JP5788713B2 - Earth leakage breaker - Google Patents

Earth leakage breaker Download PDF

Info

Publication number
JP5788713B2
JP5788713B2 JP2011116194A JP2011116194A JP5788713B2 JP 5788713 B2 JP5788713 B2 JP 5788713B2 JP 2011116194 A JP2011116194 A JP 2011116194A JP 2011116194 A JP2011116194 A JP 2011116194A JP 5788713 B2 JP5788713 B2 JP 5788713B2
Authority
JP
Japan
Prior art keywords
circuit
leakage
zero
current
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011116194A
Other languages
Japanese (ja)
Other versions
JP2012243736A (en
Inventor
外山 博之
博之 外山
Original Assignee
河村電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河村電器産業株式会社 filed Critical 河村電器産業株式会社
Priority to JP2011116194A priority Critical patent/JP5788713B2/en
Publication of JP2012243736A publication Critical patent/JP2012243736A/en
Application granted granted Critical
Publication of JP5788713B2 publication Critical patent/JP5788713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Breakers (AREA)

Description

本発明は漏電遮断器に関し、詳しくは交流の漏電に加えて直流成分が重畳された脈流漏電であっても良好に検出して遮断動作する漏電遮断器に関する。   The present invention relates to an earth leakage circuit breaker, and more particularly to an earth leakage circuit breaker that can detect and interrupt even a pulsating current leakage in which a direct current component is superimposed in addition to an alternating current leakage.

近年、太陽光発電設備や電気自動車の充電設備が一般家庭に普及し始めている。このような設備は交流/直流変換が実施されるため、漏電が発生した場合は直流成分が重畳された脈流電流による漏電の発生が考えられる。しかしながら、従来の漏電遮断器は図3に示すような回路構成となっており、脈流電流に対しては正しく検知できなかった。
具体的に、図3において、21は電路Lの零相電流を検出する零相変流器、22はIC化された漏電検出回路、23は電路Lを遮断操作するトリップコイル、24は整流回路であり、零相変流器21を使用して電路Lの漏電を検出している。
In recent years, solar power generation facilities and electric vehicle charging facilities have begun to spread to ordinary households. Since such equipment is subjected to AC / DC conversion, when leakage occurs, leakage due to a pulsating current superimposed with a DC component can be considered. However, the conventional earth leakage breaker has a circuit configuration as shown in FIG. 3, and cannot correctly detect the pulsating current.
Specifically, in FIG. 3, 21 is a zero-phase current transformer that detects a zero-phase current in the electric circuit L, 22 is an IC leakage detection circuit, 23 is a trip coil that cuts off the electric circuit L, and 24 is a rectifier circuit. The leakage of the electric circuit L is detected using the zero-phase current transformer 21.

漏電検出回路22は、定電圧回路22a、漏電を判定するための基準電圧を生成する基準電圧生成回路22b、検出した零相電流と基準電圧を比較する差動増福回路で構成される比較回路22c、判定結果を保持するラッチ回路22d等を備え、零相変流器21が検出した零相電流波形(漏電電流波形)に対して、比較回路22cが正負何れか一方の極性の半波に対して閾値(基準電圧)と比較して判定動作する。例えば正の半波に対して比較回路22cが判定動作する構成の場合、負の半波が正の半波より大きくても、即ち負の直流成分が重畳された漏電電流が発生した場合、漏電が発生しても正の半波が閾値を超えない限り検知できない状況が発生した。
このような背景から、直流成分が重畳された漏電電流であっても確実に所定値を超えたら漏電を検知する“A型”と称される漏電遮断器が提案されている(例えば、特許文献1参照)。
The leakage detection circuit 22 includes a constant voltage circuit 22a, a reference voltage generation circuit 22b that generates a reference voltage for determining leakage, and a comparison circuit that includes a differential boost circuit that compares the detected zero-phase current with the reference voltage. 22c, a latch circuit 22d for holding the determination result, etc., and the comparison circuit 22c makes a half wave of either positive or negative polarity with respect to the zero phase current waveform (leakage current waveform) detected by the zero phase current transformer 21. On the other hand, a determination operation is performed in comparison with a threshold value (reference voltage). For example, in the configuration in which the comparison circuit 22c performs a determination operation on the positive half-wave, even if the negative half-wave is larger than the positive half-wave, that is, if a leakage current with a negative DC component superimposed is generated, Even if this occurred, a situation where it could not be detected unless the positive half-wave exceeded the threshold value occurred.
From such a background, an earth leakage circuit breaker called “A-type” has been proposed that detects an earth leakage if the current leakage exceeds a predetermined value even if the earth leakage current has a DC component superimposed thereon (for example, Patent Documents). 1).

特開2010−14478号公報JP 2010-14478 A

しかしながら、上記特許文献1に開示されたA型の漏電遮断器は、IC化された漏電検出回路に加えて、複数の零相変流器やホール素子、更に直流変換回路を使用している。そのため、1個の零相変流器及び1個のIC化された漏電検出回路に加えて、ホール素子や更なる零相変流器、そして直流変換回路等が必要であり、コスト高であったし複数の零相変流器を設置するためのスペースが必要であった。   However, the A-type leakage breaker disclosed in Patent Document 1 uses a plurality of zero-phase current transformers, Hall elements, and a DC conversion circuit in addition to an IC leakage detection circuit. Therefore, in addition to one zero-phase current transformer and one IC leakage detection circuit, a Hall element, a further zero-phase current transformer, a DC conversion circuit, and the like are necessary, which is expensive. However, a space was required to install multiple zero-phase current transformers.

そこで、本発明はこのような問題点に鑑み、零相変流器が1つで済み大きなスペースを必要とすることなく、従来の交流の漏電に加えて直流成分を含んだ脈流漏電も良好に検出して遮断動作する漏電遮断器を提供することを目的としている。   Therefore, in view of such problems, the present invention requires only one zero-phase current transformer and does not require a large space, and in addition to conventional AC leakage, pulsating leakage including DC components is also good. An object of the present invention is to provide an earth leakage circuit breaker that detects and interrupts the operation.

上記課題を解決する為に、請求項1に記載の発明は、2本の電力線で構成される電路の零相電流を検出する零相変流器と、所定の基準電圧と前記零相変流器の出力電圧波形の一方の極性の波形とを比較して漏電発生を判定するIC化された漏電検出回路と、漏電発生と判定したら前記電路上に設けられた開閉手段を遮断操作する遮断手段と、疑似漏電電流を発生させて前記漏電検出回路をテストする漏電テスト回路とを備えた漏電遮断器であって、前記漏電検出回路が、前記基準電圧が同一であって同一の判定操作を行う2回路で構成され、前記零相変流器の出力が、双方の前記漏電検出回路に対して互いに逆相で入力され、双方の漏電検出回路のうち少なくとも一方が漏電発生と判定したら前記遮断手段が遮断動作すると共に、前記漏電テスト回路は、前記零相変流器の負荷側の電力線間に対して、途中前記零相変流器を通過させて接続した第1電流路と、前記零相変流器の電源側の一方の電力線と前記零相変流器の負荷側の他方の電力線との間を前記零相変流器を通過させずに接続した第2電流路と、前記第1電流路に特定の1方向の電流を流すための第1整流手段、及び前記第2電流路に特定の1方向の電流を流すための第2整流手段と、前記第1電流路及び前記第2電流路のうち何れか一方の電流路を選択して閉路する閉路手段とを有し、前記閉路手段により双方の電流路を切り替えて閉路操作することで、逆方向の極性の零相電流を発生させることを特徴とする。
この構成によれば、1つの零相変流器と従来のIC化された2つの漏電検出回路を使用して、正負何れの直流成分が重畳された漏電であっても漏電電流を確実に検出して電路を遮断することができる。よって、省スペース且つ低コストの回路構成により、脈流漏電であっても、所定の基準電圧を超えたら確実に検出して遮断動作する。
また、閉路手段の操作で第1電流路と第2電流路とを切り替えて疑似漏電電流を発生させることができる。そのため、正負双方の極性の漏電電流を選択して発生させることができ、2つの漏電検出回路をそれぞれ個別にテストできる。よって、何れか一方の漏電検出回路が故障した場合に、それを確実に検出できる。
In order to solve the above problem, the invention described in claim 1 is directed to a zero-phase current transformer for detecting a zero-phase current in an electric circuit composed of two power lines, a predetermined reference voltage, and the zero-phase current transformer. A leakage detection circuit that is integrated into an IC to determine the occurrence of leakage by comparing the waveform of one of the output voltage waveforms of the voltage detector, and a blocking means for blocking the switching means provided on the electric circuit when it is determined that leakage has occurred And an earth leakage test circuit that tests the earth leakage detection circuit by generating a pseudo earth leakage current , wherein the earth leakage detection circuit performs the same determination operation with the same reference voltage. When the output of the zero-phase current transformer is input in opposite phases to both of the leakage detection circuits, and at least one of the leakage detection circuits determines that leakage has occurred, the interruption means Shuts down and the leakage The strike circuit includes a first current path connected between the power lines on the load side of the zero-phase current transformer through the zero-phase current transformer and one of the zero-phase current transformer on the power supply side. A second current path connected between the power line of the zero-phase current transformer and the other power line on the load side of the zero-phase current transformer without passing through the zero-phase current transformer, and a specific one-way connection to the first current path. A first rectifying means for flowing current, a second rectifying means for flowing a current in one specific direction through the second current path, and one of the first current path and the second current path. A closing means for selecting and closing the current path, and switching the both current paths by the closing means to perform a closing operation to generate a zero-phase current having a reverse polarity .
According to this configuration, using one zero-phase current transformer and two conventional leakage detection circuits in the form of an IC, the leakage current can be reliably detected even if the leakage is superimposed with either positive or negative DC components. Thus, the electric circuit can be interrupted. Therefore, with a space-saving and low-cost circuit configuration, even if there is pulsating leakage, it reliably detects and shuts off when a predetermined reference voltage is exceeded.
Further, the pseudo-leakage current can be generated by switching the first current path and the second current path by operating the closing means. Therefore, it is possible to select and generate a leakage current having both positive and negative polarities, and to individually test the two leakage detection circuits. Therefore, when any one of the leakage detection circuits fails, it can be reliably detected.

請求項2の発明は、請求項1に記載の構成において、双方の前記漏電検出回路は、所定の基準電圧を生成する基準電圧生成回路、生成された基準電圧と前記零相変流器の出力電圧とを比較して漏電発生を判定する比較回路、そして前記比較回路の出力を保持するラッチ回路を備え、双方の前記比較回路の出力が何れか一方の前記ラッチ回路に入力され、当該一方のラッチ回路の出力を受けて前記遮断手段が動作することを特徴とする。
この構成によれば、2つのラッチ回路のうち使用するのは一方のラッチ回路のみであるため、他方のラッチ回路の入出力端子はオープンの状態で良く、組み付ける素子数を削減できる。
According to a second aspect of the present invention, in the configuration according to the first aspect, both of the leakage detection circuits include a reference voltage generation circuit that generates a predetermined reference voltage, the generated reference voltage, and an output of the zero-phase current transformer. A comparator circuit for comparing the voltage to determine the occurrence of leakage, and a latch circuit for holding the output of the comparator circuit, the outputs of both the comparator circuits being input to one of the latch circuits, The blocking means operates in response to the output of the latch circuit.
According to this configuration, since only one of the two latch circuits is used, the input / output terminal of the other latch circuit may be open, and the number of elements to be assembled can be reduced.

請求項の発明は、請求項1又は2に記載の構成において、前記第1電流路は、特定の一方の電力線から前記零相変流器の電源側から負荷側に電流が流れるよう配線される一方、前記第2電流路は、前記零相変流器の電源側における前記特定の一方の電力線から、負荷側の前記他方の電力線に電流が流れるよう配線されて成り、他方の電力線に至る経路において前記第1電流路と前記第2電流路とは共通する電流路を有し、前記第1整流手段と前記第2整流手段とは、前記共通する電流路に配置された共通の整流手段であることを特徴とする。
この構成によれば、整流手段は1つで済む。
According to a third aspect of the present invention, in the configuration according to the first or second aspect , the first current path is wired so that a current flows from one specific power line to the load side from the power supply side of the zero-phase current transformer. On the other hand, the second current path is configured such that a current flows from the one specific power line on the power supply side of the zero-phase current transformer to the other power line on the load side, and reaches the other power line. In the path, the first current path and the second current path have a common current path, and the first rectifying means and the second rectifying means are common rectifying means arranged in the common current path. It is characterized by being.
According to this configuration, only one rectifying means is required.

請求項の発明は、請求項に記載の構成において、前記共通の整流回路は、前記漏電検出回路に直流電源を供給するための整流回路であることを特徴とする。
この構成によれば、整流手段は電源回路の整流回路を兼用させるので、漏電テスト回路のために別途整流手段を設ける必要が無く、安価に構成できる。
According to a fourth aspect of the present invention, in the configuration according to the third aspect , the common rectifier circuit is a rectifier circuit for supplying a DC power to the leakage detection circuit.
According to this configuration, since the rectifying means also serves as the rectifying circuit of the power supply circuit, it is not necessary to separately provide the rectifying means for the leakage test circuit, and can be configured at low cost.

本発明によれば、1つの零相変流器と従来のIC化された2つの漏電検出回路を使用して、正負何れの直流成分が重畳された漏電であっても漏電電流を確実に検出して電路を遮断することができる。よって、省スペース且つ低コストの回路構成により、脈流漏電であっても、所定の基準電圧を超えたら確実に検出して遮断動作する。   According to the present invention, by using one zero-phase current transformer and two conventional leakage detection circuits that are integrated into an IC, the leakage current is reliably detected even if the leakage current is a combination of positive and negative DC components. Thus, the electric circuit can be interrupted. Therefore, with a space-saving and low-cost circuit configuration, even if there is pulsating leakage, it reliably detects and shuts off when a predetermined reference voltage is exceeded.

本発明に係る漏電遮断器の一例を示す回路図である。It is a circuit diagram which shows an example of the earth-leakage circuit breaker which concerns on this invention. 漏電テスト回路を備えた漏電遮断器の回路図である。It is a circuit diagram of a ground-fault circuit breaker provided with a ground-fault test circuit. 従来の漏電遮断器の回路図である。It is a circuit diagram of the conventional earth-leakage circuit breaker.

以下、本発明を具体化した実施の形態を、図面を参照して詳細に説明する。図1は本発明に係る漏電遮断器の一例を示す回路図であり、1は電源側端子、2は負荷側端子、3は電源側端子1と負荷側端子2の間の電路Lを開閉する開閉接点、4は零相変流器、5は開閉接点を開操作して電路を遮断するためのトリップコイル、6は漏電が発生したら遮断信号を出力する漏電遮断回路、7は漏電発生を判定するIC化された漏電検出回路である。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below in detail with reference to the drawings. FIG. 1 is a circuit diagram showing an example of an earth leakage breaker according to the present invention, where 1 is a power supply side terminal, 2 is a load side terminal, and 3 is an electric circuit L between the power supply side terminal 1 and the load side terminal 2. Open / close contact, 4 is a zero-phase current transformer, 5 is a trip coil for opening the open / close contact to cut off the electric circuit, 6 is a leakage breaker circuit that outputs a cut-off signal when a leak occurs, and 7 is judged to be leaked This is an IC leakage detection circuit.

尚、漏電検出回路7は同一の2つのIC(第1漏電検出回路7a,第2漏電検出回路7b)で構成され、例えば日本電気株式会社製バイポーラアナログ集積回路μPC1702が使用される。この回路は、上記図3の漏電遮断回路22と同様の回路構成であり、定電圧回路、基準電圧生成回路、検出した零相電流と基準電圧を比較する差動増福回路で構成される比較回路、判定結果を保持するラッチ回路等が組み込まれている。そして8端子を備え、第1端子が基準電圧発生端子、第2端子が比較回路入力端子、第3端子がGND端子、第4端子が比較回路出力端子、第5端子がラッチ回路入力端子、第7端子がラッチ回路出力端子、第8端子が電源端子である。また、電路LはL1,L2の2本の電力線で構成される。   The leakage detection circuit 7 is composed of the same two ICs (first leakage detection circuit 7a and second leakage detection circuit 7b). For example, a bipolar analog integrated circuit μPC1702 manufactured by NEC Corporation is used. This circuit has the same circuit configuration as the leakage breaker circuit 22 shown in FIG. 3, and is composed of a constant voltage circuit, a reference voltage generation circuit, and a differential boost circuit that compares the detected zero-phase current with the reference voltage. A circuit, a latch circuit for holding a determination result, and the like are incorporated. The first terminal is a reference voltage generating terminal, the second terminal is a comparison circuit input terminal, the third terminal is a GND terminal, the fourth terminal is a comparison circuit output terminal, the fifth terminal is a latch circuit input terminal, Seven terminals are latch circuit output terminals, and the eighth terminal is a power supply terminal. The electric circuit L is composed of two power lines L1 and L2.

漏電遮断回路6は、零相変流器4を通過した負荷側の電路Lから漏電検出回路7等の動作電源を採り込み、トリップコイル5を介して双方の漏電検出回路7a,7bの電源端子に接続される。また、零相変流器4の出力端子間には抵抗RLが接続されて検出した零相電流が電圧に変換される。この電圧情報は、双方の漏電検出回路7a,7bの比較回路入力端子に入力される。但し、第1漏電検出回路7aと第2漏電検出回路7bとでは、逆相の電圧情報が入力されるよう接続線が互いに反転されて接続されている。そして、双方の比較回路出力はダイオードD2,D3を用いたOR回路を介して第1漏電検出回路7aのラッチ回路入力端子(第5端子)に入力される。   The earth leakage breaker circuit 6 takes an operating power source such as the earth leakage detection circuit 7 from the load-side electric circuit L that has passed through the zero-phase current transformer 4, and the power terminals of both earth leakage detection circuits 7 a and 7 b via the trip coil 5. Connected to. Further, a resistor RL is connected between the output terminals of the zero-phase current transformer 4, and the detected zero-phase current is converted into a voltage. This voltage information is input to the comparison circuit input terminals of both leakage detection circuits 7a and 7b. However, in the first leakage detection circuit 7a and the second leakage detection circuit 7b, the connection lines are connected to each other so that reverse phase voltage information is input. Then, both comparison circuit outputs are input to the latch circuit input terminal (fifth terminal) of the first leakage detection circuit 7a via the OR circuit using the diodes D2 and D3.

このように構成された漏電遮断器は次のように動作する。但し、上述したように第1漏電検出回路7aと第2漏電検出回路7bとは互いに逆相の電圧情報に対して判定するため、ここでは、第1漏電検出回路7aが零相変流器4が出力する交流電圧波形のうち、正極の電圧波形と基準電圧発生端子(第1端子)から出力される所定の基準電圧とを比較し、第2漏電検出回路7bが零相変流器4が出力する交流電圧波形のうち、負極の電圧波形と基準電圧発生端子(第1端子)から出力される所定の基準電圧とを比較するものとする。   The earth leakage circuit breaker thus configured operates as follows. However, as described above, since the first leakage detection circuit 7a and the second leakage detection circuit 7b determine the voltage information of opposite phases, the first leakage detection circuit 7a is here the zero-phase current transformer 4. Is compared with a predetermined reference voltage output from the reference voltage generating terminal (first terminal), and the second leakage detection circuit 7b is connected to the zero-phase current transformer 4. Of the AC voltage waveform to be output, the negative voltage waveform is compared with a predetermined reference voltage output from the reference voltage generation terminal (first terminal).

今、正極性の直流が重畳された漏電が発生したとすると、零相変流器4の出力交流電圧波形は、負極性の波形に対して正極性の波形が大きい交流電圧波形が出力される。すると、正極性の電圧波形が最初に基準電圧に達する。尚、第1漏電検出回路7a及び第2漏電検出回路7bの基準電圧は同一値に設定されている。
従って、第1漏電検出回路7aの比較回路が漏電発生を最初に検知し、比較回路出力端子(第4端子)から漏電検出信号が出力される。
Assuming that a leakage current with a positive direct current superimposed is generated, the output AC voltage waveform of the zero-phase current transformer 4 is an AC voltage waveform having a larger positive polarity waveform than a negative waveform. . Then, the positive voltage waveform first reaches the reference voltage. The reference voltage of the first leakage detection circuit 7a and the second leakage detection circuit 7b is set to the same value.
Accordingly, the comparison circuit of the first leakage detection circuit 7a first detects the occurrence of leakage, and a leakage detection signal is output from the comparison circuit output terminal (fourth terminal).

逆に、負極性の直流が重畳された漏電が発生した場合は、零相変流器4の出力交流電圧波形は、正極性に対して負極性の波形が大きい交流電圧波形が出力される。この場合は、第2漏電検出回路7bの比較回路が漏電発生を検知し、比較回路出力端子(第4端子)から漏電検出信号が出力される。この結果、零相変流器4の出力する正負双方の極性に対していずれかが基準電圧を超えたら漏電発生の判定を実施する。
また、直流成分のない正負対称の交流電圧波形が零相変流器4から出力される通常の漏電の場合は、2つの漏電検出回路7a,7bのうち最初に基準電圧を超えた方が漏電検出信号を出力する。
On the other hand, when a leakage current in which a negative direct current is superimposed is generated, the output AC voltage waveform of the zero-phase current transformer 4 is an AC voltage waveform having a larger negative polarity waveform than the positive polarity. In this case, the comparison circuit of the second leakage detection circuit 7b detects the occurrence of leakage, and a leakage detection signal is output from the comparison circuit output terminal (fourth terminal). As a result, if any of the positive and negative polarities output from the zero-phase current transformer 4 exceeds the reference voltage, the occurrence of leakage is determined.
Further, in the case of normal leakage in which a positive / negative symmetric AC voltage waveform having no DC component is output from the zero-phase current transformer 4, the one that exceeds the reference voltage first of the two leakage detection circuits 7a and 7b A detection signal is output.

こうして第1漏電検出回路7a或いは第2漏電検出回路7bの第4端子から出力された漏電検出信号は、第1漏電検出回路7aのラッチ回路入力端子(第5端子)に入力される。このとき、双方の漏電検出回路7a,7bの漏電検出信号は、ダイオードD2,D3を使用したOR回路を介して第1漏電検出回路のラッチ回路入力端子に入力される。
漏電検出信号がラッチ回路に入力されると、ラッチ回路出力端子(第7端子)からトリップコイル5の起動信号が出力され、サイリスタZ1がオンしてトリップコイル5はトリップ動作する。こうして、開閉接点3が開動作して電路Lが遮断される。
Thus, the leakage detection signal output from the fourth terminal of the first leakage detection circuit 7a or the second leakage detection circuit 7b is input to the latch circuit input terminal (fifth terminal) of the first leakage detection circuit 7a. At this time, the leakage detection signals of both leakage detection circuits 7a and 7b are input to the latch circuit input terminal of the first leakage detection circuit via the OR circuit using the diodes D2 and D3.
When the leakage detection signal is input to the latch circuit, an activation signal for the trip coil 5 is output from the latch circuit output terminal (seventh terminal), the thyristor Z1 is turned on, and the trip coil 5 performs a trip operation. In this way, the switching contact 3 opens and the electric circuit L is interrupted.

このように、1つの零相変流器4と従来のIC化された2つの漏電検出回路7a,7bを使用して、正負何れの直流成分が重畳された漏電であっても漏電電流を確実に検出して電路を遮断することができる。よって、省スペース且つ低コストの回路構成により、脈流漏電であっても、所定の基準電圧を超えたら確実に検出して遮断動作する。
また、第1漏電検出回路7a及び第2漏電検出回路7bのラッチ回路のうち使用するのは一方のラッチ回路のみであるため、他方のラッチ回路の入出力端子はオープンの状態で良く、ICを2個用いても組み付ける素子数を削減できる。
In this way, by using one zero-phase current transformer 4 and two conventional leakage detection circuits 7a and 7b that are integrated into an IC, the leakage current can be reliably ensured even if the leakage is superimposed on any positive or negative DC component. It is possible to cut off the electric circuit by detecting the current. Therefore, with a space-saving and low-cost circuit configuration, even if there is pulsating leakage, it reliably detects and shuts off when a predetermined reference voltage is exceeded.
Further, since only one latch circuit is used among the latch circuits of the first leakage detection circuit 7a and the second leakage detection circuit 7b, the input / output terminals of the other latch circuit may be in an open state, and the IC is connected. Even if two elements are used, the number of elements to be assembled can be reduced.

図2は本発明の漏電遮断器の他の形態を示している。上記図1の構成との違いは漏電テスト回路10を備えている点であり、漏電を検出して電路Lを遮断する機能は図1と同様である。
以下、漏電テスト回路10を説明する。漏電テスト回路10は、特定の1方向に電流が流れる2本の電流路11(第1電流路11a,第2電流路11b)と、この電流路11のうち何れか一方に電流を流すための切替スイッチ12とで構成されている。
FIG. 2 shows another embodiment of the leakage breaker of the present invention. The difference from the configuration of FIG. 1 is that a leakage test circuit 10 is provided, and the function of detecting the leakage and cutting off the electric circuit L is the same as that of FIG.
Hereinafter, the leakage test circuit 10 will be described. The leakage test circuit 10 is configured to cause two current paths 11 (first current path 11a and second current path 11b) through which current flows in one specific direction and current to flow through one of the current paths 11. And a changeover switch 12.

具体的に、2本の電流路11a,11bのうち第1電流路11aは、電路L上の零相変流器4の設置位置に対して負荷側の一方の電力線L1に接続した後、零相変流器4に対して電源側から挿通し、電路Lの負荷側の他方の電力線L2に接続して形成されている。他方の第2電流路11bは、電路Lの電源側の一方の電力線L1に接続して、零相変流器4を介さずに負荷側の他方の電力線L2に接続して形成されている。   Specifically, of the two current paths 11a and 11b, the first current path 11a is connected to one power line L1 on the load side with respect to the installation position of the zero-phase current transformer 4 on the circuit L, and then zero. The phase current transformer 4 is inserted from the power supply side and connected to the other power line L2 on the load side of the electric circuit L. The other second current path 11b is formed by connecting to one power line L1 on the power source side of the circuit L and connecting to the other power line L2 on the load side without passing through the zero-phase current transformer 4.

但し、零相変流器4挿通後の第1電流路11aと第2電流路11bは、他方の電力線L2に接続するまでの経路が、切替スイッチ12を介して共通となっている。こうして切替スイッチ12により、双方の電流路11a,11bのうち通電する電流路を選択でき、一方のみの通電が実施できるよう構成されている。尚、電流路11を流れる電流は、共通する電流路11に設けた抵抗Rtにより漏電検出回路7が漏電判定動作する特定の値になるよう調整される。
更に、この共通の電流路11は、漏電検出回路7に直流電源を供給するための整流回路を構成するダイオードD1のアノードを介して他方の電力線L2に接続され、電流路11にはダイオードD1で規制される特定の一方向の電流が通電されるよう構成されている。
However, the first current path 11a and the second current path 11b after the insertion of the zero-phase current transformer 4 have a common path through the changeover switch 12 until they are connected to the other power line L2. In this way, the selector switch 12 can select a current path to be energized out of the both current paths 11a and 11b, and only one of them can be energized. Note that the current flowing through the current path 11 is adjusted by the resistor Rt provided in the common current path 11 to a specific value at which the leakage detection circuit 7 performs the leakage determination operation.
Further, the common current path 11 is connected to the other power line L2 via the anode of the diode D1 constituting a rectifier circuit for supplying DC power to the leakage detection circuit 7, and the current path 11 is connected to the current path 11 by the diode D1. A specific unidirectional current to be regulated is energized.

このような漏電テスト回路10を設けることで、切替スイッチ12を操作することで疑似漏電電流が発生し、トリップコイル5がトリップ動作して遮断動作する。
具体的に、まず第1電流路11aが閉路するよう切替スイッチ12を接続操作した場合は、零相変流器4を介して一定の電流が流れる。よって、あたかも一方の電力線L1側の電流が電力線L2より大きな電流が流れたように見え、零相変流器4はこれを零相電流として検知する。更に、このとき第1電流路11aを流れる電流は、ダイオードD1によって特定の一方の極性の電流であるため、零相変流器4はこの特定の極性の波形が大きい電圧信号を出力する。この極性が、例えば正極性の波形であれば、上述した漏電検知動作と同様に、第1漏電検出回路7aがこれを検出して漏電検出信号を出力する。その結果、トリップコイル5がトリップ動作して遮断動作する。
By providing such a leakage test circuit 10, a pseudo leakage current is generated by operating the changeover switch 12, and the trip coil 5 is tripped and cut off.
Specifically, when the changeover switch 12 is first connected so that the first current path 11 a is closed, a constant current flows through the zero-phase current transformer 4. Therefore, it appears as if the current on the one power line L1 side is larger than the power line L2, and the zero-phase current transformer 4 detects this as a zero-phase current. Furthermore, since the current flowing through the first current path 11a at this time is a current of one specific polarity by the diode D1, the zero-phase current transformer 4 outputs a voltage signal having a large waveform of this specific polarity. If this polarity is, for example, a positive waveform, the first leakage detection circuit 7a detects this and outputs a leakage detection signal in the same manner as the leakage detection operation described above. As a result, the trip coil 5 trips and shuts off.

一方、第2電流路11bが閉路するよう切替スイッチ12を接続操作した場合は、一方の電力線L1の電流が、他方の電力線L2の電流に対してあたかも減少したようにみえ、零相変流器4はこれを零相電流として検知する。そして、このとき第2電流路11bを流れる電流は、ダイオードD1によって規制された特定の一方の極性の電流であるため、零相変流器4はこの特定の極性の波形が大きい電圧信号を出力する。
この時、零相変流器4が出力する電圧波形の正極性は負極性に比べて小さくなるため、負極性の波形に対して検知動作する第2漏電検出回路7bが検知動作し、漏電検出信号を出力する。その結果、トリップコイル5がトリップ動作して遮断動作する。尚、切替スイッチ12は、通常は開放状態にあり、電流路11に電流が流れることはない。
On the other hand, when the changeover switch 12 is connected so that the second current path 11b is closed, the current of one power line L1 seems to have decreased with respect to the current of the other power line L2, and the zero-phase current transformer 4 detects this as a zero-phase current. At this time, since the current flowing through the second current path 11b is a current having one specific polarity regulated by the diode D1, the zero-phase current transformer 4 outputs a voltage signal having a large waveform having this specific polarity. To do.
At this time, since the positive polarity of the voltage waveform output from the zero-phase current transformer 4 is smaller than that of the negative polarity, the second leakage detection circuit 7b that performs a detection operation on the negative waveform detects the leakage and detects leakage. Output a signal. As a result, the trip coil 5 trips and shuts off. The change-over switch 12 is normally in an open state, and no current flows through the current path 11.

このように、切替スイッチ12の操作で第1電流路11aと第2電流路11bとを切り替えて疑似漏電電流を発生させることができる。そのため、正負双方の極性の漏電電流を選択して発生させることができ、2つの漏電検出回路7a,7bをそれぞれ個別にテストできる。よって、一方の漏電検出回路7が故障した場合、漏電電流が交流電流で発生する限りそれを検知して遮断動作するが、直流電流が重畳した脈流電流による漏電が発生した場合に、それを検知できないような事態を確実に防止できる。
また、漏電テスト回路10の双方の電流路11に流れる電流の方向を規定する整流回路は、漏電検出回路7の電源回路を構成するダイオードD1を兼用させて共通としているので、漏電テスト回路10のために別途整流回路を設ける必要が無く、安価に構成できる。
As described above, the pseudo-leakage current can be generated by switching the first current path 11a and the second current path 11b by operating the changeover switch 12. Therefore, it is possible to select and generate a leakage current having both positive and negative polarities, and the two leakage detection circuits 7a and 7b can be individually tested. Therefore, if one of the leakage detection circuits 7 fails, the leakage current is detected and cut off as long as the leakage current is generated by an alternating current, but if a leakage due to a pulsating current superimposed with a direct current occurs, The situation that cannot be detected can be surely prevented.
In addition, the rectifier circuit that defines the direction of the current flowing through both current paths 11 of the leakage test circuit 10 is shared by the diode D1 that constitutes the power supply circuit of the leakage detection circuit 7, so that the leakage test circuit 10 Therefore, it is not necessary to provide a separate rectifier circuit and can be configured at low cost.

尚、上記実施形態では、零相変流器4の負荷側の電路Lから電流を取り出して零相変流器4を再度通過させるよう第1電流路11aを形成して一方の電力線L1の見かけの電流を増加させているが、零相変流器4に逆向きに通過させて一方の電力線L1の見かけの電流を減少させても良い。この場合、第2電流路11bは他方の電力線L2の電流が減少するよう零相変流器4の負荷側の一方の電力線L1から電源側の他方の電力線L2に電流が流れるよう設ければ良い。要は、切替スイッチ12を切替操作することで、零相変流器4が検知する零相電流に正又は負の直流成分が重畳されるよう切替可能に配線すれば良い。   In the above embodiment, the first current path 11a is formed so that the current is taken out from the load-side electric path L of the zero-phase current transformer 4 and passed again through the zero-phase current transformer 4, and the apparent power line L1 is formed. However, the apparent current of one power line L1 may be decreased by passing the zero-phase current transformer 4 in the reverse direction. In this case, the second current path 11b may be provided so that a current flows from one power line L1 on the load side of the zero-phase current transformer 4 to the other power line L2 on the power source side so that the current of the other power line L2 decreases. . In short, by switching the changeover switch 12, wiring may be performed so that a positive or negative DC component is superimposed on the zero-phase current detected by the zero-phase current transformer 4.

1・・電源側端子、2・・負荷側端子、3・・開閉接点(開閉手段)、4・・零相変流器、5・・トリップコイル(遮断手段)、6・・漏電遮断回路、7・・漏電検出回路、7a・・第1漏電検出回路、7b・・第2漏電検出回路、10・・漏電テスト回路、11・・電流路、11a・・第1電流路、11b・・第2電流路、12・・切替スイッチ(閉路手段)、L・・電路、22b・・基準電圧生成回路、22c・・比較回路、22d・・ラッチ回路、D1・・ダイオード(第1整流手段、第2整流手段)。   1 .... Power supply side terminal 2 .... Load side terminal 3 .... Opening / closing contact (switching means) 4 .... Zero phase current transformer 5 .... Trip coil (breaking means) 6 .... 7 .... Leakage detection circuit, 7a ... First leakage detection circuit, 7b ... Second leakage detection circuit, 10 .... Leakage test circuit, 11 .... Current path, 11a ... First current path, 11b ... 2 current paths, 12... Changeover switch (closing means), L .. electric circuit, 22 b .. reference voltage generation circuit, 22 c .. comparison circuit, 22 d .. latch circuit, D1 .. diode (first rectification means, first 2 rectifying means).

Claims (4)

2本の電力線で構成される電路の零相電流を検出する零相変流器と、所定の基準電圧と前記零相変流器の出力電圧波形の一方の極性の波形とを比較して漏電発生を判定するIC化された漏電検出回路と、漏電発生と判定したら前記電路上に設けられた開閉手段を遮断操作する遮断手段と、疑似漏電電流を発生させて前記漏電検出回路をテストする漏電テスト回路とを備えた漏電遮断器であって、
前記漏電検出回路が、前記基準電圧が同一であって同一の判定操作を行う2回路で構成され、
前記零相変流器の出力が、双方の前記漏電検出回路に対して互いに逆相で入力され、双方の漏電検出回路のうち少なくとも一方が漏電発生と判定したら前記遮断手段が遮断動作すると共に、
前記漏電テスト回路は、前記零相変流器の負荷側の電力線間に対して、途中前記零相変流器を通過させて接続した第1電流路と、
前記零相変流器の電源側の一方の電力線と前記零相変流器の負荷側の他方の電力線との間を前記零相変流器を通過させずに接続した第2電流路と、
前記第1電流路に特定の1方向の電流を流すための第1整流手段、及び前記第2電流路に特定の1方向の電流を流すための第2整流手段と、
前記第1電流路及び前記第2電流路のうち何れか一方の電流路を選択して閉路する閉路手段とを有し、
前記閉路手段により双方の電流路を切り替えて閉路操作することで、逆方向の極性の零相電流を発生させることを特徴とする漏電遮断器。
A zero-phase current transformer that detects a zero-phase current in a circuit constituted by two power lines, and a leakage current by comparing a predetermined reference voltage with a waveform of one polarity of the output voltage waveform of the zero-phase current transformer A leakage detection circuit that is integrated into an IC for determining occurrence, a blocking unit that switches off an opening / closing unit provided on the circuit when it is determined that leakage has occurred, and a leakage that tests the leakage detection circuit by generating a pseudo leakage current An earth leakage circuit breaker with a test circuit ,
The leakage detection circuit is composed of two circuits that perform the same determination operation with the same reference voltage,
The outputs of the zero-phase current transformers are input in opposite phases to both of the leakage detection circuits, and when at least one of the leakage detection circuits determines that leakage has occurred, the blocking means performs a blocking operation ,
The leakage test circuit includes a first current path connected between the power lines on the load side of the zero-phase current transformer through the zero-phase current transformer,
A second current path connected between one power line on the power source side of the zero-phase current transformer and the other power line on the load side of the zero-phase current transformer without passing through the zero-phase current transformer;
A first rectifying means for flowing a current in one specific direction in the first current path; and a second rectifying means for flowing a current in a specific one direction in the second current path;
Closing means for selecting and closing any one of the first current path and the second current path;
An earth leakage circuit breaker characterized by generating a zero-phase current having a reverse polarity by switching both current paths by the closing means and performing a closing operation .
双方の前記漏電検出回路は、所定の基準電圧を生成する基準電圧生成回路、生成された基準電圧と前記零相変流器の出力電圧とを比較して漏電発生を判定する比較回路、そして前記比較回路の出力を保持するラッチ回路を備え、
双方の前記比較回路の出力が何れか一方の前記ラッチ回路に入力され、当該一方のラッチ回路の出力を受けて前記遮断手段が動作することを特徴とする請求項1記載の漏電遮断器。
Both of the leakage detection circuits include a reference voltage generation circuit that generates a predetermined reference voltage, a comparison circuit that compares the generated reference voltage with the output voltage of the zero-phase current transformer to determine the occurrence of leakage, and the It has a latch circuit that holds the output of the comparison circuit,
2. The earth leakage circuit breaker according to claim 1 , wherein the outputs of both of the comparison circuits are input to any one of the latch circuits, and the interruption means operates upon receiving the output of the one latch circuit.
前記第1電流路は、特定の一方の電力線から前記零相変流器の電源側から負荷側に電流が流れるよう配線される一方、前記第2電流路は、前記零相変流器の電源側における前記特定の一方の電力線から、負荷側の前記他方の電力線に電流が流れるよう配線されて成り、
他方の電力線に至る経路において前記第1電流路と前記第2電流路とは共通する電流路を有し、
前記第1整流手段と前記第2整流手段とは、前記共通する電流路に配置された共通の整流手段であることを特徴とする請求項1又は2記載の漏電遮断回路。
The first current path is wired so that a current flows from a specific one power line to the load side from the power source side of the zero-phase current transformer, while the second current path is a power source of the zero-phase current transformer The specific one power line on the side is wired so that current flows from the other power line to the load side,
In the path to the other power line, the first current path and the second current path have a common current path,
3. The leakage breaker circuit according to claim 1, wherein the first rectifying unit and the second rectifying unit are common rectifying units arranged in the common current path.
前記共通の整流手段は、前記漏電検出回路に直流電源を供給するための整流回路であることを特徴とする請求項記載の漏電遮断器。 4. The leakage breaker according to claim 3, wherein the common rectifying means is a rectifier circuit for supplying a DC power to the leakage detection circuit.
JP2011116194A 2011-05-24 2011-05-24 Earth leakage breaker Active JP5788713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011116194A JP5788713B2 (en) 2011-05-24 2011-05-24 Earth leakage breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011116194A JP5788713B2 (en) 2011-05-24 2011-05-24 Earth leakage breaker

Publications (2)

Publication Number Publication Date
JP2012243736A JP2012243736A (en) 2012-12-10
JP5788713B2 true JP5788713B2 (en) 2015-10-07

Family

ID=47465185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011116194A Active JP5788713B2 (en) 2011-05-24 2011-05-24 Earth leakage breaker

Country Status (1)

Country Link
JP (1) JP5788713B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520423B2 (en) * 2014-11-14 2019-05-29 株式会社村田製作所 Electric leakage detection circuit
CN105807174B (en) * 2014-12-30 2019-02-15 施耐德电器工业公司 Current transformer disconnection detection method in electrical power trans mission/distribution system protection
JP6928202B2 (en) * 2018-12-27 2021-09-01 芳律 浜田 OCR tester

Also Published As

Publication number Publication date
JP2012243736A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
US8570181B2 (en) Method and apparatus for supervisory circuit for ground fault circuit interrupt device
JP4845910B2 (en) Earth leakage breaker
US7099130B2 (en) Voltage monitor for ground fault circuit interrupter
EP2545627B1 (en) Method and apparatus for supervisory circuit for ground fault circuit interrupt device
US7924537B2 (en) Miswiring circuit coupled to an electrical fault interrupter
JP5255747B2 (en) Phase loss detection circuit and electrical equipment
US8072716B2 (en) AFCI device
KR20060110749A (en) Ground fault circuit interrupter
JP4931754B2 (en) Earth leakage breaker
JP2015041497A (en) Ground fault interrupter
JP5651508B2 (en) Inrush current suppression device
JP5788713B2 (en) Earth leakage breaker
JP5731902B2 (en) Earth leakage breaker
KR102085770B1 (en) breaker
KR101522955B1 (en) Circuit braker capable of protecting open phase
JP6610173B2 (en) Earth leakage breaker
JP6297439B2 (en) Earth leakage breaker
JP2009048864A (en) Circuit breaker with single-phase three-wire neutral line phase interruption protection
US20120182655A1 (en) Methods and Systems Involving Monitoring Circuit Connectivity
US10931095B1 (en) Relay-type leakage current protection device
KR101509667B1 (en) Non-polar earth leakage breaker
JP2012042316A (en) Inverter device
JP2010273478A (en) Method and system for detection of line-to-ground fault in dc and ac circuit
JP2010040326A (en) Ground fault interrupter
US11562872B2 (en) Circuit interrupter for detecting breaker fault conditions and interrupting an electric current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150730

R150 Certificate of patent or registration of utility model

Ref document number: 5788713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250