JP5462821B2 - Solar cell abnormality determination device and solar cell abnormality determination method - Google Patents

Solar cell abnormality determination device and solar cell abnormality determination method Download PDF

Info

Publication number
JP5462821B2
JP5462821B2 JP2011049947A JP2011049947A JP5462821B2 JP 5462821 B2 JP5462821 B2 JP 5462821B2 JP 2011049947 A JP2011049947 A JP 2011049947A JP 2011049947 A JP2011049947 A JP 2011049947A JP 5462821 B2 JP5462821 B2 JP 5462821B2
Authority
JP
Japan
Prior art keywords
current
value
voltage
solar cell
voltage characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011049947A
Other languages
Japanese (ja)
Other versions
JP2012186409A (en
Inventor
一茂 森田
稔 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Solutions Co Ltd
Original Assignee
Hitachi Power Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Solutions Co Ltd filed Critical Hitachi Power Solutions Co Ltd
Priority to JP2011049947A priority Critical patent/JP5462821B2/en
Publication of JP2012186409A publication Critical patent/JP2012186409A/en
Application granted granted Critical
Publication of JP5462821B2 publication Critical patent/JP5462821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池の異常を判定する太陽電池異常判定装置および太陽電池異常判定方法に関する。   The present invention relates to a solar cell abnormality determination device and a solar cell abnormality determination method for determining abnormality of a solar cell.

太陽電池の電流電圧特性および電力電圧特性について、それぞれ図7(a),(b),(c)を用いて説明する。
図7(a)に示した電流電圧特性は、太陽電池表面のすべての箇所において、日射強度が等しい場合の特性である。図7(a)では、縦軸は太陽電池の出力電流、横軸は出力電圧を表している。図7(a)に示すように、太陽電池の出力電流(縦軸)は、出力電圧(横軸)を増加させた場合、ほぼ一定状態から開放電圧値Voc近辺で急激に低下するようなカーブに沿って変化する。したがって、太陽電池の出力電力は、出力電流と出力電圧との積で表されるので、図7(b)に示すように、出力電圧に対して、ピーク(最大電力点)を持つように変化する。
The current-voltage characteristics and power-voltage characteristics of the solar cell will be described using FIGS. 7A, 7B, and 7C, respectively.
The current-voltage characteristic shown in FIG. 7A is a characteristic when the solar radiation intensity is the same at all locations on the surface of the solar cell. In FIG. 7A, the vertical axis represents the output current of the solar cell, and the horizontal axis represents the output voltage. As shown in FIG. 7A, the output current (vertical axis) of the solar cell suddenly decreases from a substantially constant state around the open circuit voltage value V oc when the output voltage (horizontal axis) is increased. It changes along the curve. Therefore, since the output power of the solar cell is represented by the product of the output current and the output voltage, as shown in FIG. 7B, the output voltage changes so as to have a peak (maximum power point). To do.

そこで、太陽電池から最大出力電力Pm(図7(b)参照)を取り出すために、出力電圧の制御が行われている。この制御は、最大電力点追従制御(MPPT(Maximum Power Point Tracking)制御)と呼ばれている。ここで、図7(a)に示すように、最大出力電力Pmのときの出力電圧値を、最大出力動作電圧値VPmと称し、最大出力電力Pmのときの出力電流値を、最大出力動作電流値IPmと称し、出力電圧が0ボルトのときの出力電流値を短絡電流値ISCと称し、出力電流が0アンペアのときの出力電圧値を開放電圧値Vocと称する。 Therefore, in order to take out the maximum output power P m (see FIG. 7B) from the solar cell, the output voltage is controlled. This control is called maximum power point tracking control (MPPT (Maximum Power Point Tracking) control). Here, as shown in FIG. 7 (a), the output voltage value at the maximum output power P m, referred to as the maximum output operation voltage V Pm, the output current value when the maximum output power P m, maximum The output operating current value I Pm is called, the output current value when the output voltage is 0 volt is called the short-circuit current value I SC, and the output voltage value when the output current is 0 ampere is called the open circuit voltage value V oc .

ところで、太陽電池の周辺に存在する障害物によって太陽電池表面に影が生じた場合または落ち葉や鳥獣の糞等が太陽電池表面に付着した場合には(部分影発生時には)、太陽電池表面の日射強度に偏りが生じるため、電流電圧特性は、例えば、図7(c)のように、図7(a)に示す電流電圧特性とは大きく異なる。   By the way, when the solar cell surface is shaded by an obstacle around the solar cell, or when fallen leaves or birds and animals droppings adhere to the solar cell surface (when a partial shadow occurs), solar radiation on the solar cell surface Since the intensity is biased, the current-voltage characteristic is significantly different from the current-voltage characteristic shown in FIG. 7A, for example, as shown in FIG.

特許文献1には、太陽電池に故障が発生した場合や部分影が発生した場合に、太陽電池の異常と判定する太陽光発電システムが記載されている。この太陽光発電システムは、予め太陽電池の標準となる電流電圧特性を記憶しておき、実測した電流電圧特性と標準の電流電圧特性とを比較することによって、異常か否かを判定している。   Patent Document 1 describes a solar power generation system that determines that a solar cell is abnormal when a failure occurs in a solar cell or when a partial shadow occurs. This photovoltaic power generation system stores current voltage characteristics that are standard for solar cells in advance, and determines whether or not there is an abnormality by comparing the measured current voltage characteristics with the standard current voltage characteristics. .

特開2006−201827号公報(特に、段落0038参照)JP 2006-201827 A (refer to paragraph 0038 in particular)

しかしながら、特許文献1では、太陽光発電システムに予め記憶される標準の電流電圧特性は、太陽電池のモジュール構成等が異なれば、そのモジュール構成において用いられる標準の電流電圧特性を記憶させる必要があり手間が煩雑になるという問題がある。また、記憶された標準の電流電圧特性が、実際の設置現場で組立てられた太陽電池個々の電流電圧特性および周囲環境を正確に表していない虞がある。また、太陽電池の電流電圧特性が経年劣化によって、記憶された標準の電流電圧特性と異なってしまっていても、その電流電圧特性の変化に自動的に追従することができないという問題がある。   However, in Patent Literature 1, if the standard current-voltage characteristics stored in advance in the photovoltaic power generation system are different from each other in the module configuration of the solar cell, it is necessary to store the standard current-voltage characteristics used in the module configuration. There is a problem that the labor is complicated. In addition, the stored standard current-voltage characteristics may not accurately represent the current-voltage characteristics of individual solar cells assembled at the actual installation site and the surrounding environment. In addition, even if the current-voltage characteristics of the solar cell are different from the stored standard current-voltage characteristics due to deterioration over time, there is a problem that it is not possible to automatically follow the change in the current-voltage characteristics.

そこで、本発明では、太陽電池の異常を判定するための基準となる電流電圧特性を容易に取得し、太陽電池の異常を判定する技術を提供することを課題とする。   Therefore, an object of the present invention is to provide a technique for easily acquiring current-voltage characteristics that serve as a reference for determining an abnormality of a solar cell and determining an abnormality of the solar cell.

前記課題を解決するために、太陽電池異常判定装置は、実測した太陽電池の電流電圧特性から、太陽電池の短絡電流値ISC、開放電圧値Voc、最大出力電力のときの最大出力動作電圧値VPmおよび最大出力動作電流値IPm、を取得し、それらの値を下記式(2)に適用して係数a,bを算出し、その算出した係数a,bを下記式(1)に適用して、式(1)によって表される基準の電流電圧特性を生成する。次に、太陽電池異常判定装置は、実測によって取得した電流電圧特性と基準の電流電圧特性とを比較することによって、太陽電池の異常か否かを判定する。

Figure 0005462821

ただし、Iは、太陽電池の出力電流、Vは、太陽電池の出力電圧、expは、指数関数を表し、lnは、自然対数を表す。
In order to solve the above-mentioned problem, the solar cell abnormality determination device determines the maximum output operating voltage when the short-circuit current value I SC , the open-circuit voltage value V oc , and the maximum output power of the solar cell from the measured current-voltage characteristics of the solar cell. The value V Pm and the maximum output operating current value I Pm are acquired, and these values are applied to the following equation (2) to calculate the coefficients a and b. The calculated coefficients a and b are expressed by the following equation (1) To generate a reference current-voltage characteristic represented by equation (1). Next, the solar cell abnormality determination device determines whether there is an abnormality in the solar cell by comparing the current-voltage characteristic acquired by actual measurement with the reference current-voltage characteristic.
Figure 0005462821

Where I is the output current of the solar cell, V is the output voltage of the solar cell, exp is an exponential function, and ln is the natural logarithm.

本発明によれば、太陽電池の異常を判定するための基準となる電流電圧特性を簡易に取得し、太陽電池の異常を判定する技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the technique which acquires the current voltage characteristic used as the reference | standard for determining the abnormality of a solar cell easily, and determines the abnormality of a solar cell can be provided.

本実施形態における太陽電池システムの構成例および太陽電池異常判定装置の機能例を示す図である。It is a figure which shows the structural example of the solar cell system in this embodiment, and the functional example of a solar cell abnormality determination apparatus. 太陽電池異常判定装置の処理フロー例を示す図である。It is a figure which shows the example of a processing flow of a solar cell abnormality determination apparatus. 異常判定の指標が面積比の場合を示す図であり、(a)は部分影なしの場合を表し、(b)は部分影ありの場合を表す。It is a figure which shows the case where the parameter | index of abnormality determination is an area ratio, (a) represents the case without a partial shadow, (b) represents the case with a partial shadow. 異常判定の指標が実測電流電圧特性と基準電流電圧特性との差分の平均値の場合を示す図であり、(a)は部分影なしの場合を表し、(b)は部分影ありの場合を表す。It is a figure which shows the case where the parameter | index of abnormality determination is the average value of the difference of measured current voltage characteristic and a reference current voltage characteristic, (a) represents the case without a partial shadow, (b) represents the case with a partial shadow. Represent. 異常判定の指標が実測電流電圧特性と基準電流電圧特性との最大差分値の場合を示す図であり、(a)は部分影なしの場合を表し、(b)は部分影ありの場合を表す。It is a figure which shows the case where the parameter | index of abnormality determination is the maximum difference value of measured current voltage characteristic and a reference current voltage characteristic, (a) represents the case where there is no partial shadow, (b) represents the case where there is a partial shadow. . 異常判定の指標は実測電流電圧特性の電流値が基準電流電圧特性の電流値より小さい範囲の面積である場合を示す図であり、(a)は部分影なしの場合を表し、(b)は部分影ありの場合を表す。The abnormality determination index is a diagram showing a case where the current value of the measured current-voltage characteristic is an area in a range smaller than the current value of the reference current-voltage characteristic, where (a) shows a case where there is no partial shadow, and (b) shows This represents the case with partial shadows. 太陽電池の特性およびMPPT制御の従来技術を説明するための図であり、(a)は太陽電池の電流電圧特性を表し、(b)は太陽電池の電力電圧特性を表し、(c)は部分影発生時の電流電圧特性を表す。It is a figure for demonstrating the characteristic of a solar cell, and the prior art of MPPT control, (a) represents the current voltage characteristic of a solar cell, (b) represents the power voltage characteristic of a solar cell, (c) is a partial. It represents the current-voltage characteristics when a shadow occurs.

発明を実施するための形態(以降、「実施形態」と称す。)について、適宜図面を参照しながら詳細に説明する。   A mode for carrying out the invention (hereinafter referred to as “embodiment”) will be described in detail with reference to the drawings as appropriate.

(太陽電池システム)
太陽電池システム1の構成例について、図1を用いて説明する。
図1に示すように、太陽電池システム1は、太陽電池制御装置10、太陽電池13、センサ14、および太陽電池異常判定装置30で構成される。
(Solar cell system)
A configuration example of the solar cell system 1 will be described with reference to FIG.
As shown in FIG. 1, the solar cell system 1 includes a solar cell control device 10, a solar cell 13, a sensor 14, and a solar cell abnormality determination device 30.

太陽電池制御装置10は、電力変換部12を備えており、太陽電池13から取り出した直流電力を変換して負荷へ出力する。また、太陽電池制御装置10は、太陽電池特性取得部11を備えており、太陽電池13の短絡状態から開放状態までの電流値および電圧値をセンサ14を介して取得する。そして、太陽電池制御装置10は、実測した電流値および電圧値を、太陽電池異常判定装置30に送信する。   The solar cell control device 10 includes a power conversion unit 12, converts the DC power extracted from the solar cell 13, and outputs it to a load. Further, the solar cell control device 10 includes a solar cell characteristic acquisition unit 11, and acquires a current value and a voltage value from a short circuit state to an open state of the solar cell 13 via the sensor 14. Then, the solar cell control device 10 transmits the actually measured current value and voltage value to the solar cell abnormality determination device 30.

(太陽電池異常判定装置)
次に、太陽電池異常判定装置30の機能例について、図1を用いて説明する。
太陽電池異常判定装置30は、少なくとも、処理部20、表示部27、通信部28、記憶部29を備えている。太陽電池異常判定装置30は、太陽電池13に部分影が発生しているか否かを判定する。なお、部分影とは、太陽電池13の表面に、太陽電池の周辺に存在する障害物によって生じた影、または落ち葉や鳥獣の糞等が付着したことによって生じた影のことである。本実施形態では、太陽電池13に部分影が発生していることを、太陽電池13の異常と判定する。
(Solar cell abnormality determination device)
Next, a function example of the solar cell abnormality determination device 30 will be described with reference to FIG.
The solar cell abnormality determination device 30 includes at least a processing unit 20, a display unit 27, a communication unit 28, and a storage unit 29. The solar cell abnormality determination device 30 determines whether or not a partial shadow is generated in the solar cell 13. The partial shadow is a shadow caused by an obstacle existing around the solar cell 13 or a shadow caused by a fallen leaf, bird droppings, or the like adhering to the surface of the solar cell 13. In the present embodiment, it is determined that a partial shadow is generated in the solar cell 13 as an abnormality of the solar cell 13.

処理部20は、図示しないCPU(Central Processing Unit)およびメインメモリによって構成され、記憶部29に記憶されているアプリケーションプログラムをメインメモリに展開して、電流値電圧値取得部21、電力演算部22、基準の電流電圧特性算出部23、および判定部24を具現化する。   The processing unit 20 is configured by a CPU (Central Processing Unit) and a main memory (not shown), and develops an application program stored in the storage unit 29 in the main memory, and a current value voltage value acquisition unit 21 and a power calculation unit 22. The reference current-voltage characteristic calculation unit 23 and the determination unit 24 are embodied.

電流値電圧値取得部21は、太陽電池制御装置10の太陽電池特性取得部11から、実測した電流値および電圧値(以降、実測電流電圧特性と称する。)を取得する。   The current value voltage value acquisition unit 21 acquires an actually measured current value and voltage value (hereinafter referred to as an actually measured current voltage characteristic) from the solar cell characteristic acquisition unit 11 of the solar cell control device 10.

電力演算部22は、電流値電圧値取得部21が取得した電流値および電圧値を用いて、電力値を算出し、算出した電力値の中で最大となる、最大出力電力値を取得する。電力演算部22は、最大出力電力値となるときの電圧値および電流値それぞれを示す最大出力動作電圧値VPmおよび最大出力動作電流値IPmを取得する。そして、電力演算部22は、短絡電流値ISC、開放電圧値Voc、最大出力動作電圧値VPm、および最大出力動作電流値IPmを基準の電流電圧特性算出部23へ送信する。 The power calculation unit 22 calculates a power value using the current value and the voltage value acquired by the current value voltage value acquisition unit 21, and acquires a maximum output power value that is the maximum among the calculated power values. The power calculation unit 22 obtains a maximum output operating voltage value V Pm and a maximum output operating current value I Pm indicating the voltage value and the current value at the maximum output power value, respectively. Then, the power calculator 22 transmits the short-circuit current value I SC , the open-circuit voltage value V oc , the maximum output operating voltage value V Pm , and the maximum output operating current value I Pm to the reference current-voltage characteristic calculator 23.

基準の電流電圧特性算出部23は、短絡電流値ISC、開放電圧値Voc、最大出力動作電圧値VPm、および最大出力動作電流値IPmを下記式(2)に適用して係数a,bを算出し、その算出した係数a,bを下記式(1)に適用して、式(1)によって表される基準の電流電圧特性(以降、基準電流電圧特性と称する。)を生成する。ここで、式(1)、式(2)を再掲する。なお、式(1)、式(2)の導出については、後記する。 The reference current-voltage characteristic calculation unit 23 applies the short-circuit current value I SC , the open-circuit voltage value V oc , the maximum output operating voltage value V Pm , and the maximum output operating current value I Pm to the following equation (2) to obtain a coefficient a , B are calculated, and the calculated coefficients a, b are applied to the following equation (1) to generate a reference current-voltage characteristic (hereinafter referred to as a reference current-voltage characteristic) represented by equation (1). To do. Here, Formula (1) and Formula (2) are re-displayed. The derivation of the expressions (1) and (2) will be described later.

Figure 0005462821

ただし、Iは、出力電流、Vは、出力電圧、expは、指数関数を表し、lnは、自然対数を表す。
Figure 0005462821

However, I represents an output current, V represents an output voltage, exp represents an exponential function, and ln represents a natural logarithm.

判定部24は、実測電流電圧特性と基準電流電圧特性とを比較することによって、太陽電池の異常か否かを判定する。判定部24は、判定結果を、表示部27に表示すること、通信部28を介して端末へ出力すること、のいずれかまたは双方を実行する。なお、判定方法については、後記する。   The determination unit 24 determines whether or not the solar cell is abnormal by comparing the measured current voltage characteristic and the reference current voltage characteristic. The determination unit 24 displays one or both of displaying the determination result on the display unit 27 and outputting the determination result to the terminal via the communication unit 28. The determination method will be described later.

表示部27は、液晶ディスプレイ等であり、判定結果を表示する。
通信部28は、太陽電池システム1の保守者や管理者の使用している端末(例えば、パソコンまたは携帯端末)との間で情報を送受信するためのインタフェースである。通信部28は、情報を、有線または無線により送受信する。
記憶部29は、アプリケーションプログラムや、処理部20の処理結果等を記憶している。
The display unit 27 is a liquid crystal display or the like and displays a determination result.
The communication unit 28 is an interface for transmitting and receiving information to and from a terminal (for example, a personal computer or a portable terminal) used by a maintainer or administrator of the solar cell system 1. The communication unit 28 transmits and receives information by wire or wireless.
The storage unit 29 stores application programs, processing results of the processing unit 20, and the like.

(太陽電池異常判定装置の処理フロー)
次に、太陽電池異常判定装置30の処理フローについて、図2を用いて説明する(適宜、図1参照)。
ステップS401では、電流値電圧値取得部21は、実測した電流値および電圧値(実測電流電圧特性)を取得する。
(Processing flow of solar cell abnormality determination device)
Next, the processing flow of the solar cell abnormality determination device 30 will be described with reference to FIG. 2 (see FIG. 1 as appropriate).
In step S401, the current value voltage value acquisition unit 21 acquires the measured current value and voltage value (measured current voltage characteristic).

ステップS402では、電力演算部22は、電流値電圧値取得部21が取得した電流値および電圧値を用いて、電力値を算出する。
ステップS403では、電力演算部22は、算出した電力値の中で最大となる、最大出力電力値を取得する。
ステップS404では、電力演算部22は、取得した最大出力電力値となるときの電圧値および電流値それぞれを示す最大出力動作電圧値VPmおよび最大出力動作電流値IPmを取得する。そして、電力演算部22は、短絡電流値ISC、開放電圧値Voc、最大出力動作電圧値VPm、および最大出力動作電流値IPmを基準の電流電圧特性算出部23へ送信する。
In step S402, the power calculation unit 22 calculates a power value using the current value and the voltage value acquired by the current value voltage value acquisition unit 21.
In step S403, the power calculation unit 22 acquires the maximum output power value that is the maximum among the calculated power values.
In step S404, the power calculation unit 22 acquires a maximum output operating voltage value V Pm and a maximum output operating current value I Pm indicating the voltage value and the current value when the acquired maximum output power value is obtained. Then, the power calculator 22 transmits the short-circuit current value I SC , the open-circuit voltage value V oc , the maximum output operating voltage value V Pm , and the maximum output operating current value I Pm to the reference current-voltage characteristic calculator 23.

ステップS405では、基準の電流電圧特性算出部23は、電力演算部22から受信した短絡電流値ISC、開放電圧値Voc、最大出力動作電圧値VPm、および最大出力動作電流値IPmを前記式(2)に適用して係数a,bを算出し、その算出した係数a,bを前記式(1)に適用して、式(1)によって表される基準電流電圧特性を生成する。 In step S405, the reference current-voltage characteristic calculator 23 calculates the short-circuit current value I SC , the open-circuit voltage value V oc , the maximum output operating voltage value V Pm , and the maximum output operating current value I Pm received from the power calculator 22. The coefficients a and b are calculated by applying to the equation (2), and the calculated coefficients a and b are applied to the equation (1) to generate the reference current voltage characteristic represented by the equation (1). .

ステップS406では、判定部24は、実測電流電圧特性と基準電流電圧特性とを比較することによって、太陽電池の異常か否かを判定する。
ステップS407では、判定部24は、判定結果を、表示部27に表示、通信部28を介して端末へ送信、のいずれかまたは双方を実行する。
In step S406, the determination unit 24 determines whether or not the solar cell is abnormal by comparing the measured current voltage characteristic and the reference current voltage characteristic.
In step S <b> 407, the determination unit 24 executes one or both of displaying the determination result on the display unit 27 and transmitting the determination result to the terminal via the communication unit 28.

太陽電池異常判定装置30は、ステップS401〜S407の処理を、所定の周期または保守者や管理者からの指示を受信したときに実行する。   The solar cell abnormality determination device 30 executes the processes of steps S401 to S407 when receiving a predetermined cycle or an instruction from a maintenance person or an administrator.

次に、太陽電池13(図1参照)の異常か否かを判定する判定方法の4例について、それぞれ図3〜図6を用いて説明する。   Next, four examples of the determination method for determining whether or not the solar cell 13 (see FIG. 1) is abnormal will be described with reference to FIGS.

(第1の判定方法)
判定部24(図1参照)は、図3に示すように、判定指標として、実測電流電圧特性の面積を基準電流電圧特性の面積で除算して算出した、面積比を用いて、判定を行う。ここで、面積は、電流値について電圧値を積分変数として積分した値である。
図3(a)は、部分影なしの場合を表しており、基準電流電圧特性(実線)と実測電流電圧特性(破線)とはほぼ似たような傾向を示す。したがって、面積比はほぼ1に近い値となる。
(First determination method)
As shown in FIG. 3, the determination unit 24 (see FIG. 1) performs determination using an area ratio calculated by dividing the area of the measured current-voltage characteristic by the area of the reference current-voltage characteristic as a determination index. . Here, the area is a value obtained by integrating the voltage value with respect to the current value as an integration variable.
FIG. 3A shows a case where there is no partial shadow, and the reference current voltage characteristic (solid line) and the measured current voltage characteristic (broken line) show a similar tendency. Therefore, the area ratio is a value close to 1.

それに対して、図3(b)に示す部分影ありの場合には、影の影響によって、電圧値が大きい領域で実測電流電圧特性の電流値が、基準電流電圧特性より大きく低下する。したがって、図3(b)に示す実測電流電圧特性の面積は、図3(a)に示す実測電流電圧特性の面積に比べて小さくなる。すなわち、面積比は1より小さくなる。
したがって、判定部24は、面積比が第1の閾値未満の場合には、太陽電池13の異常と判定する。なお、第1の閾値は、記憶部29(図1参照)に記憶されている。
On the other hand, in the case where there is a partial shadow shown in FIG. 3B, the current value of the measured current-voltage characteristic is significantly lower than the reference current-voltage characteristic in the region where the voltage value is large due to the influence of the shadow. Accordingly, the area of the measured current-voltage characteristic shown in FIG. 3B is smaller than the area of the measured current-voltage characteristic shown in FIG. That is, the area ratio is smaller than 1.
Therefore, the determination unit 24 determines that the solar cell 13 is abnormal when the area ratio is less than the first threshold. Note that the first threshold value is stored in the storage unit 29 (see FIG. 1).

(第2の判定方法)
判定部24(図1参照)は、図4に示すように、判定指標として、実測電流電圧特性と基準電流電圧特性との差分の平均値を用いて、判定を行う。
図4(a)は、部分影なしの場合を表しており、基準電流電圧特性と実測電流電圧特性とはほぼ似たような傾向を示す。ここで、実測電流電圧特性と基準電流電圧特性との差分は、電流値について算出する場合、電圧値が等しいときの基準電流電圧特性および実測電流電圧特性それぞれの電流値同士を減算して算出した値である。また、電圧値について実測電流電圧特性と基準電流電圧特性との差分を算出する場合は、電流値が等しいときの基準電流電圧特性および実測電流電圧特性それぞれの電圧値同士を減算して算出した値である。図4(a)では、実測電流電圧特性と基準電流電圧特性との差分の平均値は、小さい値となる。なお、差分の平均値ではなく、差分の絶対値の平均値をとっても構わない。
(Second determination method)
As shown in FIG. 4, the determination unit 24 (see FIG. 1) performs determination using an average value of the difference between the measured current voltage characteristic and the reference current voltage characteristic as a determination index.
FIG. 4A shows a case where there is no partial shadow, and the reference current voltage characteristics and the measured current voltage characteristics show a similar tendency. Here, the difference between the measured current voltage characteristic and the reference current voltage characteristic is calculated by subtracting the current values of the reference current voltage characteristic and the measured current voltage characteristic when the voltage values are equal when calculating the current value. Value. When calculating the difference between the measured current voltage characteristic and the reference current voltage characteristic for the voltage value, a value calculated by subtracting the voltage values of the reference current voltage characteristic and the measured current voltage characteristic when the current values are equal. It is. In FIG. 4A, the average value of the difference between the measured current-voltage characteristic and the reference current-voltage characteristic is a small value. In addition, you may take the average value of the absolute value of a difference instead of the average value of a difference.

それに対して、図4(b)に示す部分影ありの場合には、影の影響によって、電圧値が大きい領域で実測電流電圧特性の電流値が、基準電流電圧特性より大きく低下する。そのため、図4(b)に示す実測電流電圧特性と基準電流電圧特性との差分の平均値は、図4(a)の場合に比べて、大きくなる。
したがって、判定部24は、電圧値についての差分の平均値が第2の閾値より大きいとき、電流値についての差分の平均値が第3の閾値より大きいときのいずれかまたは双方の場合、太陽電池13の異常と判定する。なお、第2および第3の閾値は、記憶部29(図1参照)に記憶されている。
On the other hand, in the case of the partial shadow shown in FIG. 4B, the current value of the measured current-voltage characteristic is greatly reduced from the reference current-voltage characteristic in the region where the voltage value is large due to the influence of the shadow. For this reason, the average value of the difference between the measured current-voltage characteristic and the reference current-voltage characteristic shown in FIG. 4B is larger than that in the case of FIG.
Therefore, the determination unit 24 determines whether the average value of the difference with respect to the voltage value is larger than the second threshold value, or when the average value of the difference with respect to the current value is larger than the third threshold value. 13 abnormalities are determined. The second and third threshold values are stored in the storage unit 29 (see FIG. 1).

(第3の判定方法)
判定部24(図1参照)は、図5に示すように、判定指標として、実測電流電圧特性と基準電流電圧特性との最大差分値を用いて、判定を行う。
図5(a)は、部分影なしの場合を表しており、基準電流電圧特性と実測電流電圧特性とはほぼ似たような傾向を示す。ここで、実測電流電圧特性と基準電流電圧特性との最大差分値は、電流値について算出する場合、電圧値が等しいときの基準電流電圧特性および実測電流電圧特性それぞれの電流値同士を減算して算出した差分の中で最大の値である。また、電圧値について実測電流電圧特性と基準電流電圧特性との最大差分値を算出する場合は、電流値が等しいときの基準電流電圧特性および実測電流電圧特性それぞれの電圧値同士を減算して算出した差分の中で最大の値である。図5(a)では、実測電流電圧特性と基準電流電圧特性との最大差分値は、小さい値となる。
(Third determination method)
As shown in FIG. 5, the determination unit 24 (see FIG. 1) performs determination using the maximum difference value between the measured current voltage characteristic and the reference current voltage characteristic as a determination index.
FIG. 5A shows the case where there is no partial shadow, and the reference current voltage characteristics and the measured current voltage characteristics show a similar tendency. Here, when calculating the current value, the maximum difference value between the measured current voltage characteristic and the reference current voltage characteristic is obtained by subtracting the current values of the reference current voltage characteristic and the measured current voltage characteristic when the voltage values are equal. It is the maximum value among the calculated differences. In addition, when calculating the maximum difference value between the measured current voltage characteristic and the reference current voltage characteristic for the voltage value, the voltage values of the reference current voltage characteristic and the measured current voltage characteristic when the current values are equal are subtracted from each other. It is the largest value among the differences. In FIG. 5A, the maximum difference value between the measured current-voltage characteristic and the reference current-voltage characteristic is a small value.

それに対して、図5(b)に示す部分影ありの場合には、影の影響によって、電圧値が大きい領域で実測電流電圧特性の電流値が、基準電流電圧特性より大きく低下する。そのため、図5(b)に示す実測電流電圧特性と基準電流電圧特性との最大差分値は、図5(a)の場合に比べて、大きくなる。
したがって、判定部24は、実測電流電圧特性と基準電流電圧特性との間で電圧の最大差分値が第4の閾値より大きいとき、電流の細大差分値が第5の閾値より大きいとき、のいずれかまたは双方の場合、太陽電池13の異常と判定する。なお、第4および第5の閾値は、記憶部29(図1参照)に記憶されている。
On the other hand, in the case where there is a partial shadow shown in FIG. 5B, the current value of the measured current-voltage characteristic is significantly lower than the reference current-voltage characteristic in the region where the voltage value is large due to the influence of the shadow. Therefore, the maximum difference value between the measured current-voltage characteristic and the reference current-voltage characteristic shown in FIG. 5B is larger than that in the case of FIG.
Therefore, when the maximum difference value of the voltage is larger than the fourth threshold value between the actually measured current voltage characteristic and the reference current voltage characteristic, the determination unit 24 has a smaller current difference value than the fifth threshold value. In either or both cases, it is determined that the solar cell 13 is abnormal. The fourth and fifth threshold values are stored in the storage unit 29 (see FIG. 1).

(第4の判定方法)
判定部24(図1参照)は、図6に示すように、判定指標として、実測電流電圧特性の電流値が基準電流電圧特性の電流値より小さい範囲の面積を用いて、判定を行う。ここで、当該面積は、実測電流電圧特性の電流値が基準電流電圧特性の電流値より小さい場合において、基準電流電圧特性の電流値から実測電流電圧特性の電流値を減算した差分について電圧値を積分変数として積分した値である。
図6(a)は、部分影なしの場合を表しており、基準電流電圧特性と実測電流電圧特性とはほぼ似たような傾向を示す。実測電流電圧特性の電流値が基準電流電圧特性の電流値より小さい範囲の面積は小さい値となる。
(Fourth determination method)
As shown in FIG. 6, the determination unit 24 (see FIG. 1) performs determination using an area in a range where the current value of the measured current-voltage characteristic is smaller than the current value of the reference current-voltage characteristic as a determination index. Here, when the current value of the measured current-voltage characteristic is smaller than the current value of the reference current-voltage characteristic, the area is the voltage value of the difference obtained by subtracting the current value of the measured current-voltage characteristic from the current value of the reference current-voltage characteristic. It is the value integrated as an integration variable.
FIG. 6A shows a case where there is no partial shadow, and the reference current voltage characteristics and the measured current voltage characteristics show a similar tendency. The area where the current value of the measured current-voltage characteristic is smaller than the current value of the reference current-voltage characteristic is a small value.

それに対して、図6(b)に示す部分影ありの場合には、影の影響によって、電圧値が大きい領域で実測電流電圧特性の電流値が、基準電流電圧特性より大きく低下する。そのため、図6(b)に示す実測電流電圧特性の電流値が基準電流電圧特性の電流値より小さい範囲の面積は、図6(a)の場合に比べて、大きくなる。
したがって、判定部24は、実測電流電圧特性の電流値が基準電流電圧特性の電流値より小さい範囲の面積が第6の閾値より大きいの場合には、太陽電池13の異常と判定する。なお、第6の閾値は、記憶部29(図1参照)に記憶されている。
On the other hand, in the case of the partial shadow shown in FIG. 6B, the current value of the measured current-voltage characteristic is significantly lower than the reference current-voltage characteristic in the region where the voltage value is large due to the influence of the shadow. Therefore, the area in the range where the current value of the measured current-voltage characteristic shown in FIG. 6B is smaller than the current value of the reference current-voltage characteristic is larger than that in the case of FIG.
Therefore, the determination unit 24 determines that the solar cell 13 is abnormal when the area in the range where the current value of the measured current-voltage characteristic is smaller than the current value of the reference current-voltage characteristic is larger than the sixth threshold value. The sixth threshold value is stored in the storage unit 29 (see FIG. 1).

なお、第1〜第4の判定方法は、単独で用いても、複数の組み合わせで用いても構わない。なお、複数の組み合わせの場合には、判定部24(図1参照)は、組み合わせたそれぞれの判定指標について閾値と大小比較を行って、組み合わせたすべての判定指標について太陽電池13の異常と判定された場合に、太陽電池13の異常と判定しても良い。または、判定部24(図1参照)は、組み合わせたいずれかの判定指標において太陽電池13の異常と判定された場合に、太陽電池13の異常と判定しても良い。   In addition, the 1st-4th determination method may be used independently, or may be used in multiple combinations. In the case of a plurality of combinations, the determination unit 24 (see FIG. 1) performs a size comparison with the threshold value for each combined determination index, and determines that all the combined determination indices are abnormal for the solar cell 13. In this case, it may be determined that the solar cell 13 is abnormal. Or the determination part 24 (refer FIG. 1) may determine with the abnormality of the solar cell 13, when it determines with the abnormality of the solar cell 13 in one of the combined determination indicators.

(式(1)、式(2)の導出)
ここで、前記式(1)、式(2)の導出について、説明する。
太陽電池13の電流電圧特性の理論式は、下記式(A)で表される。
(Derivation of Formula (1) and Formula (2))
Here, the derivation | leading-out of said Formula (1) and Formula (2) is demonstrated.
The theoretical formula of the current-voltage characteristic of the solar cell 13 is represented by the following formula (A).

Figure 0005462821

ただし、Iは出力電流、ISCは短絡電流、I0は逆飽和電流、eは素電荷、Vは出力電圧、nは理想因子、kはボルツマン定数、Tは絶対温度である。
Figure 0005462821

Where I is an output current, I SC is a short-circuit current, I 0 is a reverse saturation current, e is an elementary charge, V is an output voltage, n is an ideal factor, k is a Boltzmann constant, and T is an absolute temperature.

前記式(A)の定数等を、係数a,bにまとめると、下記式(B)で表される。

Figure 0005462821
When the constants and the like of the formula (A) are combined into the coefficients a and b, they are represented by the following formula (B).
Figure 0005462821

V=Vocのとき、I=0であるので、下記式(C)となる。

Figure 0005462821
When V = V oc , since I = 0, the following formula (C) is obtained.
Figure 0005462821

また、V=VPmのとき、I=IPmであるので、下記式(D)となる。

Figure 0005462821
Further, when V = V Pm , since I = I Pm , the following equation (D) is obtained.
Figure 0005462821

前記式(C)のaを、前記式(D)に代入すると、下記式(E)となる。

Figure 0005462821
Substituting a in formula (C) into formula (D) yields formula (E) below.
Figure 0005462821

exp(b・VPm)≫1、exp(b・VOC)≫1であるから、次の近似が成立する。

Figure 0005462821
Since exp (b · V Pm ) >> 1 and exp (b · V OC ) >> 1, the following approximation holds.
Figure 0005462821

したがって、下記式(G)のようになる。

Figure 0005462821
Therefore, the following formula (G) is obtained.
Figure 0005462821

前記式(G)の両辺の対数をとることにより、bを導出することができる。

Figure 0005462821
By taking the logarithm of both sides of the formula (G), b can be derived.
Figure 0005462821

以上、前記式(B)、式(C)、式(H)より、下記式(1)、式(2)が導出される。ここで、式(1)、式(2)を再掲する。

Figure 0005462821
The following formulas (1) and (2) are derived from the formulas (B), (C), and (H). Here, Formula (1) and Formula (2) are re-displayed.
Figure 0005462821

以上、本実施形態における太陽電池異常判定装置30は、太陽電池13の異常を判定する場合、その判定の基準となる基準電流電圧特性を、実測した太陽電池13の短絡電流値ISC、開放電圧値Voc、最大出力動作電圧値VPm、および最大出力動作電流値IPmの測定値から式(1),式(2)を用いて算出することができる。そのため、太陽電池13が経年劣化等によって電流電圧特性が変化した場合にも、太陽電池13の異常を判定するための基準となる電流電圧特性を容易に算出することができる。また、部分影による太陽電池13の異常を、算出した基準電流電圧特性と実測によって取得した実測電流電圧特性とを比較することによって、容易に判定することができる。 As described above, the solar cell abnormality determination device 30 according to the present embodiment, when determining the abnormality of the solar cell 13, uses the measured reference current voltage characteristics as a reference for the determination, the short-circuit current value I SC of the actually measured solar cell 13, and the open-circuit voltage. The value V oc , the maximum output operating voltage value V Pm , and the maximum output operating current value I Pm can be calculated using the equations (1) and (2). Therefore, even when the current-voltage characteristic of the solar cell 13 changes due to aging or the like, the current-voltage characteristic serving as a reference for determining the abnormality of the solar cell 13 can be easily calculated. Moreover, the abnormality of the solar cell 13 due to the partial shadow can be easily determined by comparing the calculated reference current voltage characteristic with the actually measured current voltage characteristic obtained by the actual measurement.

また、太陽電池13の異常と判定された場合、その異常が、故障や取り除かなければならない汚れによるものなのか、または一時的な部分影によるものなのかを区別する場合には、異常の継続時間が所定の閾値を超えるか否かにより判定すれば良い。   In addition, when it is determined that the solar cell 13 is abnormal, in order to distinguish whether the abnormality is due to a failure or dirt that must be removed, or a temporary partial shadow, the duration of the abnormality is determined. May be determined by whether or not exceeds a predetermined threshold.

13 太陽電池
20 処理部
21 電流値電圧値取得部
22 電力演算部
23 基準の電流電圧特性算出部
24 判定部
27 表示部
28 通信部
29 記憶部
30 太陽電池異常判定装置
DESCRIPTION OF SYMBOLS 13 Solar cell 20 Processing part 21 Current value voltage value acquisition part 22 Power calculation part 23 Reference | standard current voltage characteristic calculation part 24 Determination part 27 Display part 28 Communication part 29 Memory | storage part 30 Solar cell abnormality determination apparatus

Claims (8)

太陽電池の異常を判定する太陽電池異常判定装置であって、
前記太陽電池の電流値および電圧値の実測電流電圧特性を取得する電流値電圧値取得部と、
前記実測電流電圧特性を用いて、電力値を算出し、その算出した電力値の中で、最大電力値となるときの電圧値および電流値とを取得する電力演算部と、
前記最大電力値となるときの電圧値および電流値と、前記太陽電池を短絡状態にしたときの短絡電流値と、前記太陽電池を開放状態にしたときの開放電圧値と、を用いて、異常を判定するための基準となる基準電流電圧特性を算出する基準の電流電圧特性算出部と、
前記実測電流電圧特性と、前記基準電流電圧特性とを比較して、所定の指標で異常の有無を判定する判定部と
を備えることを特徴とする太陽電池異常判定装置。
A solar cell abnormality determination device for determining abnormality of a solar cell,
A current value voltage value acquisition unit for acquiring measured current voltage characteristics of the current value and voltage value of the solar cell;
A power calculator that calculates a power value using the measured current-voltage characteristics and acquires a voltage value and a current value when the maximum power value is obtained among the calculated power values;
Using the voltage value and current value when the maximum power value is reached, the short-circuit current value when the solar cell is short-circuited, and the open-circuit voltage value when the solar cell is open, A reference current-voltage characteristic calculation unit for calculating a reference current-voltage characteristic serving as a reference for determining
A solar cell abnormality determination device, comprising: a determination unit that compares the measured current-voltage characteristic with the reference current-voltage characteristic and determines whether there is an abnormality with a predetermined index.
前記基準の電流電圧特性算出部は、
前記最大電力値となるときの電圧値VPm、および電流値IPmと、前記短絡電流値ISCと、前記開放電圧値Vocと、を下記式(1)、式(2)に適用して、前記基準電流電圧特性を算出する
ことを特徴とする請求項1に記載の太陽電池異常判定装置。
Figure 0005462821

ただし、Iは、太陽電池の出力電流、Vは、太陽電池の出力電圧、expは、指数関数を表し、lnは、自然対数を表す。
The reference current-voltage characteristic calculation unit includes:
The voltage value V Pm and current value I Pm at the maximum power value, the short-circuit current value I SC, and the open-circuit voltage value V oc are applied to the following formulas (1) and (2). The solar cell abnormality determination device according to claim 1, wherein the reference current voltage characteristic is calculated.
Figure 0005462821

Where I is the output current of the solar cell, V is the output voltage of the solar cell, exp is an exponential function, and ln is the natural logarithm.
前記所定の指標が、
前記実測電流電圧特性の面積を前記基準電流電圧特性の面積で除算して算出した面積比、前記実測電流電圧特性と前記基準電流電圧特性との差分の平均値、前記実測電流電圧特性と前記基準電流電圧特性との最大差分値、前記実測電流電圧特性の電流値が前記基準電流電圧特性の電流値より小さい範囲の面積のいずれかであり、
前記判定部は、
前記所定の指標の値と予め決められている閾値との大小を比較し、その比較結果に基づいて異常の有無を判定する
ことを特徴とする請求項1または請求項2に記載の太陽電池異常判定装置。
The predetermined indicator is
The area ratio calculated by dividing the area of the measured current voltage characteristic by the area of the reference current voltage characteristic, the average value of the difference between the measured current voltage characteristic and the reference current voltage characteristic, the measured current voltage characteristic and the reference The maximum difference value from the current-voltage characteristics, the current value of the measured current-voltage characteristics is any one of the areas in a range smaller than the current value of the reference current-voltage characteristics,
The determination unit
3. The solar cell abnormality according to claim 1, wherein the value of the predetermined index is compared with a predetermined threshold value, and the presence or absence of abnormality is determined based on the comparison result. Judgment device.
前記判定部は、
前記閾値との大小の比較において、
前記実測電流電圧特性の面積を前記基準電流電圧特性の面積で除算して算出した面積比が第1の閾値より小さい場合、前記実測電流電圧特性と前記基準電流電圧特性との電圧値についての差分の平均値が第2の閾値より大きい場合、前記実測電流電圧特性と前記基準電流電圧特性との電流値についての差分の平均値が第3の閾値より大きい場合、前記実測電流電圧特性と前記基準電流電圧特性との電流の最大差分値が第4の閾値より大きい場合、前記実測電流電圧特性と前記基準電流電圧特性との電圧の最大差分値が第5の閾値より大きい場合、前記実測電流電圧特性の電流値が前記基準電流電圧特性の電流値より小さい範囲の面積が第6の閾値より大きい場合、のいずれかの場合に異常があると判定する
ことを特徴とする請求項3に記載の太陽電池異常判定装置。
The determination unit
In comparison with the threshold value,
When the area ratio calculated by dividing the area of the measured current-voltage characteristic by the area of the reference current-voltage characteristic is smaller than a first threshold, the difference between the measured current-voltage characteristic and the reference current-voltage characteristic is a difference in voltage value If the average value of the difference between the measured current voltage characteristics and the reference current voltage characteristics is greater than the third threshold value, the measured current voltage characteristics and the reference When the maximum difference value of current from the current-voltage characteristic is larger than a fourth threshold value, when the maximum difference value of voltage between the measured current-voltage characteristic and the reference current-voltage characteristic is larger than a fifth threshold value, the measured current voltage 4. The method according to claim 3, wherein when the area of the characteristic current value smaller than the current value of the reference current voltage characteristic is larger than a sixth threshold, it is determined that there is an abnormality in any of the cases. Solar cell abnormality determination device.
太陽電池の異常を判定する太陽電池異常判定装置における太陽電池異常判定方法であって、
前記太陽電池異常判定装置は、
前記太陽電池の電流値および電圧値の実測電流電圧特性を取得するステップと、
前記実測電流電圧特性を用いて、電力値を算出し、その算出した電力値の中で、最大電力値となるときの電圧値および電流値とを取得するステップと、
前記最大電力値となるときの電圧値および電流値と、前記太陽電池を短絡状態にしたときの短絡電流値と、前記太陽電池を開放状態にしたときの開放電圧値と、を用いて、異常を判定するための基準となる基準電流電圧特性を算出する基準の電流電圧特性算出ステップと、
前記実測電流電圧特性と、前記基準電流電圧特性とを比較して、所定の指標で異常の有無を判定する判定ステップと
を実行することを特徴とする太陽電池異常判定方法。
A solar cell abnormality determination method in a solar cell abnormality determination device for determining abnormality of a solar cell,
The solar cell abnormality determination device is
Obtaining measured current-voltage characteristics of the current value and voltage value of the solar cell;
Using the measured current-voltage characteristics, calculating a power value, and obtaining a voltage value and a current value when the maximum power value is obtained among the calculated power values;
Using the voltage value and current value when the maximum power value is reached, the short-circuit current value when the solar cell is short-circuited, and the open-circuit voltage value when the solar cell is open, A reference current-voltage characteristic calculation step for calculating a reference current-voltage characteristic serving as a reference for determining
A method for determining an abnormality in a solar cell, comprising: comparing the measured current-voltage characteristic with the reference current-voltage characteristic, and determining a presence or absence of abnormality with a predetermined index.
前記太陽電池異常判定装置は、
前記基準の電流電圧特性算出ステップでは、
前記最大電力値となるときの電圧値VPm、および電流値IPmと、前記短絡電流値ISCと、前記開放電圧値Vocと、を記式(1)、式(2)に適用して、前記基準電流電圧特性を算出する
ことを特徴とする請求項5に記載の太陽電池異常判定方法。
Figure 0005462821
ただし、Iは、太陽電池の出力電流、Vは、太陽電池の出力電圧、expは、指数関数を表し、lnは、自然対数を表す。
The solar cell abnormality determination device is
In the reference current-voltage characteristic calculation step,
Applied voltage value V Pm when the said maximum power value, and the current value I Pm, and the short-circuit current value I SC, the open voltage V oc and, below following formula (1), the equation (2) The solar cell abnormality determination method according to claim 5, wherein the reference current voltage characteristic is calculated.
Figure 0005462821
Where I is the output current of the solar cell, V is the output voltage of the solar cell, exp is an exponential function, and ln is the natural logarithm.
前記所定の指標が、
前記実測電流電圧特性の面積を前記基準電流電圧特性の面積で除算して算出した面積比、前記実測電流電圧特性と前記基準電流電圧特性との差分の平均値、前記実測電流電圧特性と前記基準電流電圧特性との最大差分値、前記実測電流電圧特性の電流値が前記基準電流電圧特性の電流値より小さい範囲の面積のいずれかであり、
前記太陽電池異常判定装置は、
前記判定ステップでは、
前記所定の指標の値と予め決められている閾値との大小を比較し、その比較結果に基づいて異常の有無を判定する
ことを特徴とする請求項5または請求項6に記載の太陽電池異常判定方法。
The predetermined indicator is
The area ratio calculated by dividing the area of the measured current voltage characteristic by the area of the reference current voltage characteristic, the average value of the difference between the measured current voltage characteristic and the reference current voltage characteristic, the measured current voltage characteristic and the reference The maximum difference value from the current-voltage characteristics, the current value of the measured current-voltage characteristics is any one of the areas in a range smaller than the current value of the reference current-voltage characteristics,
The solar cell abnormality determination device is
In the determination step,
The solar cell abnormality according to claim 5 or 6, wherein the value of the predetermined index is compared with a predetermined threshold value, and the presence or absence of abnormality is determined based on the comparison result. Judgment method.
前記太陽電池異常判定装置は、
前記判定ステップでは、前記閾値との大小の比較において、
前記実測電流電圧特性の面積を前記基準電流電圧特性の面積で除算して算出した面積比が第1の閾値より小さい場合、前記実測電流電圧特性と前記基準電流電圧特性との電圧値についての差分の平均値が第2の閾値より大きい場合、前記実測電流電圧特性と前記基準電流電圧特性との電流値についての差分の平均値が第3の閾値より大きい場合、前記実測電流電圧特性と前記基準電流電圧特性との電流の最大差分値が第4の閾値より大きい場合、前記実測電流電圧特性と前記基準電流電圧特性との電圧の最大差分値が第5の閾値より大きい場合、前記実測電流電圧特性の電流値が前記基準電流電圧特性の電流値より小さい範囲の面積が第6の閾値より大きい場合、のいずれかの場合に異常があると判定する
ことを特徴とする請求項7に記載の太陽電池異常判定方法。
The solar cell abnormality determination device is
In the determination step, in the comparison with the threshold value,
When the area ratio calculated by dividing the area of the measured current-voltage characteristic by the area of the reference current-voltage characteristic is smaller than a first threshold, the difference between the measured current-voltage characteristic and the reference current-voltage characteristic is a difference in voltage value If the average value of the difference between the measured current voltage characteristics and the reference current voltage characteristics is greater than the third threshold value, the measured current voltage characteristics and the reference When the maximum difference value of current from the current-voltage characteristic is larger than a fourth threshold value, when the maximum difference value of voltage between the measured current-voltage characteristic and the reference current-voltage characteristic is larger than a fifth threshold value, the measured current voltage 8. The method according to claim 7, wherein an abnormality is determined in any of the cases where the area of the range in which the current value of the characteristic is smaller than the current value of the reference current-voltage characteristic is larger than the sixth threshold value. Solar cell abnormality determination method.
JP2011049947A 2011-03-08 2011-03-08 Solar cell abnormality determination device and solar cell abnormality determination method Active JP5462821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049947A JP5462821B2 (en) 2011-03-08 2011-03-08 Solar cell abnormality determination device and solar cell abnormality determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049947A JP5462821B2 (en) 2011-03-08 2011-03-08 Solar cell abnormality determination device and solar cell abnormality determination method

Publications (2)

Publication Number Publication Date
JP2012186409A JP2012186409A (en) 2012-09-27
JP5462821B2 true JP5462821B2 (en) 2014-04-02

Family

ID=47016180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049947A Active JP5462821B2 (en) 2011-03-08 2011-03-08 Solar cell abnormality determination device and solar cell abnormality determination method

Country Status (1)

Country Link
JP (1) JP5462821B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038961A (en) * 2012-08-17 2014-02-27 Jx Nippon Oil & Energy Corp Conduction failure detection device and conduction failure detection method
WO2014136459A1 (en) 2013-03-07 2014-09-12 京セラ株式会社 Power conditioner, solar power generation apparatus, and control method
DE102014224486A1 (en) * 2014-12-01 2016-06-02 Robert Bosch Gmbh Method and device for detecting a type of shading of a photovoltaic system
JP6474305B2 (en) * 2015-04-23 2019-02-27 株式会社日立製作所 Diagnostic method and monitoring device for photovoltaic power generation system
DE102015119846A1 (en) 2015-11-17 2017-06-01 Sma Solar Technology Ag Method and apparatus for detecting faults in a photovoltaic (PV) generator
JP6108013B1 (en) * 2016-06-17 2017-04-05 富士電機株式会社 Solar cell string diagnostic system and solar cell string diagnostic method
CN107271916B (en) * 2017-07-14 2023-09-29 天津瑞能电气有限公司 Battery plate group string health state detection method
JP7080093B2 (en) * 2018-04-11 2022-06-03 株式会社日立パワーソリューションズ Solar cell evaluation device and solar cell evaluation method
JP7435071B2 (en) 2020-03-12 2024-02-21 オムロン株式会社 Diagnostic equipment, diagnostic methods and programs

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175928A (en) * 1982-04-06 1983-10-15 三菱電機株式会社 Solar light generation controller
JP4797142B2 (en) * 2005-09-22 2011-10-19 独立行政法人産業技術総合研究所 Photovoltaic power generation control device
JP5162737B2 (en) * 2006-05-17 2013-03-13 英弘精機株式会社 Solar cell characteristics evaluation system
JP5097908B2 (en) * 2007-07-24 2012-12-12 英弘精機株式会社 Abnormality detection device for solar power generation system
JP4915821B2 (en) * 2009-03-17 2012-04-11 独立行政法人産業技術総合研究所 Solar power system
JP2010245410A (en) * 2009-04-09 2010-10-28 Sharp Corp Method and device of inspecting solar cell module

Also Published As

Publication number Publication date
JP2012186409A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5462821B2 (en) Solar cell abnormality determination device and solar cell abnormality determination method
JP5330438B2 (en) Abnormality diagnosis apparatus and method, and computer program
JP6209412B2 (en) Fault diagnosis system and fault diagnosis method for photovoltaic power generation system
US10622941B2 (en) Real-time series resistance monitoring in photovoltaic systems
US20130085729A1 (en) Information processor, power generation determining method, and program
JP5856294B2 (en) Photovoltaic power generation monitoring method and solar power generation monitoring system used for the method
US20210313928A1 (en) Method and apparatus for determining key performance photovoltaic characteristics using sensors from module-level power electronics
KR101808978B1 (en) Power generation system analysis device and method
JP6758273B2 (en) Solar cell diagnostic device and solar cell diagnostic method
JP6012874B2 (en) Photovoltaic power generation inspection system and solar power generation inspection method
JP5989754B2 (en) Prediction device
JP2013191672A (en) Information processing apparatus, abnormality detecting method, program, and solar power generation system
WO2016166991A1 (en) Diagnostic system for photovoltaic power generation equipment, and program
Dupont et al. Novel methodology for detecting non-ideal operating conditions for grid-connected photovoltaic plants using Internet of Things architecture
JP7289995B2 (en) Method and apparatus for recognizing operating state of photovoltaic string and storage medium
JP2015080399A (en) Method for making determination about solar battery module deterioration
JP6295724B2 (en) Solar cell evaluation apparatus, evaluation method, and solar power generation system
JP2016201921A (en) Method, device and program for detecting reduction in power generation amount of photovoltaic power generation facility
JP6252148B2 (en) Solar cell IV curve measuring device, IV curve measuring method, solar cell power conditioner, and solar power generation system
Aziz et al. A prototype of an integrated pyranometer for measuring multi-parameters
JP6806325B2 (en) Photovoltaic system evaluation device, evaluation method, and program for evaluation device
JP2015114741A (en) Solar battery evaluation apparatus, solar battery evaluation method, and photovoltaic power generation system
JP2020167836A (en) Solar cell diagnosis apparatus and solar cell diagnosis method
JP6300148B2 (en) Solar power generation device management device
KR102524158B1 (en) Method and device for providing solutions for managing solar power plants based on digital twin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150