JP5730032B2 - Structure for carbon nanotube electrode, carbon nanotube electrode, and dye-sensitized solar cell - Google Patents

Structure for carbon nanotube electrode, carbon nanotube electrode, and dye-sensitized solar cell Download PDF

Info

Publication number
JP5730032B2
JP5730032B2 JP2011010313A JP2011010313A JP5730032B2 JP 5730032 B2 JP5730032 B2 JP 5730032B2 JP 2011010313 A JP2011010313 A JP 2011010313A JP 2011010313 A JP2011010313 A JP 2011010313A JP 5730032 B2 JP5730032 B2 JP 5730032B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
main surface
metal
electrode
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011010313A
Other languages
Japanese (ja)
Other versions
JP2012151052A (en
Inventor
正康 稲熊
正康 稲熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2011010313A priority Critical patent/JP5730032B2/en
Publication of JP2012151052A publication Critical patent/JP2012151052A/en
Application granted granted Critical
Publication of JP5730032B2 publication Critical patent/JP5730032B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、カーボンナノチューブ電極用構造体、カーボンナノチューブ電極及び色素増感太陽電池に関する。   The present invention relates to a carbon nanotube electrode structure, a carbon nanotube electrode, and a dye-sensitized solar cell.

色素増感太陽電池、リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタ、燃料電池などの電極として、カーボンナノチューブ電極が注目されつつある。   Carbon nanotube electrodes are attracting attention as electrodes for dye-sensitized solar cells, lithium ion secondary batteries, lithium ion capacitors, electric double layer capacitors, fuel cells and the like.

カーボンナノチューブ電極は、基板と、基板に担持された触媒と、触媒上に形成されるカーボンナノチューブ膜とで構成される。ここで、カーボンナノチューブ膜を、基板に担持された触媒上に形成する場合、通常は化学気相成長法(以下、本明細書おいて「CVD法」と呼ぶ)が用いられる。このCVD法では、400〜900℃の高温にした炭化水素ガスなどの炭素を含む雰囲気中で、基板に担持させた触媒からカーボンナノチューブを成長させる(例えば下記特許文献1及び2参照)。   The carbon nanotube electrode includes a substrate, a catalyst supported on the substrate, and a carbon nanotube film formed on the catalyst. Here, when the carbon nanotube film is formed on a catalyst supported on a substrate, a chemical vapor deposition method (hereinafter referred to as “CVD method” in this specification) is usually used. In this CVD method, carbon nanotubes are grown from a catalyst supported on a substrate in an atmosphere containing carbon such as hydrocarbon gas at a high temperature of 400 to 900 ° C. (see, for example, Patent Documents 1 and 2 below).

特開2004-284921号公報JP 2004-284921 A 特開2006-202721号公報JP 2006-202721 JP

ところで、電気二重層キャパシタや色素増感太陽電池などでは、エネルギー密度や可撓性の必要性から、一般的に基板を50μm以下に薄くする必要がある。そのため、カーボンナノチューブ膜を基板上に形成する際、使用する炭化水素ガスなどの原料ガスの温度を600〜900℃の高温にすると、原料ガスによって基板に炭素が浸入するいわゆる浸炭と呼ばれる現象が起こる。その結果、基板において硬化や導電性の低下が起こる。   By the way, in an electric double layer capacitor, a dye-sensitized solar cell, etc., it is generally necessary to make the substrate thin to 50 μm or less because of the necessity of energy density and flexibility. Therefore, when the carbon nanotube film is formed on the substrate, if the temperature of the source gas such as hydrocarbon gas used is set to a high temperature of 600 to 900 ° C., a phenomenon called so-called carburization in which carbon enters the substrate by the source gas occurs. . As a result, the substrate is cured and the conductivity is lowered.

特に、色素増感太陽電池では、この問題が顕著に起こる。即ち、色素増感太陽電池では通常、電解質にヨウ素が使用されるため、ヨウ素による基板の腐食を抑制する観点から、基板材料としてチタンが使用される。しかし、チタンは、非常に安定な炭化物を形成するため、薄いチタン基板は浸炭によって導電性を失い易く、可撓性も低下して、最悪の場合、破損するおそれもある。   In particular, this problem occurs remarkably in dye-sensitized solar cells. That is, in a dye-sensitized solar cell, since iodine is usually used as an electrolyte, titanium is used as a substrate material from the viewpoint of suppressing corrosion of the substrate by iodine. However, since titanium forms a very stable carbide, the thin titanium substrate easily loses its conductivity due to carburization, the flexibility is lowered, and in the worst case, it may be damaged.

従って、導電性及び可撓性に優れたカーボンナノチューブ電極を形成することができるカーボンナノチューブ電極用構造体が望まれていた。   Therefore, a carbon nanotube electrode structure capable of forming a carbon nanotube electrode excellent in conductivity and flexibility has been desired.

本発明は、上記事情に鑑みてなされたものであり、導電性及び可撓性に優れたカーボンナノチューブ電極を形成することができるカーボンナノチューブ電極用構造体、カーボンナノチューブ電極及び色素増感太陽電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a carbon nanotube electrode structure, a carbon nanotube electrode, and a dye-sensitized solar cell capable of forming a carbon nanotube electrode excellent in conductivity and flexibility. The purpose is to provide.

本発明者は、上記課題を解決するため鋭意研究を重ねた結果、金属基板を、本体部と、その少なくとも一部を被覆する金属被膜とで構成し、金属被膜を特定の金属を含むものとすることで、上記課題を解決し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor shall constitute a metal substrate with a main body portion and a metal film covering at least a part thereof, and the metal film shall contain a specific metal. The present inventors have found that the above problems can be solved, and have completed the present invention.

即ち、本発明は、金属基板と、前記金属基板に担持され、カーボンナノチューブ膜を形成する際に触媒として作用する金属触媒とを備えており、前記金属基板が、第1主面及び前記第1主面と反対側の第2主面を有する本体部と、前記本体部の前記第1主面及び前記第2主面の少なくとも一方を被覆する金属被膜とを有しており、前記本体部が、鉄、クロム、コバルト、ニッケル及びチタンからなる群より選ばれる少なくとも1種を含み、前記金属被膜がアルミニウムを含み、前記本体部が1〜40μmの厚さを有することを特徴とするカーボンナノチューブ電極用構造体である。
That is, the present invention includes a metal substrate and a metal catalyst supported on the metal substrate and acting as a catalyst when forming the carbon nanotube film, and the metal substrate includes the first main surface and the first main surface. A main body having a second main surface opposite to the main surface; and a metal coating covering at least one of the first main surface and the second main surface of the main body, the main body being , iron, chromium, cobalt, contains at least one selected from the group consisting of nickel and titanium, carbon nanotubes wherein the metal coating is viewed contains aluminum, the body portion and having a thickness of 1~40μm This is an electrode structure.

このカーボンナノチューブ電極用構造体によれば、カーボンナノチューブ電極用構造体上に、CVD法により、炭素を含む原料を用いてカーボンナノチューブ膜を成長させる際に、金属被膜がアルミニウムを含んでいるため、本体部への浸炭を十分に抑制することができる。従って、導電性及び可撓性に優れたカーボンナノチューブ電極を形成することができる。   According to the carbon nanotube electrode structure, when the carbon nanotube film is grown on the carbon nanotube electrode structure by a CVD method using a raw material containing carbon, the metal coating contains aluminum. Carburization to the main body can be sufficiently suppressed. Therefore, a carbon nanotube electrode excellent in conductivity and flexibility can be formed.

本発明に係るカーボンナノチューブ電極用構造体は、前記本体部が1〜100μmの厚さを有する場合に有用である。これは、本体部の厚さが上記範囲内にある場合に、特に本体部が浸炭されやすくなると共に可撓性の低下の問題が生じやすくなるためである。   The structure for carbon nanotube electrodes according to the present invention is useful when the main body has a thickness of 1 to 100 μm. This is because when the thickness of the main body is within the above range, the main body is particularly easily carburized and the problem of reduced flexibility is likely to occur.

上記カーボンナノチューブ電極用構造体においては、前記金属被膜が、前記第1主面及び前記第2主面の両方を被覆していることが好適である。   In the carbon nanotube electrode structure, it is preferable that the metal coating covers both the first main surface and the second main surface.

この場合、カーボンナノチューブ電極用構造体上に、CVD法を用いて、炭素を含む原料を用いてカーボンナノチューブ膜を成長させる際に、本体部への浸炭をより十分に抑制することができる。   In this case, when the carbon nanotube film is grown on the carbon nanotube electrode structure using the raw material containing carbon using the CVD method, carburization of the main body can be more sufficiently suppressed.

また前記金属触媒が、前記本体部の第1主面及び前記第2主面のいずれか一方の側に設けられているカーボンナノチューブ電極用構造体は、色素増感太陽電池の対極として有用である。   In addition, the carbon nanotube electrode structure in which the metal catalyst is provided on either the first main surface or the second main surface of the main body is useful as a counter electrode of the dye-sensitized solar cell. .

また本発明は、上述したカーボンナノチューブ電極用構造体の上に、CVD法により炭素を含む原料を用いてカーボンナノチューブ膜を形成することにより得られるカーボンナノチューブ電極である。   Further, the present invention is a carbon nanotube electrode obtained by forming a carbon nanotube film on a carbon nanotube electrode structure described above using a raw material containing carbon by a CVD method.

このカーボンナノチューブ電極によれば、カーボンナノチューブ電極用構造体の上に、CVD法により、炭素を含む原料を用いてカーボンナノチューブ膜を形成する場合でも、本体部への浸炭が十分に抑制される。このため、得られるカーボンナノチューブ電極は、導電性及び可撓性に優れたものとなる。   According to this carbon nanotube electrode, even when the carbon nanotube film is formed on the carbon nanotube electrode structure by the CVD method using the raw material containing carbon, carburization to the main body is sufficiently suppressed. For this reason, the obtained carbon nanotube electrode is excellent in conductivity and flexibility.

さらに本発明は、作用極と、対極と、前記作用極および前記対極を連結する封止部と、前記作用極、前記対極及び前記封止部によって包囲される電解質とを備える色素増感太陽電池において、前記対極が、上述したカーボンナノチューブ電極用構造体の上に、CVD法により炭素を含む原料を用いてカーボンナノチューブ膜を形成することにより得られるカーボンナノチューブ電極で構成され、前記カーボンナノチューブ電極用構造体において、前記金属被膜が、前記第1主面及び前記第2主面の両方を被覆しており、前記金属触媒が、前記第1主面及び前記第2主面のいずれか一方の側に設けられていることを特徴とする色素増感太陽電池である。   Furthermore, the present invention provides a dye-sensitized solar cell comprising a working electrode, a counter electrode, a sealing part that connects the working electrode and the counter electrode, and an electrolyte surrounded by the working electrode, the counter electrode, and the sealing part. The counter electrode is formed of a carbon nanotube electrode obtained by forming a carbon nanotube film using a raw material containing carbon by a CVD method on the carbon nanotube electrode structure described above, and for the carbon nanotube electrode In the structure, the metal coating covers both the first main surface and the second main surface, and the metal catalyst is on one side of the first main surface and the second main surface. It is a dye-sensitized solar cell characterized by being provided in.

この色素増感太陽電池によれば、対極として、カーボンナノチューブ電極用構造体の上に、CVD法により、炭素を含む原料を用いてカーボンナノチューブ膜を形成することにより得られるカーボンナノチューブ電極が用いられるため、対極は、浸炭が十分に抑制されており、それゆえに優れた導電性及び可撓性を有している。従って、本発明の色素増感太陽電池によれば、優れた光電変換特性が得られるとともに、温度変化の激しい地域で使用され、電解質の膨張により対極に繰り返し曲げ応力が加えられても、対極の破損を十分に防止することができる。
また本発明は、金属基板と、前記金属基板に担持され、カーボンナノチューブ膜を形成する際に触媒として作用する金属触媒とを備えており、前記金属基板が、前記金属触媒が担持される第1主面、及び、前記第1主面と反対側の第2主面を有する本体部と、前記本体部の前記第2主面を被覆する金属被膜とを有しており、前記本体部が、鉄、クロム、コバルト、ニッケル及びチタンからなる群より選ばれる少なくとも1種を含み、前記金属被膜がアルミニウムを含むこと、を特徴とするカーボンナノチューブ電極用構造体であってもよい。
According to this dye-sensitized solar cell, a carbon nanotube electrode obtained by forming a carbon nanotube film using a raw material containing carbon on a carbon nanotube electrode structure by a CVD method is used as a counter electrode. For this reason, the carburization of the counter electrode is sufficiently suppressed, and therefore has excellent conductivity and flexibility. Therefore, according to the dye-sensitized solar cell of the present invention, excellent photoelectric conversion characteristics can be obtained, and it can be used in an area where the temperature change is severe, and even if bending stress is repeatedly applied to the counter electrode due to expansion of the electrolyte, Damage can be sufficiently prevented.
The present invention also includes a metal substrate and a metal catalyst supported on the metal substrate and acting as a catalyst when forming the carbon nanotube film, wherein the metal substrate is supported by the first metal catalyst. A main body having a main surface and a second main surface opposite to the first main surface; and a metal coating covering the second main surface of the main body, wherein the main body is The carbon nanotube electrode structure may include at least one selected from the group consisting of iron, chromium, cobalt, nickel, and titanium, and the metal coating includes aluminum.

本発明によれば、導電性及び可撓性に優れたカーボンナノチューブ電極を形成することができるカーボンナノチューブ電極用構造体、カーボンナノチューブ電極及び色素増感太陽電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the structure for carbon nanotube electrodes which can form the carbon nanotube electrode excellent in electroconductivity and flexibility, a carbon nanotube electrode, and a dye-sensitized solar cell are provided.

本発明に係る色素増感太陽電池の好適な実施形態を概略的に示す断面図である。It is sectional drawing which shows schematically suitable embodiment of the dye-sensitized solar cell which concerns on this invention. 図1の対極を概略的に示す断面図である。It is sectional drawing which shows the counter electrode of FIG. 1 schematically. 金属基板の本体部を示す断面図である。It is sectional drawing which shows the main-body part of a metal substrate. 金属基板を示す断面図である。It is sectional drawing which shows a metal substrate. 図1のカーボンナノチューブ電極用構造体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the structure for carbon nanotube electrodes of FIG. 図5のカーボンナノチューブ電極用構造体の第1変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a first modification of the carbon nanotube electrode structure of FIG. 5. 図5のカーボンナノチューブ電極用構造体の第2変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a second modification of the carbon nanotube electrode structure of FIG. 5. 図5のカーボンナノチューブ電極用構造体の第3変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a third modification of the carbon nanotube electrode structure in FIG. 5.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る色素増感太陽電池の製造方法により得られる色素増感太陽電池を概略的に示す断面図、図2は、図1の対極を概略的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing a dye-sensitized solar cell obtained by the method for producing a dye-sensitized solar cell according to the present invention, and FIG. 2 is a cross-sectional view schematically showing a counter electrode of FIG.

図1に示すように、色素増感太陽電池100は、作用極10と、作用極10に対向配置される対極20とを備えている。作用極10と対極20とは封止部40によって連結されている。そして、作用極10と対極20と封止部40とによって包囲されるセル空間内には電解質30が充填されている。   As shown in FIG. 1, the dye-sensitized solar cell 100 includes a working electrode 10 and a counter electrode 20 disposed to face the working electrode 10. The working electrode 10 and the counter electrode 20 are connected by a sealing portion 40. The cell space surrounded by the working electrode 10, the counter electrode 20, and the sealing portion 40 is filled with an electrolyte 30.

作用極10は、透明基板60と、透明基板60の対極20側に設けられる透明導電膜70と、透明導電膜70の上に設けられる多孔質酸化物半導体層80とを備えている。多孔質酸化物半導体層80には光増感色素が担持されている。   The working electrode 10 includes a transparent substrate 60, a transparent conductive film 70 provided on the counter electrode 20 side of the transparent substrate 60, and a porous oxide semiconductor layer 80 provided on the transparent conductive film 70. The porous oxide semiconductor layer 80 carries a photosensitizing dye.

対極20はカーボンナノチューブ電極で構成されている。カーボンナノチューブ電極は、図2に示すように、カーボンナノチューブ電極用構造体1と、カーボンナノチューブ電極用構造体1の上に形成されるカーボンナノチューブ膜2とを備えている。カーボンナノチューブ電極用構造体1は、金属基板3と、金属基板3の一面に担持され、カーボンナノチューブ膜2を形成する際に触媒として作用する金属触媒4とを備えており、カーボンナノチューブ膜2は、金属触媒4から金属基板3と反対方向に向かって延びる柱状体から構成されている。   The counter electrode 20 is composed of a carbon nanotube electrode. As shown in FIG. 2, the carbon nanotube electrode includes a carbon nanotube electrode structure 1 and a carbon nanotube film 2 formed on the carbon nanotube electrode structure 1. The carbon nanotube electrode structure 1 includes a metal substrate 3 and a metal catalyst 4 supported on one surface of the metal substrate 3 and acting as a catalyst when the carbon nanotube film 2 is formed. The columnar body extends from the metal catalyst 4 in the opposite direction to the metal substrate 3.

金属基板3は、本体部5と、本体部5の第1主面5aを被覆する金属被膜6aと、本体部5の第2主面5bを被覆する金属被膜6bとを備えている。   The metal substrate 3 includes a main body 5, a metal coating 6 a that covers the first main surface 5 a of the main body 5, and a metal coating 6 b that covers the second main surface 5 b of the main body 5.

ここで、本体部5は、鉄、クロム、コバルト、ニッケル、チタン又はこれらの2種以上の合金を含む。ここで、合金には、例えばSUSが含まれる。ここで、上記材料は、本体部5中に90質量%以上の割合で含まれていることが好ましく、95質量%以上の割合で含まれていることがより好ましい。   Here, the main-body part 5 contains iron, chromium, cobalt, nickel, titanium, or these 2 or more types of alloys. Here, the alloy includes, for example, SUS. Here, it is preferable that the said material is contained in the main-body part 5 in the ratio of 90 mass% or more, and it is more preferable that it is contained in the ratio of 95 mass% or more.

また金属被膜6a,6bはアルミニウムを含む。   The metal coatings 6a and 6b contain aluminum.

次に、上述した色素増感太陽電池100の製造方法について図3〜図5を参照して説明する。   Next, the manufacturing method of the dye-sensitized solar cell 100 described above will be described with reference to FIGS.

<対極の製造工程>
まず対極20の製造方法について説明する。
<Counter electrode manufacturing process>
First, a method for manufacturing the counter electrode 20 will be described.

(基板準備工程)
はじめに図3に示すように金属基板3の本体部5となる基板を準備する。
(Board preparation process)
First, as shown in FIG. 3, a substrate to be the main body 5 of the metal substrate 3 is prepared.

本体部5は、上述したように、鉄、クロム、コバルト、ニッケル、チタンを含む。これらの金属材料は単独で又は2種以上の合金として用いることができる。上記金属材料は、カーボンナノチューブ膜2を、CVD法によって炭素を含む原料を用いて形成する際に、特に浸炭されやすい金属材料である。   As described above, the main body 5 includes iron, chromium, cobalt, nickel, and titanium. These metal materials can be used alone or as an alloy of two or more. The metal material is a metal material that is particularly easily carburized when the carbon nanotube film 2 is formed using a raw material containing carbon by a CVD method.

本体部5の厚さは特に制限されるものではないが、カーボンナノチューブ電極用構造体1は、本体部5の厚さが1〜100μmである場合に有用である。これは、本体部5の厚さが上記範囲にある場合に、特に本体部5が浸炭されやすくなると共に可撓性の低下の問題が生じやすくなるためである。カーボンナノチューブ電極用構造体1は、本体部5の厚さが1〜50μmである場合にさらに有用である。   Although the thickness of the main body 5 is not particularly limited, the carbon nanotube electrode structure 1 is useful when the thickness of the main body 5 is 1 to 100 μm. This is because when the thickness of the main body portion 5 is in the above range, the main body portion 5 is particularly easily carburized and the problem of a decrease in flexibility is likely to occur. The carbon nanotube electrode structure 1 is further useful when the thickness of the main body 5 is 1 to 50 μm.

次に、図4に示すように、本体部5の第1主面5a及び第2主面5bをそれぞれ金属被膜6a及び金属被膜6bで被覆して金属基板3を形成する。   Next, as shown in FIG. 4, the metal substrate 3 is formed by covering the first main surface 5a and the second main surface 5b of the main body 5 with the metal coating 6a and the metal coating 6b, respectively.

ここで、金属被膜6a,6bは上述したようにアルミニウムを含む。金属被膜6a,6bとして、アルミニウムを含むものを使用するのは、アルミニウムが、炭素と合金化しにくく且つ金属触媒4の形成に悪影響を及ぼさないためである。従って、金属被膜6a,6bは、アルミニウムと他の金属との合金であってもよい。ここで、他の金属としては、例えばマグネシウムなどを挙げることができる。但し、導電性を向上させるという観点からは、金属被膜6a,6bはアルミニウムを90質量%以上の割合で含むことが好ましく、100質量%の割合で含むことがより好ましい。   Here, the metal coatings 6a and 6b contain aluminum as described above. The reason why the metal coatings 6 a and 6 b include aluminum is that aluminum is difficult to alloy with carbon and does not adversely affect the formation of the metal catalyst 4. Therefore, the metal coatings 6a and 6b may be an alloy of aluminum and another metal. Here, examples of the other metal include magnesium. However, from the viewpoint of improving conductivity, the metal coatings 6a and 6b preferably contain aluminum in a proportion of 90% by mass or more, and more preferably contain 100% by mass.

金属被膜6a,6bは例えばスパッタリング法などを用いて第1主面5a及び第2主面5bを被覆させることができる。   The metal coatings 6a and 6b can cover the first main surface 5a and the second main surface 5b by using, for example, a sputtering method.

次に、図5に示すように、金属触媒4を金属被膜6aの上に形成する。金属触媒4は、カーボンナノチューブ膜2を形成する際に触媒として作用する金属であればよく、このような金属触媒4としては、例えばニッケル、コバルト、モリブデン、チタン、鉄、パラジウム、タングステン、金、アルミニウム等が挙げられる。これらは単独で又は2種以上を組み合わせて使用することが可能である。金属触媒4は膜状であってもよいし、図5に示すように粒子状であってもよい。金属触媒4は、例えば金属被膜6aの上にスパッタリング法によって形成した膜を還元雰囲気下で加熱することによって形成することができる。   Next, as shown in FIG. 5, the metal catalyst 4 is formed on the metal film 6a. The metal catalyst 4 may be any metal that acts as a catalyst when the carbon nanotube film 2 is formed. Examples of such a metal catalyst 4 include nickel, cobalt, molybdenum, titanium, iron, palladium, tungsten, gold, Aluminum etc. are mentioned. These can be used alone or in combination of two or more. The metal catalyst 4 may be in the form of a film, or may be in the form of particles as shown in FIG. The metal catalyst 4 can be formed, for example, by heating a film formed by sputtering on the metal film 6a in a reducing atmosphere.

こうして、図5に示すように、金属基板3の第1主面5aに金属触媒4が担持されたカーボンナノチューブ電極用構造体1が得られる。   Thus, as shown in FIG. 5, the carbon nanotube electrode structure 1 in which the metal catalyst 4 is supported on the first main surface 5a of the metal substrate 3 is obtained.

(成膜工程)
こうしてカーボンナノチューブ電極用構造体1を得た後は、CVD法により、炭素を含む原料を用いてカーボンナノチューブ電極用構造体1の金属触媒4の上にカーボンナノチューブ膜2を形成する。
(Film formation process)
After the carbon nanotube electrode structure 1 is obtained in this way, the carbon nanotube film 2 is formed on the metal catalyst 4 of the carbon nanotube electrode structure 1 by a CVD method using a raw material containing carbon.

炭素を含む原料としては、例えばメタン、エチレン、アセチレン、アルコール等が用いられる。ここで、原料は、炭素を含んでいればよく、炭素以外に水素ガスなどを含んでいてもよい。またCVD法においては、熱又はプラズマ等がエネルギー源とされる。   As a raw material containing carbon, for example, methane, ethylene, acetylene, alcohol and the like are used. Here, the raw material should just contain carbon, and hydrogen gas etc. may be contained in addition to carbon. In the CVD method, heat or plasma is used as an energy source.

このとき、カーボンナノチューブ膜2を成長させる際の圧力は通常、100〜150000Paであり、好ましくは1000〜122000Paである。またカーボンナノチューブ膜2を成長させる際の温度は通常、400〜900℃であり、好ましくは550〜800℃である。   At this time, the pressure at the time of growing the carbon nanotube film 2 is usually 100 to 150,000 Pa, preferably 1000 to 122000 Pa. Moreover, the temperature at the time of growing the carbon nanotube film | membrane 2 is 400-900 degreeC normally, Preferably it is 550-800 degreeC.

こうして金属触媒4の上に、カーボンナノチューブが成長して柱状体が形成され、これらの柱状体によりカーボンナノチューブ膜2が形成される。こうして対極20が得られる(図2参照)。   Thus, carbon nanotubes grow on the metal catalyst 4 to form columnar bodies, and the carbon nanotube film 2 is formed by these columnar bodies. Thus, the counter electrode 20 is obtained (see FIG. 2).

このように、カーボンナノチューブ電極用構造体1を用いてカーボンナノチューブ電極からなる対極20を作製すると、カーボンナノチューブ電極用構造体1上に、CVD法により、炭素を含む原料を用いてカーボンナノチューブ膜2を成長させる際に、本体部5への浸炭を十分に抑制することができる。従って、導電性及び可撓性に優れた対極20を形成することができる。   When the counter electrode 20 made of the carbon nanotube electrode is produced using the carbon nanotube electrode structure 1 as described above, the carbon nanotube film 2 is formed on the carbon nanotube electrode structure 1 using a raw material containing carbon by a CVD method. When growing the steel, carburization of the main body 5 can be sufficiently suppressed. Therefore, the counter electrode 20 excellent in conductivity and flexibility can be formed.

<作用極の製造工程>
作用極10は、透明基板60の上に透明導電膜70を形成して積層体を形成した後、積層体の透明導電膜70上に、多孔質酸化物半導体層80を形成することにより得ることができる。多孔質酸化物半導体層80には光増感色素を担持させる。
<Manufacturing process of working electrode>
The working electrode 10 is obtained by forming a transparent conductive film 70 on a transparent substrate 60 to form a laminate, and then forming a porous oxide semiconductor layer 80 on the transparent conductive film 70 of the laminate. Can do. The porous oxide semiconductor layer 80 carries a photosensitizing dye.

<封止工程>
次に、作用極10に封止部40を形成する。そして、封止部40の内側に電解質30を印刷又は注入する。そして、対極20を作用極10に重ね合せ、封止部40を例えば加熱溶融することにより作用極10と対極20とを連結させて、電解質50を封止する。こうして色素増感太陽電池100が得られる。
<Sealing process>
Next, the sealing portion 40 is formed on the working electrode 10. Then, the electrolyte 30 is printed or injected inside the sealing portion 40. Then, the counter electrode 20 is overlaid on the working electrode 10, and the working electrode 10 and the counter electrode 20 are connected by, for example, heating and melting the sealing portion 40 to seal the electrolyte 50. Thus, the dye-sensitized solar cell 100 is obtained.

このようにして色素増感太陽電池100を製造した場合、対極20の金属基板3において本体部5への浸炭が十分に抑制され、それゆえ対極20は、優れた導電性及び可撓性を有している。従って、色素増感太陽電池100によれば、優れた光電変換特性が得られるとともに、温度変化の激しい地域で使用され、電解質30の膨張により対極20に繰り返し曲げ応力が加えられても、対極20の破損を十分に防止することができる。   When the dye-sensitized solar cell 100 is manufactured in this manner, carburization of the main body 5 in the metal substrate 3 of the counter electrode 20 is sufficiently suppressed, and therefore the counter electrode 20 has excellent conductivity and flexibility. doing. Therefore, according to the dye-sensitized solar cell 100, excellent photoelectric conversion characteristics can be obtained, and even when a bending stress is repeatedly applied to the counter electrode 20 due to expansion of the electrolyte 30, the counter electrode 20 is used even in a region where the temperature changes rapidly. Can be sufficiently prevented.

本発明は上記実施形態に限定されるものではない。例えば上記実施形態では、本体部5の第1主面5a及び第2主面5bが金属被膜6a,6bで被覆されているが、図6に示すように、第1主面5aのみが金属被膜で被覆され、第2主面5bは金属被膜で被覆されていなくてもよい。   The present invention is not limited to the above embodiment. For example, in the said embodiment, although the 1st main surface 5a and the 2nd main surface 5b of the main-body part 5 are coat | covered with the metal coatings 6a and 6b, only the 1st main surface 5a is a metal coating as shown in FIG. The second main surface 5b may not be covered with a metal coating.

また上記実施形態では金属触媒4は、金属被膜6aを介して本体部5の第1主面5aに担持されているが、金属被膜6aは省略可能である。即ち、図7に示すように、金属触媒4は、本体部5の第1主面5aに直接担持されてもよい。   Moreover, in the said embodiment, although the metal catalyst 4 is carry | supported by the 1st main surface 5a of the main-body part 5 via the metal film 6a, the metal film 6a is omissible. That is, as shown in FIG. 7, the metal catalyst 4 may be directly supported on the first main surface 5 a of the main body 5.

さらに、上記実施形態では、金属触媒4が、本体部5の第1主面5a側にのみ担持されているが、カーボンナノチューブ電極を電気二重層キャパシタやリチウムイオン二次電池の電極として使用する場合には、図8に示すように、金属触媒4はさらに金属被膜6bの上に担持される。   Furthermore, in the said embodiment, although the metal catalyst 4 is carry | supported only by the 1st main surface 5a side of the main-body part 5, when using a carbon nanotube electrode as an electrode of an electrical double layer capacitor or a lithium ion secondary battery As shown in FIG. 8, the metal catalyst 4 is further supported on the metal coating 6b.

以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
本体部となる厚さ40μmのチタン基板を準備した。そして、チタン基板の第1主面を、カーボンナノチューブを形成する際の触媒となる厚さ0.001μmのニッケル薄膜で被覆した。ニッケル薄膜はスパッタリング法により形成した。次いで、チタン基板の第2主面を、アルミニウムからなる厚さ50nmの金属被膜で被覆した。こうしてカーボンナノチューブ電極用構造体を得た。そして、このカーボンナノチューブ電極用構造体を、MPCVD(Microwave Plasma Chemical Vapor Deposition)プロセス装置のチャンバ内に設置し、マイクロ波出力を300Wとし、水素とメタンの混合ガスを導入して、2667Paの圧力下、650℃の温度で、カーボンナノチューブ電極用構造体のニッケル薄膜上に厚さ20μmのカーボンナノチューブ膜を成長させた。そして、カーボンナノチューブ膜をチャンバ内で室温まで冷却させた後、取り出した。こうしてカーボンナノチューブ電極からなる対極を得た。
Example 1
A titanium substrate having a thickness of 40 μm serving as a main body was prepared. And the 1st main surface of the titanium substrate was coat | covered with the nickel thin film of thickness 0.001 micrometer used as a catalyst at the time of forming a carbon nanotube. The nickel thin film was formed by sputtering. Next, the second main surface of the titanium substrate was covered with a metal film made of aluminum and having a thickness of 50 nm. Thus, a carbon nanotube electrode structure was obtained. The carbon nanotube electrode structure is placed in a chamber of an MPCVD (Microwave Plasma Chemical Vapor Deposition) process apparatus, the microwave output is set to 300 W, a mixed gas of hydrogen and methane is introduced, and the pressure is 2667 Pa. A carbon nanotube film having a thickness of 20 μm was grown on the nickel thin film of the carbon nanotube electrode structure at a temperature of 650 ° C. The carbon nanotube film was cooled to room temperature in the chamber and then taken out. Thus, a counter electrode composed of a carbon nanotube electrode was obtained.

次に、ガラス基板上にFTO膜が形成されたFTO/ガラス基板上に、TiOからなる厚さ20μmの多孔質酸化物半導体膜を形成して作用極を得た。作用極には、2−2−7 テトラブチルアンモニウム−トリチオシアナト(4,4’,4”−トリカルボニル−2,2’,2”−ターピリジン)ルテニウム(II)(ブラックダイ)を担持させた。 Next, a working oxide was obtained by forming a 20 μm thick porous oxide semiconductor film made of TiO 2 on an FTO / glass substrate having an FTO film formed on a glass substrate. The working electrode was supported with 2-2-7 tetrabutylammonium-trithiocyanato (4,4 ′, 4 ″ -tricarbonyl-2,2 ′, 2 ″ -terpyridine) ruthenium (II) (black dye).

そして、バイネル(商品名、デュポン社製)からなる四角環状の樹脂シートを、作用極の上に配置した後、樹脂シートを加熱溶融させて作用極に接着させた。こうして作用極に封止部を設けた。   And after arrange | positioning the square-shaped annular resin sheet which consists of a binel (brand name, DuPont company make) on a working electrode, the resin sheet was heat-melted and it was made to adhere | attach on a working electrode. Thus, the sealing portion was provided on the working electrode.

次いで、封止部を設けた作用極を水平になるように配置し、封止部の内側に、アセトニトリルからなる揮発性溶媒を主溶媒とし、ヨウ素を0.05M、ヨウ化リチウムを0.1M、1,2−ジメチルー3−プロピルイミダゾリウムアイオダイド(DMPII)を0.6M、4−tert−ブチルピリジンを0.5M含む電解質を注入した。   Next, the working electrode provided with the sealing portion is disposed so as to be horizontal, and inside the sealing portion, a volatile solvent made of acetonitrile is used as a main solvent, 0.05M of iodine and 0.1M of lithium iodide. An electrolyte containing 0.6 M of 1,2-dimethyl-3-propylimidazolium iodide (DMPII) and 0.5 M of 4-tert-butylpyridine was injected.

そして、上記のようにして得た対極を作用極に重ね合せ、対極、封止部及び作用極を熱圧着させることにより作用極と対極とを連結させて電解質を封止した。こうして色素増感太陽電池を得た。   Then, the counter electrode obtained as described above was superposed on the working electrode, and the working electrode and the counter electrode were connected by thermocompression bonding of the counter electrode, the sealing portion, and the working electrode to seal the electrolyte. Thus, a dye-sensitized solar cell was obtained.

(実施例2)
チタン基板の厚さを40μmから3μmに変更して、チタン基板のピンホールを封止するためのPETからなる樹脂シートを第2主面に付けたこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 2)
Except that the thickness of the titanium substrate was changed from 40 μm to 3 μm and a resin sheet made of PET for sealing the pinhole of the titanium substrate was attached to the second main surface, the dye increase was performed in the same manner as in Example 1. A solar cell was prepared.

(実施例3)
チタン基板の厚さを40μmから10μmに変更して、チタン基板のピンホールを封止するためのPETからなる樹脂シートを第2主面に付けたこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 3)
The dye increase was performed in the same manner as in Example 1 except that the thickness of the titanium substrate was changed from 40 μm to 10 μm and a resin sheet made of PET for sealing the pinholes of the titanium substrate was attached to the second main surface. A solar cell was prepared.

(実施例4)
チタン基板の厚さを40μmから20μmに変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
Example 4
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the thickness of the titanium substrate was changed from 40 μm to 20 μm.

(実施例5)
チタン基板の厚さを40μmから100μmに変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 5)
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the thickness of the titanium substrate was changed from 40 μm to 100 μm.

(実施例6)
アルミニウムからなる金属被膜の厚さを50nmから100nmに変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 6)
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the thickness of the metal coating film made of aluminum was changed from 50 nm to 100 nm.

(実施例7)
アルミニウムからなる金属被膜の厚さを50nmから100μm(100000nm)に変更し、チタン基板の第1主面とニッケル薄膜との間に、厚さ10nmのアルミニウムからなる金属被膜を形成したこと以外は実施例1と同様にして色素増感太陽電池を作製した。なお、チタン基板の第1主面とニッケル薄膜との間の金属被膜は、実施例1の金属被膜と同様、スパッタリング法により形成した。
(Example 7)
Implemented except that the thickness of the metal coating made of aluminum was changed from 50 nm to 100 μm (100,000 nm), and a metal coating made of aluminum having a thickness of 10 nm was formed between the first main surface of the titanium substrate and the nickel thin film. A dye-sensitized solar cell was produced in the same manner as in Example 1. In addition, the metal film between the 1st main surface of a titanium substrate and a nickel thin film was formed by sputtering method similarly to the metal film of Example 1.

(実施例8)
チタン基板を鉄、クロム及びニッケルの合金からなるステンレス基板(SUS304)に変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Example 8)
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the titanium substrate was changed to a stainless steel substrate (SUS304) made of an alloy of iron, chromium and nickel.

(実施例9)
チタン基板を鉄、ニッケル及びコバルトの合金からなる基板(Inconel903)に変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
Example 9
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the titanium substrate was changed to an iron, nickel and cobalt alloy substrate (Inconel 903).

(比較例1)
対極を作製する際、アルミニウムからなる金属被膜を形成しなかったこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Comparative Example 1)
When producing the counter electrode, a dye-sensitized solar cell was produced in the same manner as in Example 1 except that a metal film made of aluminum was not formed.

(比較例2)
対極を作製する際、アルミニウムからなる金属被膜を形成しなかったこと以外は実施例2と同様にして色素増感太陽電池を作製しようとしたが、基板の可撓性が低かったため色素増感太陽電池の作製の際に割れてしまった。
(Comparative Example 2)
At the time of producing the counter electrode, an attempt was made to produce a dye-sensitized solar cell in the same manner as in Example 2 except that a metal film made of aluminum was not formed. However, since the flexibility of the substrate was low, the dye-sensitized solar cell It broke during battery fabrication.

(比較例3)
対極を作製する際、アルミニウムからなる金属被膜を形成しなかったこと以外は実施例3と同様にして色素増感太陽電池を作製しようとしたが、基板の可撓性が低かったため色素増感太陽電池の作製の際に割れてしまった。
(Comparative Example 3)
When preparing the counter electrode, an attempt was made to prepare a dye-sensitized solar cell in the same manner as in Example 3 except that a metal film made of aluminum was not formed. However, since the flexibility of the substrate was low, the dye-sensitized solar cell It broke during battery fabrication.

(比較例4)
対極を作製する際、アルミニウムからなる金属被膜を形成しなかったこと以外は実施例4と同様にして色素増感太陽電池を作製しようとしたが、基板の可撓性が低かったため色素増感太陽電池の作製の際に割れてしまった。
(Comparative Example 4)
At the time of producing the counter electrode, an attempt was made to produce a dye-sensitized solar cell in the same manner as in Example 4 except that a metal film made of aluminum was not formed. However, since the flexibility of the substrate was low, the dye-sensitized solar cell It broke during battery fabrication.

(比較例5)
対極を作製する際、アルミニウムからなる金属被膜を形成しなかったこと以外は実施例5と同様にして色素増感太陽電池を作製しようとしたが、基板の可撓性が低かったため色素増感太陽電池の作製の際に割れてしまった。
(Comparative Example 5)
When producing the counter electrode, an attempt was made to produce a dye-sensitized solar cell in the same manner as in Example 5 except that a metal film made of aluminum was not formed. However, since the flexibility of the substrate was low, the dye-sensitized solar cell It broke during battery fabrication.

(比較例6)
チタン基板の全面を、厚さ0.1μmの銅めっき膜で被覆した後、チタン基板の第1主面に銅めっき膜を介してニッケル薄膜を形成し、アルミニウムからなる金属被膜を形成しなかったこと以外は実施例1と同様にしてカーボンナノチューブ用構造体を作製した。そして、カーボンナノチューブ用構造体の上に、実施例1と同様にしてカーボンナノチューブ膜を成長させようとしたところ、カーボンナノチューブ膜を形成することができなかった。
(Comparative Example 6)
After coating the entire surface of the titanium substrate with a copper plating film having a thickness of 0.1 μm, a nickel thin film was formed on the first main surface of the titanium substrate via the copper plating film, and a metal film made of aluminum was not formed. A carbon nanotube structure was prepared in the same manner as in Example 1 except that. When a carbon nanotube film was grown on the carbon nanotube structure in the same manner as in Example 1, the carbon nanotube film could not be formed.

(比較例7)
チタン基板の全面を、厚さ0.1μmのニクロムめっき膜で被覆した後、チタン基板の第1主面にニクロムめっき膜を介してニッケル薄膜を形成し、アルミニウムからなる金属被膜を形成しなかったこと以外は実施例1と同様にしてカーボンナノチューブ用構造体を作製した。そして、カーボンナノチューブ用構造体の上に、実施例1と同様にしてカーボンナノチューブ膜を成長させようとしたところ、カーボンナノチューブ膜を形成することができなかった。即ちカーボンナノチューブ用構造体の上に形成されたのは、アモルファスカーボンであった。
(Comparative Example 7)
After covering the entire surface of the titanium substrate with a 0.1 μm thick nichrome plating film, a nickel thin film was formed on the first main surface of the titanium substrate via the nichrome plating film, and a metal film made of aluminum was not formed. A carbon nanotube structure was prepared in the same manner as in Example 1 except that. When a carbon nanotube film was grown on the carbon nanotube structure in the same manner as in Example 1, the carbon nanotube film could not be formed. That is, amorphous carbon was formed on the carbon nanotube structure.

(比較例8)
アルミニウムからなる金属被膜を形成しなかったこと以外は実施例8と同様にして色素増感太陽電池を作製した。
(Comparative Example 8)
A dye-sensitized solar cell was produced in the same manner as in Example 8 except that a metal film made of aluminum was not formed.

(比較例9)
アルミニウムからなる金属被膜を形成しなかったこと以外は実施例9と同様にして色素増感太陽電池を作製した。
(Comparative Example 9)
A dye-sensitized solar cell was produced in the same manner as in Example 9 except that a metal film made of aluminum was not formed.

[評価]
(基板への浸炭)
実施例1〜9及び比較例1〜9の対極について、基板への浸炭が起こっているかどうかを断面のSEM観察およびエネルギー分散型蛍光X線分光によって調べた。結果を表1に示す。なお、基板への浸炭に関する評価基準は以下の通りとした。
基板への浸炭なし・・・A
基板への浸炭あり・・・B
[Evaluation]
(Carburization to substrate)
About the counter electrode of Examples 1-9 and Comparative Examples 1-9, it was investigated by SEM observation of a cross section and energy dispersive X-ray fluorescence spectroscopy whether the carburization to the board | substrate has occurred. The results are shown in Table 1. The evaluation criteria for carburizing the substrate were as follows.
No carburizing to substrate ... A
There is carburizing to the substrate ... B

(対極の導電性)
実施例1〜9及び比較例1〜9の対極について、作製した色素増感太陽電池のインピーダンスの測定を行い、対極の抵抗を見積もった。結果を表1に示す。なお、対極の導電性に関する評価基準は、抵抗の値に応じて以下の通りとした。
5.0Ω以下・・・合格
5.0Ω超・・・・不合格
(Counterelectrode conductivity)
About the counter electrode of Examples 1-9 and Comparative Examples 1-9, the impedance of the produced dye-sensitized solar cell was measured and the resistance of the counter electrode was estimated. The results are shown in Table 1. In addition, the evaluation criteria regarding the electroconductivity of a counter electrode were as follows according to the value of resistance.
Less than 5.0Ω ・ ・ ・ Pass over 5.0Ω ・ ・ ・ ・ Fail

(対極の可撓性)
実施例1〜9及び比較例1〜9の対極について、R5の曲率で180度曲げてみて、曲げた前後に形状変化が無ければ○、形状変化したものは△、破損したものを×として、対極の可撓性を調べた。結果を表1に示す。なお、対極の可撓性に関する評価基準は以下の通りとした。
○・・・・・・合格
△又は×・・・不合格
(Flexibility of counter electrode)
For the counter electrodes of Examples 1 to 9 and Comparative Examples 1 to 9, when bending by 180 degrees with the curvature of R5, if there is no shape change before and after bending, ○, if the shape change is Δ, The flexibility of the counter electrode was examined. The results are shown in Table 1. In addition, the evaluation criteria regarding the flexibility of the counter electrode were as follows.
○ ・ ・ ・ ・ ・ ・ Pass △ or × ・ ・ ・ Fail

(光電変換特性)
実施例1〜9及び比較例1〜9の色素増感太陽電池について、ソーラーシミュレータによって1.5AM、100mW/cmの放射輝度の条件下で光電変換効率を測定した。結果を表1に示す。

Figure 0005730032
(Photoelectric conversion characteristics)
About the dye-sensitized solar cell of Examples 1-9 and Comparative Examples 1-9, the photoelectric conversion efficiency was measured on the conditions of the radiance of 1.5AM and 100mW / cm < 2 > with the solar simulator. The results are shown in Table 1.
Figure 0005730032

表1に示す結果より、実施例1〜9の対極は全て、導電性及び可撓性の点で合格であった。これに対し、比較例1〜9の対極は、導電性及び可撓性の少なくとも一方の点で不合格であった。なお、実施例1〜9の色素増感太陽電池では、いずれも光電変換効率が高かった。これは、対極において導電性が高いことに起因しているものと思われる。   From the results shown in Table 1, all the counter electrodes of Examples 1 to 9 were acceptable in terms of conductivity and flexibility. On the other hand, the counter electrodes of Comparative Examples 1 to 9 failed in at least one of conductivity and flexibility. In addition, in the dye-sensitized solar cell of Examples 1-9, all had high photoelectric conversion efficiency. This is probably due to the high conductivity at the counter electrode.

また比較例1〜9の全てにおいて基板への浸炭が見られた。また比較例1〜9の対極の可撓性は全て不合格であった。このことから、対極の可撓性の低下は基板への浸炭に起因するものと考えられる。   Moreover, carburizing to the board | substrate was seen in all the comparative examples 1-9. Moreover, all the flexibility of the counter electrode of Comparative Examples 1-9 was disqualified. From this, it is considered that the decrease in the flexibility of the counter electrode is caused by carburizing the substrate.

以上より、本発明のカーボンナノチューブ電極用構造体によれば、導電性及び可撓性に優れたカーボンナノチューブ電極を形成することができることが確認された。   From the above, it was confirmed that the carbon nanotube electrode structure of the present invention can form a carbon nanotube electrode excellent in conductivity and flexibility.

1…カーボンナノチューブ電極用構造体
2…カーボンナノチューブ膜
3…金属基板
4…金属触媒
5…本体部
5a…第1主面
5b…第2主面
6a,6b…金属被膜
10…作用極
20…対極
30…電解質
40…封止部
100…色素増感太陽電池
DESCRIPTION OF SYMBOLS 1 ... Carbon nanotube electrode structure 2 ... Carbon nanotube film 3 ... Metal substrate 4 ... Metal catalyst 5 ... Main-body part 5a ... 1st main surface 5b ... 2nd main surface 6a, 6b ... Metal coating 10 ... Working electrode 20 ... Counter electrode DESCRIPTION OF SYMBOLS 30 ... Electrolyte 40 ... Sealing part 100 ... Dye-sensitized solar cell

Claims (6)

金属基板と、
前記金属基板に担持され、カーボンナノチューブ膜を形成する際に触媒として作用する金属触媒とを備えており、
前記金属基板が、第1主面及び前記第1主面と反対側の第2主面を有する本体部と、前記本体部の前記第1主面及び前記第2主面の少なくとも一方を被覆する金属被膜とを有しており、
前記本体部が、鉄、クロム、コバルト、ニッケル及びチタンからなる群より選ばれる少なくとも1種を含み、
前記金属被膜がアルミニウムを含み、
前記本体部が1〜40μmの厚さを有すること、
を特徴とするカーボンナノチューブ電極用構造体。
A metal substrate;
A metal catalyst supported on the metal substrate and acting as a catalyst when forming a carbon nanotube film;
The metal substrate covers at least one of a first main surface and a second main surface opposite to the first main surface, and the first main surface and the second main surface of the main body. A metal coating,
The main body includes at least one selected from the group consisting of iron, chromium, cobalt, nickel, and titanium,
Wherein the metal coating is viewed contains aluminum,
The main body has a thickness of 1 to 40 μm ;
A carbon nanotube electrode structure characterized by the above.
前記金属被膜が、前記第1主面及び前記第2主面の両方を被覆している、請求項に記載のカーボンナノチューブ電極用構造体。 Wherein the metal coating, covers both said first main surface and the second major surface, a carbon nanotube electrode structure according to claim 1. 前記金属触媒が、前記本体部の第1主面及び前記第2主面のいずれか一方の側に設けられている、請求項1又は2に記載のカーボンナノチューブ電極用構造体。 The carbon nanotube electrode structure according to claim 1 or 2 , wherein the metal catalyst is provided on one side of the first main surface and the second main surface of the main body. 請求項1〜のいずれか一項に記載のカーボンナノチューブ電極用構造体の上に、化学気相成長法により、炭素を含む原料を用いてカーボンナノチューブ膜を形成することにより得られるカーボンナノチューブ電極。 A carbon nanotube electrode obtained by forming a carbon nanotube film on a carbon nanotube electrode structure according to any one of claims 1 to 3 using a raw material containing carbon by a chemical vapor deposition method. . 金属基板と、A metal substrate;
前記金属基板に担持され、カーボンナノチューブ膜を形成する際に触媒として作用する金属触媒とを備えており、  A metal catalyst supported on the metal substrate and acting as a catalyst when forming a carbon nanotube film;
前記金属基板が、前記金属触媒が担持される第1主面、及び、前記第1主面と反対側の第2主面を有する本体部と、前記本体部の前記第2主面を被覆する金属被膜とを有しており、  The metal substrate covers a main body having a first main surface on which the metal catalyst is supported and a second main surface opposite to the first main surface, and the second main surface of the main body. A metal coating,
前記本体部が、鉄、クロム、コバルト、ニッケル及びチタンからなる群より選ばれる少なくとも1種を含み、  The main body includes at least one selected from the group consisting of iron, chromium, cobalt, nickel, and titanium,
前記金属被膜がアルミニウムを含むこと、  The metal coating comprises aluminum;
を特徴とするカーボンナノチューブ電極用構造体。A carbon nanotube electrode structure characterized by the above.
作用極と、
対極と、
前記作用極および前記対極を連結する封止部と、
前記作用極、前記対極及び前記封止部によって包囲される電解質とを備える色素増感太陽電池において、
前記対極が、
請求項1に記載のカーボンナノチューブ電極用構造体の上に、化学気相成長法により、炭素を含む原料を用いてカーボンナノチューブ膜を形成することにより得られるカーボンナノチューブ電極で構成され、
前記カーボンナノチューブ電極用構造体において、前記金属被膜が、前記第1主面及び前記第2主面の両方を被覆しており、
前記金属触媒が、前記第1主面及び前記第2主面のいずれか一方の側に設けられていることを特徴とする色素増感太陽電池。
Working electrode,
With the counter electrode,
A sealing portion connecting the working electrode and the counter electrode;
In a dye-sensitized solar cell comprising the working electrode, the counter electrode, and an electrolyte surrounded by the sealing portion,
The counter electrode is
A carbon nanotube electrode obtained by forming a carbon nanotube film on the carbon nanotube electrode structure according to claim 1 by using a raw material containing carbon by a chemical vapor deposition method,
In the carbon nanotube electrode structure, the metal coating covers both the first main surface and the second main surface,
The dye-sensitized solar cell, wherein the metal catalyst is provided on one side of the first main surface and the second main surface.
JP2011010313A 2011-01-20 2011-01-20 Structure for carbon nanotube electrode, carbon nanotube electrode, and dye-sensitized solar cell Expired - Fee Related JP5730032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011010313A JP5730032B2 (en) 2011-01-20 2011-01-20 Structure for carbon nanotube electrode, carbon nanotube electrode, and dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011010313A JP5730032B2 (en) 2011-01-20 2011-01-20 Structure for carbon nanotube electrode, carbon nanotube electrode, and dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2012151052A JP2012151052A (en) 2012-08-09
JP5730032B2 true JP5730032B2 (en) 2015-06-03

Family

ID=46793125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011010313A Expired - Fee Related JP5730032B2 (en) 2011-01-20 2011-01-20 Structure for carbon nanotube electrode, carbon nanotube electrode, and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5730032B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326815B2 (en) * 2013-12-27 2018-05-23 日本ゼオン株式会社 Solar cell electrode substrate
JP6364770B2 (en) * 2013-12-27 2018-08-01 日本ゼオン株式会社 Solar cell electrode substrate, dye-sensitized solar cell counter electrode, dye-sensitized solar cell, solar cell module, and method for manufacturing solar cell electrode substrate
PL3389862T3 (en) 2015-12-16 2024-03-04 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
AU2020264446A1 (en) 2019-04-30 2021-11-18 6K Inc. Mechanically alloyed powder feedstock
KR20220100861A (en) 2019-11-18 2022-07-18 6케이 인크. Unique feedstock and manufacturing method for spherical powder
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
AU2021297476A1 (en) 2020-06-25 2022-12-15 6K Inc. Microcomposite alloy structure
JP2023542955A (en) 2020-09-24 2023-10-12 シックスケー インコーポレイテッド Systems, devices, and methods for starting plasma
EP4237174A1 (en) 2020-10-30 2023-09-06 6K Inc. Systems and methods for synthesis of spheroidized metal powders

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937560B2 (en) * 2004-12-22 2012-05-23 株式会社フジクラ Counter electrode for photoelectric conversion element and photoelectric conversion element
US20110318487A1 (en) * 2009-02-10 2011-12-29 Hirokazu Takai Substrate for producing aligned carbon nanotube aggregates and method for producing the aligned carbon nanotube aggregates
JP5858266B2 (en) * 2010-03-26 2016-02-10 アイシン精機株式会社 Method for producing carbon nanotube composite
JP5746830B2 (en) * 2010-04-09 2015-07-08 株式会社フジクラ Metal substrate, carbon nanotube electrode and manufacturing method thereof
JP5741897B2 (en) * 2010-09-22 2015-07-01 アイシン精機株式会社 Carbon nanotube manufacturing method
KR101502538B1 (en) * 2010-11-26 2015-03-13 가부시키가이샤 알박 Positive electrode for lithium sulfur secondary battery, and method for forming same

Also Published As

Publication number Publication date
JP2012151052A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5730032B2 (en) Structure for carbon nanotube electrode, carbon nanotube electrode, and dye-sensitized solar cell
Jian et al. Edge‐riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction
Yi et al. Carbon quantum dot sensitized integrated Fe 2 O 3@ gC 3 N 4 core–shell nanoarray photoanode towards highly efficient water oxidation
Yun et al. Metal oxide/carbide/carbon nanocomposites: in situ synthesis, characterization, calculation, and their application as an efficient counter electrode catalyst for dye‐sensitized solar cells
Xue et al. Nitrogen‐doped graphene foams as metal‐free counter electrodes in high‐performance dye‐sensitized solar cells
Yen et al. Metal-free, nitrogen-doped graphene used as a novel catalyst for dye-sensitized solar cell counter electrodes
Bajpai et al. NiO nanoparticles deposited on graphene platelets as a cost-effective counter electrode in a dye sensitized solar cell
Wu et al. Synthesis of highly effective vanadium nitride (VN) peas as a counter electrode catalyst in dye-sensitized solar cells
Lv et al. Synergetic effect of Ni2P and MXene enhances catalytic activity in the hydrogen evolution reaction
Hsiao et al. Ultrathin 1T-phase MoS2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage
Yun et al. Economical hafnium oxygen nitride binary/ternary nanocomposite counter electrode catalysts for high-efficiency dye-sensitized solar cells
Nagarajan et al. A PEDOT-reinforced exfoliated graphite composite as a Pt-and TCO-free flexible counter electrode for polymer electrolyte dye-sensitized solar cells
US20110076587A1 (en) Highly electrically conductive surfaces for electrochemical applications and methods to produce same
Zhang et al. Hybrid niobium and titanium nitride nanotube arrays implanted with nanosized amorphous rhenium–nickel: An advanced catalyst electrode for hydrogen evolution reactions
Muthu et al. Electrode and symmetric supercapacitor device performance of boron‐incorporated reduced graphene oxide synthesized by electrochemical exfoliation
Lin et al. Laser‐Induced Graphene/MoO2 Core‐Shell Electrodes on Carbon Cloth for Integrated, High‐Voltage, and In‐Planar Microsupercapacitors
Zhang et al. Nitrogen doped carbon encapsulated hierarchical NiMoN as highly active and durable HER electrode for repeated ON/OFF water electrolysis
Hao et al. Highly catalytic cross-stacked superaligned carbon nanotube sheets for iodine-free dye-sensitized solar cells
Tseng et al. One-step synthesis of graphene hollow nanoballs with various nitrogen-doped states for electrocatalysis in dye-sensitized solar cells
Hussain et al. Development of a WS 2/MoTe 2 heterostructure as a counter electrode for the improved performance in dye-sensitized solar cells
Tang et al. Three-dimensional graphene networks and RGO-based counter electrode for DSSCs
Mehmood Efficient and economical dye-sensitized solar cells based on graphene/TiO2 nanocomposite as a photoanode and graphene as a Pt-free catalyst for counter electrode
Jin et al. Optimum engineering of a PtSn alloys/reduced graphene oxide nanohybrid for a highly efficient counter electrode in dye-sensitized solar cells
Marathey et al. Photoelectrochemical characteristics of electrodeposited cuprous oxide with protective over layers for hydrogen evolution reactions
Xie et al. Synthesis of W2N nanorods-graphene hybrid structure with enhanced oxygen reduction reaction performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R150 Certificate of patent or registration of utility model

Ref document number: 5730032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees