flowing in from the surroundings. Therefore, there is a problem that the warming gas generated from the accumulated mud on the bottom cannot be sufficiently suppressed only by the above-described wastewater treatment. At present, there is no appropriate method to suppress the generation of warming gas from sedimentary mud other than artificial removal by dredging, and no appropriate technology has been developed to suppress the generation of warming gas at the deposited site. . In addition, in recent paddy fields, etc., there is a tendency to apply excess nitrogen fertilizer to improve productivity, and in addition to methane, greenhouse gases such as nitrous oxide are generated from the anaerobic bottom mud of paddy fields. Conventional methane reduction measures have a problem that the generation of nitrous oxide and the like cannot always be suppressed appropriately. In addition, even in sewage treatment plants, waste disposal sites, landfills, etc., considerable amounts of greenhouse gases including methane and nitrous oxide are generated from anaerobic deposits at the bottom of filtration tanks and discharge ponds. ing.

従来、湖沼・河川等の水底堆積泥、水田等の底泥、下水処理場等の水底堆積物等(以下、これらをまとめて水底土壌ということがある)から発生する温暖化ガスは、工業プロセスでの技術革新による温暖化ガス発生の削減に比べ、積極的に抑制・削減の対象とされてこなかった。しかし、水底土壌から発生する温暖化ガスの総量は決して少ないわけではなく、例えば湖沼・河川等に流入する汚染物質が適切に管理されていない場合、或いは生ごみ等の有機物が埋め立て処分場に直接投棄される場合等には、水底土壌が膨大な温暖化ガスの発生源となりうる。発生する温暖化ガスは土壌の性状に応じて異なるが、水底土壌の性状に応じて土壌中の微生物反応を適切に制御できれば温暖化ガスの発生を抑制・削減することが期待できる。   Conventionally, warming gas generated from bottom sediment in lakes and rivers, bottom sediment in paddy fields, bottom sediment in sewage treatment plants, etc. (hereinafter, these may be collectively referred to as bottom soil) is an industrial process. Compared to the reduction of greenhouse gas emissions due to technological innovation in Japan, it has not been actively controlled or reduced. However, the total amount of greenhouse gases generated from the bottom soil is not always small. For example, if pollutants flowing into lakes and rivers are not properly managed, or organic substances such as garbage are directly disposed in landfills. When dumped, the bottom soil can be a source of huge greenhouse gases. Although the warming gas to be generated varies depending on the properties of the soil, if the microbial reaction in the soil can be appropriately controlled according to the properties of the bottom soil, it can be expected to suppress or reduce the generation of the warming gas.

そこで本発明の目的は、水底土壌に応じて様々な土壌中の様々な微生物反応を適切に制御できる方法及びシステムを提供することにある。   Therefore, an object of the present invention is to provide a method and system capable of appropriately controlling various microbial reactions in various soils according to the bottom soil.

本発明者は、微生物を利用して有機物から電気エネルギーを回収する微生物燃料電池(Microbial Fuel Cell)の原理に着目した。微生物燃料電池は、例えば図5に符合30で示すように、有機性基質を貯えた容器内に挿入する導電性のアノード(負電極)31と、空気(又は電子受容体)に接触させる導電性のカソード(正電極)32と、両電極31、32の間に挟み込まれたイオン交換膜33とを有し、外部回路34を介してアノード31とカソード32とを相互に接続して閉回路を形成したものである。アノード31に有機性基質(有機性物質を含む水溶液又はガス)を供給し、アノード31上の微生物反応によって有機性基質から水素イオン(H)及び電子(e)を生成し、生成した水素イオンをイオン交換膜33経由でカソード32側へ移動させ、電子を外部回路34経由でカソード32側へ移動させる。他方、カソード32に空気(又は電子受容体)を供給し、アノード31から移動した水素イオン及び電子を酸素(又は電子受容体)結合させることにより消費する。微生物燃料電池30は、この一連の反応により外部回路34を介して有機性基質から電気エネルギーを回収する。 The inventor paid attention to the principle of a microbial fuel cell that recovers electric energy from an organic substance using microorganisms. The microbial fuel cell has, for example, a conductive anode (negative electrode) 31 inserted into a container storing an organic substrate and a conductive material that is brought into contact with air (or an electron acceptor) as indicated by reference numeral 30 in FIG. A cathode (positive electrode) 32 and an ion exchange membrane 33 sandwiched between both electrodes 31 and 32, and the anode 31 and the cathode 32 are connected to each other via an external circuit 34 to form a closed circuit. Formed. An organic substrate (an aqueous solution or gas containing an organic substance) is supplied to the anode 31, and hydrogen ions (H + ) and electrons (e ) are generated from the organic substrate by a microbial reaction on the anode 31. Ions are moved to the cathode 32 side via the ion exchange membrane 33, and electrons are moved to the cathode 32 side via the external circuit 34. On the other hand, air (or an electron acceptor) is supplied to the cathode 32, and hydrogen ions and electrons moved from the anode 31 are combined by oxygen (or electron acceptor) bonding. The microbial fuel cell 30 recovers electrical energy from the organic substrate via the external circuit 34 by this series of reactions.

例えば、図5のアノード31周辺にメタン生成菌又は脱窒菌を導入して微生物燃料電池30を構成するが(特許文献2及び3参照)、その場合にアノード31周辺で生起する微生物反応は、水底土壌において温暖化ガス(メタンガスや亜酸化窒素)を発生する微生物反応と同様である。また、微生物燃料電池30のカソード32側で発生する反応は、水底土壌の上方の水相においても生起しうる反応である。更に、微生物燃料電池30は両電極31、32の間にイオン交換膜33を挟み込んでイオン交換及び絶縁を行っているが、水底土壌と水相との間の境界相(水底土壌の上部層)も同様のイオン交換及び絶縁の機能を果たすことができる。微生物燃料電池30は微生物反応の酸化還元電位に応じた電気エネルギーを回収するものであるが、全ての微生物反応(生化学反応)は酸化還元電位に依存しているから、逆に両電極31、32の間(外部回路34)に適当な酸化還元電位を印加してやれば、アノード31を介して水底土壌で生起する微生物反応を制御することも可能である。本発明は、この着想に基づく研究開発の結果、完成に到ったものである。   For example, a microbial fuel cell 30 is constructed by introducing methanogens or denitrifying bacteria around the anode 31 in FIG. 5 (see Patent Documents 2 and 3). It is similar to the microbial reaction that generates greenhouse gases (methane gas and nitrous oxide) in the soil. In addition, the reaction that occurs on the cathode 32 side of the microbial fuel cell 30 is a reaction that can also occur in the aqueous phase above the bottom soil. Furthermore, the microbial fuel cell 30 performs ion exchange and insulation by sandwiching an ion exchange membrane 33 between both electrodes 31 and 32, but a boundary phase between the bottom soil and the water phase (upper layer of the bottom soil). Can perform the same ion exchange and insulation functions. The microbial fuel cell 30 collects electrical energy corresponding to the oxidation-reduction potential of the microbial reaction. However, since all microbial reactions (biochemical reactions) depend on the oxidation-reduction potential, the two electrodes 31, If an appropriate oxidation-reduction potential is applied between 32 (external circuit 34), it is possible to control the microbial reaction occurring in the bottom soil through the anode 31. The present invention has been completed as a result of research and development based on this idea.

図1の実施例を参照するに、本発明による水底土壌の微生物反応制御方法は、水底の嫌気性土壌E中に第1電極11を埋設すると共にその上方の水W中に第2電極12を設置し、両電極11、12の間に接続した電位制御装置20により第1電極11を土壌E中の所定微生物反応(例えばメタン菌のメタンガス生成反応、亜酸化窒素還元細菌の還元反応等)が抑制又は促進される酸化還元電位Vに制御してなるものである。   Referring to the embodiment of FIG. 1, in the method for controlling microbial reaction of a bottom soil according to the present invention, a first electrode 11 is embedded in an anaerobic soil E on the bottom and a second electrode 12 is placed in water W above the bottom electrode. A predetermined microbial reaction (for example, methane gas generation reaction of methane bacteria, reduction reaction of nitrous oxide-reducing bacteria, etc.) in the soil E is performed by the potential controller 20 installed and connected between both electrodes 11 and 12. It is formed by controlling the redox potential V to be suppressed or promoted.

