JP5600016B2 - Automatic synchronous parallel device - Google Patents

Automatic synchronous parallel device Download PDF

Info

Publication number
JP5600016B2
JP5600016B2 JP2010050751A JP2010050751A JP5600016B2 JP 5600016 B2 JP5600016 B2 JP 5600016B2 JP 2010050751 A JP2010050751 A JP 2010050751A JP 2010050751 A JP2010050751 A JP 2010050751A JP 5600016 B2 JP5600016 B2 JP 5600016B2
Authority
JP
Japan
Prior art keywords
voltage
phase
value
frequency
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010050751A
Other languages
Japanese (ja)
Other versions
JP2011188614A (en
Inventor
正明 大島
修一 宇敷
晋斌 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2010050751A priority Critical patent/JP5600016B2/en
Priority to US13/006,636 priority patent/US8553436B2/en
Priority to CN201110026452.3A priority patent/CN102193023B/en
Priority to EP11152107.6A priority patent/EP2348628B1/en
Publication of JP2011188614A publication Critical patent/JP2011188614A/en
Priority to HK11113838.6A priority patent/HK1161354A1/en
Application granted granted Critical
Publication of JP5600016B2 publication Critical patent/JP5600016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、自律並行運転を行う単相電圧型交直変換装置の電圧振幅、周波数及び位相を調節する自動同期並列装置に関する。   The present invention relates to an automatic synchronous parallel device that adjusts the voltage amplitude, frequency, and phase of a single-phase voltage type AC / DC converter that performs autonomous parallel operation.

インバータを電力系統に並列する際の突入電流を抑える技術が知られている(例えば、特許文献1を参照。)。特許文献1には、電力系統の電圧よりも位相が90度進んだ電流でインバータのフィルタコンデンサを充電し、フィルタコンデンサの電圧が電力系統と同じとなった後にインバータを電力系統に並列する技術が記載される。   A technique for suppressing an inrush current when an inverter is paralleled to a power system is known (see, for example, Patent Document 1). Patent Document 1 discloses a technique in which a filter capacitor of an inverter is charged with a current whose phase is advanced by 90 degrees from the voltage of the power system, and the inverter is paralleled to the power system after the voltage of the filter capacitor becomes the same as that of the power system. be written.

一方、電力系統や発電機等の単相電圧源と並列し、自律並行運転を行う単相電圧型交直変換装置も知られている(例えば、特許文献2を参照。)。特許文献2には、外部単相交流電圧源の位相と所定の位相差をもつ単相交流電圧を発生させ、発生させた単相交流電圧の振幅、周波数、及び位相を調整して外部単相交流電圧源と連系運転する単相電圧型交直変換装置が記載される。   On the other hand, a single-phase voltage type AC / DC converter that performs autonomous parallel operation in parallel with a single-phase voltage source such as a power system or a generator is also known (see, for example, Patent Document 2). In Patent Document 2, a single-phase AC voltage having a predetermined phase difference from the phase of an external single-phase AC voltage source is generated, and the amplitude, frequency, and phase of the generated single-phase AC voltage are adjusted to obtain an external single-phase voltage. A single-phase voltage type AC / DC converter that is linked to an AC voltage source is described.

特開平09−028040号公報JP 09-028040 A 特開2009−219263号公報JP 2009-219263 A

自律並行運転を行う単相電圧型交直変換装置は、電力系統や発電機等の単相電圧源側から見て電圧源となるように制御されている。自律並行運転を行う単相電圧型交直変換装置をこの外部単相交流電圧源と並列する場合、突入電流を抑制するため、常に変動する単相電圧源の周波数と電圧振幅に単相電圧型交直変換装置の出力を追従させる必要がある。ところが、特許文献1の技術は、インバータを電流源となるように制御するため、電圧源となるように制御される単相電圧型交直変換装置には適用することができない。このように、常に変動する単相電圧源の周波数と電圧振幅に、自律並行運転を行う単相電圧型交直変換装置の出力を追従させ、突入電流を抑制して自動的に同期並列する技術が存在しないという課題があった。   A single-phase voltage type AC / DC converter that performs autonomous parallel operation is controlled to be a voltage source when viewed from a single-phase voltage source side such as a power system or a generator. When a single-phase voltage-type AC / DC converter that performs autonomous parallel operation is paralleled with this external single-phase AC voltage source, the single-phase voltage-type AC / DC converter is connected to the constantly changing frequency and voltage amplitude of the single-phase voltage source to suppress inrush current. It is necessary to follow the output of the converter. However, since the technique of Patent Document 1 controls the inverter to be a current source, it cannot be applied to a single-phase voltage type AC / DC converter controlled to be a voltage source. In this way, the technology of automatically synchronizing and paralleling the output of a single-phase voltage type AC / DC converter that performs autonomous parallel operation follows the frequency and voltage amplitude of a constantly changing single-phase voltage source and suppresses inrush current. There was a problem that it did not exist.

前記課題を解決するために、本発明は、自律並行運転を行う単相電圧型交直変換装置を外部単相交流電圧源に並列する際に、電圧の大きさと周波数及び位相を自動的に調節することによって突入電流を抑制できる自動同期並列装置を提供することを目的とする。   In order to solve the above problems, the present invention automatically adjusts the magnitude, frequency, and phase of a voltage when a single-phase voltage type AC / DC converter that performs autonomous parallel operation is paralleled to an external single-phase AC voltage source. It aims at providing the automatic synchronous parallel apparatus which can suppress an inrush current by this.

上記目的を達成するために、本発明に係る自動同期並列装置は、外部単相交流電圧源と単相電圧型交直変換装置との周波数差に関する値、及び外部単相交流電圧源の電圧実効値に関する値を検出し、電圧実効値が外部単相交流電圧源の電圧実効値に近づくように、且つ周波数が外部単相交流電圧源の周波数から任意値ずれるように単相電圧型交直変換装置を制御することとした。   In order to achieve the above object, an automatic synchronous parallel device according to the present invention includes a value relating to a frequency difference between an external single-phase AC voltage source and a single-phase voltage type AC / DC converter, and an effective voltage value of the external single-phase AC voltage source. A single-phase voltage type AC / DC converter so that the effective voltage value approaches the effective voltage value of the external single-phase AC voltage source, and the frequency deviates from the frequency of the external single-phase AC voltage source by an arbitrary value. I decided to control it.

具体的には、本発明に係る自動同期並列装置は、出力する単相交流電圧波形の振幅を調整する1軸電圧指令値及び周波数を調整する2軸電圧指令値に基づいて自律並行運転を行う単相電圧型交直変換装置が並列しようとする外部単相交流電圧源と前記単相電圧型交直変換装置との周波数差に関する値、及び前記外部単相交流電圧源の電圧実効値に関する値を検出する同期検定回路と、前記単相電圧型交直変換装置の単相交流電圧実効値を前記同期検定回路が検出した前記外部単相交流電圧源の電圧実効値に近づける前記1軸電圧指令値を生成して前記単相電圧型交直変換装置に入力する電圧振幅指令値生成回路と、前記同期検定回路が検出した前記周波数差に関する値を用いて、前記単相電圧型交直変換装置の単相交流電圧周波数を前記外部単相交流電圧源の周波数から任意周波数値ずらした周波数とする前記2軸電圧指令値を生成して前記単相電圧型交直変換装置に入力する周波数指令値生成回路と、を備える。   Specifically, the automatic synchronous parallel device according to the present invention performs autonomous parallel operation based on a uniaxial voltage command value for adjusting the amplitude of the output single-phase AC voltage waveform and a biaxial voltage command value for adjusting the frequency. A value relating to a frequency difference between the external single-phase AC voltage source to be paralleled by the single-phase voltage AC / DC converter and the single-phase voltage AC / DC converter, and a value relating to a voltage effective value of the external single-phase AC voltage source are detected. And the uniaxial voltage command value that brings the effective single-phase AC voltage value of the single-phase voltage type AC / DC converter close to the effective voltage value of the external single-phase AC voltage source detected by the synchronous verification circuit. Then, using the voltage amplitude command value generation circuit that is input to the single-phase voltage type AC / DC converter and the value relating to the frequency difference detected by the synchronization verification circuit, the single-phase AC voltage of the single-phase voltage type AC / DC converter is obtained. Frequency to the outside Comprising a frequency command value generating circuit for inputting phase AC voltage source to generate the two-axis voltage command value to the frequency shifted any frequency value from frequency to the single-phase voltage-AC-DC conversion device.

同期検定回路が検出した外部単相交流電圧源と単相電圧型交直変換装置との周波数差に関する値及び外部単相交流電圧源の電圧実効値を基に、電圧指令値生成回路が1軸電圧指令値を生成し、周波数指令値生成回路が2軸電圧指令値を生成する。これらの指令値で単相電圧型交直変換装置の出力を外部単相交流電圧源の電圧波形に一致させることができる。   The voltage command value generation circuit generates a uniaxial voltage based on the value related to the frequency difference between the external single-phase AC voltage source and the single-phase voltage AC / DC converter detected by the synchronization verification circuit and the effective voltage value of the external single-phase AC voltage source. A command value is generated, and a frequency command value generation circuit generates a biaxial voltage command value. With these command values, the output of the single-phase voltage type AC / DC converter can be matched with the voltage waveform of the external single-phase AC voltage source.

従って、本発明に係る自動同期並列装置は、自律並行運転を行う単相電圧型交直変換装置を外部単相交流電圧源に並列する際に、電圧の大きさと周波数及び位相を自動的に調節することによって突入電流を抑制できる。   Therefore, the automatic synchronous parallel device according to the present invention automatically adjusts the magnitude, frequency, and phase of the voltage when the single-phase voltage type AC / DC converter that performs autonomous parallel operation is paralleled to the external single-phase AC voltage source. Thus, inrush current can be suppressed.

本発明に係る自動同期並列装置の前記電圧振幅指令値生成回路は、前記同期検定回路が検出した前記外部単相交流電圧源の電圧実効値に関する値から前記単相電圧型交直変換装置が出力する単相交流電圧波形の電圧実効値に関する値を減ずる電圧系減算器と、前記電圧系減算器が減算した値を積分する電圧系積分器と、前記外部単相交流電圧源との自動並列制御開始前における前記単相電圧型交直変換装置の単相交流電圧初期値と前記電圧系積分器が積分した値とを加算して前記1軸電圧指令値を生成する電圧系加算器と、を有することを特徴とする。   The voltage amplitude command value generation circuit of the automatic synchronous parallel device according to the present invention outputs the single-phase voltage type AC / DC converter from a value relating to a voltage effective value of the external single-phase AC voltage source detected by the synchronous verification circuit. Automatic parallel control of the voltage system subtractor that subtracts the value related to the voltage effective value of the single-phase AC voltage waveform, the voltage system integrator that integrates the value subtracted by the voltage system subtractor, and the external single-phase AC voltage source is started. A voltage system adder that generates the uniaxial voltage command value by adding a single-phase AC voltage initial value of the previous single-phase voltage type AC / DC converter and a value integrated by the voltage system integrator; It is characterized by.

本発明に係る自動同期並列装置の前記周波数指令値生成回路は、前記同期検定回路が検出した前記外部単相交流電圧源の電圧実効値に関する値に前記任意周波数値を乗算した値に、前記同期検定回路が検出した前記周波数差に関する値を加算する周波数系演算器と、前記周波数系演算器が演算した値を積分する周波数系積分器と、前記外部単相交流電圧源との自動並列制御開始前における前記単相電圧型交直変換装置の単相交流電圧の初期周波数と前記周波数系積分器が積分した値とを加算して前記2軸電圧指令値を生成する周波数系加算器と、を有することを特徴とする。   The frequency command value generation circuit of the automatic synchronous parallel device according to the present invention includes a value obtained by multiplying a value related to a voltage effective value of the external single-phase AC voltage source detected by the synchronization test circuit by the arbitrary frequency value. Automatic parallel control of a frequency system calculator for adding a value related to the frequency difference detected by the test circuit, a frequency system integrator for integrating the value calculated by the frequency system calculator, and the external single-phase AC voltage source is started. A frequency system adder that adds the initial frequency of the single-phase AC voltage of the single-phase voltage type AC / DC converter before and a value integrated by the frequency system integrator to generate the biaxial voltage command value; It is characterized by that.

本発明に係る自動同期並列装置の前記電圧実効値に関する値は、電圧実効値の2乗値であることが好ましい。   The value related to the effective voltage value of the automatic synchronous parallel device according to the present invention is preferably a square value of the effective voltage value.

本発明に係る自動同期並列装置の前記同期検定回路は、前記単相電圧型交直変換装置の単相交流電圧波形の電圧実効値及び周波数がそれぞれ前記外部単相交流電圧源の電圧実効値及び周波数を中心とする所定の規定範囲内にあるときに、前記単相電圧型交直変換装置と前記外部単相交流電圧源とを並列させることを特徴とする。   In the synchronous verification circuit of the automatic synchronous parallel device according to the present invention, the voltage effective value and frequency of the single-phase AC voltage waveform of the single-phase voltage type AC / DC converter are respectively the voltage effective value and frequency of the external single-phase AC voltage source. The single-phase voltage type AC / DC converter and the external single-phase AC voltage source are arranged in parallel when they are within a predetermined prescribed range centering on.

単相電圧型交直変換装置を外部単相交流電圧源に並列させる条件の幅に制限を持たせることによってオーバーシューティングを回避することができる。   Overshooting can be avoided by limiting the range of conditions for paralleling the single-phase voltage type AC / DC converter to the external single-phase AC voltage source.

本発明は、自律並行運転を行う単相電圧型交直変換装置を外部単相交流電圧源に並列する際に、電圧の大きさと周波数及び位相を自動的に調節することによって突入電流を抑制できる自動同期並列装置を提供することができる。   The present invention automatically controls the inrush current by automatically adjusting the voltage magnitude, frequency, and phase when a single-phase voltage type AC / DC converter that performs autonomous parallel operation is paralleled to an external single-phase AC voltage source. A synchronous parallel device can be provided.

本発明に係る自動同期並列装置を説明するブロック図である。It is a block diagram explaining the automatic synchronous parallel apparatus which concerns on this invention. 同期検定回路の一例を説明するブロック図である。It is a block diagram explaining an example of a synchronous verification circuit. 本発明に係る自動同期並列装置が行う単相電圧型交直変換装置を外部単相交流電圧源に並列させるためのロジックを説明する図である。It is a figure explaining the logic for paralleling the single phase voltage type | mold AC / DC converter which the automatic synchronous parallel apparatus which concerns on this invention performs to an external single phase alternating voltage source. 本発明に係る自動同期並列装置が行う単相電圧型交直変換装置を外部単相交流電圧源から解列させるためのロジックを説明する図である。It is a figure explaining the logic for separating the single phase voltage type | mold AC / DC converter which the automatic synchronous parallel apparatus which concerns on this invention performs from an external single phase alternating voltage source. 本発明に係る自動同期並列装置が単相電圧型交直変換装置を外部単相交流電圧源に並列させる際における、1軸電圧指令値、2軸電圧指令値、及び単相電圧型交直変換装置の単相電圧波形をシミュレートした結果である。When the automatic synchronous parallel device according to the present invention parallels the single-phase voltage type AC / DC converter to the external single-phase AC voltage source, the uniaxial voltage command value, the biaxial voltage command value, and the single-phase voltage type AC / DC converter It is the result of simulating a single-phase voltage waveform. 単相電圧型交直変換装置の単相電圧波形、外部単相交流電圧源の電圧波形、及び単相電圧型交直変換装置の出力電流を並列前後で測定した結果である。It is the result of having measured the single phase voltage waveform of the single phase voltage type AC / DC converter, the voltage waveform of the external single phase AC voltage source, and the output current of the single phase voltage type AC / DC converter before and after parallel.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

図1は、本実施形態の自動同期並列装置17を説明するブロック図である。図1には、自律並行運転を行う単相電圧型交直変換装置11、これが並列する外部単相交流電圧源12、及び単相電圧型交直変換装置11と外部単相交流電圧源12との並列及び解列を行う連系用開閉器15も記載している。外部単相交流電圧源12は、例えば、電力系統や発電機である。   FIG. 1 is a block diagram illustrating the automatic synchronous parallel device 17 of the present embodiment. FIG. 1 shows a single-phase voltage type AC / DC converter 11 that performs autonomous parallel operation, an external single-phase AC voltage source 12 in parallel with this, and a single-phase voltage type AC / DC converter 11 and an external single-phase AC voltage source 12 in parallel. In addition, an interconnection switch 15 for disconnecting is also described. The external single-phase AC voltage source 12 is, for example, a power system or a generator.

単相電圧型交直変換装置11は、特許文献2に記載される自律並行運転を行う単相電圧型交直変換装置である。無負荷単独運転をしている単相電圧型交直変換装置11の出力端子電圧V(t)は次式で表せる。

Figure 0005600016
ここで、V及びωはそれぞれ単相電圧型交直変換装置11の電圧実効値及び検定元角周波数である。この実効値V及び位相角ωt=θは、1軸電圧指令値V (t)及び2軸電圧指令値V (t)からなる上位指令ベクトル120で次のように決定される。
Figure 0005600016
ここで、Ecoは規準電圧、Kmu1は1軸電圧ゲイン、Kmu2は2軸電圧ゲイン、Kはフェーズロックドループ(PLL)ゲインである。 The single-phase voltage type AC / DC converter 11 is a single-phase voltage type AC / DC converter described in Patent Document 2 that performs autonomous parallel operation. The output terminal voltage V 1 (t) of the single-phase voltage type AC / DC converter 11 performing no-load single operation can be expressed by the following equation.
Figure 0005600016
Here, V i and ω i are a voltage effective value and a verification source angular frequency of the single-phase voltage type AC / DC converter 11, respectively. The effective value V i and the phase angle ωt = θ i are determined by the upper command vector 120 composed of the uniaxial voltage command value V 1 * (t) and the biaxial voltage command value V 2 * (t) as follows. The
Figure 0005600016
Here, E co is reference voltage, K mu1 one axis voltage gain, K mu2 biaxial voltage gain, the K f is a phase-locked loop (PLL) gain.

ここで、θは、インバータの2軸電圧指令値V が大きくなれば進み、小さくなれば遅れる。Vは、1軸電圧指令値V が大きくなれば大きくなり、小さくなれば小さくなる。即ち、V(t)は、V 及びV によって振幅、周波数及び位相を独立して変化させることができる。 Here, θ i advances when the biaxial voltage command value V 2 * of the inverter increases, and delays when it decreases. V i is 1-axis voltage command value V 1 * is increased the larger the smaller the smaller. That is, V 1 (t) can be independently changed in amplitude, frequency, and phase by V 1 * and V 2 * .

単相電圧型交直変換装置11を外部単相交流電圧源12に並列させるために、自動同期並列装置17を用いて以下の手順を行う。
[1]自動同期並列装置17は、1軸電圧指令値V (t)を制御して、単相電圧型交直変換装置11の単相交流電圧波形の実効値V(t)を外部単相交流電圧源12の電圧実効値Vsに合わせる。
[2]自動同期並列装置17は、2軸電圧指令値V (t)を制御して、単相電圧型交直変換装置11の単相交流電圧角周波数dθi(t)/dtを外部単相交流電圧源12の角周波数ωよりΔωずらした値ω+Δωに合わせる。Δω≠0rad/sである。Δω=0rad/sとすると、自動同期並列装置17は単相電圧型交直変換装置11の位相を外部単相交流電圧源12に合致させることができない。Δωは、外部単相交流電圧源12がインバータの場合は正、整流器の場合には負とし、例えば、Δω=0.3rad/s(0.0478Hz)とする。
[3]単相電圧型交直変換装置11の単相交流電圧実効値V(t)が外部単相交流電圧源12の電圧実効値Vを中心とする所定の規定範囲ΔV内(V+ΔV)にあり、且つω(t)−θ(t)が±Δθの範囲にあり、その状態が所定時間Tdetect継続したならば、自動同期並列装置17は、開閉器15の投入を指令する。ΔV、Δθ、Tdetectの値については後述する。
In order to parallelize the single-phase voltage type AC / DC converter 11 to the external single-phase AC voltage source 12, the following procedure is performed using the automatic synchronous parallel device 17.
[1] The automatic synchronous parallel device 17 controls the uniaxial voltage command value V 1 * (t) and outputs the effective value V i (t) of the single-phase AC voltage waveform of the single-phase voltage type AC / DC converter 11 to the outside. The voltage is adjusted to the effective voltage value Vs of the single-phase AC voltage source 12.
[2] The automatic synchronous parallel device 17 controls the biaxial voltage command value V 2 * (t) to set the single-phase AC voltage angular frequency dθi (t) / dt of the single-phase voltage type AC / DC converter 11 to an external single unit. It is set to a value ω s + Δω 0 shifted by Δω 0 from the angular frequency ω s of the phase AC voltage source 12. Δω 00 rad / s. When Δω 0 = 0 rad / s, the automatic synchronous parallel device 17 cannot match the phase of the single-phase voltage type AC / DC converter 11 with the external single-phase AC voltage source 12. Δω 0 is positive when the external single-phase AC voltage source 12 is an inverter, and negative when the external single-phase AC voltage source 12 is a rectifier. For example, Δω 0 = 0.3 rad / s (0.0478 Hz).
[3] The single-phase AC voltage effective value V i (t) of the single-phase voltage type AC / DC converter 11 is within a predetermined specified range ΔV s centered on the voltage effective value V s of the external single-phase AC voltage source 12 (V s + ΔV s ) and ω s (t) −θ i (t) is in the range of ± Δθ i , and the state continues for a predetermined time T detect , the automatic synchronous parallel device 17 is switched to the switch 15 Is commanded. The values of ΔV s , Δθ i , and T detect will be described later.

上術のように単相電圧型交直変換装置11を外部単相交流電圧源12に並列させるために、自動同期並列装置17は次のように構成される。自動同期並列装置17は、同期検定回路130、電圧振幅指令値生成回路180、及び周波数指令値生成回路190を備える。同期検定回路130は、出力する単相交流電圧波形の振幅を調整する1軸電圧指令値V 及び周波数を調整する2軸電圧指令値V に基づいて自律並行運転を行う単相電圧型交直変換装置11が並列する外部単相交流電圧源12と単相電圧型交直変換装置11との周波数差に関する値[(ω−ω)V又は(ω−ω)V ]、及び外部単相交流電圧源12の電圧実効値に関する値[V又はV ]を検出する。電圧振幅指令値生成回路180は、単相電圧型交直変換装置11の単相交流電圧実効値Vを同期検定回路130が検出した外部単相交流電圧源12の電圧実効値Vに近づける1軸電圧指令値V を生成して単相電圧型交直変換装置11に入力する。周波数指令値生成回路190は、同期検定回路130が検出した周波数差に関する値を用いて、単相電圧型交直変換装置11の単相交流電圧周波数を外部単相交流電圧源12の周波数から任意周波数値Δωずらした周波数とする2軸電圧指令値V を生成して単相電圧型交直変換装置11に入力する。 In order to parallelize the single-phase voltage type AC / DC converter 11 to the external single-phase AC voltage source 12 as described above, the automatic synchronous parallel device 17 is configured as follows. The automatic synchronous parallel device 17 includes a synchronization verification circuit 130, a voltage amplitude command value generation circuit 180, and a frequency command value generation circuit 190. The synchronization verification circuit 130 is a single-phase voltage that performs autonomous parallel operation based on the uniaxial voltage command value V 1 * that adjusts the amplitude of the output single-phase AC voltage waveform and the biaxial voltage command value V 2 * that adjusts the frequency. The value [(ω s −ω) V s or (ω s −ω) V s 2 ] regarding the frequency difference between the external single-phase AC voltage source 12 and the single-phase voltage type AC / DC converter 11 in parallel with the AC / DC converter 11. And a value [V s or V s 2 ] related to the effective voltage value of the external single-phase AC voltage source 12 is detected. The voltage amplitude command value generation circuit 180 brings the single-phase AC voltage effective value V i of the single-phase voltage type AC / DC converter 11 close to the voltage effective value V s of the external single-phase AC voltage source 12 detected by the synchronization verification circuit 130 1 A shaft voltage command value V 1 * is generated and input to the single-phase voltage type AC / DC converter 11. The frequency command value generation circuit 190 converts the single-phase AC voltage frequency of the single-phase voltage type AC / DC converter 11 from the frequency of the external single-phase AC voltage source 12 to an arbitrary frequency using a value related to the frequency difference detected by the synchronization verification circuit 130. A biaxial voltage command value V 2 * having a frequency shifted by the value Δω 0 is generated and input to the single-phase voltage type AC / DC converter 11.

同期検定回路130は、外部単相交流電圧源12と単相電圧型交直変換装置11との周波数差に関する値[(ω−ω)V又は(ω−ω)V ]、及び外部単相交流電圧源12の電圧実効値に関する値[V又はV ]を検出できるものであればよい。図2は、同期検定回路130の一例を説明するブロック図である。 The synchronization verification circuit 130 includes a value [(ω s −ω) V s or (ω s −ω) V s 2 ] regarding a frequency difference between the external single-phase AC voltage source 12 and the single-phase voltage type AC / DC converter 11, and What is necessary is just to be able to detect the value [V s or V s 2 ] related to the voltage effective value of the external single-phase AC voltage source 12. FIG. 2 is a block diagram for explaining an example of the synchronization verification circuit 130.

図2は、同期検定回路130を説明する図である。同期検定回路130は、規準角周波数ωcoと、外部単相交流電圧源12の検定対象電圧波形を検出するサンプラー133と、サンプラー133が検出した前記検定対象電圧波形から(m−1/2)π/ωco(mは自然数)時間を遅らせた遅延電圧波形を作成する遅延回路134と、サンプラー133が検出した前記検定対象外部電圧波形、遅延回路134が作成した前記遅延電圧波形、及び与えられた単相電圧型交直変換装置11の検定元角周波数ω、から前記検定対象外部電圧波形の検定対象角周波数ωと検定元角周波数ωとの差分を角周波数とする周波数差余弦信号及び周波数差正弦信号を計算する演算部135と、を備える。 FIG. 2 is a diagram for explaining the synchronization verification circuit 130. The synchronization verification circuit 130 includes a reference angular frequency ω co , a sampler 133 that detects the voltage waveform to be tested of the external single-phase AC voltage source 12, and the voltage waveform to be tested detected by the sampler 133 (m−1 / 2). π / ω co (where m is a natural number) a delay circuit 134 that creates a delayed voltage waveform delayed in time, the test target external voltage waveform detected by the sampler 133, the delayed voltage waveform created by the delay circuit 134, and Further, the frequency difference cosine signal and the frequency having the angular frequency as the difference between the verification target angular frequency ω s of the verification target external voltage waveform and the verification source angular frequency ω from the verification source angular frequency ω of the single-phase voltage type AC / DC converter 11. And an arithmetic unit 135 for calculating a difference sine signal.

本実施形態では、同期検定回路130が規準角周波数ωcoを備えているが、検定元の単相電圧型交直変換装置11から受けてもよい。 In this embodiment, the synchronization verification circuit 130 has the reference angular frequency ω co , but may be received from the single-phase voltage type AC / DC converter 11 that is the verification source.

また、検定対象となる外部単相交流電圧源12の検定対象電圧波形V(t)は次式で表すことができる。

Figure 0005600016
ここで、Vは実効値[V]、ωは角周波数[rad/s]、φはインバータから見た外部交流電源のt=0での位相角[rad]である。
サンプラー133は、この検定対象外部電圧波形V(t)をサンプリングする。ここで、検定対象電圧波形V(t)をサンプリングしたサンプル波形をV(nTs)と表す。Tsはサンプル周期であり、nはサンプル番号である。 Further, the verification target voltage waveform V 2 (t) of the external single-phase AC voltage source 12 to be verified can be expressed by the following equation.
Figure 0005600016
Here, V s is an effective value [V], ω s is an angular frequency [rad / s], and φ is a phase angle [rad] at t = 0 of the external AC power source viewed from the inverter.
The sampler 133 samples the verification target external voltage waveform V 2 (t). Here, a sample waveform obtained by sampling the verification target voltage waveform V 2 (t) is represented as V 2 (nTs). Ts is a sample period, and n is a sample number.

遅延回路134は、規準角周波数ωcoが入力され、サンプル波形V(nTs)から(m−1/2)π/ωco(mは自然数)周期で遅らせた遅延電圧波形V (nTs)を作成する。 The delay circuit 134 receives the reference angular frequency ω co and the delay voltage waveform V 2 # (nTs) delayed from the sample waveform V 2 (nTs) by a period of (m−1 / 2) π / ω co (m is a natural number). ).

遅延電圧波形V (nTs)の遅れ量を、(m−1/2)π/ωcoと表すことができる。本実施形態では、m=1の場合(1/4周期遅らせた場合)を説明する。この場合、遅延電圧波形V (nTs)は次式となる。

Figure 0005600016
The delay amount of the delay voltage waveform V 2 # (nTs) can be expressed as (m−1 / 2) π / ω co . In the present embodiment, a case where m = 1 (a case where a quarter cycle is delayed) will be described. In this case, the delay voltage waveform V 2 # (nTs) is expressed by the following equation.
Figure 0005600016

演算部135は、単相電圧型交直変換装置11から検定元角周波数ωが入力される。演算部135は、サンプル波形V(nTs)、遅延電圧波形V (nTs)が入力され、検定元角周波数ωと外部単相交流電圧源12の検定対象角周波数ωとの差を角周波数とする周波数差余弦信号V(nTs)及び周波数差正弦信号V(nTs)を演算する。 The calculator 135 receives the verification source angular frequency ω from the single-phase voltage type AC / DC converter 11. The calculation unit 135 receives the sample waveform V 2 (nTs) and the delayed voltage waveform V 2 # (nTs), and calculates the difference between the verification source angular frequency ω and the verification target angular frequency ω s of the external single-phase AC voltage source 12. A frequency difference cosine signal V 3 (nTs) and a frequency difference sine signal V 4 (nTs) are calculated as angular frequencies.

具体的には、演算部135は、数5のようにサンプル波形V(nTs)及び遅延電圧波形V (nTs)を回転座標変換を行い周波数差余弦信号V(nTs)及び周波数差正弦信号V(nTs)を演算する。

Figure 0005600016
Specifically, the arithmetic unit 135 performs rotational coordinate conversion on the sample waveform V 2 (nTs) and the delayed voltage waveform V 2 # (nTs) as shown in Equation 5 to perform the frequency difference cosine signal V 3 (nTs) and the frequency difference. The sine signal V 4 (nTs) is calculated.
Figure 0005600016

演算部135が演算すると、周波数差余弦信号V(nTs)及び周波数差正弦信号V(nTs)に(ω+ω)の周波数の高周波成分が含まれる。そこで、演算部135は、高周波成分を除去するローパスフィルタ(152A、152B)をさらに備える。ローパスフィルタ(152A、152B)で高周波成分を除去した周波数差余弦信号及び周波数差正弦信号をそれぞれVU3(nTs)及びVU4(nTs)と記す。

Figure 0005600016
When the calculation unit 135 calculates, the frequency difference cosine signal V 3 (nTs) and the frequency difference sine signal V 4 (nTs) include a high frequency component having a frequency of (ω s + ω). Therefore, the calculation unit 135 further includes low-pass filters (152A, 152B) that remove high-frequency components. The frequency difference cosine signal and the frequency difference sine signal from which high-frequency components have been removed by the low-pass filters (152A, 152B) are denoted as V U3 (nTs) and V U4 (nTs), respectively.
Figure 0005600016

同期検定回路130は、検出部136をさらに備える。検出部136は、演算部135が出力する周波数差余弦信号VU3(nTs)及び周波数差正弦信号VU4(nTs)を利用して、検定対象外部電圧波形V(t)の電圧実効値、検定対象外部電圧波形V(t)の検定対象角周波数ωと検定元角周波数ωとの周波数差、及び検定対象外部電圧波形V(t)と検定元電圧波形V(t)との位相差を検出することができる。 The synchronization verification circuit 130 further includes a detection unit 136. The detection unit 136 uses the frequency difference cosine signal V U3 (nTs) and the frequency difference sine signal V U4 (nTs) output from the calculation unit 135 to determine the effective voltage value of the verification target external voltage waveform V 2 (t), frequency difference being tested external voltage waveform V 2 and test object angular frequency omega s of the (t) test original angular frequency omega, and assay the target external voltage waveform V 2 (t) and test the original voltage waveform V 1 (t) Can be detected.

具体的には、検出部136は、電圧実効値、周波数差、及び位相差をそれぞれ数7を計算する回路161、数8を計算する回路162、及び数9を計算する回路163で検出する。

Figure 0005600016
Figure 0005600016
Figure 0005600016
Specifically, the detection unit 136 detects the voltage effective value, the frequency difference, and the phase difference by the circuit 161 that calculates the equation 7, the circuit 162 that calculates the equation 8, and the circuit 163 that calculates the equation 9, respectively.
Figure 0005600016
Figure 0005600016
Figure 0005600016

次に、単相電圧型交直変換装置11を外部単相交流電圧源12に並列させるための手順[1]について説明する。手順[1]は電圧振幅指令値生成回路180が実施する。電圧振幅指令値生成回路180は、同期検定回路130が検出した外部単相交流電圧源12の電圧実効値に関する値[V又はV ]から単相電圧型交直変換装置11が出力する単相交流電圧実効値に関する値[V又はV ]を減ずる電圧系減算器181と、電圧系減算器181が減算した値を積分する電圧系積分器182と、外部単相交流電圧源12との自動並列制御開始直前における単相電圧型交直変換装置11の単相交流電圧波形の初期電圧値V (0)と電圧系積分器182が積分した値とを加算して1軸電圧指令値V (t)を生成する電圧系加算器183と、を有する。 Next, the procedure [1] for paralleling the single-phase voltage type AC / DC converter 11 to the external single-phase AC voltage source 12 will be described. Step [1] is performed by the voltage amplitude command value generation circuit 180. The voltage amplitude command value generation circuit 180 outputs the single-phase voltage type AC / DC converter 11 that outputs the value [V s or V s 2 ] related to the voltage effective value of the external single-phase AC voltage source 12 detected by the synchronization verification circuit 130. The voltage system subtractor 181 that subtracts the value [V i or V i 2 ] related to the phase AC voltage effective value, the voltage system integrator 182 that integrates the value subtracted by the voltage system subtractor 181, and the external single-phase AC voltage source 12 The initial voltage value V 1 * (0) of the single-phase AC voltage waveform of the single-phase voltage type AC / DC converter 11 immediately before the start of the automatic parallel control with the sum of the value integrated by the voltage integrator 182 is added to the uniaxial voltage And a voltage system adder 183 that generates a command value V 1 * (t).

次式のようにVU3 (t)+VU4 (t)はほぼV に等しい。

Figure 0005600016
そこで、上式を利用して単相電圧型交直変換装置11の1軸電圧指令値V (t)に次のような閉ループを施す。
Figure 0005600016
ここで、初期値V (0)は閉ループ制御を開始する直前のV (t)の値、Kamp(>0)は積分ゲインである。 As shown in the following equation, V U3 2 (t) + V U4 2 (t) is substantially equal to V s 2 .
Figure 0005600016
Therefore, the following closed loop is applied to the uniaxial voltage command value V 1 * (t) of the single-phase voltage type AC / DC converter 11 using the above equation.
Figure 0005600016
Here, the initial value V 1 * (0) is the value of V 1 * (t) immediately before the start of the closed loop control, and K amp (> 0) is the integral gain.

数10から数11は次のように近似できる。

Figure 0005600016
数2を用いて数12をV(t)の方程式に変形する。
Figure 0005600016
Figure 0005600016
(0)は、自動並列制御開始直前の単相電圧型交直変換装置11の電圧の実効値である。 Equations 10 to 11 can be approximated as follows.
Figure 0005600016
Using Equation 2, Equation 12 is transformed into an equation of V i (t).
Figure 0005600016
Figure 0005600016
V 1 * (0) is an effective value of the voltage of the single-phase voltage type AC / DC converter 11 immediately before the start of automatic parallel control.

数14の両辺を微分すると、Vに関する次の微分方程式を得る。

Figure 0005600016
数15を変形して下式を得る。
Figure 0005600016
さらに積分定数Cを用いると、
Figure 0005600016
となり、
Figure 0005600016
となる。これを変形して次式を得る。
Figure 0005600016
数19から
Figure 0005600016
となるので、この閉ループ制御によって時間の経過とともに単相電圧型交直変換装置11の出力の電圧実効値はVに近づくことになる。 Differentiating both sides of Equation 14 yields the following differential equation for V i .
Figure 0005600016
Equation 15 is transformed to obtain the following formula.
Figure 0005600016
Furthermore, if the integration constant C is used,
Figure 0005600016
And
Figure 0005600016
It becomes. This is transformed to obtain the following formula.
Figure 0005600016
From number 19
Figure 0005600016
Thus, with this closed loop control, the effective voltage value of the output of the single-phase voltage type AC / DC converter 11 approaches V s as time passes.

続いて、単相電圧型交直変換装置11を外部単相交流電圧源12に並列させるための手順[2]について説明する。手順[2]は周波数指令値生成回路190が実施する。周波数指令値生成回路190は、同期検定回路130が検出した外部単相交流電圧源12の電圧実効値に関する値[V又はV ]に任意周波数値Δωを乗算した値に、同期検定回路130が検出した周波数差に関する値[(ω−ω)V又は(ω−ω)V ]を加算する周波数系演算器191と、周波数系演算器191が演算した値を積分する周波数系積分器192と、外部単相交流電圧源12との自動並列制御開始直前における単相電圧型交直変換装置11の単相交流電圧波形の初期周波数V (0)と周波数系積分器192が積分した値とを加算して2軸電圧指令値V (t)を生成する周波数系加算器193と、を有する。 Next, the procedure [2] for paralleling the single-phase voltage type AC / DC converter 11 to the external single-phase AC voltage source 12 will be described. Step [2] is performed by the frequency command value generation circuit 190. The frequency command value generation circuit 190 synchronizes a value obtained by multiplying a value [V s or V s 2 ] related to the voltage effective value of the external single-phase AC voltage source 12 detected by the synchronization verification circuit 130 by an arbitrary frequency value Δω 0. A frequency system computing unit 191 for adding a value [(ω s −ω) V s or (ω s −ω) V s 2 ] related to the frequency difference detected by the circuit 130, and integrating the value computed by the frequency system computing unit 191 The initial frequency V 2 * (0) of the single-phase AC voltage waveform of the single-phase voltage type AC / DC converter 11 immediately before the start of automatic parallel control between the frequency-system integrator 192 and the external single-phase AC voltage source 12 and the frequency-system integration A frequency system adder 193 that generates a biaxial voltage command value V 2 * (t) by adding the values integrated by the unit 192.

ここで、次式のように近似できる。

Figure 0005600016
そこで、上式を利用して単相電圧型交直変換装置11の2軸電圧指令値V (t)に次のような閉ループを施す。
Figure 0005600016
ここで、初期値V (0)は閉ループ制御を開始する直前のV (t)の値、Kfreq(>0)は積分ゲインである。Δωに乗じられるV の値は数10を用いる。V の代替としてEco を用いてもよい。 Here, it can be approximated as the following equation.
Figure 0005600016
Therefore, the following closed loop is applied to the biaxial voltage command value V 2 * (t) of the single-phase voltage type AC / DC converter 11 using the above equation.
Figure 0005600016
Here, the initial value V 2 * (0) is a value of V 2 * (t) immediately before the start of the closed loop control, and K freq (> 0) is an integral gain. Formula 10 is used as the value of V s 2 multiplied by Δω 0 . E co 2 may be used as an alternative to V s 2 .

数22の両辺を微分すると次式が得られる。

Figure 0005600016
ここで、単相電圧型交直変換装置11の出力の角周波数をω(t)とすると、
Figure 0005600016
となる。数2から
Figure 0005600016
となる。数25を数23に代入してωに関する微分方程式からω(t)を求めると次のようになる。
Figure 0005600016
ここで、ω(0)は閉ループ開始直前のω(t)の値である。
Figure 0005600016
であるから、この閉ループ制御によって時間の経過とともに単相電圧型交直変換装置11の出力の角周波数はω+Δωに近づくことになる。 Differentiating both sides of Equation 22 gives the following equation.
Figure 0005600016
Here, when the angular frequency of the output of the single-phase voltage type AC / DC converter 11 is ω i (t),
Figure 0005600016
It becomes. From number 2
Figure 0005600016
It becomes. Number 25 and seek the ω i (t) from the differential equation for by substituting ω i to the number 23 is as follows.
Figure 0005600016
Here, ω i (0) is the value of ω i (t) immediately before the start of the closed loop.
Figure 0005600016
Therefore, with this closed loop control, the angular frequency of the output of the single-phase voltage type AC / DC converter 11 approaches ω s + Δω 0 over time.

さらに、単相電圧型交直変換装置11を外部単相交流電圧源12に並列させるための手順[3]について説明する。同期検定回路130は、単相電圧型交直変換装置11の単相交流電圧波形の電圧実効値V及び周波数ωがそれぞれ外部単相交流電圧源12の電圧実効値V及び周波数ωを中心とする所定の規定範囲内にあるときに、連系用開閉器15を閉じて単相電圧型交直変換装置11と外部単相交流電圧源12とを並列させる。 Further, the procedure [3] for paralleling the single-phase voltage type AC / DC converter 11 to the external single-phase AC voltage source 12 will be described. In the synchronous verification circuit 130, the voltage effective value V i and the frequency ω i of the single-phase AC voltage waveform of the single-phase voltage type AC / DC converter 11 are the voltage effective value V s and the frequency ω s of the external single-phase AC voltage source 12, respectively. When it is within a predetermined prescribed range as the center, the interconnection switch 15 is closed and the single-phase voltage type AC / DC converter 11 and the external single-phase AC voltage source 12 are arranged in parallel.

図3は、自動同期並列装置17が行う単相電圧型交直変換装置11を外部単相交流電圧源12に並列させるためのロジックを説明する図である。連系用開閉器15が開状態(ステップS02)のときに並列指令(ステップS01)されたとする。自動同期並列装置17はV 閉ループ及びV 閉ループを開始する(ステップS03、S04)。自動同期並列装置17は次の4つの条件を確認する。|V−V(t)|≦ΔVとなっていること(ステップS05)。ここで、ΔVは許容振幅差を表し、例えば、Vの5%程度とする。|ω+Δω−ω(t)|≦Δωとなっていること(ステップS06)。ここで、Δωは角周波数の許容差を表し、例えば、ωの1%程度とする。同期検定回路130が計算するVU3(t)が0より大きいこと(ステップS07)。同期検定回路130が計算するVU4(t)が|VU4(t)|≦V・|sinΔθ|となっていること(ステップS08)。ここで、Δθは許容位相差を表し、例えば、5度程度とする。自動同期並列装置17は上記4条件が時間Tdetectの間続いていることを確認した後(ステップS09)、連系用開閉器15を閉とする指令を出す(ステップS10)。連系用開閉器15は該指令を受けて閉とする(ステップS11)。この後、自動同期並列装置17はV 閉ループ及びV 閉ループを終了する(ステップS12、S13)。 FIG. 3 is a diagram illustrating logic for paralleling the single-phase voltage type AC / DC converter 11 performed by the automatic synchronous parallel device 17 to the external single-phase AC voltage source 12. It is assumed that a parallel command (step S01) is issued when the interconnection switch 15 is in the open state (step S02). The automatic synchronous parallel device 17 starts the V 1 * closed loop and the V 2 * closed loop (steps S03 and S04). The automatic synchronous parallel device 17 confirms the following four conditions. | V s −V i (t) | ≦ ΔV s (step S05). Here, ΔV s represents an allowable amplitude difference, for example, about 5% of V s . | Ω s + Δω−ω i (t) | ≦ Δω (step S06). Here, [Delta] [omega represents the tolerance of the angular frequency, for example, to be 1% of omega s. V U3 (t) calculated by the synchronization verification circuit 130 is greater than 0 (step S07). V U4 (t) calculated by the synchronization verification circuit 130 is | V U4 (t) | ≦ V s · sin Δθ i | (step S08). Here, Δθ i represents an allowable phase difference, for example, about 5 degrees. After confirming that the above four conditions continue for the time T detect (step S09), the automatic synchronous parallel device 17 issues a command to close the interconnection switch 15 (step S10). The interconnection switch 15 is closed in response to the command (step S11). Thereafter, the automatic synchronous parallel device 17 ends the V 1 * closed loop and the V 2 * closed loop (steps S12 and S13).

なお、ステップS07はcos(ωt−θ(t))>0と同等である。これは、ステップS08の条件で180°ずれた位相で並列される可能を排除するための条件である。 Note that step S07 is equivalent to cos (ω s t−θ i (t))> 0. This is a condition for eliminating the possibility of being paralleled with a phase shifted by 180 ° under the condition of step S08.

図4は、自動同期並列装置17が行う単相電圧型交直変換装置11を外部単相交流電圧源12から解列させるためのロジックを説明する図である。連系用開閉器15が閉状態(ステップS22)のときに解列指令(ステップS21)されたとする。自動同期並列装置17は、連系用開閉器15を開とする指令を出す(ステップS23)。連系用開閉器15は該指令を受けて開とする。   FIG. 4 is a diagram illustrating logic for disconnecting the single-phase voltage type AC / DC converter 11 performed by the automatic synchronous parallel device 17 from the external single-phase AC voltage source 12. Assume that a disconnection command (step S21) is issued when the interconnection switch 15 is closed (step S22). The automatic synchronous parallel device 17 issues a command to open the interconnection switch 15 (step S23). The interconnection switch 15 is opened in response to the command.

(実施例1)
図5は、自動同期並列装置17が単相電圧型交直変換装置11を外部単相交流電圧源12に並列させる際における、1軸電圧指令値、2軸電圧指令値、及び単相電圧型交直変換装置11の単相電圧波形をシミュレートした結果である。
Example 1
FIG. 5 shows a one-axis voltage command value, a two-axis voltage command value, and a single-phase voltage type AC / DC when the automatic synchronous parallel device 17 parallels the single-phase voltage type AC / DC converter 11 with the external single-phase AC voltage source 12. It is the result of having simulated the single phase voltage waveform of the converter 11. FIG.

単相電圧型交直変換装置11は並列前に200V、50Hzで運転しているものとする。外部単相交流電圧源12は、220V、54Hzで運転しているものとする。時刻80msで図3の連系指令(ステップS01)を行った。その後、電圧波形指令値は200Vから徐々に上昇し、240V(出力電圧220Vに相当)で一定になっている。これに伴い、単相電圧型交直変換装置11の単相交流電圧振幅値は外部単相交流電圧源12の交流電圧波形の振幅値に近づいている。また、2軸電圧指令値も0Vから徐々に上昇し、41.3Vで一定になっている。この電圧は単相電圧型交直変換装置11の単相交流電圧波形の周波数54.05Hzに相当する。   The single-phase voltage type | mold AC / DC converter 11 shall be drive | operated by 200V and 50Hz before parallel. It is assumed that the external single-phase AC voltage source 12 is operated at 220 V and 54 Hz. At time 80 ms, the interconnection command (step S01) shown in FIG. Thereafter, the voltage waveform command value gradually increases from 200V and is constant at 240V (corresponding to the output voltage 220V). Along with this, the single-phase AC voltage amplitude value of the single-phase voltage type AC / DC converter 11 approaches the amplitude value of the AC voltage waveform of the external single-phase AC voltage source 12. The biaxial voltage command value also gradually increases from 0V and is constant at 41.3V. This voltage corresponds to the frequency 54.05 Hz of the single-phase AC voltage waveform of the single-phase voltage type AC / DC converter 11.

図5のように、単相電圧型交直変換装置11の出力電圧の大きさ及び周波数は、徐々に外部単相交流電圧源12の電圧及び周波数に近づき、ほぼ150ms後にこれらが一致している。すなわち、約150msで単相電圧型交直変換装置11の単相交流電圧波形は、外部単相交流電圧源12の電圧波形と同期がとれたことになる。   As shown in FIG. 5, the magnitude and frequency of the output voltage of the single-phase voltage type AC / DC converter 11 gradually approach the voltage and frequency of the external single-phase AC voltage source 12, and these coincide with each other after approximately 150 ms. That is, the single-phase AC voltage waveform of the single-phase voltage type AC / DC converter 11 is synchronized with the voltage waveform of the external single-phase AC voltage source 12 in about 150 ms.

(実施例2)
自動同期並列装置17が単相電圧型交直変換装置11を外部単相交流電圧源12に並列させる実験を行った。単相電圧型交直変換装置11は並列前に200V、50Hzで運転している。外部単相交流電圧源12は、240V、60Hzで運転している。図6はこの実験において、単相電圧型交直変換装置11の単相電圧波形、外部単相交流電圧源12の電圧波形、及び単相電圧型交直変換装置11の出力電流を並列前後で測定した結果である。図6(a)は並列前の波形であり、図6(b)は並列直前及び直後の波形である。
(Example 2)
An experiment was conducted in which the automatic synchronous parallel device 17 paralleled the single-phase voltage type AC / DC converter 11 with the external single-phase AC voltage source 12. The single-phase voltage type AC / DC converter 11 is operated at 200 V and 50 Hz before parallel. The external single-phase AC voltage source 12 is operated at 240 V and 60 Hz. FIG. 6 shows that in this experiment, the single-phase voltage waveform of the single-phase voltage type AC / DC converter 11, the voltage waveform of the external single-phase AC voltage source 12, and the output current of the single-phase voltage type AC / DC converter 11 were measured before and after parallel. It is a result. FIG. 6A shows a waveform before paralleling, and FIG. 6B shows a waveform immediately before and immediately after paralleling.

図6(a)のように、並列前は単相電圧型交直変換装置11の単相電圧波形と外部単相交流電圧源12の電圧波形がずれている。並列指令で単相電圧型交直変換装置11の単相電圧波形、外部単相交流電圧源12の電圧波形との同期をとり並列させた後は、並列前は単相電圧型交直変換装置11の単相電圧波形と外部単相交流電圧源12の電圧波形とは一致している。なお、並列後単相電圧型交直変換装置11の出力電流に歪が生じているが、これは外部単相交流電圧源12の入力側に設置した200V変圧器に240Vを印加したことによる過励磁のためである。   As shown in FIG. 6A, the single-phase voltage waveform of the single-phase voltage type AC / DC converter 11 and the voltage waveform of the external single-phase AC voltage source 12 are shifted before parallel. After the parallel command synchronizes the single-phase voltage waveform of the single-phase voltage type AC / DC converter 11 and the voltage waveform of the external single-phase AC voltage source 12 in parallel, before the parallel, the single-phase voltage type AC / DC converter 11 The single-phase voltage waveform and the voltage waveform of the external single-phase AC voltage source 12 match. In addition, although distortion has arisen in the output current of the single phase voltage type | mold AC / DC converter 11 after a parallel, this is overexcitation by having applied 240V to the 200V transformer installed in the input side of the external single phase alternating voltage source 12. For.

このように、自動同期並列装置17は、電圧源となるように制御される単相電圧型交直変換装置を外部単相交流電圧源に並列させることができる。   Thus, the automatic synchronous parallel device 17 can parallel the single-phase voltage type AC / DC converter controlled to be a voltage source in parallel with the external single-phase AC voltage source.

11:単相電圧型交直変換装置
12:外部単相交流電圧源
15:連系用開閉器
17:自動同期並列装置
120:上位指令ベクトル
130:同期検定回路
133:サンプラー
134:遅延回路
135:演算部
136:検出部
151:回転座標変換回路
152A、152B:ローパスフィルタ
153:周波数差余弦信号出力端
154:周波数差正弦信号出力端
161、162、163:回路
180:電圧振幅指令値生成回路
181:電圧系減算器
182:電圧系積分器
183:電圧系加算器
190:周波数指令値生成回路
191:周波数系演算器
192:周波数系積分器
193:周波数系加算器
11: Single-phase voltage type AC / DC converter 12: External single-phase AC voltage source 15: Linkage switch 17: Automatic synchronous parallel device 120: High-order command vector 130: Synchronization test circuit 133: Sampler 134: Delay circuit 135: Calculation Unit 136: detection unit 151: rotating coordinate conversion circuits 152A, 152B: low-pass filter 153: frequency difference cosine signal output terminal 154: frequency difference sine signal output terminals 161, 162, 163: circuit 180: voltage amplitude command value generation circuit 181: Voltage system subtractor 182: Voltage system integrator 183: Voltage system adder 190: Frequency command value generation circuit 191: Frequency system calculator 192: Frequency system integrator 193: Frequency system adder

Claims (5)

出力する単相交流電圧波形の振幅を調整する1軸電圧指令値及び周波数を調整する2軸電圧指令値に基づいて自律並行運転を行う単相電圧型交直変換装置が並列対象とする外部単相交流電圧源と前記単相電圧型交直変換装置との周波数差に関する値、及び前記単相交流電圧源の電圧実効値に関する値を検出する同期検定回路と、
前記単相電圧型交直変換装置の単相交流電圧実効値を前記同期検定回路が検出した前記外部単相交流電圧源の電圧実効値に近づける前記1軸電圧指令値を生成して前記単相電圧型交直変換装置に入力する電圧振幅指令値生成回路と、
前記同期検定回路が検出した前記周波数差に関する値を用いて、前記単相電圧型交直変換装置の単相交流電圧周波数を前記外部単相交流電圧源の周波数から任意周波数値ずらした周波数とする前記2軸電圧指令値を生成して前記単相電圧型交直変換装置に入力する周波数指令値生成回路と、
を備える自動同期並列装置。
External single phase that is targeted for parallel operation by a single-phase voltage type AC / DC converter that performs autonomous parallel operation based on a single-axis voltage command value that adjusts the amplitude of the output single-phase AC voltage waveform and a two-axis voltage command value that adjusts the frequency A synchronous verification circuit that detects a value related to a frequency difference between the AC voltage source and the single-phase voltage type AC / DC converter, and a value related to a voltage effective value of the single-phase AC voltage source;
The single-phase voltage command value is generated to approximate the effective value of the single-phase AC voltage of the single-phase voltage type AC / DC converter to the effective value of the voltage of the external single-phase AC voltage source detected by the synchronous verification circuit, and the single-phase voltage is generated. Voltage amplitude command value generation circuit to be input to the type AC / DC converter,
Using the value related to the frequency difference detected by the synchronization verification circuit, the single-phase AC voltage frequency of the single-phase voltage type AC / DC converter is a frequency shifted by an arbitrary frequency value from the frequency of the external single-phase AC voltage source. A frequency command value generation circuit for generating a biaxial voltage command value and inputting it to the single-phase voltage type AC / DC converter;
An automatic synchronous parallel device.
前記電圧振幅指令値生成回路は、
前記同期検定回路が検出した前記外部単相交流電圧源の電圧実効値に関する値から前記単相電圧型交直変換装置が出力する単相交流電圧波形の電圧実効値に関する値を減ずる電圧系減算器と、
前記電圧系減算器が減算した値を積分する電圧系積分器と、
前記外部単相交流電圧源との自動並列制御開始前における前記単相電圧型交直変換装置の単相交流電圧初期値と前記電圧系積分器が積分した値とを加算して前記1軸電圧指令値を生成する電圧系加算器と、
を有することを特徴とする請求項1に記載の自動同期並列装置。
The voltage amplitude command value generation circuit includes:
A voltage system subtractor that subtracts a value related to a voltage effective value of a single-phase AC voltage waveform output by the single-phase voltage type AC / DC converter from a value related to a voltage effective value of the external single-phase AC voltage source detected by the synchronization verification circuit; ,
A voltage system integrator for integrating the value subtracted by the voltage system subtractor;
The single-axis voltage command is obtained by adding the initial value of the single-phase AC voltage of the single-phase voltage type AC / DC converter before the start of automatic parallel control with the external single-phase AC voltage source and the value integrated by the voltage system integrator. A voltage adder that generates a value;
The automatic synchronous parallel device according to claim 1, comprising:
前記周波数指令値生成回路は、
前記同期検定回路が検出した前記外部単相交流電圧源の電圧実効値に関する値に前記任意周波数値を乗算した値に、前記同期検定回路が検出した前記周波数差に関する値を加算する周波数系演算器と、
前記周波数系演算器が演算した値を積分する周波数系積分器と、
前記外部単相交流電圧源との自動並列制御開始前における前記単相電圧型交直変換装置の単相交流電圧の初期周波数と前記周波数系積分器が積分した値とを加算して前記2軸電圧指令値を生成する周波数系加算器と、
を有することを特徴とする請求項1又は2に記載の自動同期並列装置。
The frequency command value generation circuit includes:
Frequency system computing unit for adding a value related to the frequency difference detected by the synchronization verification circuit to a value obtained by multiplying the value related to the voltage effective value of the external single-phase AC voltage source detected by the synchronization verification circuit by the arbitrary frequency value When,
A frequency system integrator that integrates a value calculated by the frequency system calculator;
The biaxial voltage is obtained by adding the initial frequency of the single-phase AC voltage of the single-phase voltage type AC / DC converter before the start of automatic parallel control with the external single-phase AC voltage source and the value integrated by the frequency integrator. A frequency adder for generating a command value;
The automatic synchronous parallel device according to claim 1 or 2, characterized by comprising:
前記電圧実効値に関する値が電圧実効値の2乗値であることを特徴とする請求項2又は3に記載の自動同期並列装置。   4. The automatic synchronous parallel device according to claim 2, wherein the value related to the voltage effective value is a square value of the voltage effective value. 前記同期検定回路は、
前記単相電圧型交直変換装置の単相交流電圧波形の電圧実効値及び周波数がそれぞれ前記単相交流電圧源の電圧実効値及び周波数を中心とする所定の規定範囲内にあるときに、前記単相電圧型交直変換装置と前記外部単相交流電圧源とを並列させることを特徴とする請求項1から4のいずれかに記載の自動同期並列装置。
The synchronization verification circuit includes:
When the voltage effective value and frequency of the single-phase AC voltage waveform of the single-phase voltage type AC / DC converter are within a predetermined specified range centered on the voltage effective value and frequency of the single-phase AC voltage source, respectively, 5. The automatic synchronous parallel device according to claim 1, wherein a phase voltage type AC / DC converter and the external single-phase AC voltage source are paralleled. 6.
JP2010050751A 2010-01-25 2010-03-08 Automatic synchronous parallel device Expired - Fee Related JP5600016B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010050751A JP5600016B2 (en) 2010-03-08 2010-03-08 Automatic synchronous parallel device
US13/006,636 US8553436B2 (en) 2010-01-25 2011-01-14 Synchronization detecting circuit and automatic synchronous parallelization apparatus
CN201110026452.3A CN102193023B (en) 2010-01-25 2011-01-25 Synchronization detecting circuit and automatic synchronous parallelization apparatus
EP11152107.6A EP2348628B1 (en) 2010-01-25 2011-01-25 Synchronization detecting circuit and automatic synchronous parallelization apparatus
HK11113838.6A HK1161354A1 (en) 2010-01-25 2011-12-22 Synchronization detecting circuit and automatic synchronous parallelization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050751A JP5600016B2 (en) 2010-03-08 2010-03-08 Automatic synchronous parallel device

Publications (2)

Publication Number Publication Date
JP2011188614A JP2011188614A (en) 2011-09-22
JP5600016B2 true JP5600016B2 (en) 2014-10-01

Family

ID=44794252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010050751A Expired - Fee Related JP5600016B2 (en) 2010-01-25 2010-03-08 Automatic synchronous parallel device

Country Status (1)

Country Link
JP (1) JP5600016B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896879B2 (en) * 2012-10-30 2016-03-30 三菱電機株式会社 Power supply device and synchronous input device
JP6758242B2 (en) * 2017-04-19 2020-09-23 三菱電機株式会社 Inverter controller

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292365A (en) * 1992-10-30 1994-10-18 Fuji Electric Co Ltd Method and device for controlling pwm inverter
JPH1042476A (en) * 1996-07-25 1998-02-13 Meidensha Corp Interconnecting apparatus
JP3636352B2 (en) * 1996-10-09 2005-04-06 株式会社安川電機 Inverter for photovoltaic power generation
US7183667B2 (en) * 2003-12-19 2007-02-27 Square D Company Method and apparatus for power inverter synchronization
JP4706361B2 (en) * 2005-07-11 2011-06-22 株式会社明電舎 System stabilization device
JP4876976B2 (en) * 2007-03-02 2012-02-15 富士電機株式会社 Phase synchronization control method and phase synchronization control apparatus for AC output power converter
JP5184153B2 (en) * 2008-03-11 2013-04-17 オリジン電気株式会社 Single-phase voltage type AC / DC converter and control method for single-phase voltage type AC / DC converter circuit

Also Published As

Publication number Publication date
JP2011188614A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
EP2348628B1 (en) Synchronization detecting circuit and automatic synchronous parallelization apparatus
JP6265826B2 (en) Power converter connected to single-phase system
Karimi-Ghartemani et al. A new phase-locked loop system for three-phase applications
Rodriguez et al. Multiple second order generalized integrators for harmonic synchronization of power converters
JP5184153B2 (en) Single-phase voltage type AC / DC converter and control method for single-phase voltage type AC / DC converter circuit
WO2021029313A1 (en) System interconnection power conversion device
CN110557118B (en) Phase locking device and phase locking method
TW201330479A (en) Power conversion apparatus
EP2698920A1 (en) Phase-locked loop
US20130346004A1 (en) Phase-locked loop
Meral Improved phase-locked loop for robust and fast tracking of three phases under unbalanced electric grid conditions
JP5600016B2 (en) Automatic synchronous parallel device
KR101380380B1 (en) Method of adaptive phase tracking depending on the state of power system and system for it
JP6431585B2 (en) Phase synchronization method of phase synchronization circuit used in grid connection system
CN105429159A (en) Novel phase locking method
KR20150036966A (en) Apparatus for controlling converter of high voltage direct current system
JPH11103527A (en) Higher harmonics compensating system
Sahoo et al. Adaptive grid synchronization technique for single-phase inverters in AC microgrid
CN110365038B (en) Microgrid inverter and control method and control device thereof
Taul et al. Rapid impedance estimation algorithm for mitigation of synchronization instability of paralleled converters under grid faults
WO2021176746A1 (en) Power conversion device control system
JP5637310B2 (en) Inverter device
JP6263990B2 (en) Synchronous control circuit for AC / DC converter
JP5703151B2 (en) Control device for power converter
JP5238358B2 (en) AC power measuring device, AC power measuring method, and single-phase AC / DC converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140814

R150 Certificate of patent or registration of utility model

Ref document number: 5600016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees