JP5456625B2 - Resonant type wireless power transmission device - Google Patents

Resonant type wireless power transmission device Download PDF

Info

Publication number
JP5456625B2
JP5456625B2 JP2010199727A JP2010199727A JP5456625B2 JP 5456625 B2 JP5456625 B2 JP 5456625B2 JP 2010199727 A JP2010199727 A JP 2010199727A JP 2010199727 A JP2010199727 A JP 2010199727A JP 5456625 B2 JP5456625 B2 JP 5456625B2
Authority
JP
Japan
Prior art keywords
power
power transmission
side device
transmission
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010199727A
Other languages
Japanese (ja)
Other versions
JP2012060731A (en
Inventor
貴史 丸山
達也 清水
征士 中津川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010199727A priority Critical patent/JP5456625B2/en
Publication of JP2012060731A publication Critical patent/JP2012060731A/en
Application granted granted Critical
Publication of JP5456625B2 publication Critical patent/JP5456625B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)

Description

本発明は、送電側装置から受電側装置へ給電するとともに受電側から送電側に情報を伝送する共鳴型無線電力伝送装置に関する。   The present invention relates to a resonance type wireless power transmission apparatus that feeds power from a power transmission side device to a power reception side device and transmits information from the power reception side to the power transmission side.

携帯電話等の2次電池の充電や、非接触ICカード、RFIDタグ等への電力供給には、有線接続を要しない給電方法が採用されている。これを実現する手段の代表例は電磁誘導方式である。電磁誘導方式の無線電力伝送装置では、送電側と受電側とにコイルを配置し、両者が近接して送電側コイルの磁束が受電側コイルを通過することで、受電側に電力が得られる。この詳細な原理は非特許文献1に記載されている。電磁誘導方式は一般に、十分な伝送効率を得るために、送受信コイルは近接して漏れ磁束を少なくする方法がとられる。   A power feeding method that does not require a wired connection is used for charging a secondary battery such as a mobile phone or supplying power to a non-contact IC card, an RFID tag, or the like. A typical example of means for realizing this is an electromagnetic induction system. In the electromagnetic induction type wireless power transmission device, coils are arranged on the power transmission side and the power reception side, and when both are close to each other and the magnetic flux of the power transmission side coil passes through the power reception side coil, power is obtained on the power reception side. This detailed principle is described in Non-Patent Document 1. In general, in order to obtain a sufficient transmission efficiency, the electromagnetic induction method is a method in which the transmitting and receiving coils are close to each other to reduce the leakage magnetic flux.

このような無線電力伝送装置では、装置の認証等のため、送電側と受電側とが通信を行う場合がある。ここで、送電側から受電側への通信回線を下りリンク、受電側から送電側への通信回線を上りリンクと呼ぶ。電磁誘導を用いて下りリンクを構成するには、送信する電力に変調を加える方法が用いられる。電磁誘導を用いて上りリンクを構成するには、受電側で負荷インピーダンスを変化させ、その変化を送電側で検出する負荷変調が用いられる。   In such a wireless power transmission device, the power transmission side and the power reception side may communicate with each other for device authentication or the like. Here, a communication line from the power transmission side to the power reception side is called a downlink, and a communication line from the power reception side to the power transmission side is called an uplink. In order to configure a downlink using electromagnetic induction, a method of modulating transmission power is used. In order to configure an uplink using electromagnetic induction, load modulation is used in which the load impedance is changed on the power receiving side and the change is detected on the power transmission side.

図7は、無線電力伝送装置の構成例を示す。
図7において、送電側装置10の電源11に接続される送電側コイル13と、受電側装置20の負荷23に接続される受電側コイル22が電磁誘導で電気的に結合し、電源11から負荷23に電力が供給される。さらに、受電側コイル22と負荷23との間に制御部26により開閉するスイッチ25を挿入し、送電側コイル13に復調部12を接続する。制御部26は、上りリンクで送信する送信データに対応してスイッチ25をオンオフすることにより、受電側装置20の負荷インピーダンスが変化する。送電側装置10の復調部12は、これを電流または電圧の変化として検出し、受電側装置20から送信された送信データを復元する。
FIG. 7 shows a configuration example of the wireless power transmission apparatus.
In FIG. 7, the power transmission side coil 13 connected to the power source 11 of the power transmission side device 10 and the power reception side coil 22 connected to the load 23 of the power reception side device 20 are electrically coupled by electromagnetic induction. Power is supplied to 23. Further, a switch 25 that is opened and closed by the control unit 26 is inserted between the power reception side coil 22 and the load 23, and the demodulation unit 12 is connected to the power transmission side coil 13. The control unit 26 changes the load impedance of the power receiving side device 20 by turning on and off the switch 25 in response to transmission data transmitted on the uplink. The demodulator 12 of the power transmission side device 10 detects this as a change in current or voltage, and restores the transmission data transmitted from the power reception side device 20.

また、近年では、ある程度(例えば1m)の伝送距離を有する場合でも高い給電効率が得られる共鳴型無線電力伝送装置が提案されている(非特許文献2)。   In recent years, a resonance type wireless power transmission apparatus has been proposed that can obtain high power supply efficiency even when the transmission distance is at a certain level (for example, 1 m) (Non-Patent Document 2).

図8は、共鳴型無線電力伝送装置の構成例を示す。
図8において、送電側装置10の送電側コイル13と電磁誘導で電気的に結合する送電側共鳴コイル14と、受電側装置20の受電側コイル22と電磁誘導で電気的に結合する受電側共鳴コイル21との共鳴現象によって電力が伝達される。共鳴は特定の周波数でのみ発生する。図9は共鳴コイルのSパラメータ(S21) の例を示す。図よりピークが得られる周波数は限定的であること、負荷に依存してピークの周波数が変動することがわかる。また、ピークの周波数は、送電側装置10と受電側装置20との間隔によっても変動する。
FIG. 8 shows a configuration example of a resonance type wireless power transmission apparatus.
In FIG. 8, the power transmission side resonance coil 14 that is electrically coupled to the power transmission side coil 13 of the power transmission side device 10 by electromagnetic induction, and the power reception side resonance that is electrically coupled to the power reception side coil 22 of the power reception side device 20 by electromagnetic induction. Electric power is transmitted by a resonance phenomenon with the coil 21 . Resonance occurs only at specific frequencies. FIG. 9 shows an example of the S parameter (S21) of the resonance coil. From the figure, it can be seen that the frequency at which the peak is obtained is limited, and that the peak frequency varies depending on the load. Further, the peak frequency varies depending on the interval between the power transmission side device 10 and the power reception side device 20.

苅部浩、「非接触ICカード設計入門」、日刊工業新聞社.Hiroshi Isobe, “Introduction to contactless IC card design”, Nikkan Kogyo Shimbun. Aristeidis Karalis, J.D. Joannopoulos and Marin Soljacic, 'Efficient wireless non-radiative mid-range energy transfer,' Annals of Physics, Vol.323 Issue 1, pp.34-48, Apr 2007.Aristeidis Karalis, J.D.Joannopoulos and Marin Soljacic, 'Efficient wireless non-radiative mid-range energy transfer,' Annals of Physics, Vol.323 Issue 1, pp.34-48, Apr 2007.

図8に示す共鳴型無線電力伝送装置において、送電側の電源周波数が共鳴周波数と異なる周波数に設定されていた場合、受電側に十分な電力が到達しない。また、送電側の電源周波数が共鳴周波数と大きく異なっているときに、受電側で負荷インピーダンスを変化させる負荷変調により受電側から送信データを送信しようとした場合、送電側で受電側の負荷インピーダンスの変化による電流または電圧の変化を検出できず、上りリンクの情報伝送が失敗する。例えば、受電側に対する給電電力が十分でないために送電側に電源周波数の変更を要求する情報を送信しようとしても、それが送電側に到達せず、結果的に送電側から受電側に給電を行うことができなくなる。   In the resonance type wireless power transmission apparatus shown in FIG. 8, when the power frequency on the power transmission side is set to a frequency different from the resonance frequency, sufficient power does not reach the power receiving side. In addition, when the power frequency on the power transmission side is significantly different from the resonance frequency, if transmission data is transmitted from the power receiving side by load modulation that changes the load impedance on the power receiving side, the load impedance of the power receiving side on the power transmission side A change in current or voltage due to the change cannot be detected, and uplink information transmission fails. For example, even if an attempt is made to transmit information requesting the power transmission side to change the power supply frequency because the power supplied to the power receiving side is not sufficient, it does not reach the power transmitting side, and consequently power is supplied from the power transmitting side to the power receiving side. I can't do that.

本発明は、送電側の電源周波数が共鳴周波数と異なるときでも受電側から送電側への送信データの伝送を可能とし、さらに受電側からの通知により送電側の電源周波数を共鳴周波数に対応する周波数に調整することができる共鳴型無線電力伝送装置を提供することを目的とする。   The present invention enables transmission of transmission data from the power receiving side to the power transmission side even when the power frequency on the power transmission side is different from the resonance frequency, and further, the frequency corresponding to the power frequency on the power transmission side by the notification from the power receiving side. It is an object of the present invention to provide a resonance type wireless power transmission device that can be adjusted to the above.

本発明は、送電側装置の送電側コイルと電磁誘導で電気的に結合される送電側共鳴コイルと、受電側装置の受電側コイルと電磁誘導で電気的に結合される受電側共鳴コイルとの間の共鳴現象を利用し、送電側装置の電源から受電側装置の負荷へ電力を伝送する共鳴型無線電力伝送装置において、受電側装置は、スイッチのオンオフにより負荷インピーダンスを所定の範囲で変化させる手段と、受電側装置から送電側装置へ伝送する送信データと負荷インピーダンスの変化を対応付けてスイッチのオンオフを制御する制御部とを備え、送電側装置は、送信データに対応する負荷インピーダンスの変化に応じて発生する電流または電圧の過渡応答を検出し、当該過渡応答により送信データを復元する復調部を備え、受電側装置の制御部は、送信データが0であればスイッチを前の状態に維持し、送信データが1であればスイッチを前の状態から反転させる構成であり、送電側装置の復調部は、復元する送信データとして、正または負の過渡応答に対して1、過渡応答なしに対して0を出力する構成である。 The present invention includes a power transmission side resonance coil that is electrically coupled to a power transmission side coil of a power transmission side device by electromagnetic induction, and a power reception side resonance coil that is electrically coupled to a power reception side coil of the power reception side device by electromagnetic induction. In the resonance type wireless power transmission device that uses the resonance phenomenon between the power transmission side device and the power to the load of the power reception device, the power reception device changes the load impedance in a predetermined range by turning on and off the switch. And a control unit that controls on / off of the switch by associating the transmission data transmitted from the power receiving side device to the power transmission side device with a change in the load impedance, and the power transmission side device includes a change in the load impedance corresponding to the transmission data. detecting a transient response of the current or voltage generated in accordance with, a demodulation unit that restores the transmission data by the transient response, the control unit of the power receiving side apparatus, transmission de If the data is 0, the switch is maintained in the previous state, and if the transmission data is 1, the switch is inverted from the previous state. 1 for negative transient response, Ru configuration der to output 0 for no transient response.

