JP5413292B2 - Corrosion accelerated test method for heavy anti-corrosion coated steel - Google Patents

Corrosion accelerated test method for heavy anti-corrosion coated steel Download PDF

Info

Publication number
JP5413292B2
JP5413292B2 JP2010099282A JP2010099282A JP5413292B2 JP 5413292 B2 JP5413292 B2 JP 5413292B2 JP 2010099282 A JP2010099282 A JP 2010099282A JP 2010099282 A JP2010099282 A JP 2010099282A JP 5413292 B2 JP5413292 B2 JP 5413292B2
Authority
JP
Japan
Prior art keywords
corrosion
test
rate
steel
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010099282A
Other languages
Japanese (ja)
Other versions
JP2011227004A (en
Inventor
慶一郎 岸
正次 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010099282A priority Critical patent/JP5413292B2/en
Publication of JP2011227004A publication Critical patent/JP2011227004A/en
Application granted granted Critical
Publication of JP5413292B2 publication Critical patent/JP5413292B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、海洋や河川などの厳しい腐食環境に用いられる重防食被覆鋼材の腐食促進試験方法に関する。   The present invention relates to a corrosion acceleration test method for heavy anticorrosion coated steel materials used in severe corrosive environments such as the ocean and rivers.

河川や海洋などの厳しい腐食環境にさらされる港湾鋼構造物の防食は、港湾構造物が配置される環境によって異なっている。港湾構造物における海中部に配置される部位は電気防食がなされ、干満帯、飛沫帯に配置される部位についてはポリウレタンやポリエチレンなどの重防食が行われる。
このような港湾鋼構造物には20年から50年の耐久性が求められるため、腐食予測に基づいた耐久性の評価をする必要がある。特に、近年ライフサイクルコスト(LCC)を考慮した港湾構造物の設計、維持管理方法が求められており、腐食予測に基づいた重防食被覆鋼材の耐久性評価方法の確立が必要とされている。
Corrosion protection of harbor steel structures exposed to severe corrosive environments such as rivers and oceans varies depending on the environment in which the harbor structures are arranged. The parts arranged in the sea part of the harbor structure are subjected to anticorrosion, and the parts arranged in the tidal and splash zones are subjected to heavy corrosion prevention such as polyurethane and polyethylene.
Since such harbor steel structures are required to have a durability of 20 to 50 years, it is necessary to evaluate the durability based on corrosion prediction. In particular, in recent years, there has been a demand for design and maintenance methods for harbor structures that take into account life cycle costs (LCC), and it is necessary to establish a method for evaluating the durability of heavy anticorrosion coated steel materials based on corrosion prediction.

鋼構造物の耐久性を評価するための鋼材の寿命予測方法としては、対象となる実構造物又はその実構造物を模擬した構造物における1以上の部位で環境因子の値を測定し、環境因子と腐食量との関係と、その環境因子の測定値とに基づき、腐食量と暴露時間との関係を示すデータを求め、そのデータに基づいて腐食の進行を予測するようにした表面処理鋼材の寿命予測方法が提案されている(例えば、特許文献1参照)。
また、実構造において長時間使用されてきた腐食速度が既知の2種以上の金属の腐食速度を基準に、実環境・実構造体において耐食性が未知な金属(めっき、拡散層、塗膜、有機皮膜、無機皮膜、有機無機複合皮膜などの被覆層を含む)について、短期間の腐食促進試験により実環境・実構造体における未知な金属の腐食速度および耐食時間を精度よく推定することを可能とした金属および被覆金属板の耐食性予測方法が提案されている(例えば、特許文献2参照)。
As a method for predicting the life of steel materials for evaluating the durability of steel structures, environmental factor values are measured at one or more sites in the target actual structure or a structure simulating the actual structure. Based on the relationship between the amount of corrosion and the amount of corrosion and the measured values of the environmental factors, data showing the relationship between the amount of corrosion and the exposure time is obtained, and the progress of corrosion is predicted based on that data. A life prediction method has been proposed (see, for example, Patent Document 1).
In addition, based on the corrosion rates of two or more metals with known corrosion rates that have been used for a long time in the actual structure, the metal (plating, diffusion layer, coating, organic It is possible to accurately estimate the corrosion rate and anti-corrosion time of unknown metals in real environments and real structures by short-term corrosion acceleration tests for coatings, inorganic coatings, organic-inorganic composite coatings, etc. A method for predicting the corrosion resistance of a metal and a coated metal plate has been proposed (see, for example, Patent Document 2).

特開2002−318227号公報JP 2002-318227 A 特開2006−234802号公報JP 2006-234802 A

重防食被覆鋼材に対する腐食の進展の形態は、被覆の端部から腐食が徐々に被覆層下へ進展し、また被覆残存部では腐食が生じずに被覆剥離部でのみ腐食が生じるという特殊な腐食進展形態を示す。
しかしながら、特許文献1に開示されたものは、鋼材の全面で腐食が発生することを前提としており、重防食被覆鋼材のように被覆の端部から腐食が進展する場合には適用できない。
また、特許文献2に開示されたものは、被覆が消失した後に鋼材が全面で腐食することを前提としており、重防食被覆鋼材のように被覆残存部では腐食が生じずに被覆剥離部でのみ腐食が生じる場合には適用できない。
The form of corrosion development for heavy anti-corrosion coated steel is a special corrosion in which the corrosion gradually progresses from the edge of the coating to the bottom of the coating layer, and does not occur in the remaining coating, but only in the coating peeling area. Indicates the form of progress.
However, what was disclosed in Patent Document 1 is based on the premise that corrosion occurs on the entire surface of the steel material, and cannot be applied to the case where the corrosion progresses from the end portion of the coating as in the heavy anticorrosion coated steel material.
In addition, what is disclosed in Patent Document 2 is based on the premise that the steel material corrodes on the entire surface after the coating disappears, and no corrosion occurs in the coating remaining portion as in the heavy anticorrosion coated steel material, and only in the coating peeling portion. Not applicable when corrosion occurs.

このように、重防食被覆鋼材のように特殊な腐食進展形態を生ずるものについて、特殊な腐食のメカニズムを考慮して正確な腐食予測や寿命予測をできる従来技術は存在しない。
重防食被覆鋼材について正確な腐食予測等ができないのは、重防食被覆鋼材のように被覆端部から腐食が進展する腐食進展形態を再現する腐食促進試験方法が確立されていないことに起因しており、このような重防食被覆鋼材についての腐食促進試験方法の開発が望まれている。
As described above, there is no conventional technique capable of accurately predicting corrosion or predicting the life of a steel having a special corrosion growth form such as a heavy anti-corrosion coated steel material in consideration of a special corrosion mechanism.
The reason why it is not possible to accurately predict the corrosion of heavy anti-corrosion coated steel is due to the fact that there is no established corrosion acceleration test method that reproduces the form of corrosion development in which corrosion proceeds from the end of the coating like heavy anti-corrosion coated steel. Therefore, development of a corrosion acceleration test method for such heavy anticorrosion coated steel materials is desired.

本発明は係る課題を解決するためになされたものであり、重防食被覆鋼材についてその腐食のメカニズムを考慮して短期間で正確に腐食予測をするための技術を提供することを目的としている。   The present invention has been made in order to solve such problems, and an object of the present invention is to provide a technique for accurately predicting corrosion in a short period of time in consideration of the corrosion mechanism of a heavy anticorrosion coated steel material.

本発明者らは、上記の課題を解決するため重防食被覆鋼材の腐食形態を再現する腐食促進試験方法の検討を行った。
図1は、重防食被覆鋼材の一例である重防食被覆を行った鋼矢板の継手付近の断面の腐食進行の様子を示す模式図である。
重防食被覆鋼材は、図1に示すように、継手1の近傍に重防食被覆3の被覆端部5が存在し、被覆端部5から継手側に被覆のない鋼材露出部7が存在し、そのさらに先端側が継手内部9となる。
継手1と継手1が組み合っている継手内部9は、水や酸素が浸入しにくく、腐食は抑制される。したがって、重防食被覆鋼材の腐食は、鋼材露出部7および、被覆端部5からの被覆の剥離に伴い被覆層下で生じる。図1の例では、被覆端部5から被覆層下に距離Sだけ錆が浸入している状態である。
In order to solve the above-mentioned problems, the present inventors have studied a corrosion acceleration test method for reproducing the corrosion form of the heavy anticorrosion coated steel material.
FIG. 1 is a schematic view showing a state of progress of corrosion in a cross section near a joint of a steel sheet pile subjected to a heavy anticorrosion coating that is an example of a heavy anticorrosion coated steel material.
As shown in FIG. 1, the heavy-duty coated steel material has a coated end portion 5 of the heavy-duty coated coating 3 in the vicinity of the joint 1, and an uncoated steel material exposed portion 7 exists from the coated end portion 5 to the joint side. Furthermore, the tip side is the inside 9 of the joint.
The joint interior 9 where the joint 1 and the joint 1 are combined is difficult for water and oxygen to enter, and corrosion is suppressed. Therefore, the corrosion of the heavy anticorrosion coated steel material occurs under the coating layer with the peeling of the coating from the steel material exposed portion 7 and the coated end portion 5. In the example of FIG. 1, rust has entered the distance S from the coating end 5 under the coating layer.

発明者は、上記のような重防食被覆鋼材について、鋼材露出部7および被覆層下の腐食量と腐食時間との関係を調査した。被覆層下としては、被覆端部5から5mm、10mm、15mmの3箇所で調査した。
調査の結果が図2のグラフに示されている。図2のグラフでは、縦軸が腐食量(mm)であり、横軸が各位置での腐食開始からの経過時間(day)(試験期間−腐食開始時間)である。なお、期間については 365day=1yとして換算する。
図2に示すように、鋼材露出部7では腐食がすぐに進行するが、被覆層下では徐々に腐食が開始され、また、腐食速度は鋼材露出部7で最も大きく、被覆層下では3箇所ともに鋼材露出部の1/2程度であることが判明した。
The inventor investigated the relationship between the corrosion amount of the steel material exposed portion 7 and the coating layer and the corrosion time for the heavy anticorrosion coated steel material as described above. As the coating layer, the investigation was performed at three locations of 5 mm, 10 mm, and 15 mm from the coated end portion 5.
The results of the investigation are shown in the graph of FIG. In the graph of FIG. 2, the vertical axis represents the corrosion amount (mm), and the horizontal axis represents the elapsed time (day) from the start of corrosion at each position (test period—corrosion start time). In addition, about a period, it converts as 365day = 1y.
As shown in FIG. 2, the corrosion immediately proceeds in the steel exposed portion 7, but gradually begins to corrode under the coating layer, and the corrosion rate is greatest at the steel exposed portion 7, and three locations under the coating layer. Both were found to be about 1/2 of the exposed steel.

上記の結果から、発明者は重防食被覆鋼材の(1)鋼材露出部腐食速度、(2)被覆層下への錆浸入速度を腐食劣化の代表的な指標とし、実環境におけるこれら(1)(2)の速度比を保ったまま、それぞれを促進する試験条件を設定することで、的確な腐食促進試験ができるとの知見を得た。
実環境での鋼材露出部腐食速度をamm/y、被覆層下への錆浸入速度をbmm/yとし、腐食促進試験の鋼材露出部腐食速度をa’mm/y、被覆層下への錆浸入速度b’mm/yとする。鋼材露出部腐食速度に着目するとa’/aが促進倍率となり、錆浸入速度に着目するとb’/bが促進倍率となる。a’/a=b’/b、つまりb’×a/(b×a’)=1.0のとき実環境での鋼材露出部腐食速度と錆浸入速度との比を保ったまま、それぞれを促進していることとなり、このようは腐食促進試験を行うことで実環境に即した試験ができるのである。
From the above results, the inventor used (1) the corrosion rate of the steel exposed portion of the heavy anticorrosion coated steel material, and (2) the rust penetration rate under the coating layer as a representative index of corrosion degradation. It was found that an accurate corrosion acceleration test can be performed by setting test conditions for accelerating each while maintaining the speed ratio of (2).
In the actual environment, the corrosion rate of the exposed steel part is amm / y, the rust penetration rate under the coating layer is bmm / y, the corrosion rate of the exposed steel part in the corrosion acceleration test is a'mm / y, and the rust under the coating layer The penetration speed is b'mm / y. Focusing on the corrosion rate of the exposed steel part, a ′ / a becomes the acceleration factor, and focusing on the rust penetration rate, b ′ / b becomes the acceleration factor. When a ′ / a = b ′ / b, that is, b ′ × a / (b × a ′) = 1.0, the ratio of the corrosion rate of the exposed steel part and the rust penetration rate in the actual environment is maintained, respectively. In this way, it is possible to perform a test in accordance with the actual environment by performing a corrosion acceleration test.

もっとも、b’×a/(b×a’)=1.0となることは稀であり、一般的にはb’×a/(b×a’)の値が1.0から±の方向にずれる。そこで、実際の腐食促進試験において、b’×a/(b×a’)の値の1.0からのずれがどの程度であれば、腐食促進試験として有用であるかについても検討した。
図3は、この検討に用いた重防食被覆鋼材の端部付近の腐食後断面のモデルである。
However, it is rare that b ′ × a / (b × a ′) = 1.0, and in general, the value of b ′ × a / (b × a ′) is in the direction from 1.0 to ±. Sneak away. Therefore, in an actual corrosion acceleration test, the extent of deviation of the value of b ′ × a / (b × a ′) from 1.0 was examined as to whether it was useful as a corrosion acceleration test.
FIG. 3 is a model of a post-corrosion cross section in the vicinity of the end portion of the heavy anticorrosion coated steel material used in this study.

モデルの条件は、鋼材露出部腐食速度を0.2mm/y、錆浸入速度を5mm/y、被覆層下腐食速度を0.1mm/y、10年後とした。重防食被覆鋼材の継手近傍の鋼材露出部の長さは、3〜10mm程度存在するが、このモデルでは5mmとした。
この10年後の断面モデルにおいて鋼材露出部の腐食量は0.2mm×10=2mmであり、鋼材露出部の腐食断面積は2mm×5mm=10mmとなる。また、被覆層端部の腐食量は、0.1×10=1mmであり、10年後に腐食が発生している箇所は被覆層端部から5mm×10=50mmとなっているので、被覆層下における腐食断面積は三角形の面積として求められ、1mm×50mm×1/2=25mmとなる。したがって、鋼材露出部及び被覆層下全体での腐食断面積は、10mm+25mm=35mmとなる。
The model conditions were a steel material exposed portion corrosion rate of 0.2 mm / y, a rust intrusion rate of 5 mm / y, and a sublayer corrosion rate of 0.1 mm / y after 10 years. Although the length of the steel exposed portion in the vicinity of the joint of the heavy anticorrosion coated steel material is about 3 to 10 mm, it is 5 mm in this model.
In this cross-sectional model after 10 years, the corrosion amount of the steel exposed portion is 0.2 mm × 10 = 2 mm, and the corrosion cross-sectional area of the steel exposed portion is 2 mm × 5 mm = 10 mm 2 . Further, the amount of corrosion at the end of the coating layer is 0.1 × 10 = 1 mm, and the portion where corrosion has occurred after 10 years is 5 mm × 10 = 50 mm from the end of the coating layer. The lower corrosion cross-sectional area is obtained as a triangular area and is 1 mm × 50 mm × 1/2 = 25 mm 2 . Therefore, the corrosion cross-sectional area in the steel material exposed portion and the entire area under the coating layer is 10 mm 2 +25 mm 2 = 35 mm 2 .

b’×a/(b×a’)が1.0からずれた場合、図3に示した10年後の腐食後断面モデルにおける腐食断面積にどの程度の誤差が生ずるかを求めた。具体的には、鋼材露出部腐食量を2mmに固定し、b’×a/(b×a’)が1.1の場合、錆浸入距離を1.1倍にし、b’×a/(b×a’)が0.9の場合は錆浸入距離を0.9倍にしたものである。
図4は、b’×a/(b×a’)の1.0からのずれと相対誤差との関係を示すグラフであり、縦軸が相対誤差(%)であり、横軸がb’×a/(b×a’)の値である。
港湾鋼構造物の耐久性評価は重防食被覆鋼材の断面2次モーメントから求められ、直接腐食断面積から求めるものではないが、腐食断面積を相対誤差30%以下で予測できることは耐久性評価において有用である。
そこで、腐食断面積を相対誤差30%以下で予測できるb’×a/(b×a’)の値を図4のグラフから読み取ると、0.6≦b’×a/(b×a’)≦1.4となる。逆に言えば、0.6≦b’×a/(b×a’)≦1.4のとき、腐食断面積の相対誤差が30%以下となることが分かる。
When b ′ × a / (b × a ′) deviates from 1.0, it was determined how much error occurred in the corrosion cross section in the post-corrosion cross section model after 10 years shown in FIG. Specifically, when the corrosion amount of the exposed steel material is fixed to 2 mm and b ′ × a / (b × a ′) is 1.1, the rust penetration distance is multiplied by 1.1, and b ′ × a / ( When b × a ′) is 0.9, the rust penetration distance is multiplied by 0.9.
FIG. 4 is a graph showing the relationship between the deviation of b ′ × a / (b × a ′) from 1.0 and the relative error, the vertical axis is the relative error (%), and the horizontal axis is b ′. It is a value of * a / (b * a ').
Durability evaluation of harbor steel structures is obtained from the secondary moment of section of heavy corrosion-resistant coated steel, not directly from the corrosion cross section, but it is possible to predict the corrosion cross section with a relative error of 30% or less. Useful.
Therefore, when the value of b ′ × a / (b × a ′) that can predict the corrosion cross section with a relative error of 30% or less is read from the graph of FIG. 4, 0.6 ≦ b ′ × a / (b × a ′). ) ≦ 1.4. Conversely, when 0.6 ≦ b ′ × a / (b × a ′) ≦ 1.4, it can be seen that the relative error of the corrosion cross section is 30% or less.

本発明は以上のような実験に基づいて得られて知見に基づいてなされたものであり、具体的には以下の構成からなるものである。   The present invention has been obtained based on the above-described experiments and based on knowledge, and specifically comprises the following configuration.

(1)本発明に係る重防食被覆鋼材の腐食促進試験方法は、被覆端部をもつ重防食被覆鋼材の腐食促進試験方法であって、重防食被覆鋼材試験片の実環境での暴露試験を行って鋼材露出部の腐食速度amm/y、被覆層下への錆浸入速度bmm/yを求める実環境暴露試験工程と、実環境暴露試験工程で用いたのと同一仕様の試験片を用いて複数種類の試験条件で腐食促進試験を行って鋼材腐食速度a’mm/y、被覆層下への錆浸入速度b’mm/yを求める予備的腐食促進試験工程とを有し、予備的腐食促進試験工程で得られた各試験条件における鋼材腐食速度a’mm/y及び錆浸入速度b’mm/yについてb’×a/(b×a’)を求め、この値が1に最も近い腐食促進試験の試験条件を腐食促進試験条件として決定し、該決定された試験条件を用いて腐食促進試験を行なうことを特徴とするものである。 (1) The corrosion promotion test method for heavy anticorrosion coated steel materials according to the present invention is a corrosion acceleration test method for heavy anticorrosion coated steel materials having a coating end, and is an exposure test in a real environment for heavy anticorrosion coated steel material test pieces. Using test specimens with the same specifications as those used in the actual environment exposure test process and the actual environment exposure test process to determine the corrosion rate amm / y of the exposed steel part and the rust penetration speed under the coating layer bmm / y Pre-corrosion with a preliminary corrosion-acceleration test step for performing corrosion acceleration tests under multiple types of test conditions to determine the steel corrosion rate a'mm / y and the rust penetration rate b'mm / y under the coating layer B ′ × a / (b × a ′) is obtained for the steel material corrosion rate a ′ mm / y and the rust penetration rate b ′ mm / y in each test condition obtained in the accelerated test process, and this value is closest to 1. The test conditions for the corrosion acceleration test are determined as the corrosion acceleration test conditions, and the determined test conditions are determined. It is characterized in carrying out the accelerated corrosion test with.

(2)また、上記(1)に記載のものにおいて、前記腐食促進条件として決定した試験条件における前記b’×a/(b×a’)の値が、0.6≦b’×a/(b×a’)≦1.4を満たすことを特徴とするものである。 (2) Further, in the above (1), the value of b ′ × a / (b × a ′) under the test conditions determined as the corrosion promotion condition is 0.6 ≦ b ′ × a / (B × a ′) ≦ 1.4 is satisfied.

(3)また、上記(1)又は(2)に記載のものにおいて、前記腐食促進試験における試験条件は、塩水噴霧、乾燥および湿潤の過程を含む一連の過程を繰り返すことを特徴とするものである。 (3) Further, in the above (1) or (2), the test conditions in the corrosion acceleration test are characterized by repeating a series of processes including a salt spray, drying and wetting processes. is there.

本発明においては、被覆端部をもつ重防食被覆鋼材の腐食促進試験方法であって、重防食被覆鋼材試験片の実環境での暴露試験を行って鋼材露出部の腐食速度amm/y、被覆層下への錆浸入速度bmm/yを求める実環境暴露試験工程と、実環境暴露試験工程で用いたのと同一仕様の試験片を用いて複数種類の試験条件で腐食促進試験を行って鋼材腐食速度a’mm/y、被覆層下への錆浸入速度b’mm/yを求める予備的腐食促進試験工程とを有し、予備的腐食促進試験工程で得られた各試験条件における鋼材腐食速度a’mm/y及び錆浸入速度b’mm/yについてb’×a/(b×a’)を求め、この値が1に最も近い腐食促進試験の試験条件を腐食促進試験条件として決定し、該決定された試験条件を用いて腐食促進試験を行なうようにしたので、短期間でより正確な重防食被覆鋼材の腐食予測をすることができ、正確な耐久性評価が可能になる。   In the present invention, a corrosion promotion test method for heavy corrosion-resistant coated steel material having a coated end portion, wherein the corrosion rate of the exposed steel material is amm / y by performing an exposure test in a real environment of the heavy corrosion-resistant coated steel specimen. A steel material that has been subjected to a corrosion acceleration test under multiple types of test conditions using a test piece with the same specifications as that used in the actual environment exposure test process and the actual environment exposure test process to determine the rust penetration speed under the layer bmm / y Steel corrosion under each test condition obtained in the preliminary corrosion acceleration test step, which has a corrosion rate a'mm / y and a preliminary corrosion acceleration test step for determining the rust penetration rate b'mm / y under the coating layer B ′ × a / (b × a ′) is obtained for the speed a ′ mm / y and the rust intrusion speed b ′ mm / y, and the test condition of the corrosion acceleration test whose value is closest to 1 is determined as the corrosion acceleration test condition. In order to perform a corrosion promotion test using the determined test conditions Since, it is possible to more accurate corrosion prediction of heavy duty coated steel in a short period of time, it is possible to correct the durability evaluation.

重防食被覆鋼材の一例である重防食被覆を行った鋼矢板の継手付近の断面の腐食進行の様子を示す模式図である。It is a schematic diagram which shows the mode of corrosion progress of the cross section of the joint vicinity of the steel sheet pile which performed the heavy anti-corrosion coating which is an example of a heavy anti-corrosion coating steel material. 重防食被覆鋼材の鋼材露出部および被覆層下の腐食速度を示すグラフである。It is a graph which shows the corrosion rate of the steel-material exposed part of a heavy-duty protection coating steel material, and a coating layer. 重防食被覆鋼材の端部付近の10年後の腐食後断面のモデルである。It is a model of the post-corrosion cross section after 10 years near the end of the heavy-duty coated steel material. 本発明において腐食促進試験条件を決める指標であるb’×a/(b×a’)の値と、腐食後断面モデルにおける腐食断面の相対誤差との関係を示すグラフである。It is a graph which shows the relationship between the value of b'xa / (bxa ') which is a parameter | index which determines a corrosion acceleration test condition in this invention, and the relative error of the corrosion cross section in a cross-section model after corrosion. 本実施の形態における重防食被覆鋼材の腐食促進試験方法における腐食試験条件抽出から本試験実施まで流れを示すフローチャートである。It is a flowchart which shows a flow from the corrosion test condition extraction in the corrosion acceleration test method of the heavy corrosion-resistant coating steel material in this Embodiment to this test implementation. 本実施の形態における重防食被覆鋼材の腐食促進試験と海洋暴露試験における鋼材露出部の腐食速度を示すグラフである。It is a graph which shows the corrosion rate of the steel material exposure part in the corrosion acceleration test of the heavy-duty protection coating steel material in this Embodiment, and a marine exposure test. 本実施の形態における重防食被覆鋼材の腐食促進試験と海洋暴露試験における被覆層下への錆浸入速度を示すグラフである。It is a graph which shows the rust penetration | invasion speed | rate under the coating layer in the corrosion acceleration test of the heavy-duty protection coating steel materials in this Embodiment, and a marine exposure test. 本発明の実施例で用いた重防食被覆鋼材小型試験片の模式図である。It is a schematic diagram of the heavy corrosion-resistant coated steel material small test piece used in the examples of the present invention. 本発明の実施例の予備的腐食促進試験で用いた試験条件の説明図である。It is explanatory drawing of the test conditions used in the preliminary | backup corrosion acceleration | stimulation test of the Example of this invention.

本実施の形態の重防食被覆鋼材の腐食促進試験は、海洋環境で生じる重防食被覆鋼材の劣化形態として、鋼材露出部の腐食速度と被覆層下への錆浸入速度を代表的な評価指標とした。本発明の重防食被覆鋼材の腐食促進試験条件抽出から本試験実施までのフローを図5に基づいて説明する。
本実施の形態に係る腐食促進試験方法は、図5のフローチャートに示されるように、重防食被覆鋼材試験片の実環境である海洋環境で暴露試験を行う海洋暴露試験工程(S1)と、海洋暴露試験工程で用いたのと同様の重防食被覆鋼材試験片を用いて複数種類の試験条件で腐食促進試験を行う予備的腐食促進試験工程(S2)と、複数期間における海洋暴露試験および予備的腐食試験での鋼材露出部の腐食量、錆浸入量を測定する予備的腐食評価工程(S3)と、海洋暴露試験および予備的腐食試験での鋼材露出部の腐食速度、錆浸入速度を算出する腐食速度・錆浸入速度算出工程(S4)と、海洋暴露試験における鋼材露出部の腐食速度amm/y、被覆層下への錆浸入速度bmm/yと、予備的腐食促進試験における複数種類の試験条件で腐食促進試験を行って鋼材腐食速度a’mm/y、被覆層下への錆浸入速度b’mm/yについて0.6≦b’×a/(b×a’)≦1.4となる試験条件を抽出する促進試験条件抽出工程(S5)と、抽出された試験条件のうちでb’×a/(b×a’)の値が1に最も近い試験条件で腐食促進試験を実施する腐食促進試験工程(S6)と、評価をする評価工程(S7)とを備えている。
以下、用語の意味及び各工程を詳細に説明する。
The corrosion promotion test for heavy corrosion-coated steel materials according to the present embodiment is a representative evaluation index of the corrosion rate of the steel material exposed portion and the rust penetration rate under the coating layer as a deterioration mode of the heavy corrosion-coated steel material occurring in the marine environment. did. The flow from the extraction of corrosion accelerated test conditions for the heavy anticorrosion coated steel material of the present invention to the implementation of this test will be described with reference to FIG.
As shown in the flowchart of FIG. 5, the corrosion promotion test method according to the present embodiment includes a marine exposure test step (S1) in which an exposure test is performed in the marine environment, which is the actual environment of the heavy anticorrosion-coated steel material test piece, Preliminary corrosion acceleration test step (S2) for performing corrosion acceleration test under multiple types of test conditions using the same heavy anticorrosion coated steel specimen as used in the exposure test step, and marine exposure test and preliminary Preliminary corrosion evaluation process (S3) to measure the amount of corrosion and rust intrusion of the exposed steel part in the corrosion test, and calculate the corrosion rate and rust infiltration rate of the exposed steel part in the marine exposure test and preliminary corrosion test Corrosion rate / rust intrusion rate calculation step (S4), corrosion rate amm / y of exposed steel in marine exposure test, rust intrusion rate bmm / y under coating layer, and multiple types of tests in preliminary corrosion acceleration test On condition A corrosion acceleration test is performed, and the steel material corrosion rate a ′ mm / y and the rust penetration rate b ′ mm / y below the coating layer are 0.6 ≦ b ′ × a / (b × a ′) ≦ 1.4. The accelerated test condition extraction step (S5) for extracting the test conditions and the corrosion accelerated test is performed under the test conditions in which the value of b ′ × a / (b × a ′) is closest to 1 among the extracted test conditions. A corrosion acceleration test step (S6) and an evaluation step (S7) for evaluation are provided.
Hereinafter, the meaning of each term and each process will be described in detail.

重防食被覆鋼材とは、海洋や河川などの厳しい腐食環境にさらされる港湾などにおけるポリウレタンやポリエチレンなどの有機被覆を施した鋼矢板、鋼管矢板、鋼管杭などである。これら重防食被覆は2mm以上の厚膜であり、鋼材の腐食は被覆の健全部では生じない。腐食は被覆端部近傍の鋼材露出部や被覆の剥離に伴い被覆下で生じる。   Heavy anti-corrosion coated steel materials are steel sheet piles, steel pipe sheet piles, steel pipe piles, etc. that have been coated with organic coatings such as polyurethane and polyethylene in harbors exposed to severe corrosive environments such as the ocean and rivers. These heavy anticorrosion coatings are thick films of 2 mm or more, and the corrosion of steel materials does not occur in the healthy part of the coating. Corrosion occurs under the coating as the exposed steel part near the coating edge and the coating peel off.

<実環境暴露試験工程(S1)>
実環境暴露試験工程(S1)は、複数種の重防食被覆小型試験片を用いた海洋暴露試験を行う工程であり、海洋環境での重防食被覆鋼材の鋼材露出部の腐食速度、錆浸入速度を把握するために行う。
重防食被覆小型試験片の被覆の種類は試験の汎用性を確認するため複数種類で行うのが好ましく、試験の汎用性向上のため3種類以上で行うことがより好ましい。また、各種類ごとに複数枚の試験片を用いて行うのがより好ましい。
重防食被覆小型試験片の形状は、重防食被覆端部および鋼材露出部をもつものを用いる。例えば、100mm角の試験片を用いる場合には、中央部に幅20mm程度の鋼材露出部を設け、他の部分を所定の有機被覆層で覆ったものが一例として挙げられる。
このような重防食被覆小型試験片を海上部、干満帯、飛沫帯などに暴露して腐食進展形態を観察する。暴露試験は、腐食速度を求めるため複数期間で行う必要がある。期間については被覆端部からの剥離と被覆層下の腐食が確認できる程度の期間が必要であり、例えば1年から3年程度である。
<Real environment exposure test process (S1)>
The actual environment exposure test process (S1) is a process of conducting an ocean exposure test using multiple types of small specimens of heavy anticorrosion coating, and the corrosion rate and rust penetration rate of the exposed steel parts of the heavy anticorrosion coating steel in the marine environment. Do to figure out.
In order to confirm the versatility of the test, it is preferable to perform a plurality of types of coating on the heavy anticorrosion-coated small test piece, and it is more preferable to perform the coating with three or more types to improve the versatility of the test. It is more preferable to use a plurality of test pieces for each type.
As the shape of the heavy corrosion-resistant coated small test piece, one having a heavy corrosion-resistant coated end portion and a steel exposed portion is used. For example, when a 100 mm square test piece is used, a steel material exposed portion having a width of about 20 mm is provided at the center portion and the other portion is covered with a predetermined organic coating layer.
Such a corrosion-proof coated small test piece is exposed to the sea, tidal zone, splash zone, etc., and the corrosion progressing form is observed. The exposure test needs to be conducted over multiple periods to determine the corrosion rate. About a period, the period of the grade which can confirm peeling from a coating edge part and corrosion under a coating layer is required, for example, is about 1 to 3 years.

<予備的腐食促進試験工程(S2)>
予備的腐食促進試験工程(S2)は、(S1)と同様の重防食被覆小型試験片を用いて腐食促進試験を予備的に行う工程であり、海洋環境での重防食被覆鋼材の鋼材露出部の腐食速度、錆浸入速度と等しい比で促進する試験条件を抽出するために行う予備的試験である。
腐食促進試験の方法は特に限定されるものではないが塩水、乾湿繰返しが与えられるサイクル試験が実環境を模擬する点で好ましい。腐食促進試験条件決定のため、サイクルのパターンや各過程の比率を変えるなど複数の条件で行うことが望ましく、比較のため3種類以上で行うことが望ましい。
腐食促進試験は腐食速度を求めるため複数期間で行う必要がある。試験期間は特に限定されるものではないが、端部からの剥離と被覆層下の腐食が確認できる程度の期間が必要であり、例えば1ヶ月から6ヶ月程度である。
<Preliminary corrosion acceleration test step (S2)>
Preliminary corrosion acceleration test step (S2) is a step in which a corrosion acceleration test is preliminarily performed using the same heavy anticorrosion coated small test piece as in (S1), and the steel exposed portion of the heavy anticorrosion coated steel material in the marine environment. This is a preliminary test to extract test conditions that are accelerated at a ratio equal to the corrosion rate and rust penetration rate.
The method of the corrosion acceleration test is not particularly limited, but a cycle test in which salt water and wet / dry cycles are given is preferable in that it simulates the actual environment. In order to determine the corrosion acceleration test conditions, it is desirable to carry out under a plurality of conditions such as changing the cycle pattern and the ratio of each process, and it is desirable to carry out at least three types for comparison.
The accelerated corrosion test needs to be performed in multiple periods to determine the corrosion rate. The test period is not particularly limited, but a period of time is required so that peeling from the edge and corrosion under the coating layer can be confirmed, for example, about 1 to 6 months.

<予備的腐食評価工程(S3)>
予備的腐食評価工程(S3)は、海洋暴露試験および予備的腐食促進試験における鋼材露出部腐食量、錆浸入距離を測定する工程である。
鋼材の腐食量は、試験後に重防食被覆や腐食生成物などを取り除き、ノギスやレーザー変位計などを用いて板厚を測定し、この測定値と試験前の重防食被覆を施す前の板厚との差から求めることが出来る。
また、錆浸入距離は、試験前に試験片端部から被覆端部の距離を測定し、試験後に重防食被覆を取り除いた後、試験前に測定した被覆の端部位置から錆浸入位置までの距離を直接または写真撮影後写真上でノギスなどを用いて測定することが出来る。
腐食量及び錆浸入距離のいずれの計測においても、複数箇所において計測するのが好ましい。
<Preliminary corrosion evaluation process (S3)>
The preliminary corrosion evaluation step (S3) is a step of measuring the steel material exposed portion corrosion amount and the rust penetration distance in the marine exposure test and the preliminary corrosion acceleration test.
The amount of corrosion of steel is determined by removing the heavy protection coating and corrosion products after the test, measuring the thickness using a caliper, laser displacement meter, etc., and the thickness before applying the heavy corrosion protection coating before the test. It can be obtained from the difference between
Also, the rust penetration distance is the distance from the edge position of the coating measured before the test to the rust penetration position after measuring the distance from the edge of the test piece to the coating edge before the test, removing the heavy anti-corrosion coating after the test. Can be measured directly or after taking a photograph using a caliper.
In any measurement of the corrosion amount and the rust penetration distance, it is preferable to measure at a plurality of locations.

<腐食速度・錆浸入速度算出工程(S4)>
腐食速度・錆浸入速度算出工程(S4)は、(S3)の測定結果から海洋暴露試験および腐食促進試験での鋼材露出部における腐食速度、錆浸入速度を算出する工程である。海洋暴露試験結果も腐食促進試験結果も同様に評価する。
鋼材露出部の腐食速度の求め方の例を図6に、被覆層下への錆浸入速度求め方の例を図7に、それぞれ示す。図6に示すグラフの縦軸は鋼材露出部の腐食量(mm)を示し、横軸は試験期間(day)を示している。また、図7に示すグラフの縦軸は錆侵入距離(mm)を示し、横軸は試験期間(day)を示している。
鋼材露出部腐食速度は、(S3)で測定した複数期間での鋼材露出部腐食量の平均値(同じ仕様の試験片複数枚の平均、複数箇所の測定値の平均)を図6のグラフ上にプロットし、最小二乗法によって原点を通る回帰直線を求め、その傾きを腐食速度とする。
錆浸入速度についても同様に、(S3)で測定した複数期間での錆浸入距離の平均値を図7のグラフ上にプロットし、最小二乗法によって原点を通る回帰直線を求め、その傾きをを錆浸入速度とする。
<Corrosion rate / rust intrusion rate calculation step (S4)>
The corrosion rate / rust intrusion rate calculating step (S4) is a step of calculating the corrosion rate and the rust intrusion rate at the exposed steel part in the marine exposure test and the corrosion acceleration test from the measurement result of (S3). The marine exposure test results and corrosion acceleration test results are evaluated in the same way.
FIG. 6 shows an example of how to obtain the corrosion rate of the exposed steel part, and FIG. 7 shows an example of how to obtain the rust penetration rate under the coating layer. The vertical axis of the graph shown in FIG. 6 represents the corrosion amount (mm) of the exposed steel material, and the horizontal axis represents the test period (day). Moreover, the vertical axis | shaft of the graph shown in FIG. 7 shows the rust penetration distance (mm), and the horizontal axis has shown the test period (day).
The steel exposed portion corrosion rate is the average value of the exposed amount of steel exposed portion corrosion over a plurality of periods measured in (S3) (average of multiple test pieces with the same specification, average of measured values at multiple locations) on the graph of FIG. The regression line passing through the origin is obtained by the least square method, and the slope is taken as the corrosion rate.
Similarly, for the rust intrusion rate, the average value of the rust intrusion distances measured in (S3) over a plurality of periods is plotted on the graph of FIG. 7, and a regression line passing through the origin is obtained by the least square method, and the slope is determined. Rust penetration speed.

<促進試験条件抽出工程(S5)>
促進試験条件抽出工程(S5)は、(S4)で求めた複数種の海洋暴露試験と腐食促進試験での鋼材露出部腐食速度、錆浸入速度を比較し、腐食促進試験条件を抽出する工程である。具体的には以下のように行う。
海洋暴露試験における鋼材露出部の腐食速度amm/y、被覆層下への錆浸入速度bmm/yと、予備的腐食促進試験における複数種類の試験条件で腐食促進試験を行って鋼材腐食速度a’mm/y、被覆層下への錆浸入速度b’mm/yについてb’×a/(b×a’)を計算する。
b’×a/(b×a’)=1.0の場合、腐食促進試験の鋼材露出部腐食速度と錆浸入速度との比が海洋暴露試験のものと等しいことを示す。したがって、抽出する試験条件は、b’×a/(b×a’)の値が最も1に近いものとする。
<Accelerated test condition extraction step (S5)>
The accelerated test condition extraction step (S5) is a step of extracting the corrosion accelerated test conditions by comparing the corrosion rate and rust penetration rate of the exposed steel parts in the marine exposure test and the accelerated corrosion test obtained in (S4). is there. Specifically, it is performed as follows.
Corrosion rate a'mm / y in the exposed steel part in the marine exposure test, rust penetration speed under the coating layer bmm / y, and the corrosion rate test a ' b ′ × a / (b × a ′) is calculated for mm / y and the rust penetration speed b ′ mm / y under the coating layer.
When b ′ × a / (b × a ′) = 1.0, it indicates that the ratio between the corrosion rate of the steel exposed portion and the rust penetration rate in the corrosion acceleration test is equal to that in the marine exposure test. Therefore, the test condition to be extracted is such that the value of b ′ × a / (b × a ′) is closest to 1.

なお、抽出する試験条件として、b’×a/(b×a’)の値が最も1に近いという条件に加えて、b’×a/(b×a’)の値が、0.6≦b’×a/(b×a’)≦1.4とするのが好ましい。
0.6≦b’×a/(b×a’)≦1.4である腐食促進試験は、鋼材露出部の腐食量が海洋暴露試験の場合と同等であった場合、腐食断面積の海洋暴露試験での結果との相対誤差が30%以下となり、重防食被覆鋼材の耐久性評価として有用である。
一方、0.6≦b’×a/(b×a’)の値が、0.6未満であったり、1.4より大きかったりする腐食促進試験の場合、腐食断面積が海洋暴露試験における結果と相対誤差で30%より大きくなり、海洋環境における耐久性を評価する腐食促進試験として必ずしも適当とは言えない。
In addition to the condition that the value of b ′ × a / (b × a ′) is closest to 1 as the test condition to be extracted, the value of b ′ × a / (b × a ′) is 0.6. It is preferable that ≦ b ′ × a / (b × a ′) ≦ 1.4.
In the corrosion acceleration test with 0.6 ≦ b ′ × a / (b × a ′) ≦ 1.4, the corrosion amount of the steel exposed portion is the same as that in the ocean exposure test. The relative error from the result of the exposure test is 30% or less, which is useful for evaluating the durability of heavy anticorrosion coated steel materials.
On the other hand, in the case of the corrosion acceleration test in which the value of 0.6 ≦ b ′ × a / (b × a ′) is less than 0.6 or greater than 1.4, the corrosion cross section is the same as that in the marine exposure test. The result and the relative error are larger than 30%, which is not necessarily appropriate as a corrosion acceleration test for evaluating the durability in the marine environment.

また、(S1)、(S2)で用いたいずれの重防食被覆種においても0.6≦b’×a/(b×a’)≦1.4の条件を満たすものを抽出することにより、試験の汎用性を高め新規材料の有用な評価方法として用いることができる。
なお、得られた腐食促進試験における促進倍率は、複数種の試験片における鋼材露出部腐食速度の促進倍率の平均値とする。ここで複数の重防食被覆種でいずれも0.6≦b’×a/(b×a’)≦1.4の条件を満たすものがなかった場合は予備的腐食促進試験工程(S2)の戻り、試験条件を変更し、その後同様に条件抽出工程を行う。
In addition, in any of the heavy anticorrosion coating species used in (S1) and (S2), by extracting those satisfying the condition of 0.6 ≦ b ′ × a / (b × a ′) ≦ 1.4, It can increase the versatility of the test and can be used as a useful evaluation method for new materials.
In addition, the acceleration magnification in the obtained corrosion acceleration test is an average value of the acceleration magnification of the steel material exposed portion corrosion rate in the plurality of types of test pieces. Here, when none of the plurality of heavy anti-corrosion coating types satisfy the condition of 0.6 ≦ b ′ × a / (b × a ′) ≦ 1.4, the preliminary corrosion promotion test step (S2) Return, change the test conditions, and then perform the condition extraction step in the same way.

<腐食促進試験工程(S6)>
腐食促進試験工程(S6)は、評価対象とする重防食被覆小型試験片の腐食促進試験を行う工程である。重防食被覆小型試験片としては、(S1)、(S2)で用いたものと同様の試験片を用いる。また、試験条件は、(S5)で抽出した試験条件とする。
試験期間は腐食速度や錆浸入速度を求めるため複数期間で行う必要があり、被覆端部からの剥離と被覆層下の腐食が確認できる程度の期間が必要であり、例えば1ヶ月から6ヶ月程度である。
<Corrosion promotion test process (S6)>
The corrosion acceleration test step (S6) is a step of performing a corrosion acceleration test on the heavy corrosion-resistant coated small test piece to be evaluated. As the heavy corrosion-resistant coated small test piece, the same test piece as used in (S1) and (S2) is used. The test conditions are the test conditions extracted in (S5).
The test period needs to be performed in multiple periods in order to obtain the corrosion rate and the rust penetration rate, and a period in which peeling from the coating end and corrosion under the coating layer can be confirmed is required. For example, about 1 to 6 months It is.

<腐食評価工程(S7)>
腐食評価工程(S7)は、重防食被覆小型試験片の腐食評価を行う工程である。腐食評価は鋼材露出部の腐食速度、被覆層下への錆浸入速度、被覆層下の腐食速度から行う。
鋼材露出部の腐食速度、被覆層下への錆浸入速度は(S3)、(S4)と同様に求める。また、被覆層下の腐食速度は複数期間での、被覆端部からの距離毎の腐食量の平均値を、図6に示したのと同様にプロットして、最小二乗法によって原点を通る回帰直線をもとめ、その傾きを腐食速度とする。
<Corrosion evaluation process (S7)>
The corrosion evaluation step (S7) is a step of performing corrosion evaluation of the heavy-duty anticorrosion coated small test piece. Corrosion is evaluated from the corrosion rate of the exposed steel material, the rust penetration rate under the coating layer, and the corrosion rate under the coating layer.
The corrosion rate of the exposed steel material and the rust penetration rate under the coating layer are determined in the same manner as (S3) and (S4). Moreover, the corrosion rate under the coating layer is plotted in the same way as shown in FIG. 6 for the average corrosion amount for each distance from the coating end in a plurality of periods, and the regression through the origin by the least square method. Find the straight line and use the slope as the corrosion rate.

以上のように、本実施の形態の腐食促進試験方法によれば、海洋などの実環境で起きる重防食被覆鋼材の腐食形態を正確に再現するものであり、それによって重防食被覆鋼材のより正確な耐久性評価を可能にするものである。   As described above, according to the corrosion acceleration test method of the present embodiment, the corrosion form of the heavy anti-corrosion coated steel material that occurs in an actual environment such as the ocean is accurately reproduced, thereby making it possible to more accurately detect the heavy anti-corrosion coated steel material. This makes it possible to evaluate the durability.

本発明の実施例について以下に説明する。   Examples of the present invention will be described below.

<試験片に用いた鋼板>
海洋暴露試験、腐食促進試験ともに、スチールグリッドブラストにより表面を十点平均粗さで50μm程度にしたサイズ100mm×l00mm×6mmの熱延鋼板(素地鋼材)(JIS SS400)を試験片として用いた
<Steel plate used for specimen>
In both the marine exposure test and the corrosion acceleration test, a hot rolled steel sheet (base steel material) (JIS SS400) of size 100 mm × 100 mm × 6 mm whose surface was made approximately 50 μm in 10-point average roughness by steel grid blasting was used as a test piece.

<板厚測定方法>
レーザー変位計を用いて鋼板の板厚測定を行った。被覆面を上にして、全面を1mm間隔で測定した。測定にあたっては、試験前後で試験片の位置(各測定点)がずれないようにレーザー変位計のステージに専用治具を取り付け、水平方向に対して常に同じ位置で板厚を測定できるようにした。試験後は被覆剥離後に酸洗して錆を完全に除去した後同様に測定し、試験前後での板厚減少量を求めた。
<Thickness measurement method>
The thickness of the steel sheet was measured using a laser displacement meter. The entire surface was measured at 1 mm intervals with the coated surface facing up. In the measurement, a special jig was attached to the stage of the laser displacement meter so that the position (each measurement point) of the test piece did not shift before and after the test, so that the plate thickness could always be measured at the same position in the horizontal direction. . After the test, pickling was performed after the coating was peeled off, and the rust was completely removed.

<重防食被覆>
前記鋼板に以下の3種類の重防食被覆を施した。重防食被覆を施す前に前記鋼板中央部に20mm幅のビニールテープを鋼板表面上端から下端まで張り、鋼板露出部とする箇所を作った。重防食被覆は2種類のポリウレタン被覆と1種類のポリエチレン被覆を行った。
ポリウレタン被覆鋼板(以下、「PU−A」と表記する)は、ポリウレタン樹脂2液硬化タイプのプライマー(第一工業製薬株式会社製「パーマガード331」)を平均膜厚50μmとなるようスプレー塗装し、常温で24時間乾燥後、ポリウレタン樹脂(第一工業製薬株式会社製「パーマガード137」)を3.0mm塗装した。塗装後、常温で7日間で硬化させた。
<Heavy anti-corrosion coating>
The following three types of heavy anticorrosion coatings were applied to the steel plate. Before applying the heavy anti-corrosion coating, a 20 mm wide vinyl tape was stretched from the upper end to the lower end of the steel plate at the center of the steel plate to make a portion to be the exposed portion of the steel plate. The heavy anticorrosion coating was made of two types of polyurethane coating and one type of polyethylene coating.
The polyurethane-coated steel sheet (hereinafter referred to as “PU-A”) is spray-coated with a polyurethane resin two-component curing type primer (“Permguard 331” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) to an average film thickness of 50 μm. After drying at room temperature for 24 hours, 3.0 mm of polyurethane resin (“Permguard 137” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was applied. After coating, it was cured at room temperature for 7 days.

もう一つのポリウレタン被覆鋼板(以下、「PU−B」と表記する)は、エポキシ樹脂2液硬化タイプのプライマー(日本ペイント製U−1001プライマー)をエアレススプレーで平均膜厚50μm塗布し24時間常温で乾燥した。その後ポリウレタン(日本ペイント製U−1001−S1)をエアレススプレーで3.0mm塗布し、7日間養生した。   Another polyurethane-coated steel sheet (hereinafter referred to as “PU-B”) was coated with an epoxy resin two-component curing primer (Nippon Paint U-1001 primer) by airless spraying with an average film thickness of 50 μm for 24 hours at room temperature. And dried. Thereafter, polyurethane (U-1001-S1 manufactured by Nippon Paint Co., Ltd.) was applied by 3.0 mm with an airless spray and cured for 7 days.

ポリエチレン被覆鋼板(以下、「PE」と表記する)は、エポキシ樹脂2液硬化タイプのプライマー(ジャパンエポキシレジン製JER828:B002=10:5)をガラス棒を用いて50μm塗布し、120℃×8.5分で予備硬化させた。次に0.3mm接着性ポリエチレン(三井化学製、NE060)と1.9mmポリエチレン(日本ポリケム製)を積層し、ホットプレスで180℃×10分間、0.1Mpaの圧下で圧着し、その後空冷した。   A polyethylene-coated steel sheet (hereinafter referred to as “PE”) was coated with 50 μm of epoxy resin two-component curing type primer (Japan Epoxy Resin JER828: B002 = 10: 5) using a glass rod, 120 ° C. × 8 Pre-cured in 5 minutes. Next, 0.3 mm adhesive polyethylene (manufactured by Mitsui Chemicals, NE060) and 1.9 mm polyethylene (manufactured by Nippon Polychem) were laminated, pressed with a hot press at 180 ° C. for 10 minutes under a pressure of 0.1 Mpa, and then air-cooled. .

前記重防食被覆を施した後、鋼板表面中央部20mm幅で張ったビニールテープを鋼材表面から剥がすため、20mm幅のビニールテープ端部上の重防食被覆をカッターで切り、重防食被覆を剥がし、鋼材露出部と被覆端部を作成した。作成した試験片の模式図を図8に示す。鋼材露出部作成後、重防食被覆端部の鋼板端面からの距離をノギスで測定し、後述する錆浸入距離測定に用いた。   After the heavy anticorrosion coating is applied, in order to peel off the vinyl tape stretched at the center of the steel plate surface 20 mm wide from the steel surface, the heavy anticorrosion coating on the end of the 20 mm wide vinyl tape is cut with a cutter, and the heavy anticorrosion coating is removed. A steel exposed part and a coated end part were prepared. A schematic diagram of the prepared test piece is shown in FIG. After the steel exposed portion was created, the distance from the steel plate end face of the heavy anticorrosion coating end was measured with a caliper and used for rust penetration distance measurement described later.

<海洋暴露試験>
海洋暴露試験として前記重防食被覆鋼板小型試験片を千葉県東京湾内の暴露試験場内に暴露した。1年、2年後、3年後に回収した。
<Marine exposure test>
As a marine exposure test, the heavy-duty anti-corrosion coated steel sheet small test piece was exposed to an exposure test site in Tokyo Bay, Chiba Prefecture. Collected after 1 year, 2 years and 3 years.

<予備的腐食促進試験>
腐食促進試験として、塩水噴霧試験および乾湿繰り返し試験を行った。試験条件は、以下の表1に示す6条件で行った。各試験の試験フローを図9(a)〜(f)に示す。
<Preliminary corrosion acceleration test>
As a corrosion acceleration test, a salt spray test and a wet and dry test were performed. The test conditions were 6 conditions shown in Table 1 below. The test flow of each test is shown in FIGS.

Figure 0005413292
Figure 0005413292

試験条件1は、図9(a)に示すように、常時の塩水噴霧試験であり、JIS Z2371に従い5%NaCl水溶液を用い、雰囲気温度35℃で行った。
試験条件2は、図9(b)に示すように、JASO M609−91に従い塩水噴霧過程を2時間行い、次に乾燥過程を4時間行い、その後湿潤過程を2時間行い、合計8時間を1サイクルとし、これを後述する試験期間だけ複数サイクル繰り返した。塩水噴霧過程では5%NaCl水溶液を用い、雰囲気温度35℃で試験を行った。乾燥過程では試験槽内を雰囲気温度60℃、相対湿度40%以下に維持し、湿潤過程では同様に雰囲気温度50℃、相対湿度65%以上に維持した。
Test condition 1 was a normal salt spray test as shown in FIG. 9 (a), and was performed at an ambient temperature of 35 ° C. using a 5% NaCl aqueous solution in accordance with JIS Z2371.
As shown in FIG. 9 (b), the test condition 2 is a salt spray process for 2 hours according to JASO M609-91, followed by a drying process for 4 hours, and then a wetting process for 2 hours, for a total of 8 hours. This was repeated for a plurality of cycles during the test period described later. In the salt spray process, a 5% NaCl aqueous solution was used and the test was performed at an ambient temperature of 35 ° C. In the drying process, the inside of the test tank was maintained at an atmospheric temperature of 60 ° C. and a relative humidity of 40% or lower, and similarly in the wet process, the atmospheric temperature was maintained at 50 ° C. and the relative humidity of 65% or higher.

試験条件3〜5は、試験条件2の各過程の条件は同じとし、サイクルの時間を変更したものである。試験条件3は、図9(c)に示すように、塩水噴霧過程を3時間行い、次に乾燥過程を4時間行い、その後湿潤過程を1時間行い、合計8時間を1サイクルとした。
試験条件4は、図9(d)に示すように、塩水噴霧過程を2.5時間行い、次に乾燥過程を3時間行い、その後湿潤過程を2.5時間行い、合計8時間を1サイクルとした。
試験条件5は、図9(e)に示すように、塩水噴霧過程を1.5時間行い、次に乾燥過程を3時間行い、その後湿潤過程を1.5時間行い、合計6時間を1サイクルとした。これを後述する試験期間だけ複数サイクル繰り返した。
試験条件6は、図9(f)に示すように、各過程の条件は試験条件2と同じとし、サイクルのパターンを変更した。すなわち、塩水噴霧過程を2時間行い、次に乾燥過程を2時間行い、次に湿潤過程を2時間行い、その後乾燥過程を2時間行い、合計8時間を1サイクルとした。
以上の試験条件1〜6を、下記の試験期間だけ複数サイクル繰り返した。
試験期間は60日、90日、120日の3期間で実施した。
Test conditions 3 to 5 are the same in the conditions of each process of test condition 2 and the cycle time is changed. In test condition 3, as shown in FIG. 9 (c), the salt spray process was performed for 3 hours, then the drying process was performed for 4 hours, and then the wetting process was performed for 1 hour, for a total of 8 hours as one cycle.
As shown in FIG. 9 (d), the test condition 4 is that the salt spray process is performed for 2.5 hours, then the drying process is performed for 3 hours, and then the wet process is performed for 2.5 hours, for a total of 8 hours for one cycle. It was.
As shown in FIG. 9 (e), the test condition 5 is a salt spray process for 1.5 hours, then a drying process for 3 hours, and then a wet process for 1.5 hours, for a total of 6 hours for one cycle. It was. This was repeated for a plurality of cycles during the test period described later.
As shown in FIG. 9F, the test condition 6 is the same as the test condition 2 in each process, and the cycle pattern was changed. That is, the salt spray process was performed for 2 hours, then the drying process was performed for 2 hours, then the wetting process was performed for 2 hours, and then the drying process was performed for 2 hours, for a total of 8 hours as one cycle.
The above test conditions 1 to 6 were repeated a plurality of cycles for the following test period.
The test period was three periods of 60 days, 90 days, and 120 days.

<腐食量、錆浸入距離測定>
回収した3種類の重防食被覆鋼材小型試験片それぞれについて、重防食被覆層を除去し、鋼板端面から錆浸入位置までの距離をノギスで測定し、試験前に測定した被覆端部からの錆浸入距離の平均値を求めた。その後、酸洗して錆を完全に除去した後レーザー変位計で鋼材の板厚を測定し、腐食量を求めた。
<Measurement of corrosion amount and rust penetration distance>
Remove the heavy anticorrosion coating layer for each of the three types of collected heavy anticorrosion coated steel small test pieces, measure the distance from the steel plate end surface to the rust intrusion position with calipers, and rust intrusion from the coating end measured before the test. The average value of distance was calculated | required. Then, after pickling and removing rust completely, the plate | board thickness of steel materials was measured with the laser displacement meter, and the amount of corrosion was calculated | required.

<腐食速度、錆浸入速度算出>
3種類の重防食被覆鋼材小型試験片それぞれについて計測された鋼材露出部腐食量の各期間ごとの平均値に基づいて、図6に示した方法により、海洋暴露試験及び腐食促進試験のそれぞれについて鋼材露出部腐食速度を求めた。
また、同様に3種類の重防食被覆鋼材小型試験片それぞれについて計測された錆浸入距離の各期間ごとの平均値に基づいて図7に示した方法により、海洋暴露試験及び腐食促進試験のそれぞれについて錆侵入速度を求めた。
<Calculation of corrosion rate and rust penetration rate>
Based on the average value for each period of corrosion amount of exposed steel part measured for each of the three types of heavy corrosion-resistant coated steel small test pieces, the steel material for each of the marine exposure test and the corrosion acceleration test was performed according to the method shown in FIG. The exposed portion corrosion rate was determined.
Similarly, for each of the marine exposure test and the corrosion acceleration test by the method shown in FIG. 7 based on the average value of the rust intrusion distance for each period measured for each of the three types of small anti-corrosion coated steel materials. The rust penetration rate was determined.

<腐食促進試験の試験条件抽出>
3種類の重防食被覆鋼材小型試験片の海洋暴露試験、及び6種類の腐食促進試験における鋼材露出部腐食速度、錆侵入速度、前述したb’×a/(b×a’)の値、及び促進倍率を表2に示す。
<Extracting test conditions for corrosion acceleration test>
Steel exposure part corrosion rate, rust intrusion rate, b '× a / (b × a ′) value in the marine exposure test of three types of heavy anti-corrosion coated steel small test pieces and six types of corrosion acceleration tests, and Table 2 shows the acceleration magnification.

Figure 0005413292
3種類の重防食被覆PU−A、PU−B、PE全てにおいて、0.6≦b’×a/(b×a’)≦1.4を満たした試験条件は、試験条件3であった。この試験条件の促進倍率に関しては、鋼材露出部腐食速度に関する促進倍率の平均値が、9.3であることから、促進倍率としては9.3とした。この理由は、この試験条件における錆浸入速度に関する促進倍率の平均値が9.7となり、鋼材露出部腐食速度と異なる値となっているため、どちらの促進倍率を採用するかが問題となるが、鋼材の断面欠損を生ずる鋼材断面方向の腐食の方が断面性能への影響の大きいことから、鋼材断面方向への腐食に直接関連する鋼材露出部腐食速度に関する促進倍率を採用したものである。
Figure 0005413292
The test condition that satisfied 0.6 ≦ b ′ × a / (b × a ′) ≦ 1.4 in all three types of heavy anticorrosion coatings PU-A, PU-B, and PE was Test Condition 3. . Regarding the acceleration factor under this test condition, since the average value of the acceleration factors related to the corrosion rate of the exposed steel portion is 9.3, the acceleration factor is set to 9.3. The reason for this is that the average value of the accelerating magnification related to the rust infiltration rate under this test condition is 9.7, which is different from the corrosion rate of the exposed steel part. Since the corrosion in the cross-section direction of the steel material that causes the cross-sectional defect of the steel material has a larger influence on the cross-sectional performance, an acceleration factor relating to the corrosion rate of the exposed steel portion directly related to the corrosion in the cross-section direction of the steel material is employed.

<腐食促進試験>
前記PU−Aの重防食被覆鋼材におけるポリウレタン被覆厚を1.0mmとしたものを劣化速度未知の材料の例として用いて、本発明の腐食促進試験として前記試験条件3の試験を行った。
比較例として前記試験条件2の試験を行った。比較例は鋼材露出部腐食量のみを暴露試験と比較検討し、促進倍率を求めたものの例とした。試験期間は、それぞれ60日、90日、120日実施した。
また、腐食促進試験の妥当性確認のため条件抽出のために行った際と同様の海洋暴露試験を行った。試験期間は1、2、3年とした。腐食促進試験の妥当性評価は3年後の暴露試験における鋼材露出部腐食量と錆浸入距離とそれぞれの腐食促進試験結果から予測される3年後の鋼材露出部腐食量と錆浸入距離の比較で行った。
<Corrosion acceleration test>
The test of test condition 3 was conducted as a corrosion acceleration test of the present invention using a polyurethane coating thickness of 1.0 mm as the PU-A heavy anticorrosion coated steel material as an example of a material with an unknown deterioration rate.
As a comparative example, the test under Test Condition 2 was performed. In the comparative example, only the corrosion amount of the exposed steel part was compared with the exposure test, and the acceleration factor was obtained. The test period was 60 days, 90 days, and 120 days, respectively.
In addition, the same marine exposure test was conducted as for the extraction of conditions to confirm the validity of the accelerated corrosion test. The test period was 1, 2, and 3 years. The validity evaluation of the corrosion acceleration test is a comparison of the corrosion amount of the exposed steel part and the rust penetration distance in the exposure test after three years, and the corrosion amount of the steel exposed part and the rust penetration distance after three years predicted from the results of the respective corrosion acceleration tests. I went there.

<腐食速度、錆浸入速度算出>
前記予備的腐食促進試験時と同様に鋼材露出部腐食速度、錆浸入速度を算出した。結果を表3に示す。
<Calculation of corrosion rate and rust penetration rate>
Similar to the preliminary corrosion acceleration test, the steel exposed portion corrosion rate and the rust penetration rate were calculated. The results are shown in Table 3.

Figure 0005413292
Figure 0005413292

<腐食速度、錆浸入速度予測>
本発明の方法で設定した試験条件3の試験と比較例として実施した試験条件2の試験から予測される3年後の結果と、海洋暴露試験における3年後の結果との比較を表4に示す。
<Prediction of corrosion rate and rust penetration rate>
Table 4 shows a comparison between the results of 3 years predicted from the test of test condition 3 set by the method of the present invention and the test of test condition 2 performed as a comparative example, and the results after 3 years in the marine exposure test. Show.

Figure 0005413292
Figure 0005413292

試験条件3の試験においては促進倍率が9.3倍であったことから、鋼材露出部腐食速度、錆浸入速度とも1/9.3倍し、3年後の値を求めた。鋼材露出部腐食量の予測値は下式(1)から求めた。
y=(a’/k)t・・・・・・ (1)
ここでy:鋼材露出部腐食量(mm)、a’:腐食促進試験(試験条件3)の鋼材露出部腐食速度(mm/y)、k:促進倍率(9.3倍)、t:経過時間(年)
In the test of test condition 3, since the accelerating magnification was 9.3 times, both the steel exposed portion corrosion rate and the rust penetration rate were multiplied by 1 / 9.3, and the value after 3 years was determined. The predicted value of the corrosion amount of the exposed steel material was obtained from the following formula (1).
y = (a ′ / k) t (1)
Where y: corrosion amount of exposed steel part (mm), a ': corrosion rate of exposed steel part (mm / y) of corrosion accelerated test (test condition 3), k: accelerated magnification (9.3 times), t: elapsed time Time (year)

また、錆浸入距離lの予測値は下式(2)から求めた。
l=(b’/k)t・・・・・・ (2)
ここでl:錆浸入距離(mm)、b’:腐食促進試験(条件3)の錆浸入速度(mm/y)、k:促進倍率(9.3倍)、t:経過時間(年)
Moreover, the predicted value of the rust penetration distance l was obtained from the following equation (2).
l = (b ′ / k) t (2)
Where l: rust penetration distance (mm), b ': rust penetration speed (mm / y) of corrosion acceleration test (condition 3), k: acceleration magnification (9.3 times), t: elapsed time (years)

一方、比較例として行った試験条件2の試験においては、鋼材露出部腐食量が3年後の海洋暴露試験と同じ値となったときの錆浸入距離を求めた。錆浸入距離l2は下式(3)から求めた。
2=(b2’/a2’)y3y・・・・ (3)
ここでl2:錆浸入距離(mm)、b2’:腐食促進試験(条件2)の錆浸入速度(mm/y)、y3y:海洋暴露試験3年後の腐食量(mm)、a2’:腐食促進試験(条件2)の鋼材露出部腐食速度(mm/y)
On the other hand, in the test of test condition 2 performed as a comparative example, the rust penetration distance when the steel material exposed portion corrosion amount became the same value as the marine exposure test after 3 years was obtained. The rust penetration distance l 2 was obtained from the following formula (3).
l 2 = (b 2 '/ a 2 ') y 3y (3)
Where l 2 : rust penetration distance (mm), b 2 ': rust penetration rate (mm / y) of corrosion acceleration test (condition 2), y 3y : corrosion amount (mm) after 3 years of marine exposure test, a 2 ': Corrosion rate (mm / y) of exposed steel in corrosion accelerated test (Condition 2)

表4に示すように、試験条件3の試験結果から得られた3年後の予測値の相対誤差が、鋼材露出部腐食量で8%、錆浸入距離で3%であり、予測値が適切であることが確認できた。
一方、比較例条件2から得られた3年後の予測値では、鋼材露出部を同じ値であると仮定しても錆浸入距離で相対誤差が51%あり、重防食被覆鋼材の腐食形態を再現できなかった。
As shown in Table 4, the relative error of the predicted value after 3 years obtained from the test result of the test condition 3 is 8% for the corrosion amount of the exposed steel part and 3% for the rust penetration distance, and the predicted value is appropriate. It was confirmed that.
On the other hand, in the predicted value after 3 years obtained from Comparative Example Condition 2, there is a relative error of 51% in the rust penetration distance even if the steel exposed portion is assumed to be the same value. Could not be reproduced.

本発明の重防食被覆鋼材の腐食促進試験により、現在使用されている重防食被覆鋼材の寿命予測のための腐食量予測や新規被覆材料開発のための評価を短期間に正確に行うことが出来、有効な港湾設備の設計や維持管理計画に利用することができる。   The corrosion acceleration test for heavy corrosion-resistant coated steel materials according to the present invention enables accurate prediction in a short period of time for corrosion amount prediction for predicting the life of heavy corrosion-resistant coated steel materials currently used and for developing new coating materials. It can be used for effective port facility design and maintenance planning.

1 継手
3 重防食被覆
5 被覆端部
7 鋼材露出部
9 継手内部
1 Coupling 3 Heavy corrosion protection coating 5 Coated end 7 Steel exposed part 9 Inside of joint

Claims (3)

被覆端部をもつ重防食被覆鋼材の腐食促進試験方法であって、
重防食被覆鋼材試験片の実環境での暴露試験を行って鋼材露出部の腐食速度amm/y、被覆層下への錆浸入速度bmm/yを求める実環境暴露試験工程と、実環境暴露試験工程で用いたのと同一仕様の試験片を用いて複数種類の試験条件で腐食促進試験を行って鋼材腐食速度a’mm/y、被覆層下への錆浸入速度b’mm/yを求める予備的腐食促進試験工程とを有し、予備的腐食促進試験工程で得られた各試験条件における鋼材腐食速度a’mm/y及び錆浸入速度b’mm/yについてb’×a/(b×a’)を求め、この値が1に最も近い腐食促進試験の試験条件を腐食促進試験条件として決定し、該決定された試験条件を用いて腐食促進試験を行なうことを特徴とする重防食被覆鋼材の腐食促進試験方法。
A corrosion acceleration test method for heavy anti-corrosion coated steel with a coated end,
Real environment exposure test process to determine the corrosion rate amm / y of the steel material exposed part and the rust penetration speed bmm / y under the coating layer by conducting an exposure test of the heavy corrosion protection coated steel material test piece in the actual environment Using a test piece having the same specifications as that used in the process, a corrosion acceleration test is performed under a plurality of test conditions to obtain a steel corrosion rate a'mm / y and a rust penetration rate b'mm / y under the coating layer. A steel corrosion rate a ′ mm / y and a rust penetration rate b ′ mm / y in each test condition obtained in the preliminary corrosion promotion test step. B ′ × a / (b Xa ′) is determined, the test condition of the corrosion acceleration test whose value is closest to 1 is determined as the corrosion acceleration test condition, and the corrosion acceleration test is performed using the determined test condition. Test method for accelerated corrosion of coated steel.
前記腐食促進条件として決定した試験条件における前記b’×a/(b×a’)の値が、0.6≦b’×a/(b×a’)≦1.4を満たすことを特徴とする請求項1記載の重防食被覆鋼材の腐食促進試験方法。   The value of b ′ × a / (b × a ′) under the test conditions determined as the corrosion promotion condition satisfies 0.6 ≦ b ′ × a / (b × a ′) ≦ 1.4. The corrosion acceleration test method for heavy anticorrosion coated steel material according to claim 1. 前記腐食促進試験における試験条件は、塩水噴霧、乾燥および湿潤の過程を含む一連の過程を繰り返すことを特徴とする請求項1又は2に記載の重防食被覆鋼材の腐食促進試験方法。   The test method of the corrosion-promoted coated steel material according to claim 1 or 2, wherein the test conditions in the corrosion-accelerated test are a series of processes including salt spray, drying and wetting processes.
JP2010099282A 2010-04-22 2010-04-22 Corrosion accelerated test method for heavy anti-corrosion coated steel Expired - Fee Related JP5413292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099282A JP5413292B2 (en) 2010-04-22 2010-04-22 Corrosion accelerated test method for heavy anti-corrosion coated steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099282A JP5413292B2 (en) 2010-04-22 2010-04-22 Corrosion accelerated test method for heavy anti-corrosion coated steel

Publications (2)

Publication Number Publication Date
JP2011227004A JP2011227004A (en) 2011-11-10
JP5413292B2 true JP5413292B2 (en) 2014-02-12

Family

ID=45042496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099282A Expired - Fee Related JP5413292B2 (en) 2010-04-22 2010-04-22 Corrosion accelerated test method for heavy anti-corrosion coated steel

Country Status (1)

Country Link
JP (1) JP5413292B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510352B2 (en) * 2010-04-22 2014-06-04 Jfeスチール株式会社 Pre-corrosion cross-section prediction method for heavy anti-corrosion coated steel materials, strength deterioration prediction method for heavy anti-corrosion coating structures, management method for heavy anti-corrosion coating structures
JP5413293B2 (en) * 2010-04-22 2014-02-12 Jfeスチール株式会社 Corrosion accelerated test method for heavy anti-corrosion coated steel
US10830689B2 (en) * 2014-09-30 2020-11-10 Rosemount Inc. Corrosion rate measurement using sacrificial probe
JP2020197392A (en) * 2019-05-31 2020-12-10 株式会社安藤・間 Contact-type caliper and method for estimating reduction degree of reinforcing bar
CN113552053B (en) * 2021-07-13 2022-09-16 北京航空航天大学 Method for determining accelerated corrosion equivalent relation of protective coating
CN115824937A (en) * 2022-11-24 2023-03-21 福建福清核电有限公司 Coastal nuclear power plant corrosion test monitoring method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318227A (en) * 2001-02-16 2002-10-31 Nkk Corp Method for estimating life of surface treated steel material, surface treated steel material, method for designing surface treated steel material and method for manufacturing the same
JP4706489B2 (en) * 2005-01-26 2011-06-22 Jfeスチール株式会社 Method for predicting corrosion resistance of metal and coated metal plate, method for selecting coated metal plate
JP4714646B2 (en) * 2006-07-25 2011-06-29 新日本製鐵株式会社 Sample for end surface corrosion resistance evaluation of plated steel sheet, end surface corrosion resistance evaluation apparatus, and end surface corrosion resistance evaluation method
JP5092932B2 (en) * 2008-06-25 2012-12-05 住友金属工業株式会社 Marine steel structures, steel pipe piles, steel sheet piles and steel pipe sheet piles
JP5206386B2 (en) * 2008-12-15 2013-06-12 Jfeスチール株式会社 Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering
JP5510352B2 (en) * 2010-04-22 2014-06-04 Jfeスチール株式会社 Pre-corrosion cross-section prediction method for heavy anti-corrosion coated steel materials, strength deterioration prediction method for heavy anti-corrosion coating structures, management method for heavy anti-corrosion coating structures
JP5413293B2 (en) * 2010-04-22 2014-02-12 Jfeスチール株式会社 Corrosion accelerated test method for heavy anti-corrosion coated steel

Also Published As

Publication number Publication date
JP2011227004A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5065107B2 (en) Method for evaluating coating film corrosion resistance of metal materials for ballast tanks
JP5413292B2 (en) Corrosion accelerated test method for heavy anti-corrosion coated steel
Morcillo et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part II: Testing, inspection, maintenance
JP5206386B2 (en) Corrosion promotion test method and corrosion amount prediction method for organic coated steel for civil engineering
JP5510352B2 (en) Pre-corrosion cross-section prediction method for heavy anti-corrosion coated steel materials, strength deterioration prediction method for heavy anti-corrosion coating structures, management method for heavy anti-corrosion coating structures
JP5413293B2 (en) Corrosion accelerated test method for heavy anti-corrosion coated steel
Jia et al. Incipient corrosion behavior and mechanical properties of low-alloy steel in simulated industrial atmosphere
JP2007239007A (en) Method for managing plated structure
JP5459035B2 (en) Durability judgment method for coated steel
JP4964699B2 (en) Organic resin-coated steel and building using the same
Diamantogiannis et al. Mechanical behavior of B500c steel with an aluminum layer coating in a marine environment
Hagen et al. The effect of surface profile on coating adhesion and corrosion resistance
Knudsen Review of coating failure incidents on the Norwegian continental shelf since the introduction of NORSOK M-501
Nayak et al. Corrosion of Reinforced Concrete A Review
JP5742259B2 (en) Coated steel for marine / river environment and manufacturing method thereof
Morton et al. Volumetric superhydrophobic coatings for offshore corrosion protection
Korobov et al. Performance testing methods for offshore coatings: Cyclic, EIS and stress
Samardžija et al. Influence of phosphate layer on adhesion properties between steel surface and organic coating
Ruba’ai A Study on the Performance of Splash Zone
Zamanzadeh et al. Condition Assessment, Corrosion Risk Assessment, FEA Analysis Of Pack-out For Weathering Steel Transmission Structures
Jackson et al. Quantitative Comparison of Outdoor Sites and Accelerated Test Methods Using Optical Profilometry
Bastidas et al. On-site corrosion diagnosis and its control by electrochemical techniques in contemporary built heritage
Kannan et al. Waterborne Direct-To-Metal Coating Application Development for Bridge Applications
Mousavi et al. Evaluation of Galvanized and Painted-Galvanized Steel Piling
Momber et al. Investigating Corrosion Protection of Offshore Wind Towers: Part 3: Results of the Laboratory Investigations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5413292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees