JP5347340B2 - Resonant tunnel diode manufacturing method - Google Patents

Resonant tunnel diode manufacturing method Download PDF

Info

Publication number
JP5347340B2
JP5347340B2 JP2008146525A JP2008146525A JP5347340B2 JP 5347340 B2 JP5347340 B2 JP 5347340B2 JP 2008146525 A JP2008146525 A JP 2008146525A JP 2008146525 A JP2008146525 A JP 2008146525A JP 5347340 B2 JP5347340 B2 JP 5347340B2
Authority
JP
Japan
Prior art keywords
quantum well
well layer
energy barrier
tunnel diode
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008146525A
Other languages
Japanese (ja)
Other versions
JP2009295710A (en
Inventor
孝 生野
康彦 竹田
涼 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008146525A priority Critical patent/JP5347340B2/en
Publication of JP2009295710A publication Critical patent/JP2009295710A/en
Application granted granted Critical
Publication of JP5347340B2 publication Critical patent/JP5347340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resonance tunnel diode which can be manufactured inexpensively as compared with a conventional method and is suited also to area increase. <P>SOLUTION: The resonance tunnel diode has a structure sandwiching a quantum well layer between a pair of energy barrier layers, and the quantum well layer is composed of a semiconductor nano-structure (e.g. a single-layer carbon nanotube (CNT)) having an anisotropic atomic arrangement. Since the semiconductor nano-structure itself used for the quantum well layer exists in nano-size, the semiconductor nano-structure can be uniformly dispersed by a simple coating method such as spin coating and dip coating. Thereby, use of epitaxial growth, ion implantation or the like in ultra-high vacuum is unnecessary. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、共鳴トンネルダイオード及びその製法に関する。   The present invention relates to a resonant tunneling diode and a manufacturing method thereof.

共鳴トンネルダイオードは、量子井戸層を一対のエネルギ障壁層で挟んだ構造を有する。こうした共鳴トンネルダイオードでは、2つのエネルギ障壁層を電子が通過する際、入射電子のエネルギがエネルギ障壁層で挟まれた量子井戸層に局在したエネルギ準位と一致した場合に、量子力学的トンネル確率が共鳴的に増加して電流−電圧特性に大きな微分負抵抗がみられる。共鳴トンネルダイオードは、こうした性質を利用してマイクロ波の発振や高速スイッチングを行うことが可能である。このような共鳴トンネルダイオードとして、例えば、非特許文献1にはSiO2をエネルギ障壁層、単結晶シリコン薄膜を量子井戸層とするものが報告されている。
アプライド・フィジックス・レターズ(Applied Physics Letters)、86巻、013508、2005年
A resonant tunneling diode has a structure in which a quantum well layer is sandwiched between a pair of energy barrier layers. In such a resonant tunneling diode, when electrons pass through two energy barrier layers, the energy of the incident electrons coincides with the energy level localized in the quantum well layer sandwiched between the energy barrier layers. The probability increases resonancely and a large differential negative resistance is observed in the current-voltage characteristics. A resonant tunneling diode can perform microwave oscillation and high-speed switching by utilizing these properties. As such a resonant tunneling diode, for example, Non-Patent Document 1 reports that SiO 2 is used as an energy barrier layer and a single crystal silicon thin film is used as a quantum well layer.
Applied Physics Letters, 86, 013508, 2005

しかしながら、従来の共鳴トンネルダイオードを作製する手法は、量子井戸層を形成する場合に、超高真空中でのエピタキシャル成長やイオンインプランテーションなどを用いるため、コストが嵩むうえ大面積化に適さないという問題があった。   However, conventional methods for fabricating resonant tunneling diodes use epitaxial growth in ultra-high vacuum, ion implantation, etc. when forming a quantum well layer, which increases costs and is not suitable for increasing the area. was there.

本発明はこのような問題を解決するためになされたものであり、従来に比べて低コストで大面積化にも適した共鳴トンネルダイオード及びその製法を提供することを主目的とする。   The present invention has been made to solve such problems, and it is a main object of the present invention to provide a resonant tunneling diode that is low in cost and suitable for a large area and a manufacturing method thereof.

上述した目的を達成するために、本発明者らは、一対の酸化シリコン薄膜でカーボンナノチューブを挟んだ構造の素子を作製したところ、この素子が一対の酸化シリコン薄膜で単結晶シリコン薄膜を挟んだ構造の共鳴トンネルダイオードと同等の電流電圧特性を示すことを見いだし、本発明を完成するに至った。   In order to achieve the above-described object, the present inventors fabricated an element having a structure in which a carbon nanotube is sandwiched between a pair of silicon oxide thin films. This element sandwiched a single crystal silicon thin film between a pair of silicon oxide thin films. The inventors have found that the current-voltage characteristics equivalent to those of the resonant tunneling diode having the structure are found, and have completed the present invention.

すなわち、本発明の共鳴トンネルダイオードは、
量子井戸層を一対のエネルギ障壁層で挟んだ構造の共鳴トンネルダイオードであって、前記量子井戸層は、異方的原子配列を持つ半導体ナノ構造体からなる
ものである。
That is, the resonant tunnel diode of the present invention is
The resonant tunneling diode has a structure in which a quantum well layer is sandwiched between a pair of energy barrier layers, and the quantum well layer is made of a semiconductor nanostructure having an anisotropic atomic arrangement.

また、本発明の共鳴トンネルダイオードの製法は、上述した本発明の共鳴トンネルダイオードを製造する方法であって、基板上に前記一対のエネルギ障壁層の片方となる誘電体膜を形成したあと、該誘電体膜上に溶媒に分散した前記半導体ナノ構造体をコーティングすることにより前記量子井戸層を形成し、該量子井戸層上に前記一対のエネルギ障壁層のもう片方となる誘電体膜を形成するものである。   The method of manufacturing the resonant tunneling diode of the present invention is a method of manufacturing the above-described resonant tunneling diode of the present invention, wherein after forming a dielectric film that becomes one of the pair of energy barrier layers on a substrate, The quantum well layer is formed by coating the semiconductor nanostructure dispersed in a solvent on the dielectric film, and the dielectric film serving as the other of the pair of energy barrier layers is formed on the quantum well layer. Is.

本発明の共鳴トンネルダイオード及びその製法によれば、以下の効果が得られる。すなわち、量子井戸層に用いられる半導体ナノ構造体は、それ自体がナノサイズで存在するため、スピンコートやディップコートなどの簡単なコーティング手法で均一に分散する。したがって、超高真空中でのエピタキシャル成長やイオンインプランテーションなどを用いる必要がないため、従来に比べて低コストで生産可能であり、大面積化にも適している。   According to the resonant tunneling diode and the manufacturing method thereof of the present invention, the following effects can be obtained. That is, since the semiconductor nanostructure used for the quantum well layer itself has a nano size, it is uniformly dispersed by a simple coating method such as spin coating or dip coating. Therefore, since it is not necessary to use epitaxial growth or ion implantation in an ultra-high vacuum, it can be produced at a lower cost than the conventional one, and is suitable for a large area.

本発明の共鳴トンネルダイオードは、量子井戸層を一対のエネルギ障壁層で挟んだ構造の共鳴トンネルダイオードであって、前記量子井戸層は、異方的原子配列を持つ半導体ナノ構造体からなるものである。   The resonant tunnel diode of the present invention is a resonant tunnel diode having a structure in which a quantum well layer is sandwiched between a pair of energy barrier layers, and the quantum well layer is composed of a semiconductor nanostructure having an anisotropic atomic arrangement. is there.

ここで、異方的原子配列とは、3次元空間を規定するXYZ軸のうちの1つの軸方向に沿った原子配列が他の軸方向に沿った原子配列と大きく異なることをいう。こうした異方的原子配列を持つ半導体ナノ構造体としては、例えば、1種以上の原子が二次元的に配列したシート構造の半導体や、1種以上の原子が二次元的に配列したシートを筒状に丸めた構造の半導体などが挙げられる。ここで、半導体ナノ構造体の材料としては、例えば、炭素や窒化ホウ素、窒化炭素ホウ素、硫化タングステン、硫化モリブデンなどが挙げられる。また、エネルギ障壁層の材料としては、酸化シリコンや酸化アルミニウム、酸化マグネシウムなどの絶縁体、炭化珪素や窒化ガリウムなどのワイドギャップ半導体、4,4’,4”−トリス−[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(m−MTDATA)や4,7−ジフェニル−1,10−フェナントロリン(Bphen)などの可撓性ポリマーが挙げられる。   Here, the anisotropic atomic arrangement means that the atomic arrangement along one of the XYZ axes defining the three-dimensional space is greatly different from the atomic arrangement along the other axial direction. As the semiconductor nanostructure having such an anisotropic atomic arrangement, for example, a semiconductor having a sheet structure in which one or more kinds of atoms are arranged two-dimensionally, or a sheet in which one or more kinds of atoms are arranged two-dimensionally is used. For example, a semiconductor having a structure rounded into a shape. Here, examples of the material for the semiconductor nanostructure include carbon, boron nitride, carbon boron nitride, tungsten sulfide, and molybdenum sulfide. Examples of the material for the energy barrier layer include insulators such as silicon oxide, aluminum oxide, and magnesium oxide, wide gap semiconductors such as silicon carbide and gallium nitride, 4,4 ′, 4 ″ -tris- [N- (3- And a flexible polymer such as methylphenyl) -N-phenylamino] triphenylamine (m-MTDATA) and 4,7-diphenyl-1,10-phenanthroline (Bphen).

本発明の共鳴トンネルダイオードにおいて、前記半導体ナノ構造体は、カーボンナノチューブが好ましく、単層カーボンナノチューブがより好ましい。カーボンナノチューブは、高温に対する耐性や機械的歪みに対する耐性、化学的に活性な雰囲気に対する耐性を有するため、耐環境性に優れた共鳴トンネルダイオードを提供することができる。このとき、エネルギ障壁層として可撓性ポリマー(前出)を採用すれば、可撓性を持つ共鳴トンネルダイオードを提供することができる。カーボンナノチューブには、金属型と半導体型の相反する性質のものが存在するが、半導体型のカーボンナノチューブを使用することが好ましい。半導体型のカーボンナノチューブは、金属型と半導体型との混合物を予め分散状態で含ませたゲル試料に対し電気泳動を行うことにより分離したものを用いてもよいし、カーボンナノチューブの合成時にコバルト−モリブデン触媒を使用することにより選択的に合成したものを用いてもよい。また、金属型と半導体型との混合物を用いてもよい。   In the resonant tunneling diode of the present invention, the semiconductor nanostructure is preferably a carbon nanotube, and more preferably a single-walled carbon nanotube. Since the carbon nanotube has resistance to high temperature, resistance to mechanical strain, and resistance to a chemically active atmosphere, it can provide a resonant tunnel diode excellent in environmental resistance. At this time, if a flexible polymer (described above) is employed as the energy barrier layer, a resonant tunneling diode having flexibility can be provided. Carbon nanotubes have metal and semiconductor properties that are contradictory, but it is preferable to use semiconductor-type carbon nanotubes. The semiconducting carbon nanotube may be one obtained by performing electrophoresis on a gel sample in which a mixture of a metallic type and a semiconducting type is included in a dispersed state in advance. You may use what was selectively synthesize | combined by using a molybdenum catalyst. Further, a mixture of a metal mold and a semiconductor mold may be used.

本発明の共鳴トンネルダイオードは、基板上に前記一対のエネルギ障壁層の片方となる誘電体膜を形成したあと、該誘電体膜上に溶媒に分散した前記半導体ナノ構造体をコーティングすることにより前記量子井戸層を形成し、該量子井戸層上に前記一対のエネルギ障壁層のもう片方となる誘電体膜を形成することにより、作製することができる。   In the resonant tunnel diode of the present invention, a dielectric film serving as one of the pair of energy barrier layers is formed on a substrate, and then the semiconductor nanostructure dispersed in a solvent is coated on the dielectric film. It can be produced by forming a quantum well layer and forming a dielectric film on the other side of the pair of energy barrier layers on the quantum well layer.

ここで、基板としては、例えば、シリコン基板やGaAs基板、金属基板、透明導電膜付ガラスなどの導電性基板が挙げられる。また、誘電体膜としては、例えば、酸化シリコンや酸化アルミニウム、酸化マグネシウムなどの絶縁体膜、炭化珪素や窒化ガリウムなどのワイドギャップ半導体膜などのほか、4,4’,4”−トリス−[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(m−MTDATA)や4,7−ジフェニル−1,10−フェナントロリン(Bphen)などの可撓性ポリマー膜が挙げられる。また、コーティングとしては、例えば、スピンコートやディップコートなどが挙げられるが、このうちスピンコートによって行うことが好ましい。こうすれば、半導体ナノ構造体の極薄膜を容易に生成することができる。   Here, examples of the substrate include conductive substrates such as a silicon substrate, a GaAs substrate, a metal substrate, and a glass with a transparent conductive film. Examples of the dielectric film include insulator films such as silicon oxide, aluminum oxide, and magnesium oxide, wide gap semiconductor films such as silicon carbide and gallium nitride, and 4,4 ′, 4 ″ -tris- [ Examples thereof include flexible polymer membranes such as N- (3-methylphenyl) -N-phenylamino] triphenylamine (m-MTDATA) and 4,7-diphenyl-1,10-phenanthroline (Bphen). Examples of the coating include spin coating, dip coating, etc. Among them, it is preferable to carry out by spin coating, whereby an ultrathin film of a semiconductor nanostructure can be easily generated.

あるいは、本発明の共鳴トンネルダイオードは、基板上に前記一対のエネルギ障壁層の片方となる誘電体膜を形成したあと、該誘電体膜上に前記半導体ナノ構造体の原料を供給して前記半導体ナノ構造体を成長させることにより前記量子井戸層を形成し、該量子井戸層上に前記一対のエネルギ障壁層のもう片方となる誘電体膜を形成することにより、作製することもできる。   Alternatively, in the resonant tunnel diode of the present invention, after forming a dielectric film to be one of the pair of energy barrier layers on a substrate, the raw material of the semiconductor nanostructure is supplied onto the dielectric film, and the semiconductor The quantum well layer can be formed by growing a nanostructure, and a dielectric film serving as the other of the pair of energy barrier layers can be formed on the quantum well layer.

ここで、基板や誘電体膜としては、上述したものを使用することができる。また、半導体ナノ構造体がカーボンナノチューブの場合には、カーボンナノチューブを成長させる基点となる触媒金属のパターンを誘電体膜上に形成し、基板を加熱した状態で炭素原料ガスを供給することにより触媒金属にカーボンナノチューブを成長させてもよい。触媒金属としては、コバルト、鉄、ニッケル、金又はこれらの合金が好ましく、これらにモリブデン、プラチナ、銅、クロム、パラジウム、ロジウム、アルミナ及びゼオライトの少なくとも1つが添加されていてもよい。炭素原料ガスとしては、メタンガス、アセチレンガス、エチレンガス、アルコールガス、一酸化炭素ガスが好ましい。基板の温度は、使用する触媒金属や炭素原料ガスに応じて実験的に決定すればよい。   Here, as the substrate and the dielectric film, those described above can be used. When the semiconductor nanostructure is a carbon nanotube, a catalyst metal pattern serving as a base point for growing the carbon nanotube is formed on the dielectric film, and the carbon source gas is supplied in a state where the substrate is heated. Carbon nanotubes may be grown on the metal. As the catalyst metal, cobalt, iron, nickel, gold, or an alloy thereof is preferable, and at least one of molybdenum, platinum, copper, chromium, palladium, rhodium, alumina, and zeolite may be added thereto. As the carbon source gas, methane gas, acetylene gas, ethylene gas, alcohol gas, and carbon monoxide gas are preferable. The temperature of the substrate may be experimentally determined according to the catalyst metal and carbon source gas used.

以下の手順により、シリコン基板上にSiO2/CNT/SiO2構造の素子を形成した。なお、CNTはカーボンナノチューブの略である。
(1)シリコン基板として、10mm角で厚さ525μm、抵抗率<0.02ΩcmのSi(100)ウェハ(ニラコ製)を用意し、このシリコン基板をフッ酸で処理することにより表面をクリーニングした。すなわち、シリコン基板は、空気酸化によって表面が酸化シリコンで覆われているため、この酸化シリコンを除去した。
(2)クリーニング後のシリコン基板の表面に、室温で高周波マグネトロンスパッタ法により厚さ3nmの酸化シリコン薄膜を蒸着した。酸化シリコン薄膜の成膜条件を表1に示す。
(3)分散用有機溶媒であるエタノールに、直径1〜2.5nmの単層カーボンナノチューブ(FH精製タイプ、名城ナノカーボン製)を約5μg/mLとなるように分散させることにより、ナノチューブ分散液を調製した。なお、ナノチューブ分散液は、SDS(ドデシル硫酸ナトリウム)やSDBS(ドデシルベンゼンスルホン酸ナトリウム)などの界面活性剤を含む水に単層カーボンナノチューブを分散させることにより調製してもよい。
(4)前記(2)のシリコン基板の酸化シリコン薄膜上に、スピンコータ(ミカサ製)を用いて回転数2000rpmで30秒、前記(3)のナノチューブ分散液を滴下した。これにより、シリコン基板の酸化シリコン薄膜上に単層カーボンナノチューブが分散した状態となった。
(5)このようにして単層カーボンナノチューブを分散させた面上に、高周波マグネトロンスパッタ法により厚さ3nmの酸化シリコン薄膜を蒸着した。酸化シリコン薄膜の成膜条件は前記(2)と同様である。続いて、このシリコン基板を、ベース圧力5×10-6Torr、温度900℃、昇温時間1分、加熱時間30分(ガス導入なし)で熱処理した。これにより、表面にSiO2/CNT/SiO2 構造が積層されたシリコン基板が得られた。
(6)得られたシリコン基板のSiO2/CNT/SiO2 構造の上に、SiドープAl電極をフォトリソグラフィ技術により作製した。電極のサイズは、直径0.5mm又は1.0mm、厚さ300nmとした。このようにして得られたシリコン基板の模式図を図1に示す。

Figure 0005347340
An element having a SiO 2 / CNT / SiO 2 structure was formed on a silicon substrate by the following procedure. CNT is an abbreviation for carbon nanotube.
(1) A Si (100) wafer (manufactured by Niraco) having a 10 mm square, a thickness of 525 μm, and a resistivity <0.02 Ωcm was prepared as a silicon substrate, and the surface was cleaned by treating the silicon substrate with hydrofluoric acid. That is, since the surface of the silicon substrate was covered with silicon oxide by air oxidation, this silicon oxide was removed.
(2) A silicon oxide thin film having a thickness of 3 nm was deposited on the surface of the cleaned silicon substrate by high-frequency magnetron sputtering at room temperature. Table 1 shows the conditions for forming the silicon oxide thin film.
(3) A single-walled carbon nanotube having a diameter of 1 to 2.5 nm (FH purified type, manufactured by Meijo Nanocarbon) is dispersed in ethanol, which is an organic solvent for dispersion, so as to be about 5 μg / mL. Was prepared. The nanotube dispersion liquid may be prepared by dispersing single-walled carbon nanotubes in water containing a surfactant such as SDS (sodium dodecyl sulfate) or SDBS (sodium dodecylbenzenesulfonate).
(4) The nanotube dispersion liquid of (3) above was dropped onto the silicon oxide thin film of the silicon substrate of (2) above using a spin coater (manufactured by Mikasa) at a rotational speed of 2000 rpm for 30 seconds. As a result, single-walled carbon nanotubes were dispersed on the silicon oxide thin film of the silicon substrate.
(5) A silicon oxide thin film having a thickness of 3 nm was deposited on the surface on which the single-walled carbon nanotubes were dispersed in this manner by high-frequency magnetron sputtering. The conditions for forming the silicon oxide thin film are the same as in (2) above. Subsequently, this silicon substrate was heat-treated at a base pressure of 5 × 10 −6 Torr, a temperature of 900 ° C., a heating time of 1 minute, and a heating time of 30 minutes (no gas introduction). As a result, a silicon substrate having a SiO 2 / CNT / SiO 2 structure laminated on the surface was obtained.
(6) A Si-doped Al electrode was produced on the SiO 2 / CNT / SiO 2 structure of the obtained silicon substrate by photolithography. The size of the electrode was 0.5 mm or 1.0 mm in diameter and 300 nm in thickness. A schematic view of the silicon substrate thus obtained is shown in FIG.
Figure 0005347340

得られたSiO2/CNT/SiO2構造の素子につき、温度5Kで電流電圧特性を測定した。その結果を図2に示す。図2から明らかなように、約0.24Vに特徴的なピークが観察され、この素子が共鳴トンネルダイオード特性を示すことがわかった。ここで、非特許文献1のSiO2/Si/SiO2 構造の共鳴トンネルダイオードを比較例とし、その電流電圧特性のグラフを図3に示す。図2及び図3から明らかなように、実施例のSiO2/CNT/SiO2構造の素子のピーク位置、電流値は比較例のSiO2/Si/SiO2 構造の素子とほぼ同等の特性を持つことがわかった。 About the obtained element of SiO 2 / CNT / SiO 2 structure, current-voltage characteristics were measured at a temperature of 5K. The result is shown in FIG. As is apparent from FIG. 2, a characteristic peak was observed at about 0.24 V, and it was found that this element exhibited resonant tunnel diode characteristics. Here, the resonant tunnel diode having the SiO 2 / Si / SiO 2 structure of Non-Patent Document 1 is used as a comparative example, and a graph of the current-voltage characteristics is shown in FIG. As is apparent from FIGS. 2 and 3, the peak position and current value of the device having the SiO 2 / CNT / SiO 2 structure of the example are almost the same as those of the device having the SiO 2 / Si / SiO 2 structure of the comparative example. I understood that I have it.

SiO2/CNT/SiO2構造の素子が形成されたシリコン基板の模式図である。It is a schematic view of a silicon substrate that element of SiO 2 / CNT / SiO 2 structure is formed. 実施例の素子の電流電圧特性のグラフである。It is a graph of the current-voltage characteristic of the element of an Example. 比較例の素子の電流電圧特性のグラフである。It is a graph of the current-voltage characteristic of the element of a comparative example.

Claims (2)

量子井戸層を一対のエネルギ障壁層で挟んだ構造を有し、前記量子井戸層は、異方的原子配列を持つ半導体ナノ構造体からなり、前記半導体ナノ構造体は、カーボンナノチューブである、共鳴トンネルダイオードを製造する方法であって、
基板上に前記一対のエネルギ障壁層の片方となる誘電体膜を形成したあと、該誘電体膜上に溶媒に分散したカーボンナノチューブをコーティングすることにより前記量子井戸層を形成し、該量子井戸層上に前記一対のエネルギ障壁層のもう片方となる誘電体膜を形成する、
共鳴トンネルダイオードの製法。
Having a structure in which a quantum well layer is sandwiched between a pair of energy barrier layers, the quantum well layer is made of a semiconductor nanostructure having an anisotropic atomic arrangement, and the semiconductor nanostructure is a carbon nanotube. A method of manufacturing a tunnel diode, comprising:
After forming a dielectric film to be one of the pair of energy barrier layers on the substrate, the quantum well layer is formed by coating the dielectric film with carbon nanotubes dispersed in a solvent, and the quantum well layer Forming a dielectric film on the other of the pair of energy barrier layers;
A manufacturing method for resonant tunneling diodes.
前記コーティングは、スピンコートによって行う、
請求項に記載の共鳴トンネルダイオードの製法。
The coating is performed by spin coating.
The method for producing a resonant tunneling diode according to claim 1 .
JP2008146525A 2008-06-04 2008-06-04 Resonant tunnel diode manufacturing method Expired - Fee Related JP5347340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008146525A JP5347340B2 (en) 2008-06-04 2008-06-04 Resonant tunnel diode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146525A JP5347340B2 (en) 2008-06-04 2008-06-04 Resonant tunnel diode manufacturing method

Publications (2)

Publication Number Publication Date
JP2009295710A JP2009295710A (en) 2009-12-17
JP5347340B2 true JP5347340B2 (en) 2013-11-20

Family

ID=41543653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146525A Expired - Fee Related JP5347340B2 (en) 2008-06-04 2008-06-04 Resonant tunnel diode manufacturing method

Country Status (1)

Country Link
JP (1) JP5347340B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719888B (en) * 2011-03-29 2015-11-25 清华大学 There is the preparation method of nano-micro structure substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235378A (en) * 1992-02-24 1993-09-10 Fujitsu Ltd Si semiconductor device and its production
JPH0846222A (en) * 1994-05-31 1996-02-16 Texas Instr Inc <Ti> Injection silicon resonance tunneling diode and its preparation
JPH09237761A (en) * 1996-03-01 1997-09-09 Matsushita Electric Ind Co Ltd Semiconductor epitaxial growth
JP4207398B2 (en) * 2001-05-21 2009-01-14 富士ゼロックス株式会社 Method for manufacturing wiring of carbon nanotube structure, wiring of carbon nanotube structure, and carbon nanotube device using the same
US7091120B2 (en) * 2003-08-04 2006-08-15 Nanosys, Inc. System and process for producing nanowire composites and electronic substrates therefrom
JP2007077258A (en) * 2005-09-14 2007-03-29 Toray Ind Inc Polymer composite
JP2007234962A (en) * 2006-03-02 2007-09-13 Fujitsu Ltd Method for manufacturing quantum-dot device, and integrated circuit composed of device made thereby

Also Published As

Publication number Publication date
JP2009295710A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
Li et al. All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes
Wang et al. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors
JP5139368B2 (en) Thin film transistor manufacturing method
CN103140439B (en) The method of temperature production Graphene, the directly method and graphene sheet of the Graphene of transfer same procedure
TWI485099B (en) Carbon nanotube structure and method for making the same
CN102471069B (en) The method of graphene device and manufacture graphene device
WO2009139331A9 (en) Carbon wire, nanostructure composed of carbon film, method for producing the carbon wire, and method for producing nanostructure
JPH11194134A (en) Carbon nano tube device, its manufacture and elecfron emission element
JP2013542546A (en) Transparent electrode based on graphene / lattice hybrid structure
JP2009143799A (en) Single crystal graphene sheet and method for producing the same
JP5429643B2 (en) Semiconductor device using graphene / graphite film and manufacturing method thereof
JP4984498B2 (en) Functional element and manufacturing method thereof
JP2007123280A (en) CARBON NANOTUBE HAVING ZnO PROTRUSION
JP6158798B2 (en) Device including nanostructure and manufacturing method thereof
US7814565B2 (en) Nanostructure on a probe tip
US20080023839A9 (en) Molybdenum-based electrode with carbon nanotube growth
Wu et al. Ultralong aligned single-walled carbon nanotubes on flexible fluorphlogopite mica for strain sensors
KR101121164B1 (en) Method for Preparing Graphene Nano-Ribbon
JP5347340B2 (en) Resonant tunnel diode manufacturing method
KR101629697B1 (en) Manufacturing method of graphene laminated structure, and graphene laminated structure using thereof
KR101598492B1 (en) Cnt-graphene hybrid film, preparation method thereof, and transparent electrode and fet comprising same
Zhu et al. Versatile transfer of aligned carbon nanotubes with polydimethylsiloxane as the intermediate
KR102118777B1 (en) Tansparent electrode using graphene and nanowire and method for fabricating the same
KR101687619B1 (en) Method for manufacturing graphene using graphene oxide
JP2004172270A (en) Molecular and thin film transistor by inclusion fullerene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

LAPS Cancellation because of no payment of annual fees