本発明の共鳴型無線電力伝送装置において、受電側装置の制御部は、電力の受電状態を送信データとして送電側装置に送信する構成であり、送電側装置は、復調部で復元された送信データから受電状態を検出し、電源の電源周波数送電側共鳴コイルと受電側共鳴コイルの共鳴周波数に近づくように調整する周波数調整部を備える。 In the resonance type wireless power transmission device of the present invention, the control unit of the power receiving side device is configured to transmit the power receiving state as transmission data to the power transmission side device, and the power transmission side device transmits the transmission data restored by the demodulation unit. A frequency adjustment unit that detects a power reception state from the power supply and adjusts the power supply frequency of the power supply so as to approach the resonance frequencies of the power transmission resonance coil and the power reception resonance coil.

本発明の共鳴型無線電力伝送装置において、受電側装置は、電力の受電状態に応じて、電源の電源周波数を送電側共鳴コイルと受電側共鳴コイルの共鳴周波数に近づくように調整する制御信号を生成する周波数調整部を備え、受電側装置の制御部は、制御信号を送信データとして送電側装置に送信する構成であり、送電側装置は、復調部で復元された送信データから制御信号を検出し、電源の電源周波数を制御信号に従って調整する構成である。
In the resonance type wireless power transmission device of the present invention, the power receiving side device provides a control signal for adjusting the power source frequency of the power source so as to approach the resonance frequency of the power transmitting side resonance coil and the power receiving side resonance coil according to the power receiving state. The control unit of the power receiving side device is configured to transmit the control signal as transmission data to the power transmission side device, and the power transmission side device detects the control signal from the transmission data restored by the demodulation unit. The power supply frequency of the power supply is adjusted according to the control signal .

本発明の共鳴型無線電力伝送装置は、受電側装置から送信する送信データに応じて負荷インピーダンスを変化させ、送電側装置でそれを電流または電圧の過渡応答から検出することにより、送電側の電源周波数が共鳴周波数と異なるときでも、受電側から送電側への送信データの伝送が可能である。   The resonance type wireless power transmission device of the present invention changes the load impedance according to transmission data transmitted from the power receiving side device, and detects it from the transient response of the current or voltage by the power transmission side device, thereby Even when the frequency is different from the resonance frequency, transmission data can be transmitted from the power receiving side to the power transmitting side.

また、送電側の電源周波数が共鳴周波数と異なるときでも、受電側から送電側への送信データの伝送が可能であるので、送信データとして受電状態を送電側に通知することにより、送電側の電源周波数を共鳴周波数に近づくように調整することができる。これにより、さらに電力の伝送効率を高めることができる。   Also, even when the power frequency on the power transmission side is different from the resonance frequency, transmission data can be transmitted from the power receiving side to the power transmission side. The frequency can be adjusted to approach the resonant frequency. Thereby, the power transmission efficiency can be further increased.

本発明の実施例1の共鳴型無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of the resonance type wireless power transmission apparatus of Example 1 of this invention. 送信データと受信波形の例1を示す図である。It is a figure which shows the example 1 of transmission data and a received waveform. 送信データと受信波形の例2を示す図である。It is a figure which shows the example 2 of transmission data and a received waveform. 送信データと受信波形の例3を示す図である。It is a figure which shows the example 3 of transmission data and a received waveform. 復調部12の構成例を示す図である。3 is a diagram illustrating a configuration example of a demodulation unit 12. FIG. 本発明の実施例2の共鳴型無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of the resonance type wireless power transmission apparatus of Example 2 of this invention. 無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of a wireless power transmission apparatus. 共鳴型無線電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of a resonance type wireless power transmission apparatus. 共鳴コイルのSパラメータ(S21)の例を示す図である。It is a figure which shows the example of S parameter (S21) of a resonance coil.

図1は、本発明の実施例1の共鳴型無線電力伝送装置の構成例を示す。
図1において、共鳴型無線電力伝送装置は、電力の送電を担う送電側装置10と、送電された電力を受け取る受電側装置20とからなり、受電側装置20から送電側装置10に送信データを伝送するための構成を含む。送電側装置10から受電側装置20への電力、送信データの流れが下り、受電側装置20から送電側装置10への送信データの流れが上りである。
FIG. 1 shows a configuration example of a resonance type wireless power transmission apparatus according to a first embodiment of the present invention.
In FIG. 1, the resonance type wireless power transmission device includes a power transmission side device 10 that is responsible for power transmission and a power reception side device 20 that receives the transmitted power, and transmits transmission data from the power reception side device 20 to the power transmission side device 10. Includes a configuration for transmitting. The flow of power and transmission data from the power transmission side device 10 to the power reception side device 20 is downward, and the flow of transmission data from the power reception side device 20 to the power transmission side device 10 is upward.

送電側装置10は、電源11、受電側装置20から送られた上り送信データを復元する復調部12、送電側コイル13、送電側共鳴コイル14、電源11の電源周波数を調整する周波数調整部15を備える。受電側装置20は、受電側共鳴コイル21、受電側コイル22、負荷23、抵抗24、スイッチ25、制御部26を備える。送電側コイル13と送電側共鳴コイル14とは電磁誘導で電気的に結合している。送電側共鳴コイル14と受電側共鳴コイル21とは共鳴により電気的に結合している。受電側共鳴コイル21と受電側コイル22とは電磁誘導で電気的に結合している。これにより電源11から負荷23および制御部26に給電することができる。   The power transmission side device 10 includes a power source 11, a demodulation unit 12 that restores uplink transmission data sent from the power reception side device 20, a power transmission side coil 13, a power transmission side resonance coil 14, and a frequency adjustment unit 15 that adjusts the power frequency of the power source 11. Is provided. The power receiving side device 20 includes a power receiving side resonance coil 21, a power receiving side coil 22, a load 23, a resistor 24, a switch 25, and a control unit 26. The power transmission side coil 13 and the power transmission side resonance coil 14 are electrically coupled by electromagnetic induction. The power transmission resonance coil 14 and the power reception resonance coil 21 are electrically coupled by resonance. The power receiving side resonance coil 21 and the power receiving side coil 22 are electrically coupled by electromagnetic induction. As a result, power can be supplied from the power source 11 to the load 23 and the control unit 26.

上りリンクで伝送される送信データは、送電側装置10および受電側装置20を認証するためのものでもよいし、受電側装置20が通信端末である場合の上りデータであってもよい。ここで、簡単のため負荷23単体のインピーダンスは不変とし、図中のB−B’から右側をみたインピーダンスを負荷インピーダンスと呼ぶ。負荷インピーダンスは、スイッチ25のオンオフで抵抗24の通過の有無を選択することにより、2つの状態を取り得る。制御部26は、送信データに応じてスイッチ25をオンオフし、負荷インピーダンスを変化させる構成である。ただし、本実施例の構成では、スイッチ25がオンの場合もオフの場合も負荷23への接続は開放されないため、負荷23への電力供給は継続される。   The transmission data transmitted on the uplink may be for authenticating the power transmission side device 10 and the power reception side device 20, or may be uplink data when the power reception side device 20 is a communication terminal. Here, for the sake of simplicity, the impedance of the load 23 alone is not changed, and the impedance when the right side is viewed from B-B ′ in the figure is referred to as load impedance. The load impedance can take two states by selecting whether or not the resistor 24 is passed when the switch 25 is turned on / off. The control unit 26 is configured to turn on and off the switch 25 in accordance with transmission data and change the load impedance. However, in the configuration of the present embodiment, the power supply to the load 23 is continued because the connection to the load 23 is not released regardless of whether the switch 25 is on or off.

なお、図1の構成では、抵抗24とスイッチ25が並列に接続され、抵抗24と負荷23とが直列に接続されているが、抵抗24とスイッチ25を直列に接続し、抵抗24と負荷23とを並列に接続してもよい。   In the configuration of FIG. 1, the resistor 24 and the switch 25 are connected in parallel, and the resistor 24 and the load 23 are connected in series. However, the resistor 24 and the switch 25 are connected in series, and the resistor 24 and the load 23 are connected. May be connected in parallel.

受電側装置20と送電側装置10とは電気的に結合しているため、負荷インピーダンスの変化は送電側装置10のA−A’から受電側装置20をみたインピーダンスの変化となり、電流または電圧の変化として現れる。復調部12はこの変化を検出し、受電側装置20から送信された送信データを復元する。   Since the power receiving side device 20 and the power transmitting side device 10 are electrically coupled, the change in the load impedance is a change in impedance when the power receiving side device 20 is viewed from AA ′ of the power transmitting side device 10, and the current or voltage is changed. Appears as a change. The demodulator 12 detects this change and restores the transmission data transmitted from the power receiving side device 20.

図2は、送電側装置10の復調部12における電流または電圧を包絡線検波した波形を表しており、送信データの変化に連動して電流または電圧が変化するのがわかる。復調部12はこの変化を適当なタイミングでサンプリングすることにより、受電側装置20から送信された送信データを復元することができる。   FIG. 2 shows a waveform obtained by envelope detection of the current or voltage in the demodulator 12 of the power transmission side device 10, and it can be seen that the current or voltage changes in conjunction with the change of transmission data. The demodulation unit 12 can restore the transmission data transmitted from the power receiving side device 20 by sampling this change at an appropriate timing.

ところで、送電側装置10の電源周波数が共鳴周波数と異なる場合には、図3に示すような受信波形になる。平均受信レベル(受信電力)は、図2の場合と比較して低下するだけでなく、信号波形の振幅の変化も小さくなる。さらに、送電側装置10の電源周波数が共鳴周波数と大きく異なる場合には、信号波形の振幅の変化が非常に小さくなり、送信データの復元が困難になる。   By the way, when the power supply frequency of the power transmission side device 10 is different from the resonance frequency, a reception waveform as shown in FIG. 3 is obtained. The average reception level (reception power) not only decreases compared to the case of FIG. 2, but also changes in the amplitude of the signal waveform are reduced. Furthermore, when the power supply frequency of the power transmission side device 10 is greatly different from the resonance frequency, the change in the amplitude of the signal waveform becomes very small, and it is difficult to restore the transmission data.

