JP5400194B2 - Molten zinc corrosion resistant metallic glass - Google Patents

Molten zinc corrosion resistant metallic glass Download PDF

Info

Publication number
JP5400194B2
JP5400194B2 JP2012139506A JP2012139506A JP5400194B2 JP 5400194 B2 JP5400194 B2 JP 5400194B2 JP 2012139506 A JP2012139506 A JP 2012139506A JP 2012139506 A JP2012139506 A JP 2012139506A JP 5400194 B2 JP5400194 B2 JP 5400194B2
Authority
JP
Japan
Prior art keywords
molten zinc
sprayed coating
metallic glass
corrosion
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012139506A
Other languages
Japanese (ja)
Other versions
JP2013117061A (en
Inventor
雄太 清水
穂孝 牧村
浩二 中島
雅治 杉山
智仁 石川
正樹 大原
秀実 加藤
明久 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP2012139506A priority Critical patent/JP5400194B2/en
Priority to PCT/JP2012/077885 priority patent/WO2013065637A1/en
Publication of JP2013117061A publication Critical patent/JP2013117061A/en
Application granted granted Critical
Publication of JP5400194B2 publication Critical patent/JP5400194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/006Amorphous articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0036Crucibles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

本発明は、金属ガラス、特に溶融亜鉛に対して耐食性を有する金属ガラスに関する。   The present invention relates to a metallic glass, particularly a metallic glass having corrosion resistance against molten zinc.

溶融めっきは鉛、錫、亜鉛及びアルミニウムまたはそれらの合金の溶融金属を用いて基材に金属被膜を形成する方法として汎用され、めっき浴などの溶融金属が接触する部材には鋼材が汎用される。
しかしながら、溶融亜鉛は鋼材の鉄と反応して亜鉛−鉄合金層を容易に形成するため、溶融鉛や溶融錫に比べて鋼材への侵食性が非常に高く、損傷(溶損)が著しい。
このため、溶融亜鉛めっき鋼板製造ラインやどぶ漬け亜鉛めっき設備などにおいて溶融亜鉛と接触する鋼製部材の耐食性を高めて、部材の延命化を図ることが生産性を高め、コストを低減する上で一つの重要な課題とされている。
Hot-dip plating is widely used as a method for forming a metal film on a substrate using molten metal of lead, tin, zinc and aluminum or their alloys, and steel materials are widely used for members that come into contact with molten metal such as plating baths. .
However, since molten zinc reacts with iron of the steel material to easily form a zinc-iron alloy layer, the erosion property to the steel material is extremely higher than that of molten lead or molten tin, and damage (melting loss) is remarkable.
For this reason, increasing the corrosion resistance of steel members in contact with hot dip galvanized steel galvanized steel sheet production lines and soaking galvanizing equipment, etc., and extending the life of the members will increase productivity and reduce costs. This is an important issue.

まず、組成によって鋼材の溶融亜鉛耐食性を改善したものとして、例えば、Cが0.12〜0.30%、Siが0.05%以下、Mnが0.2〜2.0%、Pが0.015%以下、残余が鉄ならびに不純物からなる亜鉛めっき釜用鋼材が知られ(特許文献1)、これはNAGP(R)鋼板(新日本製鉄(株))として市販されている。しかしながら、耐食性において十分満足できるものではなかった。 First, as an improvement in the corrosion resistance of steel by composition, for example, C is 0.12 to 0.30%, Si is 0.05% or less, Mn is 0.2 to 2.0%, and P is 0. A steel material for a galvanizing kettle composed of .015% or less and the balance of iron and impurities is known (Patent Document 1), and is commercially available as NAGP (R) steel plate (Nippon Nippon Steel Co., Ltd.). However, the corrosion resistance was not satisfactory.

そこで溶融亜鉛の接触による部材の侵食防止の目的で二つの方法が一般的に使われている。
一つ目は、鋼材よりも亜鉛に濡れ難くかつ硬質な炭化物系、硼化物系、窒化物系などのサーメット材(WC−12%Co等)の溶射被膜で部材をコーティング(被覆)する方法である。
しかしながら、サーメット溶射被膜の結合層(バインダー)である金属(Coなど)が溶融亜鉛と反応し、結合層の消失及び溶射被膜中のセラミックス粒子の脱落を生じて徐々に侵食が進行してしまうので、耐食性において十分満足できるものではなかった。
Therefore, two methods are generally used for the purpose of preventing member erosion due to contact with molten zinc.
The first is a method of coating (coating) a member with a sprayed coating of a cermet material (such as WC-12% Co) that is harder to wet with zinc than steel and is hard, such as carbide, boride, and nitride. is there.
However, since the metal (Co or the like) that is the bonding layer (binder) of the cermet sprayed coating reacts with the molten zinc, the bonding layer disappears and the ceramic particles in the sprayed coating fall off, and the erosion gradually proceeds. The corrosion resistance was not satisfactory.

二つ目は、セラミックスを用いる方法である。セラミックスは溶融金属耐食性に優れているため、めっき浴やめっき浴温度を加熱保持する浸漬加熱管などに用いられているが、非常に高価で、しかも金属材料のような靭性がなく、機械的衝撃や熱衝撃に弱いという問題がある。
従って、溶融亜鉛による損傷が少ない耐食性金属材料の開発が望まれていた。
The second is a method using ceramics. Ceramics are excellent in molten metal corrosion resistance, so they are used in plating baths and immersion heating tubes that maintain the temperature of plating baths. However, they are very expensive and do not have the toughness of metal materials, and mechanical shocks. And is vulnerable to thermal shock.
Therefore, it has been desired to develop a corrosion-resistant metal material that is less damaged by molten zinc.

アモルファス合金は、結晶合金に比べて元素の局在や結晶粒界が少ないことから、結晶合金に比べて一般的に耐食性が高い。
近年では、従来のアモルファス合金に比べて非晶質形成能が非常に高く、比較的遅い冷却速度で溶融状態からバルクアモルファスを得ることが可能な合金として金属ガラスが知られており、その耐食性についても報告されている。
Amorphous alloys generally have higher corrosion resistance than crystalline alloys because they have fewer element localizations and grain boundaries than crystalline alloys.
In recent years, metallic glass has been known as an alloy that has a very high ability to form amorphous compared to conventional amorphous alloys and can obtain bulk amorphous from a molten state at a relatively slow cooling rate. Has also been reported.

例えば、特許文献2には、高耐食性Fe−Cr基金属ガラスが記載されている。
しかしながら、特許文献2にはHCl水溶液(25℃)に対する耐酸性に優れることが示されているものの、溶融金属、特に溶融亜鉛に対する耐食性については全く記載されていない。
For example, Patent Document 2 describes a high corrosion resistance Fe—Cr based metallic glass.
However, although Patent Document 2 shows excellent acid resistance against an aqueous HCl solution (25 ° C.), it does not describe any corrosion resistance against molten metal, particularly molten zinc.

また、特許文献3には、溶融無鉛はんだに対する耐食性に優れる金属ガラス溶射被膜が記載され、具体例としてFe43Cr16Mo161510が記載されている。
しかしながら、前記のように溶融亜鉛は、溶融錫を主成分とする溶融無鉛はんだに比べて鉄との反応性が非常に高く、本発明者らの検討によれば、優れた溶融無鉛はんだ耐食性を有するFe43Cr16Mo161510金属ガラスでも溶融亜鉛に対する耐食性は不十分であった。
また、アモルファス合金は、結晶合金に比べて一般的に耐食性が高いとされているものの、アモルファス相の金属ガラスであっても、組成によってはNAGP鋼材などの結晶合金に比べて溶融亜鉛に対する耐食性に劣る場合もあった。
Further, Patent Document 3 describes a metal glass sprayed coating having excellent corrosion resistance against molten lead-free solder, and Fe 43 Cr 16 Mo 16 C 15 B 10 as a specific example.
However, as described above, molten zinc has a very high reactivity with iron compared to molten lead-free solder containing molten tin as a main component, and according to the study by the present inventors, it has excellent molten lead-free solder corrosion resistance. Even with the Fe 43 Cr 16 Mo 16 C 15 B 10 metallic glass, the corrosion resistance against molten zinc was insufficient.
In addition, although amorphous alloys are generally considered to have higher corrosion resistance than crystalline alloys, depending on the composition, even amorphous glass metallic glass is more resistant to molten zinc than crystalline alloys such as NAGP steel. Sometimes it was inferior.

特開昭49−130310号公報JP 49-130310 A 特開2009−24256号公報JP 2009-24256 A 特開2006−97132号公報JP 2006-97132 A

本発明は前記背景技術に鑑みなされたものであり、その目的は、溶融亜鉛に対する耐食性に優れる金属材料ならびにこれを用いた溶融亜鉛耐食性部材を提供することにある。   This invention is made | formed in view of the said background art, The objective is to provide the metal material excellent in the corrosion resistance with respect to molten zinc, and the molten zinc corrosion-resistant member using the same.

本発明者らが鋭意検討を行なった結果、特定組成の金属ガラスが溶融亜鉛に対する耐食性に非常に優れることを見出し、本発明を完成するに至った。
すなわち、本発明にかかる溶融亜鉛耐食性金属ガラスは、下記式(1)で示される組成を有し、過冷却液体温度領域(ΔTx)が30℃以上、ガラス遷移温度(Tg)が溶融亜鉛温度よりも20℃以上高いことを特徴とする。
(Fe,Cr)100−(a+b+c)TM(C,B,P) ・・・(1)
(式中、TMはMo、Ta、V、Nbから選ばれる少なくとも一種以上、aが2〜20原子%、bが0〜15原子%、cが20〜30原子%、Feが35〜55原子%である。)
As a result of intensive studies by the present inventors, it has been found that a metal glass having a specific composition is very excellent in corrosion resistance against molten zinc, and has completed the present invention.
That is, the molten zinc corrosion-resistant metallic glass according to the present invention has a composition represented by the following formula (1), the supercooled liquid temperature region (ΔTx) is 30 ° C. or higher, and the glass transition temperature (Tg) is higher than the molten zinc temperature. Is characterized by being 20 ° C. or higher.
(Fe, Cr) 100- (a + b + c) W a TM b (C, B, P) c (1)
(In the formula, TM is at least one selected from Mo, Ta, V, and Nb, a is 2 to 20 atom%, b is 0 to 15 atom%, c is 20 to 30 atom%, and Fe is 35 to 55 atoms. %.)

なお、本発明において「溶融亜鉛」とは、亜鉛を一つの主成分とする溶融金属を意味し、純亜鉛や亜鉛合金の溶融体だけでなく、これら溶融体中に溶融亜鉛めっきで通常用いられる添加元素(例えばAl,Snなど)が添加されたものも含む。例示すると、JIS H8641「溶融亜鉛めっき」に規定する97.5%以上の純亜鉛、JIS G3317「5%アルミニウム合金めっき鋼板及び鋼帯」、JIS G3321「溶融55%アルミニウム−亜鉛合金めっき鋼板及び鋼帯」に規定される亜鉛−アルミニウム合金、及びJIS Z3282「はんだ、化学成分及び形状」に規定される錫−亜鉛系鉛フリーはんだ等を包含する。   In the present invention, “hot zinc” means a molten metal containing zinc as one main component, and is usually used in hot dip galvanization in these melts as well as pure zinc and zinc alloy melts. Also included are those added with an additive element (for example, Al, Sn, etc.). For example, 97.5% or more of pure zinc specified in JIS H8641 “hot dip galvanizing”, JIS G3317 “5% aluminum alloy plated steel sheet and steel strip”, JIS G3321 “molten 55% aluminum-zinc alloy plated steel sheet and steel” This includes zinc-aluminum alloys defined in “Zone” and tin-zinc-based lead-free solder defined in JIS Z3182 “Solder, Chemical Composition and Shape”.

また、本発明は、前記金属ガラスにおいて、アモルファス相固体であることを特徴とする溶融亜鉛耐食性金属ガラスを提供する。
また、本発明は、前記何れかに記載の金属ガラスおいて、ガラス遷移温度(Tg)が600℃以上であることを特徴とする溶融亜鉛耐食性金属ガラスを提供する。
The present invention also provides a molten zinc corrosion-resistant metallic glass characterized in that the metallic glass is an amorphous phase solid.
Moreover, this invention provides the molten zinc corrosion-resistant metallic glass characterized by having a glass transition temperature (Tg) of 600 ° C. or higher in any of the metallic glasses described above.

また、本発明は、前記何れかに記載の金属ガラスからなることを特徴とする溶融亜鉛耐食性溶射被膜を提供する。
また、本発明は、前記溶射被膜において、気孔率が2%以下でピンホールがないことを特徴とする溶融亜鉛耐食性溶射被膜を提供する。
The present invention also provides a hot-dip zinc corrosion-resistant sprayed coating comprising any one of the above-described metallic glasses.
The present invention also provides a molten zinc corrosion-resistant sprayed coating characterized in that the sprayed coating has a porosity of 2% or less and no pinholes.

また、本発明は、前記何れかに記載の溶射被膜において、高速フレーム溶射あるいはこれと同等以上の溶射粒子飛行速度を有する溶射方法により形成された溶射被膜であることを特徴とする溶融亜鉛耐食性溶射被膜を提供する。
また、本発明は、前記何れかに記載の溶射被膜において、前記式(1)の組成を有するアモルファス相の金属ガラス粉体を溶射原料として、前記溶射原料の少なくとも一部が溶融されずに過冷却液体状態で溶射されて形成されたアモルファス相の溶射被膜であることを特徴とする溶融亜鉛耐食性溶射被膜を提供する。
Further, the present invention is the spray coating according to any one of the above, characterized in that it is a spray coating formed by high-speed flame spraying or a spraying method having a sprayed particle flying speed equal to or higher than this. A coating is provided.
Further, according to the present invention, in any one of the thermal spray coatings described above, an amorphous phase metal glass powder having the composition of the formula (1) is used as a thermal spray raw material, and at least a part of the thermal spray raw material is not melted. A molten zinc corrosion-resistant sprayed coating characterized by being an amorphous phase sprayed coating formed by spraying in a cooling liquid state.

また、本発明は、前記何れかに記載の溶射被膜において、さらに下記成分(a)及び(b)からなり、成分(a)の25℃における粘度が20〜1000mPa・sである一液常温硬化型封孔剤で封孔処理されていることを特徴とする溶融亜鉛耐食性溶射被膜を提供する。
(a)下記式(2)で示されるアルコキシシラン化合物及びその部分加水分解物から選ばれる少なくとも1種の化合物:
Si(OR4−n ・・・(2)
(式中、Rはそれぞれ独立して置換若しくは非置換の炭素数1〜8の1価炭化水素基、Rはそれぞれ独立して炭素数1〜4のアルキル基、nは0〜3の整数である)。
(b)硬化触媒。
In addition, the present invention provides the one-part room temperature curing, wherein the thermal spray coating according to any one of the above, further comprises the following components (a) and (b), and the viscosity of the component (a) at 25 ° C. is 20 to 1000 mPa · s. Provided is a hot-dip zinc corrosion-resistant sprayed coating which is sealed with a mold sealant.
(A) At least one compound selected from an alkoxysilane compound represented by the following formula (2) and a partial hydrolyzate thereof:
R 1 n Si (OR 2 ) 4-n (2)
(In the formula, each R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, R 2 is each independently an alkyl group having 1 to 4 carbon atoms, and n is 0 to 3) Is an integer).
(B) Curing catalyst.

また、本発明は、溶融亜鉛との接触面、あるいは該接触面の下地層が前記何れかに記載の金属ガラス又は溶射被膜を有することを特徴とする溶融亜鉛耐食性部材を提供する。   Moreover, this invention provides the molten zinc corrosion-resistant member characterized by the contact surface with molten zinc, or the base layer of this contact surface having the metal glass or sprayed coating as described above.

本発明にかかる金属ガラスは、溶融亜鉛に対して優れた耐食性を発揮するので、溶融亜鉛耐食性部材に好適に利用できる。また、この金属ガラスは溶融亜鉛耐食性コーティングに用いることもでき、例えば、溶融亜鉛耐食性が要求される部材などを基材としてその表面に溶射によりコーティングして、溶融亜鉛耐食性部材を得ることができる。また、本発明の金属ガラス溶射被膜に封孔処理を施すことで、さらにその溶融亜鉛耐食性を向上させることができる。   Since the metallic glass concerning this invention exhibits the outstanding corrosion resistance with respect to molten zinc, it can utilize suitably for a molten zinc corrosion-resistant member. Moreover, this metallic glass can also be used for hot-dip zinc corrosion-resistant coating. For example, a hot-dip zinc-corrosion-resistant member can be obtained by coating the surface of a member that requires hot-zinc corrosion-resistant material by thermal spraying. Moreover, the molten zinc corrosion resistance can be further improved by subjecting the metal glass sprayed coating of the present invention to a sealing treatment.

本発明の金属ガラス溶射被膜の断面の模式図である。It is a schematic diagram of the cross section of the metallic glass sprayed coating of this invention. リボン材試料の溶融亜鉛浸漬試験方法の概略図である。It is the schematic of the molten zinc immersion test method of a ribbon material sample. Fe43Cr16Mo151510金属ガラスの溶射被膜でコーティングした棒状試料(試料2−1)の、溶融亜鉛浸漬試験後の外観写真である。Of Fe 43 Cr 16 Mo 1 W 15 C 15 B 10 rod-like samples coated with the sprayed film metallic glass (sample 2-1), which is a photograph after molten zinc immersion test. Fe43Cr16Mo161510金属ガラスの溶射被膜でコーティングした棒状試料(試料2−a)の、溶融亜鉛浸漬試験後の外観写真である。Of Fe 43 Cr 16 Mo 16 C 15 B 10 coated rod-like sample in the thermal sprayed coating of metallic glass (Sample 2-a), an appearance photograph after molten zinc immersion test.

Fe43Cr16Mo151510金属ガラスの溶射被膜でコーティングした棒状試料(試料2−1)、及びFe43Cr16Mo161510金属ガラスの溶射被膜でコーティングした棒状試料(試料2−a)の、溶融亜鉛浸漬試験後の断面組織のEDS−SEM分析結果であるA rod-shaped sample (Sample 2-1) coated with a sprayed coating of Fe 43 Cr 16 Mo 1 W 15 C 15 B 10 metallic glass, and a rod-shaped sample coated with a sprayed coating of Fe 43 Cr 16 Mo 16 C 15 B 10 metallic glass It is an EDS-SEM analysis result of the cross-sectional structure after the molten zinc immersion test of (Sample 2-a) NAGP鋼板の溶融亜鉛浸漬試験後の断面組織のEDS−SEM分析結果である。It is an EDS-SEM analysis result of the cross-sectional structure | tissue after the hot-dip zinc immersion test of a NAGP steel plate. Fe43Cr16Mo151510金属ガラス溶射被膜でコーティングした板状試料(試料3−1)、及びWC−12Co溶射被膜でコーティングした板状試料(試料3−d)の、溶融亜鉛(480℃)に対する濡れ試験結果を示す写真である。Melting of a plate-like sample (Sample 3-1) coated with a sprayed coating of Fe 43 Cr 16 Mo 1 W 15 C 15 B 10 metal glass and a sample (Sample 3-d) coated with a WC-12Co sprayed coating It is a photograph which shows the wetting test result with respect to zinc (480 degreeC).

Fe43Cr16Mo151510金属ガラス溶射被膜(試料4−1)ならびにこれを封孔処理したもの(試料5−1)の溶融亜鉛浸漬試験後の断面組織のEDS−SEM分析結果である。Fe 43 Cr 16 Mo 1 W 15 C 15 B 10 Metallic glass sprayed coating (Sample 4-1) and EDS-SEM analysis of the cross-sectional structure after the molten zinc immersion test of the sealed coating (Sample 5-1) It is a result. Fe43Cr16Mo151510ならびにFe43Cr16Mo161510の金属ガラス溶射被膜をそれぞれ封孔処理したもの(試料5−1、試料5−a)の溶融亜鉛浸漬試験後の断面組織のEDS−SEM分析結果である。Molten zinc immersion of metal glass sprayed coatings of Fe 43 Cr 16 Mo 1 W 15 C 15 B 10 and Fe 43 Cr 16 Mo 16 C 15 B 10 (Sample 5-1 and Sample 5-a), respectively. It is an EDS-SEM analysis result of the cross-sectional structure after the test.

本発明にかかる金属ガラスは、下記式(1)の組成で示されるFe−Cr−W基金属ガラスである。
(Fe,Cr)100−(a+b+c)TM(C,B,P) ・・・(1)
The metallic glass concerning this invention is the Fe-Cr-W group metallic glass shown by the composition of following formula (1).
(Fe, Cr) 100- (a + b + c) W a TM b (C, B, P) c (1)

式(1)においてFeは主成分であり35〜55原子%である。Feは安価であるため少なくなるとコストが上昇する。また、多すぎると他の元素量が制限されて、耐食性や非晶質形成能が不十分となる。
なお、Fe及びCrの合計は35〜78原子%であるが、好ましくは50〜70原子%である。
In Formula (1), Fe is a main component and is 35-55 atomic%. Since Fe is inexpensive, the cost increases as it decreases. On the other hand, if the amount is too large, the amount of other elements is limited, and the corrosion resistance and amorphous forming ability become insufficient.
In addition, although the sum total of Fe and Cr is 35-78 atomic%, Preferably it is 50-70 atomic%.

CrはFe系合金の耐食性の基本となる元素であり、好ましくは10〜20原子%である。Crが少なすぎるとその効果が十分に得られないことがあり、多すぎると非晶質形成能が低くなることがある。   Cr is an element which is the basis of the corrosion resistance of the Fe-based alloy, and is preferably 10 to 20 atomic%. If the amount of Cr is too small, the effect may not be obtained sufficiently, and if it is too large, the ability to form an amorphous state may be lowered.

Wは、本発明の金属ガラスの溶融亜鉛耐食性に必須の成分である。aはWの原子%を表し、2〜20原子%が好ましい。aが小さすぎると十分な溶融亜鉛耐食性が得られず、aが大きすぎると他の成分が制限されて非晶質形成能が低下する。   W is an essential component for the molten zinc corrosion resistance of the metallic glass of the present invention. a represents atomic percent of W, and preferably 2 to 20 atomic percent. If a is too small, sufficient molten zinc corrosion resistance cannot be obtained, and if a is too large, other components are limited and the amorphous forming ability is lowered.

式(1)において、TMはMo、Ta、V、Nbから選ばれる少なくとも一種以上の元素であり、bはTMの合計の原子%を表す。TMの元素群は溶融亜鉛耐食性及び非晶質形成能を向上させる。本発明の金属ガラスは、TMを含有せずとも溶融亜鉛耐食性を発揮することができるが、必要に応じてTMを含有することが望ましい。ただし、TMが多すぎると他の成分が制限され、非晶質形成能が低下し結晶相が発生しやすくなり、溶融亜鉛耐食性が損なわれたりすることがあるので、TMは15原子%以下であることが好適である。   In formula (1), TM is at least one element selected from Mo, Ta, V, and Nb, and b represents the total atomic% of TM. The element group of TM improves molten zinc corrosion resistance and amorphous forming ability. The metallic glass of the present invention can exhibit molten zinc corrosion resistance without containing TM, but it is desirable to contain TM as necessary. However, if there is too much TM, other components are limited, the amorphous forming ability is lowered, a crystal phase is likely to be generated, and corrosion resistance of molten zinc may be impaired, so TM is 15 atomic% or less. Preferably it is.

CおよびBは併用することにより非晶質形成能に寄与する。また、Pは、B及びCと併用することにより非晶質形成能を高くすることができる元素であり、必要に応じて含有させることができる。cはC、B、Pの合計原子%を表し、20〜30原子%であることが好適である。cが少なすぎても多すぎても十分な非晶質形成能が得られないことがある。より好ましい範囲としては、Cは5〜20原子%、Bは5〜15原子%、Pは0〜5原子%である。   C and B contribute to the amorphous forming ability when used in combination. P is an element that can increase the amorphous forming ability when used in combination with B and C, and can be contained as required. c represents the total atomic% of C, B, and P, and is preferably 20 to 30 atomic%. If c is too little or too much, sufficient amorphous forming ability may not be obtained. As a more preferable range, C is 5 to 20 atomic%, B is 5 to 15 atomic%, and P is 0 to 5 atomic%.

金属ガラスは、アモルファス相固体から加熱すると結晶化前に明瞭なガラス遷移と広い過冷却液体領域を示すことが一つの大きな特徴であり、熱的挙動において通常のアモルファス合金とは明確に区別される。
本発明の金属ガラスは、ΔTx=Tx−Tg(ただしTxは結晶化開始温度、Tgはガラス遷移温度を示す)の式で表される過冷却液体領域の温度間隔ΔTxが30℃以上、さらには50℃以上であることが好適である。このような大きなΔTxを有する金属ガラスは、非晶質形成能や加工性に優れ、後述するような緻密なアモルファス溶射被膜を得る上でも有利である。なお、通常のアモルファス合金ではΔTx≒0である。
Metallic glasses are characterized by a distinct glass transition and a wide supercooled liquid region before crystallization when heated from an amorphous phase solid, which is clearly distinguished from ordinary amorphous alloys in thermal behavior. .
In the metallic glass of the present invention, the temperature interval ΔTx of the supercooled liquid region represented by the formula ΔTx = Tx−Tg (where Tx is the crystallization start temperature and Tg is the glass transition temperature) is 30 ° C. or more, It is suitable that it is 50 degreeC or more. The metal glass having such a large ΔTx is excellent in amorphous forming ability and workability, and is advantageous in obtaining a dense amorphous sprayed coating as described later. Note that ΔTx≈0 in a normal amorphous alloy.

また、金属ガラスはTg以上の温度では粘性流動体となる。よって、本発明のFe−Cr−W基金属ガラスのガラス遷移温度Tgは対象とする溶融亜鉛の温度よりも高いことが必要であり、20℃以上高いことが望ましい。溶融亜鉛めっきなどにおける操業温度(溶融亜鉛温度)は通常450〜550℃であり、ガラス遷移温度Tgが600℃以上であればほとんどの溶融亜鉛めっきにおいて問題なく利用することができる。   Metallic glass becomes a viscous fluid at temperatures above Tg. Therefore, the glass transition temperature Tg of the Fe—Cr—W-based metallic glass of the present invention needs to be higher than the temperature of the target molten zinc, and is desirably 20 ° C. or higher. The operating temperature (hot dip zinc temperature) in hot dip galvanizing is usually 450 to 550 ° C., and can be used without any problem in most hot dip galvanizing if the glass transition temperature Tg is 600 ° C. or higher.

金属ガラス中に結晶相が含まれると耐食性に悪影響を及ぼしやすいため、金属ガラス中における結晶相含有率はできるだけ低い方がよく、例えば、20%以下、さらには10%以下が好ましい。金属ガラスがアモルファス単一相であることがより好ましい。   If the crystal phase is contained in the metal glass, the corrosion resistance is liable to be adversely affected. Therefore, the crystal phase content in the metal glass is preferably as low as possible, for example, 20% or less, more preferably 10% or less. More preferably, the metallic glass is an amorphous single phase.

金属ガラスは、公知の製造方法によりアモルファス相固体に製造することができる。例えば、原料金属を溶融して母合金を作成し、単ロール法、双ロール法、回転液中紡糸法、アトマイズ法等の種々の急冷法を用いて冷却固化させることにより、リボン状、ワイヤ状、粉粒状などとすることができる。
本発明のFe−Cr−W基金属ガラスはΔTxが30℃以上、好ましくは50℃以上であり非晶質形成能が高いので、ある程度の大きさであれば鋳造法など急冷に該当しない公知の方法によりアモルファス相のバルク体として形成することも可能である。
The metallic glass can be produced into an amorphous phase solid by a known production method. For example, a raw metal is melted to create a master alloy, which is then cooled and solidified using various rapid cooling methods such as single roll method, twin roll method, spinning in spinning liquid, atomizing method, etc. , Powder and the like.
The Fe—Cr—W-based metallic glass of the present invention has a ΔTx of 30 ° C. or higher, preferably 50 ° C. or higher and high amorphous forming ability. It can also be formed as a bulk body of an amorphous phase by a method.

金属ガラスを基材表面に被覆する方法としては、スパッタリング、イオンプレーティング、CVDなどの物理的蒸着法が一般的に行われている。
しかしながら、これらの方法では金属ガラス薄膜は形成できるが、十分な膜厚を得るには非常に時間がかかり、また、大面積化も困難である。
また、電解鍍金などの湿式系では析出条件が難しく、組成が安定しない、廃水処理が必要などの問題がある。
As a method for coating the surface of the substrate with metal glass, physical vapor deposition methods such as sputtering, ion plating, and CVD are generally performed.
However, although these methods can form a metallic glass thin film, it takes a very long time to obtain a sufficient film thickness, and it is difficult to increase the area.
In addition, in wet systems such as electrolytic plating, precipitation conditions are difficult, the composition is not stable, and wastewater treatment is required.

これに対して、溶射はドライプロセスで廃水処理が不要であり、簡便性、大面積化、厚膜化、基材との密着性などの点で有利な方法である。
従って、本発明のFe−Cr−W基金属ガラスを用いた溶射により、簡便に広面積の基材表面に厚膜の溶融亜鉛耐食性溶射被膜を形成することができる。
溶射被膜は、アモルファス相であること、気孔が少なく緻密でピンホールがないことが耐食性の点で望ましい。
On the other hand, spraying is a dry process that does not require wastewater treatment, and is advantageous in terms of simplicity, large area, thick film, and adhesion to a substrate.
Therefore, by spraying using the Fe—Cr—W-based metallic glass of the present invention, a thick hot-dip zinc corrosion-resistant sprayed coating can be easily formed on the surface of a large area substrate.
It is desirable in terms of corrosion resistance that the thermal spray coating is an amorphous phase, is dense with few pores, and has no pinholes.

溶射方法としては特に制限されるものではないが、均一な金属ガラスのアモルファス固体相からなり、気孔がほとんどなくピンホールのない溶射被膜を形成する方法の一つとして、例えば、アモルファス相の金属ガラス粉体を溶射原料とし、金属ガラス粒子を溶融させずに過冷却液体状態で溶射する方法が好適である。   The thermal spraying method is not particularly limited, but as one of the methods for forming a thermal spray coating having a uniform metal glass amorphous solid phase and almost no pores and no pinholes, for example, amorphous phase metal glass A method in which powder is used as a spraying raw material and sprayed in a supercooled liquid state without melting metal glass particles is suitable.

過冷却液体状態では、金属ガラスは粘性流動を示し、溶融体に比べて粘性が高い流動体となる。このため、過冷却液体状態にある金属ガラス粒子が基材表面に衝突すると、スプラッシュをほとんど生じずに瞬時に薄く潰れて基材表面に広がり、厚みが非常に薄い良好なスプラットを形成することができる。そして、このようなスプラットの堆積により、緻密でピンホールのない溶射被膜を形成することができる。
また、スプラットは過冷却液体状態のまま冷却されるので、結晶相を生成せず、アモルファス相のみが得られる。
In the supercooled liquid state, the metal glass exhibits a viscous flow and becomes a fluid having a higher viscosity than the melt. For this reason, when the metallic glass particles in the supercooled liquid state collide with the base material surface, they can be crushed instantly and spread on the base material surface with little splash, forming a very thin splat. it can. And, by depositing such splats, it is possible to form a dense thermal spray coating without pinholes.
Moreover, since the splat is cooled in the supercooled liquid state, a crystalline phase is not generated, and only an amorphous phase is obtained.

また、一般に大気中での溶射の場合、溶射材料を溶融させて基材に衝突させるため、溶射材料の酸化物が被膜中に含まれてしまい、被膜の特性に悪影響を及ぼすが、アモルファス相の金属ガラス粒子を溶融させずに過冷却液体状態にまで加熱して衝突させるのであれば、大気中で溶射したとしても酸化の影響がほとんどない。
従って、アモルファス相の金属ガラス粒子を溶射により過冷却液体状態にまで加熱して基材表面で凝固及び積層させれば、均一な金属ガラスのアモルファス固体相からなり、気孔がほとんどなくピンホールのない溶射被膜を得るのに有利である。
In general, in the case of thermal spraying in the atmosphere, since the thermal spray material is melted and collided with the base material, the oxide of the thermal spray material is included in the coating, which adversely affects the properties of the coating. If the metallic glass particles are heated to the supercooled liquid state without being melted and collided, even if sprayed in the atmosphere, there is almost no influence of oxidation.
Therefore, when the amorphous phase metallic glass particles are heated to a supercooled liquid state by thermal spraying and solidified and laminated on the surface of the substrate, the amorphous solid phase of the uniform metallic glass consists of almost no pores and no pinholes. It is advantageous to obtain a sprayed coating.

一般的な溶射材料である結晶質合金では、溶融体から固体へ冷却された場合に、数%の凝固収縮を生じる。
これに対して、金属ガラスが溶融体から固体へ冷却された場合、冷却速度が適切であれば、結晶化による凝固収縮することなく過冷却液体状態となることができ、その体積は過冷却液体領域の熱膨張係数に従って連続的且つ僅かに収縮する。そして、金属ガラスが融点以下で溶融することなく過冷却液体状態から冷却された場合には、溶融体から冷却された場合に比べてさらに収縮量が少なくなる。
よって、金属ガラスを溶融させずに過冷却液体状態で溶射すれば、基材と溶射被膜との接合面に発生する残留応力が非常に小さくなるので、溶射被膜の剥離の抑制、剛性の低い基材の場合での変形や破壊の防止にも効果的である。
In a crystalline alloy which is a general thermal spray material, solidification shrinkage of several percent occurs when cooled from a melt to a solid.
On the other hand, when the metallic glass is cooled from the melt to the solid, if the cooling rate is appropriate, it can be in a supercooled liquid state without solidification shrinkage due to crystallization, and its volume is the supercooled liquid. It shrinks continuously and slightly according to the thermal expansion coefficient of the region. When the metallic glass is cooled from the supercooled liquid state without melting below the melting point, the amount of shrinkage is further reduced as compared with the case where the metallic glass is cooled from the melt.
Therefore, if the metal glass is sprayed in a supercooled liquid state without melting, the residual stress generated on the joint surface between the base material and the sprayed coating becomes very small. It is also effective in preventing deformation and destruction in the case of materials.

このような方法により、基材表面に非常に緻密で且つアモルファス相の金属ガラス溶射被膜を形成することができる。高い気孔率やピンホールの存在は、耐食性を低下させるが、上記方法によれば、例えば、気孔率が2%以下でピンホールもない金属ガラス溶射被膜を得ることができる。
なお、このような方法として、特開2006−214000号公報に記載された方法を採用することができる。
気孔率については、金属ガラス層の任意の断面を画像解析し、気孔の最大面積率を気孔率として採用することができる。また、ピンホールがないことも金属ガラス溶射被膜の任意の断面を画像解析することにより確認することができる。
By such a method, a metal glass sprayed coating having a very dense and amorphous phase can be formed on the substrate surface. The presence of high porosity and pinholes reduces corrosion resistance, but according to the above method, for example, a metal glass sprayed coating having a porosity of 2% or less and no pinholes can be obtained.
In addition, as such a method, the method described in Unexamined-Japanese-Patent No. 2006-214000 is employable.
Regarding the porosity, an arbitrary cross section of the metal glass layer can be image-analyzed, and the maximum area ratio of the pores can be adopted as the porosity. Further, the absence of pinholes can be confirmed by image analysis of an arbitrary cross section of the metal glass sprayed coating.

溶射方法としては、例えば、大気圧プラズマ溶射、減圧プラズマ溶射、フレーム溶射、高速フレーム溶射(HVOF、HVAF)、コールドスプレーなどがあり、特に制限されるものではない。
金属ガラス被膜で気孔が少なく緻密な非晶質の溶射被膜を得るには、金属ガラス溶射粒子を過冷却液体状態に加熱でき、溶射粒子速度を300m/s以上にできる溶射方法が望ましい。好適な溶射方法の一つとして、金属ガラス粒子を用いた高速フレーム溶射が挙げられ、高品位の溶射被膜を得ることができる。また、金属ガラス粒子を高速フレーム溶射と同等あるいはそれ以上の溶射粒子速度を付与可能な溶射法も好適に用いられる。近年では、大気プラズマ装置により、高速フレーム溶射と同等の速度・温度域で溶射可能な装置も開発されている。
Examples of the thermal spraying method include atmospheric pressure plasma spraying, reduced pressure plasma spraying, flame spraying, high-speed flame spraying (HVOF, HVAF), and cold spraying, and are not particularly limited.
In order to obtain a dense amorphous sprayed coating having a small number of pores with a metallic glass coating, a thermal spraying method in which the metallic glass sprayed particles can be heated to a supercooled liquid state and the sprayed particle speed can be increased to 300 m / s or more is desirable. One suitable thermal spraying method includes high-speed flame spraying using metal glass particles, and a high-quality thermal spray coating can be obtained. Further, a thermal spraying method capable of imparting a thermal spray particle velocity equal to or higher than that of high-speed flame spraying to metal glass particles is also preferably used. In recent years, an apparatus capable of thermal spraying at the same speed and temperature range as high-speed flame spraying has been developed by an atmospheric plasma apparatus.

標準的なプラズマ溶射は、粒子速度が150〜300m/s、フレーム温度は10,000〜15,000Kの範囲であり、プラズマジェット(フレーム)は熱源から40mm程度の距離でも約5,000Kである。フレーム溶射は、粒子速度が100〜200m/s、フレーム温度は2,300〜2,900Kの範囲である。アーク溶射は、粒子速度が180〜220m/s、フレーム温度は約4,000Kであり、速度はフレーム溶射と同等である。コールドスプレーは573〜773K程度に加熱したガスで粒子を加速し、粒子の衝突速度を500m/s以上とする。
一方、高速フレーム溶射(HVOF、HVAF)は、フレーム温度はフレーム溶射と同等であり、粒子速度は300m/s以上で、標準的なフレーム溶射の2倍以上にもできる。
このため、一般的な溶射材料金属を溶射した場合の気孔率は、フレーム溶射で12%程度、アーク溶射で8%程度、プラズマ溶射で7%程度であるのに対し、高速フレーム溶射では4%程度となり、密着性も高速フレーム溶射は優れる。
Standard plasma spraying has a particle velocity of 150 to 300 m / s, a flame temperature in the range of 10,000 to 15,000 K, and a plasma jet (flame) of about 5,000 K even at a distance of about 40 mm from the heat source. . Flame spraying has a particle velocity of 100 to 200 m / s and a flame temperature of 2,300 to 2,900K. Arc spraying has a particle velocity of 180-220 m / s, a flame temperature of about 4,000 K, and a velocity equivalent to flame spraying. Cold spray accelerates the particles with a gas heated to about 573 to 773 K, and the particle collision speed is set to 500 m / s or more.
On the other hand, in high-speed flame spraying (HVOF, HVAF), the flame temperature is equivalent to flame spraying, the particle velocity is 300 m / s or more, and it can be more than twice that of standard flame spraying.
Therefore, the porosity when spraying a general spray material metal is about 12% for flame spraying, about 8% for arc spraying, and about 7% for plasma spraying, whereas it is 4% for high-speed flame spraying. High-speed flame spraying is excellent in adhesion.

即ち、気孔率が少なく緻密で、密着性も高い高品位の溶射被膜を作製したい場合には、アモルファス相の金属ガラス粉末を溶射材料として用い、溶射材料に与える熱量は金属ガラス粉体の少なくとも一部が過冷却液体状態となる最低限の熱量とすることで、通常の溶射材料の場合に比して少なくすることが好適である。また、粒子速度に関しては、粒子速度300m/s未満の低速な溶射方法では溶射粒子が充分に潰れず気孔率が高くなってしまうため、溶射被膜を緻密にするために溶射距離を短くする必要があり、基材が溶射フレーム熱源の影響を受け易い。フレームの影響を受けないよう、溶射距離を十分とることができて気孔率が低い高速フレーム溶射法、あるいは高速フレーム溶射法と同等以上の粒子速度を与える溶射法が好適である。   In other words, when it is desired to produce a high-quality sprayed coating with low porosity and high adhesion, amorphous phase metallic glass powder is used as the thermal spraying material, and the amount of heat applied to the thermal spraying material is at least one of the metallic glass powder. By setting the amount of heat to a minimum at which the part becomes a supercooled liquid state, it is preferable to reduce the amount of heat as compared with the case of a normal thermal spray material. Further, regarding the particle velocity, since the sprayed particles are not sufficiently crushed and the porosity is increased by a low-speed spraying method with a particle velocity of less than 300 m / s, it is necessary to shorten the spraying distance in order to make the sprayed coating dense. Yes, the substrate is susceptible to thermal spray frame heat sources. In order not to be affected by the flame, a high-speed flame spraying method that can take a sufficient spray distance and has a low porosity, or a spraying method that gives a particle velocity equal to or higher than that of the high-speed flame spraying method is preferable.

溶射熱源を燃焼エネルギーとする場合、溶射燃料としては、灯油、アセチレン、水素、プロパン、プロピレン等を用いることができる。溶射熱源を電気エネルギーとする場合、プラズマガスとしては、アルゴン、水素、ヘリウム等を用いることができる。
また、溶射では通常搬送ガスとしてNガスが使用されるが、窒化物の形成により被膜組成や緻密性などに影響を及ぼすことがある。これは、空気(ドライエアー)、酸素、不活性ガス(Ar、He等)などを搬送ガスとして用いることにより改善される。空気や酸素では酸化の影響があるため、緻密で酸化物や結晶化率の低い溶射被膜を必要とする場合は搬送ガスとして不活性ガスを用いることが好ましい。
When the thermal spray heat source is combustion energy, kerosene, acetylene, hydrogen, propane, propylene, or the like can be used as the thermal spray fuel. When electric energy is used as the thermal spraying heat source, argon, hydrogen, helium, or the like can be used as the plasma gas.
In spraying, N 2 gas is usually used as a carrier gas, but the formation of nitrides may affect the coating composition and denseness. This can be improved by using air (dry air), oxygen, inert gas (Ar, He, etc.) as the carrier gas. Since air or oxygen has an effect of oxidation, it is preferable to use an inert gas as a carrier gas when a dense thermal spray coating with a low oxide or crystallization rate is required.

金属ガラス粒子の粒子径は、溶射被膜を緻密にするため、1〜65μmが望ましい。基材の形状が平面でない場合は、5〜25μmがより好ましい。粒子径が小さすぎると溶射のバレル内に溶融粒子が付着しやすくなったり、所望の膜厚とするのに溶射回数が増えるなど生産性が低下する。また、バレル内に付着凝固した粒子がバレルから剥がれて溶射されると、溶射被膜の均一性が低下する。   The particle diameter of the metallic glass particles is preferably 1 to 65 μm in order to make the sprayed coating dense. When the shape of the substrate is not flat, 5 to 25 μm is more preferable. If the particle diameter is too small, the productivity tends to decrease, for example, the molten particles tend to adhere to the thermal spray barrel, or the number of thermal sprays increases to achieve a desired film thickness. Further, when the particles adhered and solidified in the barrel are peeled off and sprayed from the barrel, the uniformity of the sprayed coating is lowered.

金属ガラス粒子の形状は特に限定されるものではなく、板状、チップ状、粒状、粉体状などが挙げられるが、高速な溶射フレームから均一に熱量を与えられる形状としては粒状あるいは粉体状である。尚、剛性が低い基材の場合は特に、溶射時、基材に衝突する際に基材損傷を避け、負荷を軽減する必要があるため粒状あるいは粉体状が好ましい。金属ガラス粒子の調製方法としては、アトマイズ法、ケミカルアロイング法、メカニカルアロイング法などがあるが、生産性と球状化を考慮すればアトマイズ法によって調製されたものが特に好ましい。   The shape of the metal glass particles is not particularly limited, and examples thereof include a plate shape, a chip shape, a granular shape, and a powder shape. The shape that can uniformly apply heat from a high-speed sprayed frame is granular or powdery shape. It is. In particular, in the case of a substrate having low rigidity, it is necessary to avoid damage to the substrate and to reduce the load when it collides with the substrate during thermal spraying. As a method for preparing the metallic glass particles, there are an atomizing method, a chemical alloying method, a mechanical alloying method, and the like, and those prepared by the atomizing method are particularly preferable in consideration of productivity and spheroidization.

基材としては、特に限定されるものではなく、金属、特にステンレスなどの鋼材、セラミックス、ガラス、ポリイミドなどの耐熱性プラスチックなどの耐熱性材料を用いることが可能である。
溶融亜鉛めっきに通常使用される様々な材料、材質、形状の部材を基材に用いることができ、材料としては特に、NAGP鋼(R)などの亜鉛メッキ釜用鋼材及びセラミックスが汎用される。
また、基材は、金属ガラス溶射被膜の接合性を高めるために、通常はブラスト処理など公知の方法により基材表面の粗面化処理を施して使用することが好適である。
The base material is not particularly limited, and heat-resistant materials such as metals, particularly steel materials such as stainless steel, and heat-resistant plastics such as ceramics, glass, and polyimide can be used.
Various materials, materials, and shapes that are usually used for hot dip galvanizing can be used as the base material. In particular, steel materials for galvanizing pots such as NAGP steel (R) and ceramics are generally used.
Moreover, in order to improve the bondability of a metal glass sprayed coating, it is preferable that the base material is used after the surface of the base material is roughened by a known method such as blasting.

金属ガラスの溶射被膜は、様々な形状の基材表面に形成することができ、例えば凹凸形状を有するものや、円筒状、パイプ状、ロール状、シート状であってもよい。また、基材の材質が多孔質状であってもよい。
また、金属ガラス溶射被膜はマスキング等によりパターン化して形成することもできる。
The thermal sprayed coating of metal glass can be formed on the surface of a substrate having various shapes, and may be, for example, one having an uneven shape, a cylindrical shape, a pipe shape, a roll shape, or a sheet shape. The material of the substrate may be porous.
Further, the metal glass sprayed coating can be formed by patterning by masking or the like.

金属ガラス溶射被膜の厚みは5μm以上、好ましくは10μm以上、更には100μm以上とすることができる。上限は特に制限されないが、厚くなりすぎると経済性が低下するので、典型的には500μm程度であるが、最大2mmもあれば耐食性には十分である。   The thickness of the metal glass sprayed coating can be 5 μm or more, preferably 10 μm or more, and more preferably 100 μm or more. The upper limit is not particularly limited, but if it becomes too thick, the economic efficiency is lowered. Therefore, it is typically about 500 μm, but a maximum of 2 mm is sufficient for corrosion resistance.

さらには、基材表面に溶射被膜を形成した後、金属ガラス溶射被膜に金型プレスして凹凸や鏡面など所望の形状を転写形成することもできる(例えば、特開2006−122918号公報参照)。金属ガラスは過冷却液体状態で粘性流動を示し、加工性に優れている。もちろん、溶射被膜のみならず、基材と一体に種々の形状に加工することもできる。   Furthermore, after forming a sprayed coating on the surface of the substrate, a metal glass sprayed coating can be die-pressed to transfer and form a desired shape such as unevenness or mirror surface (see, for example, JP-A-2006-122918). . Metallic glass exhibits viscous flow in a supercooled liquid state and is excellent in workability. Of course, it can be processed into various shapes integrally with the base material as well as the sprayed coating.

また、基材表面に金属ガラス溶射被膜を形成した後、金属ガラス溶射被膜に封孔処理を施すことで、溶融亜鉛との反応の起点と成り得る、溶射被膜表面のわずかな積層欠陥や気孔を塞ぐこと、特に、亜鉛に濡れにくいSiO系ポリマーで塞ぐことで被膜の溶融亜鉛耐食性をさらに向上させることもできる。また、SiO系ポリマーが低粘度・低表面張力の封孔処理剤の場合は、溶射被膜表層部だけでなく、溶射被膜の微細孔の奥まで浸透し、粒子界面にある微細な積層欠陥物や気孔をSiO系ポリマーが塞ぐ効果を高めることができる。   In addition, after forming a metallic glass sprayed coating on the surface of the substrate, the metallic glass sprayed coating is subjected to a sealing treatment to eliminate slight stacking faults and pores on the surface of the sprayed coating that can be the starting point for the reaction with molten zinc. It is possible to further improve the molten zinc corrosion resistance of the coating by blocking, particularly with a SiO-based polymer that is difficult to wet with zinc. In addition, when the SiO-based polymer is a low viscosity / low surface tension sealing agent, it penetrates not only to the surface layer portion of the sprayed coating but also to the back of the micropores of the sprayed coating, The effect of blocking the pores with the SiO-based polymer can be enhanced.

すなわち、上記のとおり本発明の金属ガラスは溶融亜鉛耐食性に非常に優れるものであり、この金属ガラスを溶射材料に用いてピンホールがなく気孔率も2%以下と非常に緻密なアモルファス相の金属ガラス溶射被膜を得ることができるが、このような溶射被膜であっても、単ロール法で作製した同じ組成のアモルファス相の金属ガラスリボン材などに比べて耐食性に劣る場合がある。これは、このような溶射被膜であっても、積層粒子間の界面には溶射材料由来の微細な酸化物や積層粒子間の微少な気孔が点在し、溶射被膜表面にこのような積層粒子間の界面が露出していると、これを起点に界面に沿って侵食が進行するためと考えられる。   That is, as described above, the metallic glass of the present invention is extremely excellent in molten zinc corrosion resistance. Using this metallic glass as a thermal spray material, there is no pinhole and the porosity is 2% or less, which is a very dense amorphous phase metal. Although a glass sprayed coating can be obtained, even such a sprayed coating may be inferior in corrosion resistance as compared to an amorphous phase metallic glass ribbon material having the same composition prepared by a single roll method. This is because even in the case of such a sprayed coating, fine oxides derived from the sprayed material and minute pores between the stacked particles are scattered at the interface between the stacked particles, and such a layered particle is present on the surface of the sprayed coating. If the interface is exposed, it is considered that erosion proceeds along the interface starting from this.

例えば、図1は本発明の金属ガラス溶射被膜の断面を模式的に示した図であり、基材10の表面に積層粒子12からなる溶射被膜14が形成されている。積層粒子12は互いに密着して積層しており、溶射被膜14には貫通孔(ピンホール)は存在せず気孔もほとんどない。
溶射被膜14においては、衝突時の新生面形成によって積層粒子12間の界面が消失して複数の積層粒子が一体化しているところもあるが、密着している積層粒子12間に新生面が形成されずに界面16が残存したり、微少な気孔があるところもある。そして、このような界面16は、溶射被膜14の表面から内部へ、場合によっては基材10の表面まで伸びている可能性がある。
For example, FIG. 1 is a diagram schematically showing a cross section of a metal glass sprayed coating of the present invention, in which a sprayed coating 14 composed of laminated particles 12 is formed on the surface of a substrate 10. The laminated particles 12 are laminated in close contact with each other, and the thermal spray coating 14 has no through holes (pinholes) and almost no pores.
In the sprayed coating 14, there are some cases where the interface between the laminated particles 12 disappears due to the formation of a new surface at the time of collision, and a plurality of the laminated particles are integrated, but a new surface is not formed between the adjacent laminated particles 12. In some cases, the interface 16 remains or there are minute pores. Such an interface 16 may extend from the surface of the thermal spray coating 14 to the inside, and possibly to the surface of the substrate 10.

界面16は、積層粒子12に比べて溶融亜鉛の侵食に対して弱い。このため、溶射粒子表面に露出している微細な酸化物や気孔を含む界面16を起点として、溶射被膜14中に伸びる界面16に沿って溶融亜鉛の侵食が進行すると考えられる。
従って、溶射被膜14表面に露出している溶融亜鉛による侵食の起点となる界面16を塞ぐことで、界面16に沿った溶融亜鉛の侵食を阻害することができる。
The interface 16 is weaker against erosion of molten zinc than the laminated particles 12. For this reason, it is considered that the erosion of the molten zinc proceeds along the interface 16 extending into the sprayed coating 14 starting from the interface 16 including fine oxides and pores exposed on the surface of the sprayed particles.
Therefore, the erosion of the molten zinc along the interface 16 can be inhibited by closing the interface 16 that is the starting point of the erosion by the molten zinc exposed on the surface of the thermal spray coating 14.

溶射被膜14表面に露出している界面16は、実際には通常は極めて微細な窪み(微細孔)として存在する。よって、このような微細孔を溶融亜鉛に対して強固に封鎖することが必要である。
本発明者らの検討によれば、低粘度で高固形分のアルコキシシラン系硬化性封孔剤がこのような封鎖に有効であった。
In practice, the interface 16 exposed on the surface of the thermal spray coating 14 usually exists as a very fine depression (micropore). Therefore, it is necessary to firmly seal such micropores against molten zinc.
According to the study by the present inventors, an alkoxysilane curable sealant having a low viscosity and a high solid content was effective for such blocking.

このようなアルコキシシラン系封孔剤の好適な例として、下記成分(a)及び(b)からなり、成分(a)の25℃における粘度が20〜1000mPa・sである一液常温硬化型封孔剤が挙げられる。
(a)下記式(2)で示されるアルコキシシラン化合物及びその部分加水分解物から選ばれる少なくとも1種の化合物:
Si(OR4−n ・・・(2)
(式中、Rはそれぞれ独立して置換若しくは非置換の炭素数1〜8の1価炭化水素基、Rはそれぞれ独立して炭素数1〜4のアルキル基、nは0〜3の整数である)。
(b)硬化触媒。
As a suitable example of such an alkoxysilane-based sealing agent, a one-component room temperature curable seal comprising the following components (a) and (b), wherein the viscosity of the component (a) at 25 ° C. is 20 to 1000 mPa · s. A pore agent is mentioned.
(A) At least one compound selected from an alkoxysilane compound represented by the following formula (2) and a partial hydrolyzate thereof:
R 1 n Si (OR 2 ) 4-n (2)
(In the formula, each R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, R 2 is each independently an alkyl group having 1 to 4 carbon atoms, and n is 0 to 3) Is an integer).
(B) Curing catalyst.

成分(a)は低粘度であり、且つ完全には加水分解されていない。また、該封孔剤は溶媒で希釈せずに無溶媒のまま用いることができる。このため、該封孔剤は、固形分含有量を高くしても本発明の金属ガラス溶射被膜表面の微細孔にもスムーズに浸透し、浸透後は成分(b)により硬化して微細孔をほぼ完全にシリコーンポリマーで封鎖することができる。そして、このシリコーンポリマーは溶融亜鉛に対して濡れにくく、しかも硬化の際に本発明の金属ガラス溶射被膜と強固に化学的に結合して溶融亜鉛中においても剥離しないので、溶融亜鉛に対する封鎖効果を長期間にわたって発揮する。   Component (a) has a low viscosity and is not fully hydrolyzed. The sealing agent can be used as it is without being diluted with a solvent. For this reason, even when the solid content is increased, the sealant smoothly penetrates into the fine pores on the surface of the metal glass sprayed coating of the present invention, and after the penetration, it is cured by the component (b) to form fine pores. It can be almost completely sealed with a silicone polymer. And this silicone polymer is hard to get wet with molten zinc, and when cured, it is chemically bonded to the metallic glass sprayed coating of the present invention and does not peel off in molten zinc. Demonstrate over a long period of time.

このような一液常温硬化型封孔剤としては、特開2002−363539号公報に記載されているものを用いることができる。また、市販品としては、パーミエイトHSシリーズ((株)ディ・アンド・ディ)などが挙げられる。
なお、特開2002−363539号公報には、亜鉛溶射被膜や亜鉛合金溶射被膜に対して上記封孔剤を処理すると、該溶射被膜の耐塩性・耐酸性が改善されることが記載されているが、溶融亜鉛に対する封鎖効果については全く記載されていない。
As such a one-component room temperature curable sealing agent, those described in JP-A No. 2002-363539 can be used. Moreover, as a commercial item, Permeate HS series (Corporation D & D) etc. are mentioned.
Japanese Patent Application Laid-Open No. 2002-363539 describes that the salt resistance and acid resistance of the sprayed coating are improved by treating the sealing agent with respect to the zinc sprayed coating or the zinc alloy sprayed coating. However, there is no description of the blocking effect on molten zinc.

上記成分(a)のアルコキシシラン化合物は、下記式(2)で示される珪素系化合物をいう。
Si(OR4−n ・・・(2)
式(2)において、Rはそれぞれ独立して置換若しくは非置換の炭素数1〜8の1価炭化水素基、Rはそれぞれ独立して炭素原子数1〜4のアルキル基を示す。Rは同一であっても、それぞれ異なっていてもよい。また、nは0〜3の整数であり、1又は2が好ましい。nが4だとアルコキシシラン化合物とならない。nが1又は2だと、柔軟な縮合物が得られやすい。
The alkoxysilane compound of the said component (a) says the silicon type compound shown by following formula (2).
R 1 n Si (OR 2 ) 4-n (2)
In Formula (2), each R 1 independently represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and each R 2 independently represents an alkyl group having 1 to 4 carbon atoms. R 1 may be the same or different. N is an integer of 0 to 3, preferably 1 or 2. When n is 4, it is not an alkoxysilane compound. When n is 1 or 2, a flexible condensate is easily obtained.

このようなアルコキシシラン化合物の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、フェニルメチルジメトキシシラン等又はこれらの混合物があげられる。   Examples of such alkoxysilane compounds include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane. , Phenyltrimethoxysilane, diphenyldimethoxysilane, phenylmethyldimethoxysilane, and the like, or a mixture thereof.

上記成分(a)の部分加水分解縮合物とは、上記アルコキシシラン化合物に水を加えて、触媒の存在下で撹拌しながら昇温することにより、部分的に加水分解を生じさせると共に、縮合させることにより得られたものである。   The partially hydrolyzed condensate of component (a) means that water is added to the alkoxysilane compound and heated while stirring in the presence of a catalyst to cause partial hydrolysis and condensation. It was obtained by this.

上記部分加水分解物の加水分解及び縮合の程度は、粘度で規定することができる。この成分(a)の粘度は、25℃において、20〜1000mPa・sが好ましく、25〜500mPa・sがより好ましい。20mPa・sより小さいと、塗布時に封孔剤が拡散して十分な封孔効果が得られないことがある。一方、1000mPa・sより大きいと、封孔剤が微細孔へ浸透しにくくなり、やはり封孔効果が得られないことがある。   The degree of hydrolysis and condensation of the partial hydrolyzate can be defined by viscosity. The viscosity of the component (a) is preferably 20 to 1000 mPa · s, more preferably 25 to 500 mPa · s at 25 ° C. If it is less than 20 mPa · s, the sealing agent may diffuse during application and a sufficient sealing effect may not be obtained. On the other hand, if it is larger than 1000 mPa · s, it becomes difficult for the sealing agent to penetrate into the fine pores, and the sealing effect may not be obtained.

なお、この発明において、粘度は、上記の通り25℃にて、Brookfield型回転粘度計(BM型、(株)トキメック製)を用い、No.2ローター、60rpmで測定した値をいう。   In the present invention, the viscosity is 25 ° C. as described above using a Brookfield type rotational viscometer (BM type, manufactured by Tokimec Co., Ltd.). The value measured at 2 rotors and 60 rpm.

上記の加水分解及び縮合を行う際、希釈剤を用いて成分(a)を希釈して行うことができる。この希釈剤を用いると、加水分解反応及び縮合反応をより容易に行うことができる。上記希釈剤としては、上記成分(a)を溶解できるものであれば特に制限はなく、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、ベンゼン、トルエン等の芳香族化合物、メチルセロソルブ、ブチルセロソルブ、セロソルブアセテート等のセロソルブ類があげられる。
なお、加水分解縮合反応後は、反応に用いた水や希釈剤だけでなく、加水分解縮合反応で生じたアルコールも除去したものを成分(a)に用いることが好ましい。
When performing said hydrolysis and condensation, a component (a) can be diluted with a diluent and can be performed. When this diluent is used, a hydrolysis reaction and a condensation reaction can be performed more easily. The diluent is not particularly limited as long as it can dissolve the component (a). For example, alcohols such as methanol, ethanol, propanol and butanol, aromatic compounds such as benzene and toluene, methyl cellosolve, butyl cellosolve And cellosolves such as cellosolve acetate.
In addition, after the hydrolysis-condensation reaction, it is preferable to use, for component (a), not only the water and diluent used in the reaction but also the alcohol produced by the hydrolysis-condensation reaction.

成分(a)として、好ましくは、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、フェニルメチルジメトキシシラン及びこれらの混合物から選ばれるアルコキシシラン化合物、又は該アルコキシシラン化合物を加水分解縮合し、発生したメタノールの留出がなくなるまで抜き出した部分加水分解縮合物が挙げられる。   As component (a), preferably an alkoxysilane selected from methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, phenylmethyldimethoxysilane and mixtures thereof Examples thereof include a partial hydrolysis-condensation product obtained by hydrolyzing and condensing a compound or the alkoxysilane compound until the generated methanol is no longer distilled.

上記成分(b)の硬化触媒は、上記成分(a)を十分に縮合させて硬化させるための触媒をいい、例えば、有機スズ化合物、有機チタン化合物、有機アルミニウム化合物等から選ばれる1種、又はこれらの2種以上の混合物があげられる。   The component (b) curing catalyst refers to a catalyst for sufficiently condensing and curing the component (a), for example, one selected from an organic tin compound, an organic titanium compound, an organic aluminum compound, or the like, or The mixture of these 2 or more types is mention | raise | lifted.

上記の硬化触媒の中でも、常温で上記成分(a)を硬化させる触媒を用いると、溶射被膜への影響がなく、また使用条件に応じた硬化時間の調整が可能である点でより好ましい。このような触媒の例として、ジブチルスズジラウレート、ジブチルスズジアセテート、ジブチルスズジオクトエート等の有機スズ化合物、テトライソプロピルチタネート、テトラブチルチタネートやそのオリゴマー等の有機チタン化合物、アルミニウムトリイソプロポキシド、アルミニウムトリsec−ブトキシド等の有機アルミニウム化合物等があげられる。   Among the above curing catalysts, the use of a catalyst that cures the component (a) at room temperature is more preferable because it does not affect the sprayed coating and the curing time can be adjusted according to the use conditions. Examples of such catalysts include organotin compounds such as dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioctoate, organotitanium compounds such as tetraisopropyl titanate, tetrabutyl titanate and oligomers thereof, aluminum triisopropoxide, aluminum trisec. -Organoaluminum compounds such as butoxide.

上記硬化触媒の使用量は、上記成分(a)100質量部に対して、0.1〜10質量部がよく、0.2〜3質量部が好ましい。0.1質量部より少ないと、塗布後の硬化速度が遅く、場合によっては著しく長時間を要することがある。一方、10質量部より多いと、配合された封孔剤が不均一になったり、あるいは硬化が速すぎて、作業性が悪化することがある。   The amount of the curing catalyst used is preferably 0.1 to 10 parts by mass, and preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the component (a). When the amount is less than 0.1 parts by mass, the curing rate after coating is slow, and in some cases, a considerably long time may be required. On the other hand, when the amount is more than 10 parts by mass, the blended sealing agent may become non-uniform, or the curing may be too fast, and workability may deteriorate.

次に、このような封孔剤による封孔処理方法について説明する。
まず、上記封孔剤を金属ガラス溶射被膜の表面にスプレー、ディッピング、ハケ塗り、ローラー塗り等の任意の方法で塗布し、溶射被膜表面の微細孔に上記封孔剤を含浸させる。また、上記溶射被膜を減圧下で脱気した後、封孔剤を含浸させてもよい。
次に、上記材料を常温下で5〜20時間、放置する。これにより、成分(a)が大気中の水分と反応して加水分解及び縮合が更に進行し微細孔内でポリシロキサンが硬化し、封孔が行われる。また、加熱を行うと、成分(a)の縮合による硬化が促進される。
なお、封孔処理は必要に応じて複数回行うことができるが、通常は1回又は2回で十分である。また、封孔剤を塗布した後は、封孔剤が完全に硬化する前(例えば、塗布後5分〜1時間後)に余剰分をウエス等でふき取ることが好ましい。
Next, a sealing treatment method using such a sealing agent will be described.
First, the sealing agent is applied to the surface of the metal glass sprayed coating by any method such as spraying, dipping, brushing, or roller coating, and the pores on the surface of the sprayed coating are impregnated with the sealing agent. Further, the sprayed coating may be impregnated with a sealing agent after degassing under reduced pressure.
Next, the material is left at room temperature for 5 to 20 hours. Thereby, a component (a) reacts with the water | moisture content in air | atmosphere, hydrolysis and condensation further advance, polysiloxane hardens | cures in a micropore, and sealing is performed. Further, when heating is performed, curing due to condensation of the component (a) is promoted.
The sealing treatment can be performed a plurality of times as necessary, but usually once or twice is sufficient. Moreover, after apply | coating a sealing agent, it is preferable to wipe off the surplus with a waste etc. before a sealing agent hardens | cures completely (for example, after 5 minutes-1 hour after application | coating).

本発明のFe−Cr−W基金属ガラスは、溶融亜鉛に対する耐食性に優れるため、溶融亜鉛めっき設備、溶融亜鉛めっき鋼板製造ライン、亜鉛ダイカストなどの溶融亜鉛が使用される設備や装置の溶融亜鉛と接触する可能性がある部材やその表面コーティングに有用である。例えば、どぶ漬けめっき浴設備、溶融亜鉛めっき鋼板製造ラインのシンクロールやサポートロールなどが挙げられるが、これらに限定されるものではない。また、本発明の金属ガラスを溶融亜鉛との接触面の下地層として用い、下地層表面にさらに上記封孔剤処理をことができる他、セラミックス、サーメット、あるいは他の耐食性材料をコーティングしてもよい。   Since the Fe—Cr—W-based metallic glass of the present invention is excellent in corrosion resistance against molten zinc, the molten zinc of a facility or apparatus in which molten zinc is used, such as a galvanized facility, a galvanized steel sheet production line, and zinc die casting, It is useful for a member that may come into contact and its surface coating. For example, a soaking bath equipment, a sink roll or a support roll of a hot dip galvanized steel sheet production line can be mentioned, but the invention is not limited to these. In addition, the metal glass of the present invention can be used as an underlayer for the contact surface with molten zinc, and the surface of the underlayer can be further treated with the above-mentioned sealing agent, or can be coated with ceramics, cermet, or other corrosion-resistant materials. Good.

また、溶融亜鉛めっき鋼板の製造において、亜鉛に5%Alを添加したZn−Al合金溶融めっき(JIS G3317)、亜鉛に55%Alを添加したZn−Al合金溶融めっき(JIS G3321:所謂、ガルバリウム鋼板)により鋼板を高耐食性にすることが行なわれているが、本発明の金属ガラスはこのようなZn−Al合金の溶融体などに対しても耐食性材料として適用可能である。   Further, in the manufacture of hot dip galvanized steel sheet, Zn-Al alloy hot dipping with 5% Al added to zinc (JIS G3317), Zn-Al alloy hot dipping with 55% Al added to zinc (JIS G3321: so-called galvalume) Steel sheets) are made to have high corrosion resistance. However, the metallic glass of the present invention can be applied to such a Zn-Al alloy melt as a corrosion resistant material.

以下、具体例を挙げて本発明を説明するが、本発明はこれらに限定されるものではない。なお、本発明で用いた測定方法は次の通りである。   Hereinafter, the present invention will be described with specific examples, but the present invention is not limited thereto. The measurement method used in the present invention is as follows.

測定方法
(1)DSC測定
供試した金属ガラスのガラス遷移温度Tg、結晶化温度Txは、示差走査熱量計((株)リガク製 DSC8270型)を用い、昇温速度20℃/分により求めた。
Measurement method (1) DSC measurement The glass transition temperature Tg and the crystallization temperature Tx of the tested metal glass were determined by using a differential scanning calorimeter (DSC8270, manufactured by Rigaku Corporation) at a heating rate of 20 ° C./min. .

(2)X線回折
アモルファスであるか否かは、X線回折装置((株)リガク製 SmartLab)により確認した。X線回折パターンにおいて、結晶ピークがなく、ハローパターンのみが認められた場合をアモルファス単一相とした。
(2) X-ray diffraction Whether it was amorphous or not was confirmed by an X-ray diffractometer (SmartLab, manufactured by Rigaku Corporation). In the X-ray diffraction pattern, when there was no crystal peak and only a halo pattern was observed, it was defined as an amorphous single phase.

(3)顕微鏡観察及びEDS−SEM分析
供試材と溶融亜鉛との反応については、走査電子顕微鏡(日本電子(株)製 JSM−7001F型、エネルギー分散形X線分析装置付帯)により観察した。
(3) Microscope observation and EDS-SEM analysis About reaction with a test material and molten zinc, it observed with the scanning electron microscope (JEOL Co., Ltd. product JSM-7001F type, energy dispersion type | formula X-ray analyzer attachment).

試験例1
表1に記載の材料組成になるように、電解鉄、金属クロム、ニオブ、モリブデン、タングステン薄板、クロムカーバイト、フェロボロン、等の原料を配合し、高周波溶解炉(日新技研(株)製 小型真空溶解装置(NEV−M04C型))で合金化し、合金母材を得た。
その合金母材を用いて、単ロール装置(日新技研(株)製 液体急冷凝固装置(NEV−A05型))にて約20μm厚みのリボン材をアルゴンガス雰囲気中で作製し、幅8mm、長さ30mmの試料とした。いずれのリボン材もX線回折において結晶ピークのないハローパターンを示し、アモルファス単一相であることを確認した。また、表1には作製したリボン材のDSC測定結果(Tg、Tx、ΔTx)を示した。
Test example 1
Mixing raw materials such as electrolytic iron, metallic chromium, niobium, molybdenum, tungsten thin plate, chrome carbide, ferroboron, etc. so as to have the material composition shown in Table 1, a high frequency melting furnace (manufactured by Nisshin Giken Co., Ltd., small size) An alloy base material was obtained by alloying with a vacuum melting apparatus (NEV-M04C type)).
Using the alloy base material, a ribbon material having a thickness of about 20 μm was produced in an argon gas atmosphere with a single roll device (liquid rapid solidification device (NEV-A05 type) manufactured by Nisshin Giken Co., Ltd.), and the width was 8 mm. A sample with a length of 30 mm was used. Each ribbon material showed a halo pattern with no crystal peak in X-ray diffraction, and was confirmed to be an amorphous single phase. Table 1 shows the DSC measurement results (Tg, Tx, ΔTx) of the produced ribbon material.

得られたリボン材を用いて浸漬試験を行なった。具体的には、図2に示すように、リボン材をガラス管の中に入れたのちに、亜鉛粒(亜鉛純度99.995%以上(東邦亜鉛(株)製)で満たして、大気中、電気炉にて加熱溶融して亜鉛浴とし、そのまま480℃にて72時間保持した。その後、リボン材を取り出して放冷し、リボン材に付着した亜鉛を引っかいて容易に剥離除去できるかを調べた。
結果を表1に示す。但し、「亜鉛付着なし」は、浸漬試験において付着した亜鉛が容易に剥離除去できたことを意味し、これはリボン材が溶融亜鉛と反応しておらず、侵食されていないことを意味している。
An immersion test was performed using the obtained ribbon material. Specifically, as shown in FIG. 2, after putting the ribbon material in a glass tube, it is filled with zinc particles (zinc purity of 99.995% or more (manufactured by Toho Zinc Co., Ltd.)) Heated and melted in an electric furnace to make a zinc bath, and kept as it is for 72 hours at 480 ° C. Then, the ribbon material was taken out and allowed to cool, and it was investigated whether the zinc adhering to the ribbon material could be easily peeled and removed. It was.
The results are shown in Table 1. However, “no zinc adhesion” means that the zinc adhered in the immersion test could be easily peeled and removed, which means that the ribbon material did not react with the molten zinc and was not eroded. Yes.

試料1−a(前記特許文献2記載の溶融錫に対する耐侵食性材料)や試料1−cのリボン材は、亜鉛が著しく付着して剥離困難であり、溶融亜鉛と反応してしまうのに対し、本発明の金属ガラスのリボン材(試料1−1〜試料1−7)は亜鉛の付着がなく、溶融亜鉛に対する反応性が非常に低く耐食性に優れることが確認された。
Wを23at%含む試料1−bは亜鉛付着が無く溶融亜鉛とは反応しないが、ガラス遷移温度Tgのないアモルファスであるため、冷却速度が速いリボン材ではアモルファスにはできるが、アトマイズでは全てを非晶質にはできなかった。
Sample 1-a (corrosion-resistant material against molten tin described in Patent Document 2) and ribbon material of Sample 1-c are extremely difficult to peel due to the adhesion of zinc, and react with molten zinc. It was confirmed that the metallic glass ribbon materials (Sample 1-1 to Sample 1-7) of the present invention had no adhesion of zinc and had very low reactivity with molten zinc and excellent corrosion resistance.
Sample 1-b containing 23 at% W has no zinc adhesion and does not react with molten zinc, but is amorphous with no glass transition temperature Tg, so it can be made amorphous with a ribbon material with a fast cooling rate, but all with atomization. It could not be made amorphous.

さらに、取り出したリボン材を樹脂に埋め込み、リボン材断面をEDS−SEM観察することでリボン材内部における溶融亜鉛との反応の有無の確認を行った。
その結果、試料1−1〜試験例1−7の何れにおいても、リボン材表面だけでなく、リボン材内部においても亜鉛は観察されず、溶融亜鉛と反応していないことが確認された。
Furthermore, the taken-out ribbon material was embedded in resin, and the cross section of the ribbon material was observed by EDS-SEM to confirm the presence or absence of reaction with molten zinc inside the ribbon material.
As a result, in any of Sample 1-1 to Test Example 1-7, zinc was not observed not only on the ribbon material surface but also inside the ribbon material, and it was confirmed that it did not react with molten zinc.

同様に、亜鉛−5%アルミニウム浴による浸漬試験(480℃×72時間)、ならびにEDS−SEM観察を行なった。その結果、試料1−1〜1−7の何れのリボン材においても、純亜鉛浴での浸漬試験結果と同様に、リボン材表面に亜鉛−アルミニウムの付着がなく、また、EDS−SEM観察でもリボン材表面及び内部において亜鉛及びアルミニウムは認められなかった。   Similarly, the immersion test (480 degreeC x 72 hours) by a zinc-5% aluminum bath and the EDS-SEM observation were performed. As a result, in any of the ribbon materials of Samples 1-1 to 1-7, there was no adhesion of zinc-aluminum on the ribbon material surface as in the immersion test result in the pure zinc bath, and even in EDS-SEM observation. Zinc and aluminum were not observed on the ribbon material surface and inside.

試験例2
径20mmの棒状SS400鋼(表面ブラスト処理仕上げ)を基材として、表2に記載の組成のアモルファス相金属ガラス粉末を溶射して得られた、厚み250〜400μmの溶射被膜で被覆した棒材を試料として、次のように浸漬試験を行なった。
ヒーターで加熱して480℃に保持した亜鉛浴(亜鉛純度99.995%以上(東邦亜鉛(株)製)中に試料を一定時間浸漬後、取り出して放冷することによって熱衝撃を与えた。総浸漬時間は210時間、熱衝撃回数は3回とした。試験終了後に、溶射被膜の亜鉛との反応性、および熱衝撃による被膜の割れや剥離の有無を目視により確認した。
Test example 2
A rod covered with a thermal spray coating having a thickness of 250 to 400 μm obtained by thermal spraying an amorphous phase metal glass powder having the composition shown in Table 2 using a rod-shaped SS400 steel (surface blasted finish) having a diameter of 20 mm as a base material. As a sample, an immersion test was performed as follows.
A sample was immersed in a zinc bath (zinc purity of 99.995% or more (manufactured by Toho Zinc Co., Ltd.)) heated by a heater and maintained at 480 ° C. for a certain period of time, then taken out and allowed to cool to give a thermal shock. The total immersion time was 210 hours, and the number of thermal shocks was 3. After the test, the reactivity of the sprayed coating with zinc and the presence or absence of cracking or peeling of the coating due to thermal shock were visually confirmed.

溶射用粉末として、金属ガラスのアトマイズ粉末(粒度10μm〜25μm)を用いた。溶射用粉末は、X線回折において結晶ピークのないハローパターンを示したことから、アモルファス単一相であることを確認した。   As the powder for thermal spraying, atomized powder of metal glass (particle size: 10 μm to 25 μm) was used. Since the thermal spraying powder showed a halo pattern without crystal peaks in X-ray diffraction, it was confirmed to be an amorphous single phase.

また、溶射条件は次の通り。
(溶射条件)
HVOF装置:日本ユテク社製 JP−5000
粉末搬送ガス:N
燃料:灯油、5.1GPH
酸素:1800SCFH
溶射距離(溶射ガン先端から基材表面までの距離):380mm
溶射ガン移動速度:40m/分
The spraying conditions are as follows.
(Spraying conditions)
HVOF device: JP-5000 manufactured by Nihon Utec Co., Ltd.
Powder carrier gas: N 2
Fuel: Kerosene, 5.1GPH
Oxygen: 1800 SCFH
Thermal spray distance (distance from spray gun tip to substrate surface): 380 mm
Spray gun moving speed: 40m / min

試料2−1及び試料2−aの何れの溶射被膜も、X線回折の結晶ピークのないハローパターンからアモルファス単一相であることを確認した。また、試料断面の組織観察から、何れの溶射被膜も気孔率は2%以下で、且つピンホールも認められなかった。   It was confirmed that any of the thermal spray coatings of Sample 2-1 and Sample 2-a was an amorphous single phase from a halo pattern having no crystal peak of X-ray diffraction. Moreover, from the observation of the structure of the sample cross section, the porosity of any sprayed coating was 2% or less and no pinholes were observed.

本発明にかかる金属ガラスの溶射被膜(試料2−1)では、亜鉛浴から引き上げた際には亜鉛が薄く付着していたものの、放冷後に軽く引っかくと容易に剥離除去でき、除去後の溶射被膜の表面には試験前に比べて変化は見られず、図3のように亜鉛の付着は全くなく、また、割れや剥離もなかった。   In the thermal spray coating (Sample 2-1) of the metallic glass according to the present invention, although zinc was thinly adhered when pulled up from the zinc bath, it can be easily peeled and removed by lightly scratching after cooling and sprayed after removal. No change was observed on the surface of the coating as compared to before the test, as shown in FIG. 3, there was no adhesion of zinc, and there was no cracking or peeling.

一方、Wを含有しない金属ガラスの溶射被膜(試料2−a)では、試験終了後に亜鉛浴から引き上げた際に亜鉛が付着しており、放冷後に引っかいても先端部においては図4のように著しく凝着していて除去することができなかった。これは、試料2−aの溶射被膜が溶融亜鉛と反応して合金化したためと考えられた。なお、溶射被膜には割れや剥離は認められなかった。   On the other hand, in the sprayed coating of metal glass containing no W (Sample 2-a), zinc is adhered when pulled up from the zinc bath after completion of the test. The film was extremely adhered to the surface and could not be removed. This was thought to be because the sprayed coating of Sample 2-a reacted with molten zinc to form an alloy. The thermal spray coating was not cracked or peeled off.

図5は、浸漬試験後の各試料を先端から30mmの位置で切断し、断面組織のEDS−SEM分析を行った結果である。
図5からわかるように、試料2−aでは基材表面にまでは達していなかったものの溶射被膜の表面から中央部付近までZnとの反応が認められた。
一方、試料2−1では溶射被膜の表面部分にZnとの反応が僅かに見られたものの溶射被膜中でのZnとの反応は認められなかった。
このことからも、本発明の金属ガラスの溶射被膜では溶融亜鉛との反応性が非常に低く、耐食性に優れることが理解される。
FIG. 5 shows the results of EDS-SEM analysis of the cross-sectional structure after cutting each sample after the immersion test at a position 30 mm from the tip.
As can be seen from FIG. 5, in Sample 2-a, the reaction with Zn was observed from the surface of the sprayed coating to the vicinity of the center, although it did not reach the substrate surface.
On the other hand, in sample 2-1, a slight reaction with Zn was observed on the surface portion of the sprayed coating, but no reaction with Zn in the sprayed coating was observed.
From this, it is understood that the thermal spray coating of the metallic glass of the present invention has very low reactivity with molten zinc and is excellent in corrosion resistance.

また、別の比較例として、図6に、溶融亜鉛メッキ釜用鋼板として汎用されているNAGP鋼板(新日本製鉄(株)製、0.5mm厚、1mm厚)を、純亜鉛浴中、480℃で72時間及び96時間浸漬した後のEDS−SEM分析結果を示す。
図6からわかるように、NAGP鋼板では72時間、96時間と浸漬時間が増すに連れ、明らかに鋼板からのFe成分のZnへの溶け出し(反応)が認められる。
As another comparative example, FIG. 6 shows a NAGP steel plate (manufactured by Nippon Steel Corporation, 0.5 mm thickness, 1 mm thickness) widely used as a hot dip galvanized steel plate in a pure zinc bath. The EDS-SEM analysis result after 72-hour and 96-hour immersion at ° C is shown.
As can be seen from FIG. 6, in the NAGP steel sheet, the dissolution (reaction) of Fe component from the steel sheet to Zn is clearly recognized as the immersion time increases to 72 hours and 96 hours.

試験例3
一般に、溶融金属と試料とがその接触面で反応して合金化すると濡れ性が高くなることから、反応性を簡便に調べるために濡れ試験を行なった。
10×10mmのSUS304基材上に試験例2の溶射条件により厚さ約200μmの溶射被膜を形成後、溶射被膜表面を鏡面になるまで研磨したものを試料として、次のように濡れ試験を行なった。
試料の溶射被膜表面上に、亜鉛粒(亜鉛純度99.995%以上(東邦亜鉛(株)製、以下同様)約0.2gをのせ、大気雰囲気下の炉内において、480℃に加熱して96時間保持した後の亜鉛粒の状態を観察した。
Test example 3
In general, wettability increases when the molten metal reacts with the sample at the contact surface to form an alloy. Therefore, a wettability test was conducted to easily examine the reactivity.
After forming a sprayed coating of about 200 μm in thickness on the 10 × 10 mm SUS304 substrate under the spraying conditions in Test Example 2, the surface of the sprayed coating was polished to a mirror surface, and a wetting test was performed as follows. It was.
About 0.2 g of zinc particles (zinc purity 99.995% or more (manufactured by Toho Zinc Co., Ltd., the same below)) is placed on the surface of the sprayed coating of the sample and heated to 480 ° C. in a furnace in an air atmosphere. The state of zinc grains after being held for 96 hours was observed.

濡れ試験の結果を図7に示す。図7において、試料3−1は本発明の金属ガラスであるFe43Cr16Mo151510を用いて溶射被膜を形成した試料である。試料3−dは比較材で、亜鉛めっき鋼板製造ラインのシンクロール被膜として使用されているWC−12Co溶射被膜を、WC−12Co粉末((株)フジミインコーポレーティド製 5〜25μm)を用いて試験例2の溶射条件により形成した試料である。
図7(a)は480℃で96時間保持後、炉内から取り出して放冷した試料3−1、図7(b)は前記図7(a)の試料3−1から亜鉛粒を引っかいて剥離除去したものである。
図7(c)は試験前の試料3−d、図7(d)は480℃で96時間保持後、炉内から取り出して放冷した試料3−dである。
The result of the wetting test is shown in FIG. In FIG. 7, sample 3-1 is a sample in which a sprayed coating is formed using Fe 43 Cr 16 Mo 1 W 15 C 15 B 10 which is the metal glass of the present invention. Sample 3-d is a comparative material, and a WC-12Co sprayed coating used as a sink roll coating in a galvanized steel sheet production line is obtained using WC-12Co powder (5-25 μm, manufactured by Fujimi Incorporated). This is a sample formed under the thermal spraying conditions of Test Example 2.
FIG. 7 (a) shows a sample 3-1, which was held at 480 ° C. for 96 hours and then taken out of the furnace and allowed to cool, and FIG. 7 (b) was obtained by scratching zinc particles from the sample 3-1 in FIG. 7 (a). It has been peeled off.
FIG. 7C shows the sample 3-d before the test, and FIG. 7D shows the sample 3-d which was held at 480 ° C. for 96 hours and then taken out from the furnace and allowed to cool.

図7からわかるように、WC−12Co溶射被膜(試料3−d)は溶融した亜鉛粒に対して濡れた状態となったのに対し(図7(d))、本発明の金属ガラス溶射被膜(試料3−1)は溶融した亜鉛粒にほとんど濡れなかった(図7(a))。このことからも、本発明の金属ガラス溶射被膜(試料3−1)は反応性が非常に低いことが示唆された。
そして、本発明の金属ガラス溶射被膜(試料3−1)では、軽く引っかいただけで亜鉛粒を容易に剥離除去でき、亜鉛粒除去後の溶射被膜表面は濡れ試験前と変化がなかった(図7(b))。一方、WC−12Co溶射被膜(試料3−d)では、溶射被膜と亜鉛粒は全く剥離除去できなかった(図7(d))。この試料3−dの断面をEDS−SEM観察した結果、亜鉛が溶射被膜内部に認められ、溶射被膜内部において溶融亜鉛と反応していることが確認された。このことからも、本発明の金属ガラス溶射被膜は溶融亜鉛に対する反応性が非常に低く耐食性に優れることが確認された。
As can be seen from FIG. 7, the WC-12Co sprayed coating (Sample 3-d) was wet with the molten zinc particles (FIG. 7 (d)), whereas the metallic glass sprayed coating of the present invention. (Sample 3-1) was hardly wetted by the molten zinc particles (FIG. 7A). This also suggests that the metal glass spray coating (Sample 3-1) of the present invention has very low reactivity.
In the metal glass sprayed coating of the present invention (Sample 3-1), the zinc particles can be easily peeled and removed only by lightly scratching, and the surface of the sprayed coating after the removal of the zinc particles was not changed from that before the wetting test (Fig. 7 (b)). On the other hand, with the WC-12Co sprayed coating (Sample 3-d), the sprayed coating and zinc particles could not be peeled off at all (FIG. 7D). As a result of observing the cross section of this sample 3-d by EDS-SEM, it was confirmed that zinc was observed inside the sprayed coating and reacted with molten zinc inside the sprayed coating. This also confirmed that the metal glass sprayed coating of the present invention has very low reactivity with molten zinc and excellent corrosion resistance.

試験例4
試験例2に準じて、Fe43Cr16Mo151510及びFe43Cr16Mo161510の組成のアモルファス相金属ガラス粉体を用いて、50mm角のSUS304(表面みがき仕上げ)を基材上に、厚み500μm程度に溶射被膜を積層し、溶射被膜を剥離して10mm×50mmの溶射膜から成るバルク材試料4−1及び試料4−aを作製した。試料4−1及び試料4−aは何れもピンホールがなく、気孔率2%以下で、アモルファス単一相の金属ガラス溶射被膜であった。
Test example 4
According to Test Example 2, a 50 mm square SUS304 (surface polished) was prepared using amorphous phase metallic glass powder having a composition of Fe 43 Cr 16 Mo 1 W 15 C 15 B 10 and Fe 43 Cr 16 Mo 16 C 15 B 10. On the base material, a thermal spray coating was laminated to a thickness of about 500 μm, and the thermal spray coating was peeled off to prepare bulk material samples 4-1 and 4-a comprising thermal spray films of 10 mm × 50 mm. Both Sample 4-1 and Sample 4-a were amorphous single phase metallic glass sprayed coatings with no pinholes and a porosity of 2% or less.

試験例5
試験例4で作製した試料4−1及び4−aについて、それぞれ、封孔剤((株)ディ・アンド・ディ製、商品名パーミエイトHS−80)で溶射被膜表層付近の微細孔と粒子界面へ浸透させて欠陥を塞ぐことを目的に封孔処理をおこない、試料5−1及び5−aを得た。処理手順は次の通り。
(1)封孔剤(原液)をハケで溶射被膜全面に塗布する。
(2)約10分自然乾燥させた後、塗布面の封孔剤の余剰分をウエスでふき取る。
(3)前記(1)と同様にしてもう一度封孔剤を重ね塗りし、約30分自然乾燥させた後、塗布面の余剰分をウエスでふき取る。
(4)約16時間自然乾燥させて完了とする。
Test Example 5
For Samples 4-1 and 4-a produced in Test Example 4, fine pores and particle interfaces near the surface of the sprayed coating with a sealing agent (trade name Permeate HS-80, manufactured by D & D Co., Ltd.) Sealing treatment was performed for the purpose of blocking the defects by infiltrating the sample, and Samples 5-1 and 5-a were obtained. The processing procedure is as follows.
(1) A sealant (stock solution) is applied to the entire surface of the sprayed coating by brush.
(2) After naturally drying for about 10 minutes, the excess of the sealing agent on the coated surface is wiped off with a waste cloth.
(3) In the same manner as in the above (1), the sealing agent is applied again and dried for about 30 minutes, and then the excess on the coated surface is wiped off with a waste cloth.
(4) Air dry for about 16 hours to complete.

図8は、試料4−1(本発明金属ガラス溶射被膜、封孔処理なし)、試料5−1(本発明金属ガラス溶射被膜、封孔処理あり)を、それぞれ純亜鉛浴中に浸漬(480℃×336時間)した後の断面組織のEDS−SEM分析結果である。   FIG. 8 shows that Sample 4-1 (the metal glass spray coating of the present invention, without sealing treatment) and Sample 5-1 (the metal glass spray coating of the present invention, with sealing treatment) were immersed in a pure zinc bath (480). It is the EDS-SEM analysis result of the cross-sectional structure | tissue after carrying out (degreeC * 336 hours).

図8のように、溶融亜鉛中に非常に長時間浸漬した場合には、本発明の金属ガラス溶射被膜内の表層部内にZnが認められることがあったが(試料4−1)、封孔処理することによって溶射被膜内にZnは認められなくなり(試料5−1)、耐食性が顕著に改善された。
一方、図9のように、Wを含まない金属ガラス溶射被膜(比較例)を封孔処理した試料5−aでは、純亜鉛浴中に浸漬(480℃×336時間)した後の断面組織のEDS−SEM分析結果において溶射被膜内にZnが認められ、被膜表面近傍では粒子の脱落が激しく、試料5−1に比べて耐食性が著しく劣っていた。これは、試料5−aの表面に露出している比較例の金属ガラス溶射被膜自体が溶融亜鉛に侵食されてしまうためと考えられる。
このことからも、本発明の金属ガラスの溶射被膜では溶融亜鉛との反応性が非常に低く、耐食性に優れることが理解される。
As shown in FIG. 8, when immersed in molten zinc for a very long time, Zn was sometimes observed in the surface layer portion in the metal glass sprayed coating of the present invention (Sample 4-1). By treating, Zn was not recognized in the sprayed coating (Sample 5-1), and the corrosion resistance was remarkably improved.
On the other hand, as shown in FIG. 9, in the sample 5-a in which the metallic glass sprayed coating containing no W (Comparative Example) was sealed, the cross-sectional structure after being immersed (480 ° C. × 336 hours) in a pure zinc bath As a result of the EDS-SEM analysis, Zn was found in the sprayed coating, and particles dropped off in the vicinity of the coating surface, and the corrosion resistance was remarkably inferior to that of Sample 5-1. This is considered because the metal glass sprayed coating film of the comparative example exposed on the surface of the sample 5-a is eroded by the molten zinc.
From this, it is understood that the thermal spray coating of the metallic glass of the present invention has very low reactivity with molten zinc and is excellent in corrosion resistance.

Claims (15)

下記式(1)で示される組成を有し、過冷却液体温度領域(ΔTx)が30℃以上、ガラス遷移温度(Tg)が溶融亜鉛温度よりも20℃以上高い金属ガラスからなる溶射被膜、さらに下記成分(a)及び(b)からなり、成分(a)の25℃における粘度が20〜1000mPa・sである一液常温硬化型封孔剤で封孔処理したことを特徴とする溶融亜鉛耐食性溶射被膜。
(Fe,Cr) 100−(a+b+c) TM (C,B,P) ・・・(1)
(式中、TMはMo、Ta、V、Nbから選ばれる少なくとも一種以上、aが2〜20原子%、bが0〜15原子%、cが20〜30原子%、Feが35〜55原子%である。)
(a)下記式(2)で示されるアルコキシシラン化合物及びその部分加水分解物から選ばれる少なくとも1種の化合物:
Si(OR4−n ・・・(2)
(式中、Rはそれぞれ独立して置換若しくは非置換の炭素数1〜8の1価炭化水素基、Rはそれぞれ独立して炭素数1〜4のアルキル基、nは0〜3の整数である)。
(b)硬化触媒。
Has a composition represented by the following formula (1), the supercooled liquid temperature region (Delta] Tx) is 30 ° C. or higher, the thermal sprayed coating having a glass transition temperature (Tg) consist 20 ° C. or more higher than metallic glass than the molten zinc temperature, further comprising a following components (a) and (b), molten zinc, characterized in that the viscosity at 25 ° C. of component (a) has sealing treatment with one solution cold-setting sealing agent is 20~1000mPa · s Corrosion resistant sprayed coating.
(Fe, Cr) 100- (a + b + c) W a TM b (C, B, P) c (1)
(In the formula, TM is at least one selected from Mo, Ta, V, and Nb, a is 2 to 20 atom%, b is 0 to 15 atom%, c is 20 to 30 atom%, and Fe is 35 to 55 atoms. %.)
(A) At least one compound selected from an alkoxysilane compound represented by the following formula (2) and a partial hydrolyzate thereof:
R 1 n Si (OR 2 ) 4-n (2)
(In the formula, each R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, R 2 is each independently an alkyl group having 1 to 4 carbon atoms, and n is 0 to 3) Is an integer).
(B) Curing catalyst.
請求項1記載の溶融亜鉛耐食性溶射被膜において、金属ガラスのガラス遷移温度(Tg)が600℃以上であることを特徴とする溶融亜鉛耐食性溶射被膜。  The molten zinc corrosion-resistant thermal spray coating according to claim 1, wherein the glass transition temperature (Tg) of the metallic glass is 600 ° C. or higher. 請求項1又は2記載の溶融亜鉛耐食性溶射被膜において、封孔処理される溶射被膜の気孔率が2%以下でピンホールがないことを特徴とする溶融亜鉛耐食性溶射被膜。  The molten zinc corrosion resistant thermal spray coating according to claim 1 or 2, wherein the thermal spray coating to be sealed has a porosity of 2% or less and no pinholes. 溶融亜鉛との接触面、あるいは該接触面の下地層が、下記式(1)で示される組成を有し、過冷却液体温度領域(ΔTx)が30℃以上、ガラス遷移温度(Tg)が溶融亜鉛温度よりも20℃以上高い金属ガラス又は該金属ガラスからなる溶射被膜を有することを特徴とする溶融亜鉛耐食性部材。
(Fe,Cr) 100−(a+b+c) TM (C,B,P) ・・・(1)
(式中、TMはMo、Ta、V、Nbから選ばれる少なくとも一種以上、aが2〜20原子%、bが0〜15原子%、cが20〜30原子%、Feが35〜55原子%である。)
The contact surface with the molten zinc or the underlying layer of the contact surface has the composition represented by the following formula (1), the supercooled liquid temperature region (ΔTx) is 30 ° C. or more, and the glass transition temperature (Tg) is molten. A molten zinc corrosion-resistant member comprising a metallic glass having a temperature of 20 ° C. or more higher than a zinc temperature or a thermal spray coating made of the metallic glass .
(Fe, Cr) 100- (a + b + c) W a TM b (C, B, P) c (1)
(In the formula, TM is at least one selected from Mo, Ta, V, and Nb, a is 2 to 20 atom%, b is 0 to 15 atom%, c is 20 to 30 atom%, and Fe is 35 to 55 atoms. %.)
請求項記載の溶融亜鉛耐食性部材において、溶融亜鉛耐食性部材が溶融亜鉛めっき浴、あるいは溶融亜鉛めっき用のシンクロール又はサポートロールであることを特徴とする溶融亜鉛耐食性部材。 5. The hot dip zinc corrosion resistant member according to claim 4, wherein the hot galvanized corrosion resistant member is a hot dip galvanizing bath, or a sink roll or a support roll for hot dip galvanizing. 請求項4又は5記載の溶融亜鉛耐食性部材において、金属ガラスがアモルファス相固体であることを特徴とする溶融亜鉛耐食性部材。  The molten zinc corrosion-resistant member according to claim 4 or 5, wherein the metallic glass is an amorphous phase solid. 請求項4〜6の何れかに記載の溶融亜鉛耐食性部材において、金属ガラスのガラス遷移温度(Tg)が600℃以上であることを特徴とする溶融亜鉛耐食性部材。  The molten zinc corrosion-resistant member according to any one of claims 4 to 6, wherein the glass transition temperature (Tg) of the metallic glass is 600 ° C or higher. 請求項4〜7の何れかに記載の溶融亜鉛耐食性部材において、溶射被膜の気孔率が2%以下でピンホールがないことを特徴とする溶融亜鉛耐食性部材。  The molten zinc corrosion-resistant member according to any one of claims 4 to 7, wherein the thermal spray coating has a porosity of 2% or less and no pinholes. 請求項4〜8の何れかに記載の溶融亜鉛耐食性部材において、溶射被膜がさらに下記成分(a)及び(b)からなり、成分(a)の25℃における粘度が20〜1000mPa・sである一液常温硬化型封孔剤で封孔処理されていることを特徴とする溶融亜鉛耐食性部材。  The molten zinc corrosion-resistant member according to any one of claims 4 to 8, wherein the sprayed coating further comprises the following components (a) and (b), and the viscosity of the component (a) at 25 ° C is 20 to 1000 mPa · s. A molten zinc corrosion-resistant member which is sealed with a one-component room-temperature curable sealant.
(a)下記式(2)で示されるアルコキシシラン化合物及びその部分加水分解物から選ばれる少なくとも1種の化合物:(A) At least one compound selected from an alkoxysilane compound represented by the following formula (2) and a partial hydrolyzate thereof:
        R 1 n Si(ORSi (OR 2 ) 4−n4-n ・・・(2)      ... (2)
(式中、R(Wherein R 1 はそれぞれ独立して置換若しくは非置換の炭素数1〜8の1価炭化水素基、RAre each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, R 2 はそれぞれ独立して炭素数1〜4のアルキル基、nは0〜3の整数である)。Are each independently an alkyl group having 1 to 4 carbon atoms, and n is an integer of 0 to 3).
(b)硬化触媒。(B) Curing catalyst.
溶融亜鉛との接触が予定される部材表面に、下記式(1)で示される組成を有し、過冷却液体温度領域(ΔTx)が30℃以上、ガラス遷移温度(Tg)が溶融亜鉛温度よりも20℃以上高い金属ガラスを溶射して溶融亜鉛耐食性溶射被膜を形成することにより、該溶射被膜を溶融亜鉛との接触面あるいは該接触面の下地層として有する溶融亜鉛耐食性部材を製造することを特徴とする、溶融亜鉛耐食性部材の製造方法。
(Fe,Cr) 100−(a+b+c) TM (C,B,P) ・・・(1)
(式中、TMはMo、Ta、V、Nbから選ばれる少なくとも一種以上、aが2〜20原子%、bが0〜15原子%、cが20〜30原子%、Feが35〜55原子%である。)
The surface of the member scheduled to contact with molten zinc has a composition represented by the following formula (1), the supercooled liquid temperature region (ΔTx) is 30 ° C. or higher, and the glass transition temperature (Tg) is higher than the molten zinc temperature. Forming a molten zinc corrosion-resistant sprayed coating by thermally spraying a metallic glass that is 20 ° C. or higher to produce a molten zinc corrosion-resistant member having the sprayed coating as a contact surface with the molten zinc or an underlayer of the contact surface. A method for producing a hot-dip zinc corrosion-resistant member.
(Fe, Cr) 100- (a + b + c) W a TM b (C, B, P) c (1)
(In the formula, TM is at least one selected from Mo, Ta, V, and Nb, a is 2 to 20 atom%, b is 0 to 15 atom%, c is 20 to 30 atom%, and Fe is 35 to 55 atoms. %.)
請求項10記載の製造方法において、溶射被膜の気孔率が2%以下でピンホールがないことを特徴とする溶融亜鉛耐食性部材の製造方法。 The manufacturing method according to claim 10, wherein the thermal spray coating has a porosity of 2% or less and no pinholes. 請求項10又は11記載の製造方法において、高速フレーム溶射あるいはこれと同等以上の溶射粒子飛行速度を有する溶射方法により溶射被膜を形成することを特徴とする溶融亜鉛耐食性部材の製造方法。 12. The method of manufacturing a molten zinc corrosion-resistant member according to claim 10 or 11 , wherein the sprayed coating is formed by high-speed flame spraying or a spraying method having a sprayed particle flying speed equal to or higher than that. 請求項10〜12の何れかに記載の製造方法において、前記式(1)の組成を有するアモルファス相の金属ガラス粉体を溶射原料として、前記溶射原料の少なくとも一部を溶融させずに過冷却液体状態で溶射してアモルファス相の溶融亜鉛耐食性溶射被膜を形成することを特徴とする溶融亜鉛耐食性部材の製造方法。 In the manufacturing method in any one of Claims 10-12 , it supercools, without making at least one part of the said thermal spray raw material melt | dissolve by making the amorphous-phase metal glass powder which has the composition of said Formula (1) into a thermal spray raw material. A method for producing a molten zinc corrosion-resistant member, characterized by forming a molten zinc corrosion-resistant thermal spray coating in an amorphous phase by spraying in a liquid state. 請求項10〜13の何れかに記載の製造方法において、溶射被膜をさらに下記成分(a)及び(b)からなり、成分(a)の25℃における粘度が20〜1000mPa・sである一液常温硬化型封孔剤で封孔処理することを特徴とする溶融亜鉛耐食性部材の製造方法。
(a)下記式(2)で示されるアルコキシシラン化合物及びその部分加水分解物から選ばれる少なくとも1種の化合物:
Si(OR4−n ・・・(2)
(式中、Rはそれぞれ独立して置換若しくは非置換の炭素数1〜8の1価炭化水素基、Rはそれぞれ独立して炭素数1〜4のアルキル基、nは0〜3の整数である)。
(b)硬化触媒。
14. The method according to claim 10 , wherein the sprayed coating further comprises the following components (a) and (b), and the viscosity of the component (a) at 25 ° C. is 20 to 1000 mPa · s. A method for producing a hot-dip zinc corrosion-resistant member, characterized in that a sealing treatment is performed with a room-temperature curable sealing agent.
(A) At least one compound selected from an alkoxysilane compound represented by the following formula (2) and a partial hydrolyzate thereof:
R 1 n Si (OR 2 ) 4-n (2)
(In the formula, each R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, R 2 is each independently an alkyl group having 1 to 4 carbon atoms, and n is 0 to 3) Is an integer).
(B) Curing catalyst.
請求項10〜14の何れかに記載の製造方法において、金属ガラスのガラス遷移温度(Tg)が600℃以上であることを特徴とする溶融亜鉛耐食性部材の製造方法。  The manufacturing method according to any one of claims 10 to 14, wherein the glass transition temperature (Tg) of the metallic glass is 600 ° C or higher.
JP2012139506A 2011-10-31 2012-06-21 Molten zinc corrosion resistant metallic glass Active JP5400194B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012139506A JP5400194B2 (en) 2011-10-31 2012-06-21 Molten zinc corrosion resistant metallic glass
PCT/JP2012/077885 WO2013065637A1 (en) 2011-10-31 2012-10-29 Metallic glass having corrosion resistance to molten zinc

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011238275 2011-10-31
JP2011238275 2011-10-31
JP2012139506A JP5400194B2 (en) 2011-10-31 2012-06-21 Molten zinc corrosion resistant metallic glass

Publications (2)

Publication Number Publication Date
JP2013117061A JP2013117061A (en) 2013-06-13
JP5400194B2 true JP5400194B2 (en) 2014-01-29

Family

ID=48191984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012139506A Active JP5400194B2 (en) 2011-10-31 2012-06-21 Molten zinc corrosion resistant metallic glass

Country Status (2)

Country Link
JP (1) JP5400194B2 (en)
WO (1) WO2013065637A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779923B (en) * 2014-12-25 2017-12-22 武汉钢铁(集团)公司 A kind of composite coating for the zine corrosion of resistance to liquid molten and preparation method thereof
US11298690B2 (en) * 2019-06-21 2022-04-12 City University Of Hong Kong Catalyst and a wastewater treatment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805601B2 (en) * 2000-04-20 2006-08-02 独立行政法人科学技術振興機構 High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy
US6689234B2 (en) * 2000-11-09 2004-02-10 Bechtel Bwxt Idaho, Llc Method of producing metallic materials
JP3946226B2 (en) * 2004-03-25 2007-07-18 明久 井上 Metal glass laminate and method for producing the same
JP5356733B2 (en) * 2007-06-21 2013-12-04 トピー工業株式会社 High corrosion resistance Fe-Cr based metallic glass
JP5474760B2 (en) * 2008-03-13 2014-04-16 トーカロ株式会社 GLASS CONVEYING ROLL, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING PLATE GLASS USING THE SAME
WO2011070859A1 (en) * 2009-12-11 2011-06-16 協和発酵ケミカル株式会社 Method for heating steel sheet for hot pressing use

Also Published As

Publication number Publication date
JP2013117061A (en) 2013-06-13
WO2013065637A1 (en) 2013-05-10

Similar Documents

Publication Publication Date Title
US8507105B2 (en) Thermal spray coated rolls for molten metal baths
US10308999B2 (en) Iron-based alloy coating and method for manufacturing the same
US20100285333A1 (en) Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
JP2845144B2 (en) Hot-dip metal bath immersion member and method for producing the same
TWI521092B (en) Hot dip a1-zn plated steel sheet and method of manufacturing the same
JP5356733B2 (en) High corrosion resistance Fe-Cr based metallic glass
JP3758549B2 (en) Hot pressing method
JP5400194B2 (en) Molten zinc corrosion resistant metallic glass
JP2018003163A (en) Roll for molten-metal plating bath, and production method of roll for molten-metal plating bath
CN110499485A (en) A kind of alloying processing method preparing high anti-powdering hot dip galvanizing coating
JP2000233986A (en) Member for plating bath and its production
JP3009341B2 (en) Boron nitride-silicate sealant
JP2010248602A (en) Plated steel sheet for hot press and hot press molded article
JPH0776763A (en) Member for galvanization bath excellent in resistance to blocking to alloy layer, its preparation and hot dip galvanization therewith
JP5504854B2 (en) Hot pressed member and method for manufacturing the same
JP3930652B2 (en) Roll member for hot dip zinc-aluminum alloy plating bath and manufacturing method thereof
JP2612127B2 (en) Hot-dip galvanizing bath immersion member with excellent durability
JP3930653B2 (en) Roll member for aluminum-containing hot dip zinc alloy plating bath and manufacturing method thereof
KR20010056280A (en) Galvannealing method for decreasing crater
JP4600951B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and its manufacturing method
KR101388364B1 (en) High corrosion resistant galvannealed steel sheet with excellent surface property and method for manufacturing the steel sheet
JP2021123740A (en) Multi-layer plated steel sheet, and manufacturing method thereof
JP2000054096A (en) Roll member for hot-dip metal coating bath, and its production
JP2002004016A (en) Member for hot-dip metal bath and its production method
JP2661880B2 (en) Thermal spray coating for molten zinc bath components

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131024

R150 Certificate of patent or registration of utility model

Ref document number: 5400194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250