また、図1の実施例を参照するに、本発明による水底土壌の微生物反応制御システムは、水底の嫌気性土壌E中に埋設する第1電極11、その上方の水W中に設置する第2電極12、及び両電極11、12間に接続されて第1電極11を土壌E中の土壌E中の所定微生物反応(例えばメタン菌のメタンガス生成反応、亜酸化窒素還元細菌の還元反応等)が抑制又は促進される酸化還元電位Vに制御する電位制御装置20を備えてなるものである。   In addition, referring to the embodiment of FIG. 1, the microbial reaction control system for a bottom soil according to the present invention includes a first electrode 11 embedded in an anaerobic soil E on the bottom and a second electrode installed in water W above the first electrode 11. A predetermined microbial reaction (for example, methane gas generation reaction of methane bacteria, reduction reaction of nitrous oxide reduction bacteria, etc.) in the soil E in the soil E is connected between the electrode 12 and both electrodes 11, 12. A potential control device 20 that controls the redox potential V to be suppressed or promoted is provided.

好ましくは、図2に示すように、電位制御装置20に加え、所定微生物反応の生成物発生量を測定する測定手段27と、第1電極11の電位を切り替えながら所定微生物反応の生成物発生量を測定することにより土壌E中の所定微生物反応が抑制又は促進される酸化還元電位Vを検出する検出手段28とを含める。望ましい実施例では、図4に示すように、土壌E中又はその上方の水W中に所定汚染物質含有廃水Dを流入させる流入路7を設け、電位制御装置20により第1電極11をその汚染物質の分解微生物反応が抑制又は促進される酸化還元電位Vに制御することができる。   Preferably, as shown in FIG. 2, in addition to the potential control device 20, a measurement unit 27 that measures a product generation amount of a predetermined microbial reaction, and a product generation amount of a predetermined microbial reaction while switching the potential of the first electrode 11. And a detecting means 28 for detecting a redox potential V at which a predetermined microbial reaction in the soil E is suppressed or promoted by measuring. In the preferred embodiment, as shown in FIG. 4, an inflow path 7 is provided for allowing the wastewater D containing the predetermined pollutant to flow into the soil E or the water W above the soil E, and the first electrode 11 is contaminated by the potential control device 20. It can be controlled to the redox potential V at which the decomposition microbial reaction of the substance is suppressed or promoted.

本発明による水底土壌の微生物反応制御方法及びシステムは、水底の嫌気性土壌E中に埋設した第1電極11とその上方の水W中に設置した第2電極12との間に電位制御装置20を接続し、電位制御装置20によって第1電極11を水底土壌E中の所定微生物反応が抑制又は促進される酸化還元電位Vに制御するので、次の効果を奏する。   The bottom soil microbial reaction control method and system according to the present invention includes a potential control device 20 between the first electrode 11 embedded in the bottom anaerobic soil E and the second electrode 12 installed in the water W thereabove. Are connected, and the first electrode 11 is controlled by the potential control device 20 to the oxidation-reduction potential V at which a predetermined microbial reaction in the bottom soil E is suppressed or promoted.

(イ)従来は浚渫する以外に適切な抑制法のなかった湖沼・河川等の水底堆積泥(水底土壌E)から発生する温暖化ガスを、原位置において電極対11、12を設置して水底土壌E中の酸化還元電位Vを制御するだけで、温暖化ガスを生産又は消費する微生物反応を抑制又は促進することにより、抑制・削減することができる。
(ロ)また、水底土壌E中の所定微生物反応の生成物発生量を測定する測定手段27を設け、酸化還元電位Vを切り替えながら所定微生物反応の生成物発生量を測定することにより、水底土壌Eに応じた適切な酸化還元電位Vを選択して温暖化ガスの発生を安定的・効率的に抑制することができる。
(ハ)水底土壌Eに応じて酸化還元電位Vを適切に選択することにより、その土壌Eで生起する様々な微生物反応を抑制又は促進することができ、メタン、亜酸化窒素等だけでなく他の温暖化ガスを含めて同時に抑制する場合にも適用・活用することができる。
(B) Conventionally, warming gas generated from bottom sediments (bottom soil E) of lakes, rivers, etc. for which there was no appropriate control method other than dredging, was installed in the in-situ electrode pairs 11, 12 By simply controlling the oxidation-reduction potential V in the soil E, it can be suppressed / reduced by suppressing or promoting the microbial reaction that produces or consumes the greenhouse gas.
(B) In addition, by providing a measurement means 27 for measuring the amount of product generated by the predetermined microbial reaction in the bottom soil E, the product generation amount of the predetermined microbial reaction is measured while switching the oxidation-reduction potential V. An appropriate oxidation-reduction potential V corresponding to E can be selected to suppress the generation of warming gas stably and efficiently.
(C) By appropriately selecting the redox potential V according to the bottom soil E, various microbial reactions occurring in the soil E can be suppressed or promoted, not only methane, nitrous oxide, etc. It can also be applied and used in the case of simultaneous suppression including greenhouse gases.

(ニ)温暖化ガスを生産又は消費する微生物反応だけでなく、水底土壌Eで生起する他の微生物反応を抑制又は促進する場合にも利用可能であり、有害物質や各種栄養塩の分解微生物反応を抑制又は促進することにより水底土壌Eの浄化や周辺の水質改善に寄与することも期待できる。
(ホ)例えば、所定汚染物質の含有廃水を水底土壌Eに流入させ、その汚染物質の分解微生物反応が抑制又は促進される酸化還元電位Vに水底土壌Eを制御することにより、本発明を廃水処理に利用することができる。
(ヘ)従来は温暖化ガスの抑制・削減の対象とされてこなかった湖沼・河川・水田等の水底土壌を、本発明の適用により対象に含めることができるようになり、例えば温暖化ガスの排出権取引(CDM)や企業の社会貢献(CSR)にも利用することが可能となる。
(D) Not only microbial reactions that produce or consume greenhouse gases, but also other microbial reactions that occur in the bottom soil E can be used to suppress or promote microbial reactions that decompose toxic substances and various nutrients. It can also be expected to contribute to purification of the bottom soil E and improvement of the surrounding water quality by suppressing or promoting the above.
(E) For example, wastewater containing predetermined pollutants flows into the bottom soil E, and the bottom soil E is controlled to a redox potential V at which the degradation microbial reaction of the pollutants is suppressed or promoted. Can be used for processing.
(F) Underwater soil such as lakes, rivers, and paddy fields that have not been previously targeted for controlling or reducing greenhouse gases can be included in the target by applying the present invention. It can also be used for emissions trading (CDM) and corporate social contribution (CSR).

以下、添付図面を参照して本発明を実施するための形態及び実施例を説明する。
は、本発明による水底土壌の微生物反応制御方法の一実施例のブロック図である。 は、本発明による微生物反応制御方法の効果を確認する実験の説明図である。 は、図2の実験結果を示すグラフの一例である。 は、本発明による水底土壌の微生物反応制御方法の他の実施例の説明図である。 は、従来の微生物燃料電池の原理を示す説明図である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
These are the block diagrams of one Example of the microbial reaction control method of the bottom soil by this invention. These are explanatory drawings of the experiment which confirms the effect of the microorganisms reaction control method by this invention. These are an example of the graph which shows the experimental result of FIG. These are explanatory drawings of other Examples of the microbial reaction control method of the bottom soil by this invention. These are explanatory drawings which show the principle of a conventional microbial fuel cell.

図1は、温暖化ガスの発生を抑制すべき湖沼・河川、水田等の水底土壌Eに本発明の微生物反応制御システムを適用した実施例を示す。図示例のシステムは、水底の嫌気性土壌E中に埋設する第1電極11と、その上方の水W中に設置する第2電極12と、両電極11、12間に接続する電位制御装置20とを有する。一般に水底土壌Eは、上方の水Wに接する表面の酸化層以外は嫌気的であり、その嫌気層において有機物が嫌気性微生物により分解されてメタンその他の温暖化ガスが発生する。図示例において第1電極11は、水底土壌Eの酸化層より下方の嫌気層に埋設する。第2電極12は、例えば図2に示すように適当な支持部材15によって水底土壌Eから離して上方に支持するが、第1電極11との絶縁が確保できれば水底土壌Eの表面に直接載置してもよい。   FIG. 1 shows an embodiment in which the microbial reaction control system of the present invention is applied to bottom soil E such as lakes, rivers, paddy fields, etc., in which the generation of greenhouse gases is to be suppressed. The system of the illustrated example includes a first electrode 11 embedded in an anaerobic soil E on the bottom of the water, a second electrode 12 installed in the water W above the first electrode 11, and a potential control device 20 connected between both electrodes 11, 12. And have. In general, the bottom soil E is anaerobic except for the oxide layer on the surface in contact with the upper water W, and organic substances are decomposed by anaerobic microorganisms in the anaerobic layer to generate methane and other warming gases. In the illustrated example, the first electrode 11 is embedded in the anaerobic layer below the oxide layer of the bottom soil E. For example, as shown in FIG. 2, the second electrode 12 is supported away from the bottom soil E by an appropriate support member 15. However, if the insulation with the first electrode 11 can be secured, the second electrode 12 is directly placed on the surface of the bottom soil E. May be.

図示例の電極11、12は何れも、例えば炭素繊維、炭素板、グラファイトその他の導電性材料製とすることができ、金属材料製とすることもできる。両電極11、12間に接続した電位制御装置20によって第1電極11の電位を制御し、水底土壌E中に酸化力又は還元力を供給して土壌E中の温暖化ガスを生産又は消費する所定微生物反応を抑制し又は促進することにより、土壌E中の微生物叢又は微生物代謝を改変せしめて温暖化ガスの発生を抑制する。上述したように、全ての微生物反応(生化学反応)は酸化還元電位に依存しているので、第1電極11の酸化還元電位Vを制御することにより水底土壌E中の微生物反応の代謝経路及び代謝速度に変化を及ぼすことができる。   The electrodes 11 and 12 in the illustrated example can be made of, for example, carbon fiber, carbon plate, graphite or other conductive material, or can be made of a metal material. The potential control device 20 connected between the electrodes 11 and 12 controls the potential of the first electrode 11 to supply oxidizing power or reducing power into the bottom soil E to produce or consume warming gas in the soil E. By suppressing or promoting a predetermined microbial reaction, the microbial flora or microbial metabolism in the soil E is modified to suppress the generation of warming gas. As described above, since all microbial reactions (biochemical reactions) depend on the redox potential, by controlling the redox potential V of the first electrode 11, the metabolic pathway of the microbial reaction in the bottom soil E and Changes in metabolic rate can be effected.

例えば、水底土壌Eにおいて有機性化合物は、加水分解を受けて低分子化された後、先ず酸生成細菌群により有機酸に分解され、次いで水素生成細菌により有機酸が水素、二酸化炭素、酢酸等に分解され、最終的にメタン菌によって酢酸(CHCOO)が還元されてメタン(CH)が発生する((1)式参照)。(1)式の微生物反応を右側へ進めるためには酸化還元電位を−240mV以下にする必要があり、これ以上の酸化還元電位ではメタンは発生せず、鉄還元反応等の微生物による酢酸からの電子放出反応((2)式)又は酸素呼吸反応((3)式)により酢酸は二酸化炭素に酸化される。すなわち、図示例において電位制御装置20により第1電極11を−240mV以上に制御すれば、理論的には水底土壌E中の(1)式の微生物反応は抑制され、水底土壌Eからのメタンの放出を抑制することができる。メタンに代わり(2)〜(3)式の微生物反応により二酸化炭素が発生するものの、二酸化炭素の温暖化係数(地球の大気圏温度を上昇させる温室効果の強さ)はメタンの約20分の1であるから、メタンに代えて二酸化炭素が放出されても地球温暖化に与える影響は小さい。 For example, in the bottom soil E, the organic compound is hydrolyzed to be reduced in molecular weight, then first decomposed into an organic acid by the acid-producing bacteria group, and then the organic acid is hydrogen, carbon dioxide, acetic acid, etc. by the hydrogen-producing bacteria. And finally, acetic acid (CH 3 COO ) is reduced by methane bacteria to generate methane (CH 4 ) (see formula (1)). In order to advance the microbial reaction of the formula (1) to the right side, the redox potential needs to be −240 mV or less, and methane is not generated at a higher redox potential than that from acetic acid by microorganisms such as iron reduction reaction. Acetic acid is oxidized to carbon dioxide by an electron emission reaction (formula (2)) or an oxygen respiration reaction (formula (3)). That is, in the illustrated example, if the first electrode 11 is controlled to −240 mV or more by the potential control device 20, the microbial reaction of the formula (1) in the bottom soil E is theoretically suppressed, and the methane from the bottom soil E is suppressed. Release can be suppressed. Although carbon dioxide is generated by the microbial reaction of formulas (2) to (3) instead of methane, the global warming potential of carbon dioxide (the intensity of the greenhouse effect that raises the Earth's atmospheric temperature) is about 1/20 of that of methane. Therefore, even if carbon dioxide is released instead of methane, the impact on global warming is small.

CHCOO+9H+8e→2CH+2HO ………………………(1)
CHCOO+2HO→2CO+7H+8e ………………………(2)
CHCOO+O→2CO+3H+4e ……………………………(3)
2HO→4H+4O+4e ………………………………………………(4)
4H+4O+4e→2HO ………………………………………………(5)
CH 3 COO + 9H + + 8e → 2CH 4 + 2H 2 O (1)
CH 3 COO + 2H 2 O → 2CO 2 + 7H + + 8e (2)
CH 3 COO + O 2 → 2CO 2 + 3H + + 4e …………………………… (3)
2H 2 O → 4H + + 4O 2 + 4e ……………………………………………… (4)
4H + + 4O 2 + 4e → 2H 2 O ……………………………………………… (5)

(1)式と(2)〜(3)式との比較から分かるように、図示例のシステムでは、第1電極11の酸化還元電位Vを制御することにより、第1電極11と第2電極12との間で電子(e)の移動方向を切り替えることができる。すなわち、酸化還元電位が−240mV以下であれば第2電極12から第1電極11に還元力が供給されて(第2電極12から第1電極11に電子が放出されて)メタンが発生し((1)式と(4)式参照)、酸化還元電位を−240mV以上に制御すれば第1電極11に酸化力が供給されて(第1電極11から第2電極12に電子が放出されて)二酸化炭素が発生する((2)〜(3)式と(5)式参照)。第1電極11の付近において消費される酢酸は周囲の有機物の発酵反応により適宜補われ、第2電極12の付近において消費されるHは周囲の水Wから適宜補われる。海水中には多量の電解質(すなわち塩)が溶け込んでおり、淡水中にも様々な電解質が溶け込んでいる場合が多く、さらに一般的に水底土壌Eから様々な電解質が溶け出してくるので、とくに水W中に電解質等を溶解しなくても(1)〜(5)式の反応を進めることができるが、必要に応じて水W中に適当な電解質(無機塩類等)を添加することも有効である。 As can be seen from a comparison between the formula (1) and the formulas (2) to (3), in the illustrated system, the first electrode 11 and the second electrode are controlled by controlling the oxidation-reduction potential V of the first electrode 11. 12, the moving direction of the electrons (e ) can be switched. That is, if the oxidation-reduction potential is −240 mV or less, reducing power is supplied from the second electrode 12 to the first electrode 11 (electrons are released from the second electrode 12 to the first electrode 11), and methane is generated ( If the oxidation-reduction potential is controlled to −240 mV or more, the oxidizing power is supplied to the first electrode 11 (electrons are emitted from the first electrode 11 to the second electrode 12). ) Carbon dioxide is generated (see formulas (2) to (3) and (5)). Acetic acid consumed in the vicinity of the first electrode 11 is appropriately supplemented by the fermentation reaction of the surrounding organic matter, and H + consumed in the vicinity of the second electrode 12 is appropriately supplemented from the surrounding water W. A large amount of electrolyte (ie, salt) is dissolved in seawater, and various electrolytes are also dissolved in fresh water. In general, various electrolytes are dissolved from the bottom soil E. Although the reaction of the formulas (1) to (5) can be advanced without dissolving the electrolyte or the like in the water W, an appropriate electrolyte (inorganic salt or the like) may be added to the water W as necessary. It is valid.

図示例の電位制御装置20は、上述した(1)式と(2)〜(3)式とが切り替わるように第1電極11の酸化還元電位Vを制御する。一般に電気分解では第1電極11と第2電極12と間に電位差を設けて分解反応を進行させるが、2つの電極11、12だけでは酸化反応と還元反応とが同時に進行するので各電極の正確な電位を特定できず、一方の電極11を特定の酸化還元電位(例えば上述した−240mV以上)に制御することは難しい。図示例では、電位制御装置20として、第1電極(動作電極)11及び第2電極(補助電極)12と共に、常に一定の酸化還元電位を示す基準電極14を有する3電極式のポテンショスタットを用いている。3電極式の電位制御装置20は、基準電極14と第1電極11との電位差(電圧)から第1電極11の正確な電位を特定して制御することができる。ただし、本発明で用いる電位制御装置20はポテンショスタットに限定されるものではなく、ガルバノスタットとしても良い。   The potential control device 20 in the illustrated example controls the oxidation-reduction potential V of the first electrode 11 so that the above-described expression (1) and the expressions (2) to (3) are switched. Generally, in electrolysis, a potential difference is provided between the first electrode 11 and the second electrode 12 to cause the decomposition reaction to proceed. However, since only the two electrodes 11 and 12 cause the oxidation reaction and the reduction reaction to proceed simultaneously, Therefore, it is difficult to control one electrode 11 to a specific oxidation-reduction potential (for example, −240 mV or higher). In the illustrated example, a three-electrode potentiostat having a reference electrode 14 that always shows a constant redox potential is used together with the first electrode (working electrode) 11 and the second electrode (auxiliary electrode) 12 as the potential control device 20. ing. The three-electrode potential control device 20 can specify and control the exact potential of the first electrode 11 from the potential difference (voltage) between the reference electrode 14 and the first electrode 11. However, the potential control device 20 used in the present invention is not limited to a potentiostat, and may be a galvanostat.

図示例の3電極式の電位制御装置20は、動作電極(第1電極)11と補助電極(第2電極)12との間に大部分の電流を流し、動作電極11と基準電極14との間に微小電流を流して動作電極11の電位を定める電位制御回路21を設けている。電位制御回路21の可変電圧回路22により動作電極11の電位を切り替え可能とし、電圧計23の計測値と基準電極14の電位とに基づき動作電極11の電位を制御する(非特許文献1及び2参照)。例えば電位制御回路21のメモリ24に酸化還元電位の目標値(例えば(1)式の酸化還元電位)を設定しておき、可変電圧回路22及び電圧計23により動作電極11を精度よく目標電位に一致させる。なお、図示例の電位制御装置20は動作電極11と補助電極12との間に電流測定回路25及び電流計26を設けており、電流計26の計測値に基づき動作電極11の電位を制御することも可能である。   The three-electrode potential control device 20 in the illustrated example passes most of the current between the working electrode (first electrode) 11 and the auxiliary electrode (second electrode) 12, so that the working electrode 11 and the reference electrode 14 A potential control circuit 21 that determines the potential of the working electrode 11 by passing a minute current therebetween is provided. The potential of the working electrode 11 can be switched by the variable voltage circuit 22 of the potential control circuit 21, and the potential of the working electrode 11 is controlled based on the measured value of the voltmeter 23 and the potential of the reference electrode 14 (Non-Patent Documents 1 and 2). reference). For example, a target value of the redox potential (for example, the redox potential of the equation (1)) is set in the memory 24 of the potential control circuit 21, and the operating electrode 11 is accurately set to the target potential by the variable voltage circuit 22 and the voltmeter 23. Match. The potential control device 20 in the illustrated example includes a current measurement circuit 25 and an ammeter 26 between the working electrode 11 and the auxiliary electrode 12, and controls the potential of the working electrode 11 based on the measurement value of the ammeter 26. It is also possible.

ただし、水底土壌Eにおいてメタンを生成する微生物反応は(1)式のみではなく、複数のメタン菌が関与することが知られている。また、水底土壌Eにおける微生物反応の環境も一定ではなく、土壌Eを構成する材料(シルト、砂等の構成割合)、土壌Eの物理的性質を決める気相、液相、固相の割合や団粒形成状態によって微細構造やpH、水分量が変化し、それらの影響によって酸化還元電位Vが変動しうる。例えば、水底土壌Eにおけるメタン生成を抑えるためには−150mV以上の酸化還元電位が必要であるとの報告もある。温暖化ガスの発生を安定的・効率的に抑制するためには、原位置の水底土壌Eの構成材料や物理的性質に応じた酸化還元電位Vとする必要があり、そのためには原位置毎に温暖化ガスの発生が抑制される酸化還元電位V(例えば、原位置における(1)式の酸化還元電位V)を検出して制御に利用することが望ましい。   However, it is known that the microbial reaction that generates methane in the bottom soil E is not limited to the formula (1) but involves a plurality of methane bacteria. In addition, the environment of microbial reaction in the bottom soil E is not constant, the material constituting the soil E (the composition ratio of silt, sand, etc.), the gas phase, the liquid phase, the ratio of the solid phase that determines the physical properties of the soil E Depending on the aggregate formation state, the microstructure, pH, and water content change, and the oxidation-reduction potential V can vary due to the influence thereof. For example, there is a report that an oxidation-reduction potential of −150 mV or more is necessary to suppress methane production in the bottom soil E. In order to suppress the generation of greenhouse gases stably and efficiently, it is necessary to set the oxidation-reduction potential V in accordance with the constituent materials and physical properties of the in-situ bottom soil E. It is desirable to detect the oxidation-reduction potential V (for example, the oxidation-reduction potential V of the formula (1) in the original position) at which generation of a warming gas is suppressed and use it for control.

図2は、原位置の水底土壌Eに応じた酸化還元電位Vを検出して制御に利用する電位制御装置20の実施例を示す。図示例の電位制御装置20は、微生物反応の生成物発生量(例えばメタン濃度)を測定する測定手段27を有する。また、原位置の水底土壌E中に埋設した第1電極11の電位を切り替えながら微生物反応の生成物発生量(例えばメタン発生量)の測定値を入力し、原位置においてその微生物反応が実際に抑制される酸化還元電位V(例えば、原位置において(1)式の微生物反応が抑制されて(2)〜(3)式の微生物反応に切り替わる酸化還元電位V)を検出する検出手段28を有している。後述する実験例1に示すように、図示例の電位制御装置20によって原位置毎に温暖化ガスの発生が抑制される酸化還元電位Vを検出し、例えばその検出電位Vを電位制御装置20の目標値に設定して第1電極11を制御することにより、温暖化ガスの発生を安定的・効率的に抑制することができる。   FIG. 2 shows an embodiment of the potential control device 20 that detects the oxidation-reduction potential V corresponding to the original bottom soil E and uses it for control. The potential control apparatus 20 in the illustrated example includes a measuring unit 27 that measures a product generation amount (for example, methane concentration) of a microbial reaction. In addition, while switching the potential of the first electrode 11 embedded in the underwater soil E at the original position, the measured value of the product generation amount (for example, methane generation amount) of the microbial reaction is input, and the microbial reaction is actually performed at the original position. It has a detecting means 28 for detecting the oxidation-reduction potential V to be suppressed (for example, the oxidation-reduction potential V at which the microbial reaction of the formula (1) is suppressed in the original position and switched to the microbial reaction of the formulas (2) to (3)). doing. As shown in Experimental Example 1 to be described later, an oxidation-reduction potential V at which generation of a warming gas is suppressed is detected at each original position by the potential control device 20 in the illustrated example. For example, the detected potential V is detected by the potential control device 20. By setting the target value and controlling the first electrode 11, it is possible to stably and efficiently suppress the generation of warming gas.

[実験例1]
本発明による微生物反応制御方法の効果を確認するため、図2に示す実験装置を作成して効果を確認する実験を行った。本実験では、原位置の水底土壌Eとして淡水魚の養殖場からサンプリングした底泥と園芸店で購入した土とを混合した模擬底泥を調製し、約0.6リットルの模擬底泥Eを容積約2リットルの蓋付き容器5(PETボトル製)に充填し、模擬底泥Eの底部に導線付き第1電極(グラファイト板、縦6cm×横5cm×厚さ0.8cm)を埋設した。また、模擬底泥Eの上部に約0.4リットルの水Wを入れ、その水W中に支持部材15で支持して第1電極と同じサイズの導線付き第2電極12(グラファイト板、縦6cm×横5cm×厚さ0.8cm)を設置した。第1電極11及び第2電極12の導線をそれぞれ3電極式の電位制御装置20(ポテンショスタット)に接続して回路を形成し、電位制御装置20の基準電極14を第1電極11近くの水中に設置し、電位制御装置20によって模擬底泥E中の酸化還元電位Vを任意に設定できる構造とした。
[Experimental Example 1]
In order to confirm the effect of the microbial reaction control method according to the present invention, an experiment was performed to confirm the effect by creating an experimental apparatus shown in FIG. In this experiment, simulated bottom mud was prepared by mixing the bottom mud sampled from a freshwater fish farm and the soil purchased at a horticultural store as the original bottom soil E. About 2 liters of a container 5 with a lid (made of PET bottle) was filled, and a first electrode with a conducting wire (graphite plate, length 6 cm × width 5 cm × thickness 0.8 cm) was embedded at the bottom of the simulated bottom mud E. Moreover, about 0.4 liters of water W is put on the upper part of the simulated bottom mud E, and is supported by the support member 15 in the water W, and the second electrode 12 with a lead wire having the same size as the first electrode (graphite plate, vertical 6 cm × 5 cm wide × 0.8 cm thick). The conductors of the first electrode 11 and the second electrode 12 are connected to a three-electrode type potential control device 20 (potentiostat) to form a circuit, and the reference electrode 14 of the potential control device 20 is connected to the underwater near the first electrode 11. The oxidation-reduction potential V in the simulated bottom mud E can be arbitrarily set by the potential control device 20.

図2の実験では、模擬底泥Eの上方の水W中に無機塩培地(主成分はリン酸ナトリウムと微量塩類)を希釈したうえで電解質として添加した。更に、容器5の上部開口に光音響型マルチガスモニター27を接続し、模擬底泥E中の微生物反応で発生した容器5内の気相ガス中のメタン濃度(メタン発生量)を連続的に測定すると共に、電位制御装置20に目標電位を切り替える検出手段28を接続し、模擬底泥E中の第1電極11の制御電位Vをそれぞれ設定して気相中のメタン濃度の変化を測定した。実験結果を図3のグラフに示す。   In the experiment of FIG. 2, after diluting an inorganic salt medium (main components are sodium phosphate and trace salts) in water W above the simulated bottom mud E, it was added as an electrolyte. Further, a photoacoustic multi-gas monitor 27 is connected to the upper opening of the container 5 to continuously measure the methane concentration (methane generation amount) in the gas phase gas generated in the simulated bottom mud E by the microbial reaction in the container 5. In addition to the measurement, the detection means 28 for switching the target potential is connected to the potential control device 20, the control potential V of the first electrode 11 in the simulated bottom mud E is set, and the change in the methane concentration in the gas phase is measured. . The experimental results are shown in the graph of FIG.

図3のグラフのうち、「Blank」は電極を設置していない状態のメタン発生濃度を示し、「無制御」は電極11、12を埋設・設置するが両電極11、12間に抵抗を接続して電極11に電位を加えない状態(無制御状態)のメタン発生濃度を示す。無制御状態において両電極11、12の回路に流れる電流を電位制御装置20でモニタリングしたところ、約120日間にわたり電流値が徐々に上昇し、その後も一定の電流を発生していることが認められた。この電流産生は模擬底泥E中の有機物の分解によるものと考えられることから、模擬底泥E中の電流産生菌ジオバクター属の微生物分布を定量PCR法によって確認したところ、第1電極11の近傍には他の部位に比べ約3倍、第1電極11自体には約15倍の濃度でこの微生物が偏在していた。同様にメタン菌数を計測したところ、第1電極11の近傍では他の部位に比べて約1/7まで減少していた。更に、第1電極11の近傍の模擬底泥Eをサンプリングし、電極11と離れた部位の模擬底泥Eとメタン発生活性を比較したところ、約1/25にまで活性が低下していた。これらのことから、無制御状態においても両電極11、12の回路を介して上部水W中から模擬底泥E中に酸化力が供給され、メタン発生量がある程度抑制されていることが確認された。ただし、図3に示すように無制御状態では、Blankのメタンガス濃度よりは若干低いものの、容器5内の気相中に約7ppmのメタンが検出され、メタン発生量を安定的・効率的に抑制できていない。   In the graph of FIG. 3, “Blank” indicates the methane generation concentration when no electrode is installed, and “Uncontrolled” indicates that electrodes 11 and 12 are embedded and installed, but a resistor is connected between the electrodes 11 and 12. The methane generation concentration in a state where no potential is applied to the electrode 11 (uncontrolled state) is shown. When the current flowing through the circuits of both electrodes 11 and 12 was monitored by the potential control device 20 in the uncontrolled state, the current value gradually increased over about 120 days, and it was recognized that a constant current was generated thereafter. It was. Since this current production is thought to be due to the decomposition of organic matter in the simulated bottom mud E, the microbial distribution of the genus Geobacter in the simulated bottom mud E was confirmed by quantitative PCR. This microorganism was unevenly distributed at a concentration of about 3 times that of other parts and about 15 times the concentration of the first electrode 11 itself. Similarly, when the number of methane bacteria was measured, it was reduced to about 1/7 in the vicinity of the first electrode 11 as compared with other parts. Furthermore, when the simulated bottom mud E in the vicinity of the first electrode 11 was sampled and the simulated bottom mud E in a part away from the electrode 11 was compared with the methane generation activity, the activity was reduced to about 1/25. From these facts, it was confirmed that the oxidizing power was supplied from the upper water W to the simulated bottom mud E through the circuit of the electrodes 11 and 12 even in the uncontrolled state, and the amount of methane generated was suppressed to some extent. It was. However, as shown in FIG. 3, in the uncontrolled state, although it is slightly lower than the methane gas concentration of Blank, about 7 ppm of methane is detected in the gas phase in the container 5, and the methane generation amount is stably and efficiently suppressed. Not done.

上記のことから自然電位差だけでも水底土壌E中に酸化力が供給されることを確認できたが、図3のグラフは、さらに積極的に電位制御装置20を用いて第1電極11の酸化還元電位Vを切り替えることにより容器5内の気相中のメタン濃度が変化することを示している。図3は銀/塩化銀電極を基準電極14とした酸化還元電位Vを表しており、酸化還元電位Vが−200mV以下のときは約7ppmのメタンが発生するのに対し、酸化還元電位Vを−100mV以上に設定することでメタン発生量が約半分の3ppm以下に抑制されることを示している。この実験結果から、本実験で用いた模擬底泥E中においてメタン菌のメタンガス生成反応が抑制される酸化還元電位V((1)式の微生物反応が抑制されて(2)〜(3)式の微生物反応に切り替わる酸化還元電位V)は−100mV以上であり、電位制御装置20によって基準電極(銀/塩化銀電極)14に対する第1電極11を−100mV以上の酸化還元電位Vとなるように制御することで、電極近傍から周囲への汚泥の酸化還元電位が広く引き上げられ、メタンの発生を安定的・効率的に抑制できることが確認できた。   From the above, it was confirmed that the oxidizing power was supplied into the bottom soil E only by the natural potential difference. However, the graph of FIG. 3 shows the oxidation-reduction of the first electrode 11 more actively using the potential control device 20. It shows that the methane concentration in the gas phase in the container 5 changes by switching the potential V. FIG. 3 shows the redox potential V using the silver / silver chloride electrode as the reference electrode 14. When the redox potential V is −200 mV or less, about 7 ppm of methane is generated, whereas the redox potential V is It shows that by setting it to -100 mV or more, the amount of methane generated is suppressed to 3 ppm or less, which is about half. From this experimental result, the oxidation-reduction potential V that suppresses the methane gas production reaction of methane bacteria in the simulated bottom mud E used in this experiment (the microbial reaction of the expression (1) is suppressed, and the expressions (2) to (3) The oxidation-reduction potential V) for switching to the microbial reaction is -100 mV or more, and the potential control device 20 causes the first electrode 11 with respect to the reference electrode (silver / silver chloride electrode) 14 to have an oxidation-reduction potential V of -100 mV or more. By controlling it, it was confirmed that the oxidation-reduction potential of sludge from the vicinity of the electrode to the surroundings was raised widely, and the generation of methane could be suppressed stably and efficiently.

なお、上述した図2及び図3の実験はメタンだけでなく他の温暖化ガス、例えば水底土壌E中の亜酸化窒素の発生を抑制するために有効な酸化還元電位Vを検出するためにも利用できる。自然環境中においてアンモニア(例えばタンパク質又は動物等のし尿を起源とするアンモニア)は、水底土壌E中において単独又は複数の微生物反応が関与する硝化、脱窒プロセスにより硝酸、亜硝酸が生成され、さらに硝酸から亜酸化窒素に分解されたのち((11)式参照)、最終的に窒素に分解されて大気中に放出される((12)式参照)。アンモニアから硝酸、亜硝酸の生成反応は酸素を必要とする絶対好気条件下で進行するのに対し、(12)式の亜酸化窒素還元細菌の還元反応は嫌気条件、すなわち酸化還元電位Vの低い状態で進行する。
2HNO+8H+8e→5HO+NO ………………………………(11)
O+2H+2e→N+HO …………………………………………(12)
2 and 3 described above are not only for detecting methane but also for detecting a redox potential V effective for suppressing the generation of other warming gases such as nitrous oxide in the bottom soil E. Available. In the natural environment, ammonia (for example, ammonia originating from human waste such as protein or animals) produces nitric acid and nitrous acid by nitrification and denitrification processes involving single or multiple microbial reactions in the bottom soil E. After being decomposed into nitric oxide from nitric acid (see formula (11)), it is finally broken down into nitrogen and released into the atmosphere (see formula (12)). While the reaction for producing nitric acid and nitrous acid from ammonia proceeds under absolute aerobic conditions requiring oxygen, the reduction reaction of the nitrous oxide reducing bacterium of formula (12) is anaerobic conditions, that is, the oxidation-reduction potential V. Proceeds low.
2HNO 3 + 8H + + 8e → 5H 2 O + N 2 O (11)
N 2 O + 2H + + 2e → N 2 + H 2 O …………………………………… (12)

例えば図2の実験において、水底土壌E中にアンモニア又は硝酸を添加し、容器5の開口に接続したガス濃度測定装置(光音響型マルチガスモニター)によって気相ガス中の亜酸化窒素濃度を連続的に測定し、電位制御装置20により水底土壌E中の酸化還元電位Vを切り替えながら亜酸化窒素発生量の変化を測定する。土壌Eの酸化還元電位Vが高い状態では亜酸化窒素還元細菌の還元反応((12)式の脱窒反応)が進行せず、酸化還元電位Vを低くして土壌E中に還元力を供給することにより亜酸化窒素の分解が促進されて脱窒が増加する。この亜酸化窒素濃度の増減から、土壌Eに応じて亜酸化窒素還元細菌の還元反応が促進される酸化還元電位Vを検出し、その検出電位Vを電位制御装置20の目標値に設定して土壌Eの酸化還元電位Vを制御することにより、二酸化炭素の約300倍の温暖化係数を有する亜酸化窒素の発生を安定的・効率的に抑制することができる。   For example, in the experiment of FIG. 2, ammonia or nitric acid is added to the bottom soil E, and the nitrous oxide concentration in the gas phase gas is continuously measured by a gas concentration measuring device (photoacoustic multi-gas monitor) connected to the opening of the container 5. The change in the amount of nitrous oxide generated is measured while switching the oxidation-reduction potential V in the bottom soil E by the potential control device 20. When the redox potential V of the soil E is high, the reduction reaction of the nitrous oxide-reducing bacteria (denitrification reaction of the formula (12)) does not proceed, and the reducing power is reduced to supply the reducing power into the soil E. This promotes the decomposition of nitrous oxide and increases denitrification. From this increase / decrease in nitrous oxide concentration, an oxidation-reduction potential V at which the reduction reaction of nitrous oxide-reducing bacteria is promoted according to the soil E is detected, and the detected potential V is set as a target value of the potential control device 20. By controlling the oxidation-reduction potential V of the soil E, generation of nitrous oxide having a warming coefficient about 300 times that of carbon dioxide can be stably and efficiently suppressed.

こうして本発明の目的である「水底土壌に応じて様々な土壌中の様々な微生物反応を適切に制御できる方法及びシステム」を達成することができる。   Thus, the “method and system capable of appropriately controlling various microbial reactions in various soils according to the bottom soil”, which is an object of the present invention, can be achieved.

以上、水底土壌E中の温暖化ガスを生産又は消費する微生物反応を抑制し又は促進する方法について説明したが、本発明のシステムは水底土壌E中で生起する他の微生物反応を抑制又は促進する場合にも利用可能である。例えば表1に示すように硝酸態窒素・硫化水素その他の有害物質やリンその他の栄養塩類を分解又は生成する微生物反応の酸化還元電位Vが知られており、表1に基づいて水底土壌Eの酸化還元電位Vを制御することにより、土壌E中の有害物質や栄養塩類の分解を促進し又は生成を抑制することができる。また図2の実験装置において、気相中の反応生成物(メタン等)の測定に代えて、測定手段27により土壌E中の反応生成物(有害物質や栄養塩類等)を測定することにより、原位置の水底土壌Eの性状に応じて有害物質や栄養塩類の分解を促進し又は生成を抑制できる最適の酸化還元電位Vを検出し、その検出電位Vに基づき第1電極11を制御することにより、有害物質や栄養塩類の分解又は生成の安定化・効率化を図ることも可能である。   As described above, the method for suppressing or promoting the microbial reaction that produces or consumes the greenhouse gas in the bottom soil E has been described. However, the system of the present invention suppresses or promotes another microbial reaction that occurs in the bottom soil E. Also available in cases. For example, as shown in Table 1, the oxidation-reduction potential V of a microbial reaction that decomposes or generates nitrate nitrogen, hydrogen sulfide, and other harmful substances, phosphorus, and other nutrient salts is known. By controlling the oxidation-reduction potential V, decomposition of harmful substances and nutrients in the soil E can be promoted or production can be suppressed. Further, in the experimental apparatus of FIG. 2, instead of measuring the reaction product (methane, etc.) in the gas phase, by measuring the reaction product (hazardous substances, nutrients, etc.) in the soil E by the measuring means 27, Detecting an optimum redox potential V that can promote or suppress the decomposition of harmful substances and nutrients in accordance with the properties of the underwater soil E, and controls the first electrode 11 based on the detected potential V. Therefore, it is possible to stabilize and increase the efficiency of decomposition or generation of harmful substances and nutrients.

図4は、本発明の微生物反応制御システムを廃水処理に利用した実施例を示す。図示例は、廃水処理施設の濾過槽(又はオープンポンド等の放流池)6の水底土壌E中に第1電極11を埋設し、その上方の水W中に第2電極12を設置する。例えば、濾過槽6の流入路7から土壌E中又はその上方の水W中に汚染物質(例えば酢酸等の有機物又は硝酸態窒素等)を含む廃水Dを流入させ、両電極11、12間に接続した電位制御装置20によって土壌E中の汚染物質の分解微生物反応が抑制又は促進される酸化還元電位Vに制御することにより、土壌E中に浸透した汚染物質を分解する。汚染物質の分解微生物反応が抑制又は促進される酸化還元電位Vは、上述したメタン菌のメタンガス生成反応又は亜酸化窒素還元細菌の還元反応の場合と同様に定めることができる。汚染物質を分解した後の廃水Dは、土壌E中を緩速濾過させて好気化したのち放水路8から(好気化が必要ないときは放水路9から)放流する。   FIG. 4 shows an embodiment in which the microbial reaction control system of the present invention is used for wastewater treatment. In the illustrated example, the first electrode 11 is embedded in the bottom soil E of a filtration tank (or an open pond such as an open pond) 6 of a wastewater treatment facility, and the second electrode 12 is installed in the water W above it. For example, waste water D containing pollutants (for example, organic substances such as acetic acid or nitrate nitrogen) is introduced into the soil E or the water W above it from the inflow path 7 of the filtration tank 6. By controlling the oxidation-reduction potential V at which the microbial reaction of the contaminants in the soil E is suppressed or promoted by the connected potential control device 20, the contaminants that have penetrated into the soil E are decomposed. The oxidation-reduction potential V at which the degradation microorganism reaction of the pollutant is suppressed or promoted can be determined in the same manner as in the above-described methane gas production reaction of methane bacteria or the reduction reaction of nitrous oxide-reducing bacteria. The waste water D after decomposing the pollutants is slowly filtered through the soil E and aerobized, and then discharged from the discharge channel 8 (from the discharge channel 9 when aerobicization is not required).

図示例の濾過槽6において、酢酸等の汚染物質を含む廃水Dを流入させた場合は、水底土壌E中の第1電極11の周囲領域Aにおいて酢酸を分解して電極11に電子を渡す微生物が生息し、水W中の第2電極12の周囲領域Cにおいて電子をもらって酸素を分解する好気性微生物が繁茂し、両者の境界の土壌上層領域において酸素を消費しつつ水素イオンを通す微生物膜が形成される。電極11、12の表面が汚れて電流不足となるときは、例えば電位制御装置20により逆電位をかけて電極面の汚れを除去することができる。また、水底土壌Eに目詰まり等が発生したときは、図中に一転鎖線で示すように、処理後廃水を放水路8から土壌Eに逆流させて洗浄(逆洗)することができる。   When waste water D containing contaminants such as acetic acid is introduced into the filtration tank 6 in the illustrated example, microorganisms that decompose acetic acid and pass electrons to the electrode 11 in the surrounding area A of the first electrode 11 in the bottom soil E Aerobic microorganisms that inhabit and grow electrons in the area C around the second electrode 12 in the water W, and pass oxygen ions while consuming oxygen in the soil upper layer area between the two. Is formed. When the surfaces of the electrodes 11 and 12 become dirty and current becomes insufficient, for example, the potential control device 20 can apply a reverse potential to remove the dirt on the electrode surface. Moreover, when clogging etc. generate | occur | produce in the bottom soil E, a wastewater after a process can be made to flow back to the soil E from the drainage channel 8 and wash | clean (backwash) as shown by a dashed line in the figure.

5…容器 6…濾過槽(放流池)
7…流入路 8…放水路
9…放水路
11…第1電極 12…第2電極
14…基準電極 15…支持部材
20…電位制御装置 21…電位制御回路
22…可変電圧回路 23…電圧計
24…メモリ 25…電流測定回路
26…電流計 27…測定手段
28…検出手段
30…微生物燃料電池 31…アノード(負電極)
32…カソード(正電極) 33…イオン交換膜
34…回路
D…廃水
E…水底土壌
W…水
5 ... Container 6 ... Filtration tank (release pond)
DESCRIPTION OF SYMBOLS 7 ... Inflow channel 8 ... Discharge channel 9 ... Discharge channel 11 ... 1st electrode 12 ... 2nd electrode 14 ... Reference electrode 15 ... Support member 20 ... Potential control device 21 ... Potential control circuit 22 ... Variable voltage circuit 23 ... Voltmeter 24 ... Memory 25 ... Current measuring circuit 26 ... Ammeter 27 ... Measuring means 28 ... Detection means 30 ... Microbial fuel cell 31 ... Anode (negative electrode)
32 ... Cathode (positive electrode) 33 ... Ion exchange membrane 34 ... Circuit D ... Waste water E ... Bottom soil W ... Water

Claims (11)

水底の嫌気性土壌中に第1電極を埋設すると共にその上方の水中に第2電極を設置し,両電極間に接続した電位制御装置により第1電極を前記土壌中の所定微生物反応が抑制又は促進される酸化還元電位に制御してなる水底土壌の微生物反応制御方法。 The first electrode is embedded in the anaerobic soil on the bottom of the water and the second electrode is installed in the water above the first electrode. The potential control device connected between the two electrodes suppresses the first electrode from causing a predetermined microbial reaction in the soil. A method for controlling a microbial reaction in a submerged soil, which is controlled to promote an oxidation-reduction potential. 請求項1の制御方法において,前記電位制御装置により第1電極の電位を切り替えながら所定微生物反応の生成物発生量を測定することにより前記土壌中の所定微生物反応が抑制又は促進される酸化還元電位を検出し且つその検出電位に第1電極を制御してなる水底土壌の微生物反応制御方法。 2. The redox potential according to claim 1, wherein a predetermined microbial reaction in the soil is suppressed or promoted by measuring a product generation amount of the predetermined microbial reaction while switching the potential of the first electrode by the potential control device. And controlling the first electrode at the detected potential to control the microbial reaction in the bottom soil. 請求項1又は2の制御方法において,前記土壌中又はその上方の水中に所定汚染物質含有廃水を流入させ,前記第1電極をその汚染物質の分解微生物反応が抑制又は促進される酸化還元電位に制御してなる水底土壌の微生物反応制御方法。 3. The control method according to claim 1, wherein a predetermined pollutant-containing wastewater is allowed to flow into the soil or water above the soil, and the first electrode is set to a redox potential at which a degradation microbial reaction of the pollutant is suppressed or promoted. A method for controlling a microbial reaction in a submerged soil. 請求項1から3の何れかの制御方法において,前記第1電極をメタン菌のメタンガス生成反応が抑制される酸化還元電位に制御してなる水底土壌の微生物反応制御方法。 The control method according to any one of claims 1 to 3, wherein the first electrode is controlled to an oxidation-reduction potential at which a methane gas production reaction of methane bacteria is suppressed. 請求項1から3の何れかの制御方法において,前記第1電極を亜酸化窒素還元細菌の還元反応が促進される酸化還元電位に制御してなる水底土壌の微生物反応制御方法。 4. The control method according to claim 1, wherein the first electrode is controlled to an oxidation-reduction potential that promotes a reduction reaction of nitrous oxide-reducing bacteria. 水底の嫌気性土壌中に埋設する第1電極,その上方の水中に設置する第2電極,及び両電極間に接続されて第1電極を前記土壌中の所定微生物反応が抑制又は促進される酸化還元電位に制御する電位制御装置を備えてなる水底土壌の微生物反応制御システム。 A first electrode embedded in anaerobic soil at the bottom of the water, a second electrode installed in the water above the first electrode, and an oxidation that is connected between both electrodes to suppress or promote a predetermined microbial reaction in the soil A bottom soil microbial reaction control system comprising a potential control device for controlling to a reduction potential. 請求項6の制御システムにおいて,前記所定微生物反応の生成物発生量を測定する測定手段と,前記第1電極の電位を切り替えながら所定微生物反応の生成物発生量を測定することにより前記土壌中の所定微生物反応が抑制又は促進される酸化還元電位を検出する検出手段とを含めてなる水底土壌の微生物反応制御システム。 7. The control system according to claim 6, wherein a measuring means for measuring a product generation amount of the predetermined microbial reaction and a product generation amount of the predetermined microbial reaction while switching a potential of the first electrode, A microbial reaction control system for underwater soil, comprising detection means for detecting an oxidation-reduction potential at which a predetermined microbial reaction is suppressed or promoted. 請求項6又は7の制御システムにおいて,前記土壌中又はその上方の水中に所定汚染物質含有廃水を流入させる流入路を設け,前記電位制御装置により第1電極をその汚染物質の分解微生物反応が抑制又は促進される酸化還元電位に制御してなる水底土壌の微生物反応制御システム。 8. The control system according to claim 6 or 7 , wherein an inflow path through which waste water containing a predetermined pollutant flows into the soil or the water above the ground is provided, and the first electrode is suppressed by the potential control device from decomposing microbial reaction of the pollutant. Or the microbial reaction control system of the bottom soil which controls to the oxidation-reduction potential promoted. 請求項6から8の何れかの制御システムにおいて,前記第1電極をメタン菌のメタンガス生成反応が抑制される酸化還元電位に制御してなる水底土壌の微生物反応制御システム。 The control system according to any one of claims 6 to 8, wherein the first electrode is controlled to an oxidation-reduction potential at which a methane gas generation reaction of methane bacteria is suppressed. 請求項6から8の何れかの制御システムにおいて,前記第1電極を亜酸化窒素還元細菌の還元反応が促進される酸化還元電位に制御してなる水底土壌の微生物反応制御システム。 9. The control system according to claim 6, wherein the first electrode is controlled to an oxidation-reduction potential that promotes a reduction reaction of nitrous oxide-reducing bacteria. 請求項6から10の何れかの制御システムにおいて,前記電位制御装置を,前記第1電極及び第2電極に接続されると共に,常に一定の酸化還元電位を示す基準電極を有する3電極式の電位制御装置としてなる水底土壌の微生物反応制御システム。 11. The control system according to claim 6, wherein the potential control device is connected to the first electrode and the second electrode, and has a reference electrode that always shows a constant redox potential. Microbial reaction control system for bottom soil as a control device.
JP2012058694A 2012-03-15 2012-03-15 Method and system for controlling microbial reaction in bottom soil Active JP5829956B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012058694A JP5829956B2 (en) 2012-03-15 2012-03-15 Method and system for controlling microbial reaction in bottom soil
PCT/JP2013/056385 WO2013137122A1 (en) 2012-03-15 2013-03-08 Method and system for controlling microbial reactions in benthic soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058694A JP5829956B2 (en) 2012-03-15 2012-03-15 Method and system for controlling microbial reaction in bottom soil

Publications (2)

Publication Number Publication Date
JP2013188727A JP2013188727A (en) 2013-09-26
JP5829956B2 true JP5829956B2 (en) 2015-12-09

Family

ID=49161032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058694A Active JP5829956B2 (en) 2012-03-15 2012-03-15 Method and system for controlling microbial reaction in bottom soil

Country Status (2)

Country Link
JP (1) JP5829956B2 (en)
WO (1) WO2013137122A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104291440A (en) * 2014-10-09 2015-01-21 常州大学 Method for promoting hydrolytic acidification process in anaerobic tank
JP6422122B2 (en) * 2015-03-13 2018-11-14 国立研究開発法人国立環境研究所 Bottom sediment improving method and bottom sediment improving apparatus
JP7063155B2 (en) * 2018-07-10 2022-05-09 東洋インキScホールディングス株式会社 Microbial fuel cell device
CN110320347A (en) * 2019-07-31 2019-10-11 海门品尚医药科技有限公司 Simulated Wetland ecosystem device and its simulation regulation method
CN111122680A (en) * 2019-12-16 2020-05-08 广东省微生物研究所(广东省微生物分析检测中心) Method for obtaining in-situ bottom mud sample from bottom mud type fuel cell
CN113305146B (en) * 2021-06-22 2022-04-08 中国科学院沈阳应用生态研究所 Organic contaminated soil bioremediation device and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289111A (en) * 1987-05-20 1988-11-25 Mitsui Eng & Shipbuild Co Ltd Solidification of sludge soil
JPH1076291A (en) * 1996-08-16 1998-03-24 Shotei Cho Electrolytic type biological reduction suppressing deodorizing method and apparatus therefor
JPH10204845A (en) * 1997-01-24 1998-08-04 Fujita Corp Method of disposing of floating mad
JP2001252669A (en) * 2000-03-14 2001-09-18 Mitsui Eng & Shipbuild Co Ltd Sediment cleaning device and its cleaning method
JP2003236583A (en) * 2002-02-18 2003-08-26 Mitsubishi Heavy Ind Ltd Bottom sediment cleaning apparatus and method
JP4510387B2 (en) * 2003-01-29 2010-07-21 株式会社水環境科学研究所 Seabed sediment improvement method and apparatus using crystallization method with electrolysis electrode
JP5114612B2 (en) * 2004-10-15 2013-01-09 株式会社三重ティーエルオー Microbial battery for sludge treatment and sludge purification apparatus using the same
JP2012130892A (en) * 2010-12-24 2012-07-12 Sekisui Chem Co Ltd Mud treatment device and mud treatment method

Also Published As

Publication number Publication date
WO2013137122A1 (en) 2013-09-19
JP2013188727A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
Abbas et al. Recent advances in soil microbial fuel cells for soil contaminants remediation
Ucar et al. An overview of electron acceptors in microbial fuel cells
Kokabian et al. Water deionization with renewable energy production in microalgae-microbial desalination process
Yang et al. Microorganisms in sediment microbial fuel cells: Ecological niche, microbial response, and environmental function
Wang et al. Bioelectrochemical system platform for sustainable environmental remediation and energy generation
JP5829956B2 (en) Method and system for controlling microbial reaction in bottom soil
Abbas et al. Bioremediation and electricity generation by using open and closed sediment microbial fuel cells
Gustave et al. Mechanisms and challenges of microbial fuel cells for soil heavy metal (loid) s remediation
Wu et al. Simultaneous removal of heavy metals and biodegradation of organic matter with sediment microbial fuel cells
CN101841053B (en) Microbiological fuel cell (MFC) and application thereof in removing organisms from natural sediments
Lin et al. Electrochemical sulfide removal by low-cost electrode materials in anaerobic digestion
Camacho et al. The salinity effects on the performance of a constructed wetland-microbial fuel cell
CN109626767A (en) A kind of method of iron carbon anode microbiological fuel cell strengthened purification bed mud
Ebrahimi et al. A taxonomy of design factors in constructed wetland-microbial fuel cell performance: a review
Camacho et al. Energy production from wastewater using horizontal and vertical subsurface flow constructed wetlands
Zhang et al. Effects of cathode/anode electron accumulation on soil microbial fuel cell power generation and heavy metal removal
Selvaraj et al. Self-sustained semi-pilot scale Hybrid Eco-Electrogenic Engineered System for the wastewater treatment and bioenergy generation
Liu et al. Bioelectrochemical systems for enhanced nitrogen removal with minimal greenhouse gas emission from carbon-deficient wastewater: A review
Jobin et al. Bioremediation in water environment: controlled electro-stimulation of organic matter self-purification in aquatic environments
Xu et al. Methane emission reduction oriented extracellular electron transfer and bioremediation of sediment microbial fuel cell: A review
KR101195093B1 (en) A microbe fuel cell using microorganism and method of reducing greenhouse effect using the same
JP6963806B2 (en) Bioelectrochemical system
Winfield et al. Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride
Bockris et al. Electrochemistry of waste removal. A review
Chu et al. Advanced treatment of landfill leachate from a sequencing batch reactor (SBR) by electrochemical oxidation process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151023

R150 Certificate of patent or registration of utility model

Ref document number: 5829956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250