一方、送電側装置10の復調部12では、図4に示すように送信データの変化に応じた電流または電圧の過渡応答を観測することができる。ここで、送電側装置10で観測される電流または電圧の過渡応答とは、送信データに応じてスイッチ25がオンオフし、それに伴う負荷インピーダンスの変化に応じて電流または電圧の立ち上がりおよび立ち下がりの部分で波形が大きく変化する現象である。受電側装置20の制御部26は、送信データと過渡応答の発生の有無が対応するようにスイッチ25を操作し、送電側装置10の復調部12は過渡応答の発生の有無から送信データを復元する。   On the other hand, the demodulator 12 of the power transmission side device 10 can observe a transient response of current or voltage corresponding to a change in transmission data as shown in FIG. Here, the transient response of the current or voltage observed in the power transmission side device 10 is a part where the switch 25 is turned on / off according to transmission data and the current or voltage rises and falls according to the change in the load impedance accompanying it. This is a phenomenon in which the waveform changes greatly. The control unit 26 of the power receiving side device 20 operates the switch 25 so that the transmission data corresponds to the occurrence of the transient response, and the demodulation unit 12 of the power transmission side device 10 restores the transmission data from the presence of the occurrence of the transient response. To do.

図5は、復調部12の構成例を示す。
図5において、復調部12は、検波部121、A/D変換部122、符号判定部123により構成される。検波部121は、受信波形、すなわち送電側装置10における電流または電圧を検波する。この検波出力をA/D変換部122でデジタル化し、符号判定部123でビット判定して出力する。
符号判定部123は2つの符号判定論理をもつ。符号判定論理1では、受信波形から正の過渡応答を判定した場合に「1」を出力し、負の過渡応答を判定した場合に「0」を出力し、定常状態(過渡応答なし)を判定した場合に直前の判定結果を出力する。なお、定常状態に対する符号判定は、符号判定部123に接続される記憶部に直前の判定結果を記憶しておき、定常状態を判定したときに記憶部から読み出す構成でもよいし、符号判定部123で正または負の過渡応答を判定するまで直前の判定結果を出力する構成でもよい。
FIG. 5 shows a configuration example of the demodulation unit 12.
In FIG. 5, the demodulation unit 12 includes a detection unit 121, an A / D conversion unit 122, and a code determination unit 123. The detector 121 detects the received waveform, that is, the current or voltage in the power transmission side device 10. The detection output is digitized by the A / D converter 122, and the bit is determined by the code determination unit 123 and output.
The code determination unit 123 has two code determination logics. The sign determination logic 1 outputs “1” when a positive transient response is determined from the received waveform, and outputs “0” when a negative transient response is determined, and determines a steady state (no transient response). If it does, the previous determination result is output. The code determination for the steady state may be configured such that the previous determination result is stored in a storage unit connected to the code determination unit 123 and read from the storage unit when the steady state is determined. The configuration may be such that the previous determination result is output until a positive or negative transient response is determined.

この符号判定部123に対応する受電側装置20の制御部26は、送信データにそのまま対応するようにスイッチ25を操作する。すなわち、送信データが1であればスイッチ25をオンとし、送信データが0であればスイッチ25をオフとする。符号判定部123は、送信データが反転して過渡応答が生じるタイミングでビットを判定し、過渡応答が生じなかったタイミングでは過渡応答が生じた直前のビットと同じビットを出力し、送信データを復元する。   The control unit 26 of the power receiving device 20 corresponding to the code determination unit 123 operates the switch 25 so as to correspond to the transmission data as it is. That is, if the transmission data is 1, the switch 25 is turned on, and if the transmission data is 0, the switch 25 is turned off. The sign determination unit 123 determines the bit at the timing when the transmission data is inverted and a transient response occurs, and outputs the same bit as the bit immediately before the transient response occurs at the timing when the transient response does not occur, thereby restoring the transmission data. To do.

ここで、送信データに対するスイッチ25の状態(0:オフ、1:オン)、受信波形(1:正の過渡応答、0:定常状態、-1:負の過渡応答)、符号判定部123の判定データの関係を表1に示す。ただし、最初の時刻の受信波形はその前の状態に依存するので記載していない。   Here, the state of the switch 25 for transmission data (0: off, 1: on), reception waveform (1: positive transient response, 0: steady state, −1: negative transient response), determination by the sign determination unit 123 Table 1 shows the data relationship. However, the received waveform at the first time is not shown because it depends on the previous state.

Figure 0005456625
Figure 0005456625

なお、本例では、過渡応答が生じるタイミングでビット判定を誤った場合、次に過渡応答が生じなかったタイミングのビットは直前のビットに従属して誤りとなる。したがって、受電側装置20から制御信号を送信する場合には、ビットの反転の多いビット列を用いることにより、過渡応答によるビット判定の機会が多くなり、制御信号の誤り率を低減することができる。すなわち、制御信号として、既知のプリアンブルを含めてビットの反転の多いビット列を用いることにより、送電側装置10への伝送を確実に行うことができる。   In this example, if the bit determination is wrong at the timing when the transient response occurs, the bit at the timing when the transient response does not occur next becomes an error depending on the immediately preceding bit. Therefore, when a control signal is transmitted from the power receiving side device 20, the use of a bit string with many bit inversions increases the chances of bit determination by a transient response, and the error rate of the control signal can be reduced. That is, by using a bit string with many bit inversions including a known preamble as the control signal, transmission to the power transmission side device 10 can be performed reliably.

また、符号判定部123の符号判定論理2では、受信波形から正または負の過渡応答を判定した場合に「1」を出力し、定常状態(過渡応答なし)を判定した場合に「0」を出力するようにしてもよい。この符号判定部123に対応する受電側装置20の制御部26は、送信データが0であればスイッチ25を前の状態に維持し、送信データが1であればスイッチ25を前の状態から反転させる操作を行う。このとき、送信データが01で、スイッチ25がオフ(0)からオン(1)に変化すれば受信波形が正の過渡応答を示し、送信データが11で、スイッチ25がオン(1)からオフ(0)に変化すれば受信波形が負の過渡応答を示すので、符号判定部123は受信波形から正または負の過渡応答を判定した場合にスイッチ25の状態が反転したものとして判定データを「1」とし、受信波形が定常状態であれば判定データを「0」とし、送信データを復元する。   Further, in the code determination logic 2 of the code determination unit 123, “1” is output when a positive or negative transient response is determined from the received waveform, and “0” is determined when a steady state (no transient response) is determined. You may make it output. The control unit 26 of the power receiving side device 20 corresponding to the code determination unit 123 maintains the switch 25 in the previous state if the transmission data is 0, and reverses the switch 25 from the previous state if the transmission data is 1. Perform the operation. At this time, if the transmission data is 01 and the switch 25 changes from off (0) to on (1), the reception waveform shows a positive transient response, the transmission data is 11, and the switch 25 is on (1) to off. If the received waveform changes to (0), the received waveform indicates a negative transient response. Therefore, the sign determining unit 123 determines that the determination data is “inverted” when the positive or negative transient response is determined from the received waveform. If the received waveform is in a steady state, the determination data is set to “0” and the transmission data is restored.

ここで、送信データに対するスイッチ25の状態(0:オフ、1:オン)、受信波形(1:正の過渡応答、0:定常状態、-1:負の過渡応答)、符号判定部123のビット出力の関係を表2に示す。ただし、最初の時刻の受信波形はその前の状態に依存するので記載していない。   Here, the state of the switch 25 for transmission data (0: off, 1: on), reception waveform (1: positive transient response, 0: steady state, −1: negative transient response), bit of the sign determination unit 123 Table 2 shows the output relationship. However, the received waveform at the first time is not described because it depends on the previous state.

Figure 0005456625
Figure 0005456625

以上、送信データに対するスイッチ25の操作、符号判定部123の判定方法について2例を示したが、過渡応答の有無を検出することにより、送電側装置10の電源周波数が共鳴周波数から多少ずれていても、送電側装置10で受電側装置20から送信された送信データを復元できることがわかる。   As described above, two examples of the operation of the switch 25 with respect to the transmission data and the determination method of the sign determination unit 123 have been shown. However, the power supply frequency of the power transmission side device 10 is slightly deviated from the resonance frequency by detecting the presence or absence of a transient response. In addition, it can be seen that the transmission data transmitted from the power receiving device 20 can be restored by the power transmitting device 10.

したがって、受電側装置20において、受電電力の低下から共鳴周波数に対する送電側装置10の電源周波数のずれを検知した場合には、制御部26で対応する制御信号を生成してスイッチ25を上記のパターンで操作することにより、送電側装置10の復調部12でその制御信号を復元し、共鳴周波数に対する送電側装置10の電源周波数のずれを通知することができる。ただし、受電側装置20では、共鳴周波数に対する送電側装置10の電源周波数のずれの方向や量までわからないので、制御信号として例えば受電電力値を送信する。送電側装置10の復調部12は制御信号から受電電力値を読み取り、それが規定の受電電力値に満たない場合に、周波数調整部15を介して電源11の電源周波数を調整する。このとき、電源周波数のシフトに対する受電電力値の変化から、電源周波数のシフト方向およびシフト量をフィードバック制御することにより、電源周波数が共鳴周波数に近づくように調整することができる。   Therefore, when the power receiving side device 20 detects a shift in power source frequency of the power transmitting side device 10 with respect to the resonance frequency due to a decrease in received power, the control unit 26 generates a corresponding control signal and switches the switch 25 to the above pattern. , The control signal is restored by the demodulator 12 of the power transmission side device 10, and the deviation of the power supply frequency of the power transmission side device 10 with respect to the resonance frequency can be notified. However, since the power receiving side device 20 does not know the direction or amount of deviation of the power source frequency of the power transmitting side device 10 with respect to the resonance frequency, for example, a power receiving power value is transmitted as a control signal. The demodulator 12 of the power transmission side device 10 reads the received power value from the control signal, and adjusts the power frequency of the power source 11 via the frequency adjuster 15 when it is less than the specified received power value. At this time, the power supply frequency can be adjusted so as to approach the resonance frequency by feedback control of the shift direction and shift amount of the power supply frequency from the change in the received power value with respect to the shift of the power supply frequency.

図6は、本発明の実施例2の共鳴型無線電力伝送装置の構成例を示す。
本実施例の特徴は、図1に示す実施例1において、送電側装置10の周波数調整部15を受電側装置20の制御部26の前段に周波数調整部27として備え、受電電力値に対応する電源周波数の制御信号を送信するところにある。これにより、送電側装置10の復調部12では、復元した制御信号を用いて電源11の電源周波数を調整することができる。ただし、実施例1で説明したように、制御信号として電源周波数のシフト方向およびシフト量を直接設定できないので、フィードバック制御により電源11の電源周波数が共鳴周波数に近づくように調整する。
FIG. 6 shows a configuration example of a resonance type wireless power transmission apparatus according to the second embodiment of the present invention.
The feature of the present embodiment is that the frequency adjustment unit 15 of the power transmission side device 10 is provided as a frequency adjustment unit 27 in the preceding stage of the control unit 26 of the power reception side device 20 in Example 1 shown in FIG. 1 and corresponds to the received power value. The power frequency control signal is transmitted. Thereby, the demodulator 12 of the power transmission side device 10 can adjust the power supply frequency of the power supply 11 using the restored control signal. However, as described in the first embodiment, since the shift direction and shift amount of the power supply frequency cannot be directly set as the control signal, adjustment is performed so that the power supply frequency of the power supply 11 approaches the resonance frequency by feedback control.

10 送電側装置
11 電源
12 復調部
121 検波部
122 A/D変換部
123 符号判定部
13 送電側コイル
14 送電側共鳴コイル
15 周波数調整部
20 受電側装置
21 受電側共鳴コイル
22 受電側コイル
23 負荷
24 抵抗
25 スイッチ
26 制御部
27 周波数調整部
DESCRIPTION OF SYMBOLS 10 Power transmission side apparatus 11 Power supply 12 Demodulation part 121 Detection part 122 A / D conversion part 123 Code | symbol determination part 13 Power transmission side coil 14 Power transmission side resonance coil 15 Frequency adjustment part 20 Power reception side apparatus 21 Power reception side resonance coil 22 Power reception side coil 23 Load 24 resistance 25 switch 26 control unit 27 frequency adjustment unit

Claims (3)

送電側装置の送電側コイルと電磁誘導で電気的に結合される送電側共鳴コイルと、受電側装置の受電側コイルと電磁誘導で電気的に結合される受電側共鳴コイルとの間の共鳴現象を利用し、送電側装置の電源から受電側装置の負荷へ電力を伝送する共鳴型無線電力伝送装置において、
前記受電側装置は、スイッチのオンオフにより負荷インピーダンスを所定の範囲で変化させる手段と、前記受電側装置から前記送電側装置へ伝送する送信データと前記負荷インピーダンスの変化を対応付けて前記スイッチのオンオフを制御する制御部とを備え、
前記送電側装置は、前記送信データに対応する前記負荷インピーダンスの変化に応じて発生する電流または電圧の過渡応答を検出し、当該過渡応答により前記送信データを復元する復調部を備え
前記受電側装置の制御部は、前記送信データが0であれば前記スイッチを前の状態に維持し、前記送信データが1であれば前記スイッチを前の状態から反転させる構成であり、 前記送電側装置の復調部は、復元する前記送信データとして、正または負の過渡応答に対して1、過渡応答なしに対して0を出力する構成である
ことを特徴とする共鳴型無線電力伝送装置。
A resonance phenomenon between a power transmission side resonance coil that is electrically coupled to the power transmission side coil of the power transmission side device by electromagnetic induction, and a power reception side resonance coil that is electrically coupled to the power reception side coil of the power reception side device by electromagnetic induction. In the resonance type wireless power transmission device that transmits power from the power source of the power transmission side device to the load of the power reception side device,
The power receiving side device associates the change of the load impedance with the means for changing the load impedance in a predetermined range by turning the switch on and off, and the transmission data transmitted from the power receiving side device to the power transmitting side device. And a control unit for controlling
The power transmission side device includes a demodulator that detects a transient response of current or voltage generated according to a change in the load impedance corresponding to the transmission data, and restores the transmission data by the transient response ,
Controller of the receiving side apparatus, if the transmission data is 0 to maintain the switch to its previous state, a configuration to invert the previous state said switch when said transmission data is 1, the power transmission The resonance type wireless power transmission apparatus according to claim 1, wherein the demodulator of the side apparatus outputs 1 as a positive or negative transient response and 0 as no transient response as the transmission data to be restored .
請求項1に記載の共鳴型無線電力伝送装置において、
前記受電側装置の制御部は、前記電力の受電状態を前記送信データとして前記送電側装置に送信する構成であり、
前記送電側装置は、前記復調部で復元された前記送信データから前記受電状態を検出し、前記電源の電源周波数前記送電側共鳴コイルと前記受電側共鳴コイルの共鳴周波数に近づくように調整する周波数調整部を備えた
ことを特徴とする共鳴型無線電力伝送装置。
In the resonance type wireless power transmission device according to claim 1,
The control unit of the power receiving side device is configured to transmit the power receiving state of the power to the power transmitting side device as the transmission data,
The power transmission side device detects the power reception state from the transmission data restored by the demodulation unit, and adjusts the power supply frequency of the power supply so as to approach the resonance frequencies of the power transmission side resonance coil and the power reception side resonance coil. A resonance type wireless power transmission device comprising a frequency adjustment unit.
請求項1に記載の共鳴型無線電力伝送装置において、
前記受電側装置は、前記電力の受電状態に応じて、前記電源の電源周波数を前記送電側共鳴コイルと前記受電側共鳴コイルの共鳴周波数に近づくように調整する制御信号を生成する周波数調整部を備え、
前記受電側装置の制御部は、前記制御信号を前記送信データとして前記送電側装置に送信する構成であり、
前記送電側装置は、前記復調部で復元された前記送信データから前記制御信号を検出し、前記電源の電源周波数を前記制御信号に従って調整する構成である
ことを特徴とする共鳴型無線電力伝送装置。
In the resonance type wireless power transmission device according to claim 1,
The power receiving device includes a frequency adjustment unit that generates a control signal for adjusting a power supply frequency of the power supply so as to approach a resonance frequency of the power transmission resonance coil and the power reception resonance coil according to a power reception state of the power. Prepared,
The control unit of the power receiving side device is configured to transmit the control signal to the power transmission side device as the transmission data ,
The resonance type wireless power transmission device, wherein the power transmission side device is configured to detect the control signal from the transmission data restored by the demodulation unit and adjust a power supply frequency of the power source according to the control signal. .
JP2010199727A 2010-09-07 2010-09-07 Resonant type wireless power transmission device Expired - Fee Related JP5456625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010199727A JP5456625B2 (en) 2010-09-07 2010-09-07 Resonant type wireless power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010199727A JP5456625B2 (en) 2010-09-07 2010-09-07 Resonant type wireless power transmission device

Publications (2)

Publication Number Publication Date
JP2012060731A JP2012060731A (en) 2012-03-22
JP5456625B2 true JP5456625B2 (en) 2014-04-02

Family

ID=46057181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010199727A Expired - Fee Related JP5456625B2 (en) 2010-09-07 2010-09-07 Resonant type wireless power transmission device

Country Status (1)

Country Link
JP (1) JP5456625B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11757490B2 (en) 2018-08-02 2023-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V Data transmission from a user terminal to another apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5780894B2 (en) 2011-09-16 2015-09-16 株式会社半導体エネルギー研究所 Contactless power supply system
US9502920B2 (en) 2011-11-16 2016-11-22 Semiconductor Energy Laboratory Co., Ltd. Power receiving device, power transmission device, and power feeding system
US9246357B2 (en) 2011-12-07 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Contactless power feeding system
TWI566508B (en) 2011-12-16 2017-01-11 半導體能源研究所股份有限公司 Dc-dc converter, power receiving device, and power feeding system
US9847675B2 (en) 2011-12-16 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and power feeding system
US9641223B2 (en) 2012-03-26 2017-05-02 Semiconductor Enegry Laboratory Co., Ltd. Power receiving device and power feeding system
JP5865822B2 (en) * 2012-04-17 2016-02-17 日東電工株式会社 Method for forming magnetic field space
JP6200167B2 (en) * 2013-02-27 2017-09-20 デクセリアルズ株式会社 Power receiving device, received power adjusting method, received power adjusting program, and semiconductor device
WO2015111601A1 (en) * 2014-01-27 2015-07-30 株式会社村田製作所 Power transmission device, and power transmission system
KR101896944B1 (en) * 2014-09-30 2018-10-31 엘지이노텍 주식회사 Wireless power receiving device and power control method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570086A (en) * 1992-02-18 1996-10-29 Citizen Watch Co., Ltd. Data carrier system
JP4453741B2 (en) * 2007-10-25 2010-04-21 トヨタ自動車株式会社 Electric vehicle and vehicle power supply device
JP2010104159A (en) * 2008-10-24 2010-05-06 Murata Mfg Co Ltd Power receiving terminal and contactless power transmission system
JP5244578B2 (en) * 2008-12-24 2013-07-24 株式会社日立製作所 Non-contact power transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11757490B2 (en) 2018-08-02 2023-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V Data transmission from a user terminal to another apparatus

Also Published As

Publication number Publication date
JP2012060731A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5456625B2 (en) Resonant type wireless power transmission device
JP5395018B2 (en) Resonant type wireless power transmission device
KR101667725B1 (en) Wireless power transmitter and method for controlling the same
KR101708312B1 (en) Wireless power transfer and receive method, apparatus and system
US10097041B2 (en) Wireless power transmission device and control method therefor
KR102212032B1 (en) Wireless power transfer apparatus and system
JP6591851B2 (en) Wireless power transfer apparatus and method
EP2680457B1 (en) NFC device with PLL controlled active load modulation
KR101604310B1 (en) Wireless power transfer method, apparatus and system
KR101882273B1 (en) Method and apparatus for wireless power reception and method and apparatus for wireless power transmission
US20100171369A1 (en) Communication across an inductive link with a dynamic load
KR101750870B1 (en) Wireless power transfer method, apparatus and system
KR20150109722A (en) Method and apparatus for transmitting power wirelessly
KR20140007273A (en) Wireless power transfer method, apparatus and system
KR20170031094A (en) Wireless power transfer method, apparatus and system
CN103053093A (en) Systems and methods of wireless power transfer with interference detection
US11431198B2 (en) Wireless charging device, a receiver device, and an associated method thereof
US20190089571A1 (en) Adaptive Backscatter Modulation
EP3618226B1 (en) Wireless power maximum efficiency tracking by system control
JP5461340B2 (en) Resonant type wireless power transmission device
KR102312096B1 (en) Wireless power transfer method, apparatus and system
JP2010284066A (en) Communication device, communication terminal and communication system
CN104205550B (en) Wireless energy transmission system
KR20160086685A (en) Wireless power transfer method, apparatus and system
KR20230113930A (en) Apparatus and method for transmitting power wirelessly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees