JP5311438B2 - Method for producing hollow particle-containing heat insulating paint - Google Patents

Method for producing hollow particle-containing heat insulating paint Download PDF

Info

Publication number
JP5311438B2
JP5311438B2 JP2007282906A JP2007282906A JP5311438B2 JP 5311438 B2 JP5311438 B2 JP 5311438B2 JP 2007282906 A JP2007282906 A JP 2007282906A JP 2007282906 A JP2007282906 A JP 2007282906A JP 5311438 B2 JP5311438 B2 JP 5311438B2
Authority
JP
Japan
Prior art keywords
silica
heat insulating
containing heat
hollow particle
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007282906A
Other languages
Japanese (ja)
Other versions
JP2009108222A (en
Inventor
正督 藤
秀夫 渡辺
健司 遠藤
実 高橋
恭一 藤本
宏三 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRANDEX CO Ltd
Original Assignee
GRANDEX CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRANDEX CO Ltd filed Critical GRANDEX CO Ltd
Priority to JP2007282906A priority Critical patent/JP5311438B2/en
Publication of JP2009108222A publication Critical patent/JP2009108222A/en
Application granted granted Critical
Publication of JP5311438B2 publication Critical patent/JP5311438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent aggregation of hollow silica nanoparticles in a hollow particle-containing heat insulating coating material and a hollow particle-containing heat insulating coating film, so that a larger amount of the nanoparticles can be incorporated as a solid component to achieve a smaller heat conductivity. <P>SOLUTION: A hollow particle-containing heat insulating coating material 11 is obtained through the steps of (S10) dispersing hollow silica nanoparticles 1 and TEIS as a surface modifier in n-hexane by stirring with a high-speed stirring machine, (S11) strongly dispersing these to fine agglomerated particles with a wet jet mill, (S12) carrying out surface modification treatment with an autoclave, (S13) evaporating the n-hexane from the resulting dispersion with an evaporator to obtain powder form once, and (S14) adding an acrylic urethane resin as a coating resin and xylene as a coating solvent to the powder and mixing these with a high-speed stirring machine. A content of the hollow silica nanoparticles 1 in the hollow particle-containing heat insulating coating material 11 is about 50 vol.% in terms of solid, and a coating film of the coating material has a heat conductivity of 0.027 W/mK. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、略30nmから略300nmまでの範囲内の外径を有するシリカ殻からなるナノ中空粒子(以下、「シリカナノ中空粒子」ともいう。)の塗料への混入量を増加させることによって、より大きな断熱性を持たせた中空粒子含有断熱塗料の製造方法に関するものである。 In the present invention, by increasing the amount of nano hollow particles composed of silica shells having an outer diameter in the range of about 30 nm to about 300 nm (hereinafter also referred to as “silica nano hollow particles”) in the paint, The present invention relates to a method for producing a hollow particle-containing heat insulating paint having a large heat insulating property.

近年、ナノテクノロジー研究の一環として、数百ナノメートル以下の粒子径を有する微粒子についての応用研究が盛んに行われている。その一例として、特許文献1に記載の高分散シリカナノ中空粒子及びそれを製造する方法の発明がある。このシリカナノ中空粒子は、緻密なシリカ殻からなるナノ中空粒子であって、細孔分布において2nm〜20nmの細孔が検出されないものであり、炭酸カルシウムを調整する第1工程、それにシリカをコーティングする第2工程、炭酸カルシウムを溶解させてシリカナノ中空粒子とする第3工程によって製造される。   In recent years, as part of nanotechnology research, applied research on fine particles having a particle size of several hundred nanometers or less has been actively conducted. As an example, there is an invention of highly dispersed silica nano hollow particles described in Patent Document 1 and a method for producing the same. This silica nano hollow particle is a nano hollow particle composed of a dense silica shell, in which pores of 2 nm to 20 nm are not detected in the pore distribution, and the first step of adjusting calcium carbonate is coated with silica. It is produced by the second step, a third step in which calcium carbonate is dissolved to form silica nano hollow particles.

この特許文献1に係る高分散シリカナノ中空粒子は、中空で、かつ、シリカ殻が薄いため、断熱性及び透明性に優れ、特許文献2に示されるように、塗料・フィルム・合成繊維中に均一に分散させることによって、断熱塗料・断熱フィルム・断熱繊維を得ることができて幅広い技術分野に応用することができ、その他にも、多方面に亘る応用が期待されている。
特開2005−263550号公報 特開2007−070458号公報
The highly dispersed silica nano hollow particles according to Patent Document 1 are hollow and have a thin silica shell, so that they have excellent heat insulating properties and transparency. As shown in Patent Document 2, they are uniform in paints, films, and synthetic fibers. By disperse in the composition, it is possible to obtain a heat insulating paint, heat insulating film, and heat insulating fiber, which can be applied to a wide range of technical fields. In addition, various applications are expected.
JP 2005-263550 A JP 2007-070458 A

しかしながら、上記特許文献1に記載の高分散シリカナノ中空粒子においては、略30nm〜略300nmの外径を有する微小粒子であるため、凝集を起こし易く、水・有機溶媒等の溶媒中においても、溶融樹脂等に混入する場合においても、直ちに凝集して数μm〜数十μmの大きさの巨大凝集粒子となってしまい、塗料・フィルム・合成繊維中に数百nmの大きさの微細凝集粒子として均一に分散させることは、実際上は困難であるため、シリカナノ中空粒子の有する断熱性・透明性といった優れた特性を充分に発現させることができないという問題点があった。   However, since the highly dispersed silica nano hollow particles described in Patent Document 1 are fine particles having an outer diameter of about 30 nm to about 300 nm, they are likely to agglomerate and melt even in a solvent such as water or an organic solvent. Even when mixed in resin, it immediately aggregates into huge aggregated particles with a size of several to several tens of μm, resulting in fine aggregated particles with a size of several hundreds of nanometers in paints, films, and synthetic fibers. Since it is practically difficult to uniformly disperse, there is a problem in that excellent properties such as heat insulation and transparency of the silica nano hollow particles cannot be sufficiently exhibited.

例えば、断熱性については、上記特許文献2に示されるように、ポリエステル樹脂を固形分で89.19重量%、シリカナノ中空粒子を固形分で10.81重量%配合した断熱塗料を作製して、乾燥して塗膜とした場合の熱伝導率は0.15W/mKであり、ポリエステル樹脂そのものの熱伝導率(0.29W/mK)の約半分と小さくなっていて、シリカナノ中空粒子の断熱性が明確に表れている。しかし、塗料等の中に数百nmの大きさの微細凝集粒子として均一に分散させることができ、かつ、シリカナノ中空粒子の配合量もより増加させることができれば、より小さい熱伝導率が得られることが期待できる。   For example, for heat insulation, as shown in Patent Document 2 above, a heat insulating paint in which a polyester resin is blended in a solid content of 89.19 wt% and silica nano hollow particles in a solid content of 10.81 wt% is prepared, The thermal conductivity when dried to form a coating film is 0.15 W / mK, which is about half of the thermal conductivity of the polyester resin itself (0.29 W / mK). Clearly appears. However, if it can be uniformly dispersed as fine agglomerated particles with a size of several hundreds of nanometers in a paint or the like, and if the amount of silica nano hollow particles can be increased, a smaller thermal conductivity can be obtained. I can expect that.

そこで、本発明は、シリカナノ中空粒子の凝集を防止して塗料中に微細凝集粒子として分散させ、かつ、固形分としてより多くの量を混入することができ、より小さい熱伝導率、すなわちより大きな断熱性を得ることができる中空粒子含有断熱塗料の製造方法を提供することを課題とするものである。 Therefore, the present invention prevents the silica nano hollow particles from agglomerating and can be dispersed as fine agglomerated particles in the paint, and can be mixed in a larger amount as a solid content, with a smaller thermal conductivity, that is, a larger It is an object of the present invention to provide a method for producing a hollow particle-containing heat insulating paint capable of obtaining heat insulating properties.

請求項1の発明に係る中空粒子含有断熱塗料の製造方法は、略30nm〜略300nmの範囲内の外径を有するシリカ殻からなるナノ中空粒子を塗料中に略均一に分散してなる断熱塗料であって、前記シリカ殻からなるナノ中空粒子が固形分で30体積%〜70体積%の範囲内で含有されるものである。 The method for producing a hollow particle-containing heat insulating paint according to the invention of claim 1 is a heat insulating paint obtained by dispersing nano hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to approximately 300 nm substantially uniformly in the paint. And the nano hollow particle which consists of said silica shell is contained within the range of 30 volume%-70 volume% by solid content.

そして、30nm〜300nmの範囲内の外径を有するシリカ殻からなるシリカナノ中空粒子及びイソシアネート系表面修飾剤を有機溶媒に混入し、前記シリカナノ中空粒子を微細凝集粒子に分散させる微細分散処理と、前記有機溶媒を蒸発させて分散液を濃縮した後、高温高圧を加え前記有機溶媒の超臨界状態として、前記イソシアネート系表面修飾剤を前記シリカナノ中空粒子の表面の水酸基と反応させて前記シリカナノ中空粒子の表面全面に付加させ、前記微細凝集粒子として分散した状態で粉体状態とする表面修飾処理と、前記粉体状態の表面修飾された前記シリカナノ中空粒子を用いて、前記シリカナノ中空粒子の塗料中の含有率が固形分で30体積%〜70体積%となるように、塗料樹脂と塗料溶媒を添加、混合し、前記シリカナノ中空粒子が塗料中に均一に微細分散した中空粒子含有断熱塗料とするように調製したものである。Then, a silica nano hollow particle composed of a silica shell having an outer diameter in a range of 30 nm to 300 nm and an isocyanate surface modifier are mixed in an organic solvent, and the fine dispersion treatment for dispersing the silica nano hollow particle in the fine aggregated particle, After concentrating the dispersion by evaporating the organic solvent, the isocyanate-based surface modifier is reacted with a hydroxyl group on the surface of the silica nanohollow particle by applying high temperature and high pressure to form a supercritical state of the organic solvent. In the coating of the silica nanohollow particles, using the surface modification treatment that is added to the entire surface and is in a powder state in a state of being dispersed as the fine aggregated particles, and the silica nanohollow particles that are surface-modified in the powder state, The silica is added to and mixed with a coating resin and a coating solvent so that the content is 30% by volume to 70% by volume in solid content. Bruno hollow particles are those prepared as a uniform finely dispersed hollow particle-containing insulation coating in the coating.

ここで、「塗料」としては、塗膜構成成分として有機合成樹脂を含有し溶媒として有機溶媒を用いた有機塗料、塗膜構成成分として無機化合物を含有する無機塗料、更には溶媒として水を用いた水性塗料、等のあらゆる塗料を用いることができる。また、「有機溶媒」としては、メタノール、エタノール、プロパノール等の脂肪族アルコール、n−ヘキサン等の脂肪族炭化水素、キシレン等の芳香族炭化水素、等を用いることができる。  Here, the “paint” includes an organic paint containing an organic synthetic resin as a coating film constituent and an organic solvent as a solvent, an inorganic paint containing an inorganic compound as a coating film constituent, and water as a solvent. Any paint such as water-based paint can be used. As the “organic solvent”, aliphatic alcohols such as methanol, ethanol and propanol, aliphatic hydrocarbons such as n-hexane, aromatic hydrocarbons such as xylene, and the like can be used.

更に、「表面修飾剤」としては、イソシアネート系化合物、アミン系化合物、ビニル系化合物、エポキシ系化合物、メタクリロキシ系化合物、アクリル系化合物、イミド系化合物、アルキル基を有する化合物、アリール基を有する化合物、等を用いることができる。また、「有機溶媒」としては、メタノール、エタノール、プロパノール等の脂肪族アルコール、n−ヘキサン等の脂肪族炭化水素、キシレン等の芳香族炭化水素、等を用いることができる。更に、「湿式ジェットミル」としては、エス・ジー・エンジニアリング(株)製のナノマイザー、(株)エスエムテー製の超高圧式ホモジナイザーLAB2000、(株)スギノマシン製のアルティマイザー、等を用いることができる。 Furthermore, as the “surface modifier”, an isocyanate compound, an amine compound, a vinyl compound, an epoxy compound, a methacryloxy compound, an acrylic compound, an imide compound, a compound having an alkyl group, a compound having an aryl group, Etc. can be used. As the “organic solvent”, aliphatic alcohols such as methanol, ethanol and propanol, aliphatic hydrocarbons such as n-hexane, aromatic hydrocarbons such as xylene, and the like can be used. Furthermore, as the “wet jet mill”, a nanomizer manufactured by SG Engineering Co., Ltd., an ultrahigh pressure homogenizer LAB2000 manufactured by SMT Co., Ltd., an optimizer manufactured by Sugino Machine Co., Ltd., etc. can be used. .

加えて、「イソシアネート系表面修飾剤」とは、イソシアネート基(−N=C=O)を1つ以上有する化合物からなる表面修飾剤を意味し、アルキル基にイソシアネート基が3個結合したトリイソシアネート化合物、トリエトキシプロピルイソシアネートシラン(TEIS)等の化合物を用いることができる。 In addition, “isocyanate-based surface modifier” means a surface modifier composed of a compound having one or more isocyanate groups (—N═C═O) , and is a triisocyanate in which three isocyanate groups are bonded to an alkyl group. A compound such as a compound or triethoxypropyl isocyanate silane (TEIS) can be used.

なお、本発明において数値に「略」が付されているものは、臨界値、境界値として当該値が出てきたものではなく、その数値は大凡の値として捉えているものである。  In the present invention, those with “substantially” added to the numerical value do not appear as the critical value or the boundary value, but the numerical value is regarded as an approximate value.

請求項1の発明に係る中空粒子含有断熱塗料の製造方法は、略30nm〜略300nmの範囲内の外径を有するシリカ殻からなるナノ中空粒子を塗料中に略均一に分散してなる断熱塗料であって、シリカ殻からなるナノ中空粒子が固形分で30体積%〜70体積%の範囲内で、より好ましくは45体積%〜55体積%の範囲内で含有される。 The method for producing a hollow particle-containing heat insulating paint according to the invention of claim 1 is a heat insulating paint obtained by dispersing nano hollow particles made of silica shells having an outer diameter in the range of approximately 30 nm to approximately 300 nm substantially uniformly in the paint. And the nano hollow particle which consists of a silica shell is contained in the range of 30 volume%-70 volume% by solid content, More preferably, it exists in the range of 45 volume%-55 volume%.

このように、略30nm〜略300nmの範囲内の外径を有するシリカ殻からなるナノ中空粒子を、凝集を防止して塗料中に微細分散させることによって、シリカ殻からなるナノ中空粒子を固形分で30体積%〜70体積%の範囲内で、塗料中に含有させることができる。   In this way, nano hollow particles made of silica shells having an outer diameter in the range of about 30 nm to about 300 nm are prevented from agglomerating and finely dispersed in the coating material, so that the nano hollow particles made of silica shells are solidified. In the range of 30 volume% to 70 volume%, it can be contained in the paint.

この結果、かかる構成の中空粒子含有断熱塗料を基材に塗布してなる塗膜中のシリカナノ中空粒子の含有率は30体積%〜70体積%となり、かかる塗膜の熱伝導率は、上記特許文献2に示される0.15W/mKを大きく下回り、数分の一となって、より断熱性に優れた断熱塗料を得ることができる。これによって、例えば半導体の断熱材料としても用いることができ、その応用分野は大きく拡がることになる。   As a result, the content of silica nano-hollow particles in the coating film obtained by applying the hollow particle-containing heat insulating paint having such a configuration to the base material is 30% by volume to 70% by volume, and the thermal conductivity of the coating film is the above-mentioned patent. The thermal insulation paint which is far below 0.15 W / mK shown in the literature 2 and becomes a fraction of that can be obtained. As a result, it can be used, for example, as a heat insulating material for semiconductors, and its application fields are greatly expanded.

上述したように、シリカ殻からなるナノ中空粒子が固形分で30体積%〜70体積%の範囲内で含有されることによって、中空粒子含有断熱塗料を基材に塗布してなる塗膜の熱伝導率は上記特許文献2に示される0.15W/mKを大きく下回り、本発明者らが鋭意実験研究を積み重ねた結果、より良い場合には、空気の熱伝導率(0.024W/mK)に近い0.025W/mK〜0.06W/mKの範囲内、より好ましくは0.025W/mK〜0.028W/mKの範囲内の値が得られることを見出し、この知見に基づいて本発明を完成したものである。   As described above, the heat of the coating film formed by applying the hollow particle-containing heat-insulating coating material to the base material by containing the nano-hollow particles made of silica shell within the range of 30% by volume to 70% by volume in solid content. The conductivity is much lower than 0.15 W / mK shown in the above-mentioned Patent Document 2, and as a result of the present inventors' repeated earnest experiment research, in the better case, the thermal conductivity of air (0.024 W / mK) It is found that a value in the range of 0.025 W / mK to 0.06 W / mK, more preferably in the range of 0.025 W / mK to 0.028 W / mK, can be obtained. Is completed.

この値は、従来の断熱塗膜の熱伝導率を大きく低減させた画期的なものであり、上述したように、シリカ殻からなるナノ中空粒子を塗料中に微細分散させて、固形分で30体積%〜70体積%の範囲内で、より好ましくは45体積%〜55体積%の範囲内で塗料中に含有させることによって達成されたものである。   This value is an epoch-making thing which greatly reduced the thermal conductivity of the conventional heat-insulating coating film. As described above, nano hollow particles made of silica shells are finely dispersed in the paint, It is achieved by including in the coating material in the range of 30% by volume to 70% by volume, more preferably in the range of 45% by volume to 55% by volume.

また、略30nm〜略300nmの範囲内の外径を有するシリカ殻からなるナノ中空粒子を、湿式ジェットミルで強力に分散させることによって、その大部分を溶媒に微細分散させ、更にこれらの微細分散粒子に表面修飾剤を反応付加させて表面修飾することによって、凝集を防止して塗料中に微細分散させることができる。 Further, nano hollow particles composed of silica shells having an outer diameter in the range of about 30 nm to about 300 nm are strongly dispersed by a wet jet mill, so that most of them are finely dispersed in a solvent, and further these fine dispersions are further dispersed. By surface-modifying the particles by reacting with a surface modifier, aggregation can be prevented and fine dispersion can be achieved in the paint.

ここで、シリカ殻からなるナノ中空粒子は、略150m2/gという極めて大きい比表面積を有しているため、塗料に混入しようとしても僅かな重量%しか混入することができなかった。この大きな比表面積の値は、シリカ殻からなるナノ中空粒子の表面に微細な分子レベルの凹凸が存在しているためと推測される。しかし、表面修飾することによって、表面修飾剤で微細な分子レベルの凹凸が埋められるものと推測され、比表面積が減少することが分かっている。その結果、微細凝集粒子に分散させた状態で混入するにも関わらず、数μm〜数十μmオーダーの巨大凝集粒子を混入する場合よりも、より多くの量のシリカナノ中空粒子を混入することができる。これによってシリカ殻からなるナノ中空粒子を固形分で30体積%〜70体積%の範囲内で、塗料中に含有させることができる。 Here, since the nano hollow particle which consists of a silica shell has a very large specific surface area of about 150 m < 2 > / g, even if it tried to mix in a coating material, only a small weight% could be mixed. This large specific surface area value is presumed to be due to the presence of fine irregularities at the molecular level on the surface of the nano hollow particles made of silica shells. However, it is presumed that fine surface irregularities are filled with surface modifiers by surface modification, and the specific surface area is reduced. As a result, it is possible to mix a larger amount of silica nano hollow particles than the case of mixing giant aggregated particles of several μm to several tens of μm in spite of mixing in a state of being dispersed in fine aggregated particles. it can. Thereby, the nano hollow particle which consists of a silica shell can be contained in a coating material in the range of 30 volume%-70 volume% by solid content.

この結果、かかる構成の中空粒子含有断熱塗料を基材に塗布してなる塗膜の熱伝導率は、上記特許文献2に示される0.15W/mKを大きく下回り、数分の一となって、より断熱性に優れた断熱塗料を得ることができる。これによって、例えば半導体の断熱材料としても用いることができ、その応用分野は大きく拡がることになる。   As a result, the thermal conductivity of the coating film formed by applying the hollow particle-containing heat insulating paint having such a configuration to the base material is much lower than 0.15 W / mK shown in Patent Document 2 and is a fraction of that. Thus, it is possible to obtain a heat insulating paint having more excellent heat insulating properties. As a result, it can be used, for example, as a heat insulating material for semiconductors, and its application fields are greatly expanded.

そして、表面修飾は、シリカ殻からなるナノ中空粒子に有機溶媒と表面修飾剤を加えて混合物を作製し、混合物に高温高圧を加え、シリカ殻からなるナノ中空粒子の表面に表面修飾剤を反応付加させる。 The surface modification is performed by adding an organic solvent and a surface modifier to the nano-hollow particles made of silica shells , applying a high temperature and high pressure to the mixture, and reacting the surface modifier on the surface of the nano-hollow particles made of silica shells. Add.

前記混合物の高温高圧状態を、有機溶媒の超臨界状態とすることによって、有機溶媒が表面修飾剤とともに巨大凝集粒子の中に自由に入り込んで、微細凝集粒子の表面全面に表面修飾剤が反応付加する。このため、湿式ジェットミルで強力な攪拌・分散を行っても微細凝集粒子にまで分散せず、巨大凝集粒子として残存しているシリカナノ中空粒子の各表面をも、表面修飾することができ、これらの巨大凝集粒子をも微細分散させることができる。そして、上述したように、シリカ殻からなるナノ中空粒子の含有量をより大きくすることができる。 By making the high-temperature and high-pressure state of the mixture into a supercritical state of the organic solvent, the organic solvent freely enters the giant agglomerated particles together with the surface modifier, and the surface modifier is reactively added to the entire surface of the fine agglomerated particles. To do. For this reason, even if strong agitation / dispersion is performed with a wet jet mill, the silica nano hollow particles remaining as giant agglomerated particles that do not disperse into fine agglomerated particles can be surface-modified. Can be finely dispersed. And as above-mentioned, content of the nano hollow particle which consists of silica shells can be enlarged more.

前述のように、有機溶媒を超臨界状態として、有機溶媒を表面修飾剤とともに、凝集したシリカナノ中空粒子の巨大凝集粒子の中に自由に入り込ませるためには、有機溶媒と表面修飾剤の混合物に高温高圧を加える必要があるが、オートクレーブを用いることによって、安全かつ自在に高温高圧を加えることができ、シリカナノ中空粒子の微細凝集粒子の表面全面に表面修飾剤を反応付加させることができる。 As described above, in order to allow the organic solvent to enter the super-aggregated state and the organic solvent together with the surface modifier into the agglomerated particles of the aggregated silica nano hollow particles, the mixture of the organic solvent and the surface modifier is used. Although it is necessary to apply a high temperature and a high pressure, by using an autoclave, a high temperature and a high pressure can be applied safely and freely, and a surface modifier can be reacted and added to the entire surface of the fine agglomerated particles of silica nano hollow particles.

更に、このようなイソシアネート系表面修飾剤を、シリカナノ中空粒子の表面に存在する水酸基(−OH)を介して反応付加させ、シリカナノ中空粒子の表面全面をイソシアネート系表面修飾剤でコーティングすることによって、再凝集を防止することができて分散性が向上し、更にイソシアネート系表面修飾剤のイソシアネート基が塗料中の有機化合物及び無機化合物の活性基と反応することによって、強固な結合が形成されて、より一層分散性が向上する。 Furthermore, by reacting and adding such an isocyanate-based surface modifier via a hydroxyl group (—OH) present on the surface of the silica nanohollow particle, and coating the entire surface of the silica nanohollow particle with the isocyanate-based surface modifier, Re-agglomeration can be prevented, dispersibility is improved, and further, the isocyanate group of the isocyanate-based surface modifier reacts with the active group of the organic compound and inorganic compound in the paint, thereby forming a strong bond, Dispersibility is further improved.

本発明に係る中空粒子含有断熱塗膜においては、略30nm〜略300nmの範囲内の外径を有するシリカ殻からなるナノ中空粒子を固形分で30体積%〜70体積%の範囲内で含有させた塗料を塗布することによって、高断熱性の塗膜を形成している。したがって、膜厚が5μm〜200μmの範囲内、より好ましくは10μm〜50μmの範囲内の薄膜であっても、数百層から数千層のシリカナノ中空粒子の断熱層が内包されているため、充分な断熱性を得ることができる。   The hollow particle-containing heat-insulating coating film according to the present invention contains nano hollow particles composed of silica shells having an outer diameter in the range of about 30 nm to about 300 nm in a range of 30% by volume to 70% by volume in solid content. A highly heat-insulating coating film is formed by applying the paint. Therefore, even a thin film having a film thickness in the range of 5 μm to 200 μm, more preferably in the range of 10 μm to 50 μm, includes a heat insulating layer of several hundred to several thousand layers of silica nano-hollow particles. Heat insulation can be obtained.

このようにして、シリカナノ中空粒子の凝集を防止して塗料中に微細凝集粒子として分散させ、かつ、塗膜中に固形分としてより多くの量のシリカナノ中空粒子を混入することができ、より小さい熱伝導率、すなわちより大きな断熱性を得ることができる中空粒子含有断熱塗膜となる。   In this way, the silica nano hollow particles can be prevented from agglomerating and dispersed in the paint as fine agglomerated particles, and a larger amount of silica nano hollow particles can be mixed as a solid content in the coating film. It becomes a hollow particle containing heat insulation coating film which can obtain thermal conductivity, ie, a larger heat insulation.

以下、本発明の実施の形態について、図1乃至図8を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は本発明の実施の形態に係る中空粒子含有断熱塗料の製造に用いられるシリカ殻からなるナノ中空粒子の製造工程を示す模式図である。図2は本発明の実施の形態に係る中空粒子含有断熱塗料の製造方法及びそれを用いた中空粒子含有断熱塗膜の基板上への形成工程を示すフローチャートである。図3は本発明の実施の形態に係る中空粒子含有断熱塗料を基材に塗布して形成した塗膜試料全体の熱伝導率の測定値を、塗膜の膜厚に対してプロットしたグラフである。   FIG. 1 is a schematic view showing a process for producing nano hollow particles made of silica shells used for producing a hollow particle-containing heat-insulating coating according to an embodiment of the present invention. FIG. 2 is a flowchart showing a method for producing a hollow particle-containing heat-insulating coating material according to an embodiment of the present invention and a process for forming a hollow particle-containing heat-insulating coating film on the substrate using the method. FIG. 3 is a graph in which measured values of the thermal conductivity of the entire coating film sample formed by applying the hollow particle-containing heat insulating coating according to the embodiment of the present invention to the substrate are plotted against the film thickness of the coating film. is there.

図4は本発明の実施の形態に係る中空粒子含有断熱塗膜の膜厚を測定された全熱抵抗の値に対してプロットしたグラフである。図5は本発明の実施の形態に係る中空粒子含有断熱塗膜の有限要素法(FEM)による膜内伝熱シミュレーションに用いた要素モデルと物性値を示すグラフ及び表である。図6(a)は本発明の実施の形態に係る中空粒子含有断熱塗膜の有限要素法(FEM)による熱流束の計算結果を示す図、(b)はその拡大図である。  FIG. 4 is a graph in which the film thickness of the hollow particle-containing heat insulating coating film according to the embodiment of the present invention is plotted against the measured value of total thermal resistance. FIG. 5 is a graph and a table showing element models and physical property values used in the in-film heat transfer simulation by the finite element method (FEM) of the hollow particle-containing heat insulating coating film according to the embodiment of the present invention. Fig.6 (a) is a figure which shows the calculation result of the heat flux by the finite element method (FEM) of the hollow particle containing heat insulation coating film which concerns on embodiment of this invention, (b) is the enlarged view.

図7(a)は本発明の実施の形態に係る中空粒子含有断熱塗料を自動車の合わせガラスに応用した一例を示す斜視図、(b)は拡大断面図である。図8(a)は本発明の実施の形態に係る中空粒子含有断熱塗料を高層ビルの合わせガラスに応用した一例を示す斜視図、(b)は拡大断面図である。  FIG. 7A is a perspective view showing an example in which the hollow particle-containing heat insulating paint according to the embodiment of the present invention is applied to a laminated glass of an automobile, and FIG. 7B is an enlarged sectional view. Fig.8 (a) is a perspective view which shows an example which applied the hollow particle containing heat insulation coating material concerning embodiment of this invention to the laminated glass of high-rise building, (b) is an expanded sectional view.

最初に、本発明に係るシリカ殻からなるナノ中空粒子の製造方法の概略について、図1を参照して説明する。図1に示されるように、最初にコア粒子となる炭酸カルシウム微粒子2を結晶成長させる。ここで生成させる炭酸カルシウムの結晶2はカルサイトであり六方晶系であるが、合成条件を制御することにより、あたかも立方晶系であるかのような形状、即ち「立方体状形態」に成長させることができる。ここで、「立方体状形態」とは、立方体に限らず面で囲まれた立方体に似た形状をいう。この炭酸カルシウム2の外径が20nm〜200nmとなるように結晶成長させた後に、ゾル−ゲル法によりシリコンアルコキシドを用いて、炭酸カルシウム微粒子2にシリカ3をコーティングする。  Initially, the outline of the manufacturing method of the nano hollow particle which consists of a silica shell based on this invention is demonstrated with reference to FIG. As shown in FIG. 1, first, calcium carbonate fine particles 2 that become core particles are crystal-grown. The calcium carbonate crystal 2 produced here is calcite and is a hexagonal crystal system. However, by controlling the synthesis conditions, it is grown into a shape as if it is a cubic system, that is, a “cubic shape”. be able to. Here, the “cubic form” refers to a shape similar to a cube surrounded by a face, not limited to a cube. After crystal growth so that the outer diameter of the calcium carbonate 2 is 20 nm to 200 nm, the calcium carbonate fine particles 2 are coated with silica 3 using silicon alkoxide by a sol-gel method.

続いて、これを水に分散させて酸を添加して内部の炭酸カルシウム2を溶解させて流出させることによって、立方体状形態のシリカ殻からなるナノ中空粒子4が形成される。最後に、800℃で焼成し溶解した炭酸カルシウム2が流出した孔を塞ぐことによって、緻密なシリカ殻からなるナノ中空粒子(シリカナノ中空粒子)1が製造される。シリカナノ中空粒子1の中空部分1bの内径は、コア粒子の炭酸カルシウム微粒子2の外径20nm〜200nmであり、緻密なシリカ殻1aの厚さは1nm〜5nm、厚くても5nm〜20nm前後であるため、シリカナノ中空粒子1の外径は略30nm〜略300nmとなる。  Subsequently, this is dispersed in water, and an acid is added to dissolve and discharge the internal calcium carbonate 2, thereby forming nano hollow particles 4 composed of cubic shaped silica shells. Finally, nano hollow particles (silica nano hollow particles) 1 made of a dense silica shell are produced by closing the pores from which calcium carbonate 2 dissolved by baking at 800 ° C. flows out. The inner diameter of the hollow portion 1b of the silica nano hollow particle 1 is 20 nm to 200 nm of the outer diameter of the calcium carbonate fine particle 2 of the core particle, and the thickness of the dense silica shell 1a is 1 nm to 5 nm, even if it is thick, about 5 nm to 20 nm. Therefore, the outer diameter of the silica nano hollow particles 1 is approximately 30 nm to approximately 300 nm.

次に、本発明の実施の形態に係る中空粒子含有断熱塗料及び塗膜試料の製造方法について、図2のフローチャートを参照して説明する。図2に示されるように、最初にシリカナノ中空粒子1の微細分散処理が実施される(ステップS10〜S12)。すなわち、シリカナノ中空粒子1及び表面修飾剤であるイソシアネート系化合物としてのトリエトキシプロピルイソシアネートシラン(TEIS)を、溶媒としてのn−ヘキサンに混入して、高速攪拌機で攪拌して分散させ(ステップS10)、続いて湿式ジェットミルで強力に分散させて、シリカナノ中空粒子1の大部分を微細凝集粒子に分散させる(ステップS11)。   Next, the hollow particle-containing heat-insulating coating material and the method for producing the coating film sample according to the embodiment of the present invention will be described with reference to the flowchart of FIG. As shown in FIG. 2, the fine dispersion process of the silica nano hollow particles 1 is first performed (steps S10 to S12). That is, silica nano hollow particles 1 and triethoxypropyl isocyanate silane (TEIS) as an isocyanate compound which is a surface modifier are mixed in n-hexane as a solvent and dispersed by stirring with a high-speed stirrer (step S10). Subsequently, it is strongly dispersed by a wet jet mill, and most of the silica nano hollow particles 1 are dispersed in the fine aggregated particles (step S11).

本実施の形態においては、シリカナノ中空粒子1として、略50nm〜100nmの範囲内の外径を有する平均外径70nmの、空隙率が略70%〜80%の立方体状形態のシリカ殻からなるナノ中空粒子1を用いている。また、「高速攪拌機」としては、プライミクス(株)製のT.K.フィルミックスを用いている。更に、「湿式ジェットミル」としては、具体的には、エス・ジー・エンジニアリング(株)製のナノマイザー、(株)エスエムテー製の超高圧式ホモジナイザーLAB2000、(株)スギノマシン製のアルティマイザー、等を用いることができる。  In the present embodiment, the silica nano-hollow particles 1 are made of nano-sized silica shells having an average outer diameter of 70 nm and an outer diameter in the range of approximately 50 nm to 100 nm and a porosity of approximately 70% to 80%. Hollow particles 1 are used. In addition, as a “high-speed stirrer”, T.I. K. A fill mix is used. Furthermore, specific examples of the “wet jet mill” include nanomizer manufactured by SG Engineering Co., Ltd., ultrahigh pressure homogenizer LAB2000 manufactured by SMT Co., Ltd., and optimizer manufactured by Sugino Machine Co., Ltd. Can be used.

続いて、エバポレータによって溶媒としてのn−ヘキサンを蒸発させて、分散液を濃縮した後(ステップS12)、オートクレーブを用いて、シリカナノ中空粒子1の表面修飾処理が行われる(ステップS13)。すなわち、分散液をオートクレーブでn−ヘキサンの臨界温度(234.9℃)・臨界圧力(3.02MPa)において1時間反応させることによって、n−ヘキサンが超臨界状態となり、巨大凝集粒子として凝集しているシリカナノ中空粒子1の間にも自由に入り込んで、分散液に含まれるTEISをシリカナノ中空粒子1の表面の水酸基と反応させて、シリカナノ中空粒子1の表面全面に付加させる。これによって、ほぼ全てのシリカナノ中空粒子1の表面全面がTEISによって表面修飾されて、微細凝集粒子として分散した状態で粉体状態となる。   Subsequently, after evaporating n-hexane as a solvent by an evaporator and concentrating the dispersion (step S12), the surface modification treatment of the silica nano hollow particles 1 is performed using an autoclave (step S13). That is, when the dispersion is reacted in an autoclave for 1 hour at the critical temperature (234.9 ° C.) and critical pressure (3.02 MPa) of n-hexane, n-hexane becomes supercritical and aggregates as giant aggregated particles. The TEIS contained in the dispersion is also allowed to react with the hydroxyl groups on the surface of the silica nano hollow particles 1 to be added to the entire surface of the silica nano hollow particles 1. As a result, almost the entire surface of the silica nano hollow particles 1 is surface-modified by TEIS and is in a powder state in a state of being dispersed as fine aggregated particles.

次に、この粉体状態の表面修飾されたシリカナノ中空粒子1を用いて、中空粒子含有断熱塗料の調製が行われる。すなわち、TEISで表面修飾されたシリカナノ中空粒子1に、塗料樹脂としてのアクリルウレタン樹脂と、塗料溶媒としてのキシレン(オルト、メタ、パラの混合物)が添加され、高速攪拌機によって混合されて(ステップS14)、シリカナノ中空粒子1がアクリルウレタン樹脂塗料中に均一に微細分散した中空粒子含有断熱塗料11が得られる。この中空粒子含有断熱塗料11におけるシリカナノ中空粒子1の含有率は、固形分について約50体積%であった。   Next, by using the surface-modified silica nano hollow particles 1 in the powder state, a hollow particle-containing heat insulating paint is prepared. That is, acrylic urethane resin as a coating resin and xylene (a mixture of ortho, meta, and para) as a coating solvent are added to silica nano hollow particles 1 surface-modified with TEIS and mixed by a high-speed stirrer (step S14). ), A hollow particle-containing heat insulating paint 11 in which the silica nano hollow particles 1 are uniformly finely dispersed in the acrylic urethane resin paint is obtained. The content of the silica nano hollow particles 1 in the hollow particle-containing heat insulating coating material 11 was about 50% by volume with respect to the solid content.

この中空粒子含有断熱塗料11を、基材としての銅円板及びステンレス(SUS304)円板(φ60mm,厚さ5mm)にエアスプレー塗布して(ステップS15)、170℃で30分間乾燥固化させ(ステップS16)、これを繰り返すことによって所定の厚さの塗膜11Aが形成されたシリカナノ中空粒子内包薄膜コート基材(塗膜試料)10が得られる。この塗膜試料10を用いて、熱伝導率の測定を行った(ステップS17)。   This hollow particle-containing heat-insulating coating 11 is applied by air spray to a copper disk and a stainless steel (SUS304) disk (φ60 mm, thickness 5 mm) as a base material (step S15) and dried and solidified at 170 ° C. for 30 minutes ( By repeating this step S16), the silica nano hollow particle encapsulating thin film coated substrate (coated film sample) 10 in which the coated film 11A having a predetermined thickness is formed is obtained. Using this coating film sample 10, the thermal conductivity was measured (step S17).

次に、塗膜試料10を用いた熱伝導率の測定方法について、図3及び図4を参照して説明する。まず、塗膜試料10全体の熱伝導率の測定を、図3に示されるようにして実施した。熱伝導率の測定用の機器としては、英弘精機(株)のHC110を使用した。すなわち、28℃の高温側プレートと22℃の低温側プレートとの間に塗膜試料10を挟んで、高温側熱流量Qhと低温側熱流量Qcとを測定し、図3に示される次式(1)によって、塗膜試料10全体の熱伝導率λを算出した。
λ=(Qh+Qc)・L/(2・ΔT)‥‥(1)
Next, a method for measuring thermal conductivity using the coating film sample 10 will be described with reference to FIGS. First, the measurement of the thermal conductivity of the entire coating film sample 10 was performed as shown in FIG. As an instrument for measuring thermal conductivity, HC110 manufactured by Eihiro Seiki Co., Ltd. was used. That is, the high temperature side heat flow rate Qh and the low temperature side heat flow rate Qc are measured by sandwiching the coating film sample 10 between the high temperature side plate of 28 ° C. and the low temperature side plate of 22 ° C. By (1), the thermal conductivity λ of the entire coating film sample 10 was calculated.
λ = (Qh + Qc) · L / (2 · ΔT) (1)

ここで、L:塗膜試料10の厚さ、ΔT:(高温側プレート温度−低温側プレート温度)=28℃−22℃=6[K]、である。こうして算出した熱伝導率λの値を、コーティング膜(塗膜)11Aの厚さに対してプロットしたのが、図3に示されるグラフである。図3のグラフに示されるように、基材5が銅円板の場合にもステンレス(SUS304)円板の場合にも、コーティング膜(塗膜)11Aが10μm形成されるだけで、基材5のみの場合に比較して、熱伝導率λの値は急激に減少している。   Here, L: thickness of the coating film sample 10, ΔT: (high temperature side plate temperature−low temperature side plate temperature) = 28 ° C.−22 ° C. = 6 [K]. FIG. 3 shows a graph in which the value of the thermal conductivity λ calculated in this manner is plotted with respect to the thickness of the coating film (coating film) 11A. As shown in the graph of FIG. 3, whether the base material 5 is a copper disk or a stainless steel (SUS304) disk, the coating film (coating film) 11A is only formed to 10 μm. As compared with the case of only the case, the value of the thermal conductivity λ decreases rapidly.

これによって、基材5に中空粒子含有断熱塗料11を塗布して形成されたコーティング膜(塗膜)11Aの断熱性が極めて優れていることが判明した。そこで、次に、基材5を除いた塗膜11A自体の熱伝導率の値を算出した。その算出方法について、図4を参照して説明する。   As a result, it was found that the heat insulating property of the coating film (coating film) 11A formed by applying the hollow particle-containing heat insulating paint 11 to the base material 5 was extremely excellent. Therefore, next, the value of the thermal conductivity of the coating film 11A itself excluding the base material 5 was calculated. The calculation method will be described with reference to FIG.

すなわち、図4に示されるように、形成された塗膜11Aの膜厚を測定された全熱抵抗の値に対してプロットして、プロットされた複数の点に対して最小自乗法によって直線を引き、その傾き(膜厚/全熱抵抗)から、それぞれの基材5についての塗膜11A自体の熱伝導率を算出した。   That is, as shown in FIG. 4, the film thickness of the formed coating film 11A is plotted against the measured total thermal resistance value, and a straight line is plotted by the least square method for the plotted points. The thermal conductivity of the coating film 11A itself for each substrate 5 was calculated from the inclination (film thickness / total thermal resistance).

その結果、図4に示されるように、基材5が銅円板の場合には塗膜11A自体の熱伝導率=0.028W/mK、基材5がステンレス(SUS304)円板の場合には塗膜11A自体の熱伝導率=0.026W/mKと、いずれも非常に小さい値であることが分かった。これは、空気の熱伝導率=0.024W/mKに匹敵する程度の、非常に小さい値である。  As a result, as shown in FIG. 4, when the substrate 5 is a copper disk, the thermal conductivity of the coating film 11A itself is 0.028 W / mK, and when the substrate 5 is a stainless steel (SUS304) disk. It was found that the thermal conductivity of the coating film 11A itself was 0.026 W / mK, both of which were very small values. This is a very small value comparable to the thermal conductivity of air = 0.024 W / mK.

このようにして、本実施の形態に係る中空粒子含有断熱塗料11及び中空粒子含有断熱塗膜11Aにおいては、シリカナノ中空粒子1の凝集を防止して塗料中に微細凝集粒子として分散させることによって、固形分としてより多くの量を混入することができ、より小さい熱伝導率、すなわちより大きな断熱性を得ることができる。   Thus, in the hollow particle-containing heat insulating coating 11 and the hollow particle-containing heat insulating coating film 11A according to the present embodiment, by preventing aggregation of the silica nano hollow particles 1 and dispersing them as fine aggregated particles in the coating, A larger amount can be mixed as a solid content, and a smaller thermal conductivity, that is, a larger heat insulating property can be obtained.

次に、このような小さい熱伝導率が得られる理由について、有限要素法(FEM)を用いた膜内伝熱シミュレーションを行い、理論値としての熱伝導率を算出することによって検討を行った。図5に示されるように、中空粒子含有断熱塗膜11Aの要素モデルとして、中空粒子含有断熱塗膜11Aのシリカナノ中空粒子1の体積含有率が約50%であることから、体積充填率50%に相当する粒子面積比75%の要素モデル15を用いた。   Next, the reason why such a small thermal conductivity was obtained was examined by conducting an in-film heat transfer simulation using a finite element method (FEM) and calculating the theoretical thermal conductivity. As shown in FIG. 5, as the element model of the hollow particle-containing heat insulating coating 11A, the volume content of the silica nano hollow particles 1 in the hollow particle-containing heat insulating coating 11A is about 50%, and therefore the volume filling rate is 50%. The element model 15 having a particle area ratio of 75% corresponding to is used.

この要素モデル15は、アクリルウレタン樹脂部分6A、シリカシェル1A、粒子内部空間(空気と仮定)1Bから構成されている。なお、シリカシェル1Aは計算を容易にするために球形と仮定し、その厚さは5nm、粒径は50nmとした。また、粒子数は50個、測定温度は298K(温度差20K)とした。計算に用いた物性値は、図5に示される表の通りである。   The element model 15 includes an acrylic urethane resin portion 6A, a silica shell 1A, and a particle internal space (assuming air) 1B. The silica shell 1A is assumed to be spherical for easy calculation, and the thickness is 5 nm and the particle size is 50 nm. The number of particles was 50, and the measurement temperature was 298K (temperature difference 20K). The physical property values used for the calculation are as shown in the table of FIG.

図5に示される要素モデル15と図5に示される表の物性値を用いて、計算した熱流束の結果を、図6(a),(b)の解析モデル16,16Aに示す。図6(b)の拡大解析モデル16Aに示されるように、シリカシェル1Aにおける熱流束が、アクリルウレタン樹脂部分6Aにおける熱流束よりも大きいことが分かる。この計算結果から算出された理論値としての熱伝導率は、0.244W/mKとなり、実測値の平均値=0.027W/mKよりも約10倍も大きいことが分かった。   The results of the calculated heat flux using the element model 15 shown in FIG. 5 and the physical property values in the table shown in FIG. 5 are shown in the analysis models 16 and 16A of FIGS. 6 (a) and 6 (b). As shown in the enlarged analysis model 16A in FIG. 6B, it can be seen that the heat flux in the silica shell 1A is larger than the heat flux in the acrylic urethane resin portion 6A. The thermal conductivity as a theoretical value calculated from the calculation result was 0.244 W / mK, which was found to be about 10 times larger than the average value of the actual measurement value = 0.027 W / mK.

そこで、この相違の理由を検討するために、上記のシミュレーション計算を条件を変えて行ってみた。具体的には、上述の如く、シリカシェル1Aにおける熱流束が大きいことから、表1に示されるように、シリカシェル1Aが無いものと仮定した場合も含めて、粒子内部空間1Bが空気(バルク)の場合、ナノ細孔と仮定した空気である場合、及び真空である場合について、シミュレーション計算を実施して熱伝導率を算出した。結果を表1に示す。   Therefore, in order to examine the reason for this difference, the above simulation calculation was performed under different conditions. Specifically, as described above, since the heat flux in the silica shell 1A is large, as shown in Table 1, the particle internal space 1B includes air (bulk) including the case where it is assumed that there is no silica shell 1A. In the case of), the thermal conductivity was calculated by performing simulation calculation for the case of air assumed to be nanopores and the case of vacuum. The results are shown in Table 1.

Figure 0005311438
Figure 0005311438

表1に示されるように、シリカシェル1Aが存在するものとしてシミュレーション計算を行った場合には、理論上の熱伝導率は、粒子内部空間1Bが空気(バルク)の場合、ナノ細孔空気の場合、真空の場合のいずれについても、少しずつ小さくなってはいるが、大きな違いはなく、実際の測定値より一桁大きいことには変わりがない。   As shown in Table 1, when the simulation calculation is performed on the assumption that the silica shell 1A exists, the theoretical thermal conductivity is that of the nanopore air when the particle internal space 1B is air (bulk). In the case of the vacuum, although it is getting smaller little by little, there is no big difference, and it is still an order of magnitude larger than the actual measured value.

これに対して、シリカシェル1Aが無いものとしてシミュレーション計算を行った場合には、理論上の熱伝導率は、粒子内部空間1Bが空気(バルク)の場合には0.049W/mK、ナノ細孔空気の場合には0.036W/mKと、次第に実際の測定値の平均値(0.027W/mK)に近づいており、真空の場合には0.025W/mKとなって、ほぼ実測値と等しくなっている。   On the other hand, when the simulation calculation is performed assuming that the silica shell 1A is not present, the theoretical thermal conductivity is 0.049 W / mK when the particle internal space 1B is air (bulk). In the case of hole air, it is 0.036 W / mK, which is gradually approaching the average value of actual measured values (0.027 W / mK), and in the case of vacuum, it is 0.025 W / mK, which is almost an actual measured value. It is equal to.

このように、シリカナノ中空粒子1の凝集を防止して塗料中に微細凝集粒子として分散させることによって得られる本実施の形態に係る中空粒子含有断熱塗料11は、基材5に塗布した場合に、シリカナノ中空粒子1のシリカシェル1Aが存在せず、粒子内部空間1Bが真空とした場合のシミュレーション計算結果に近い、非常に小さい熱伝導率を有する中空粒子含有断熱塗膜11Aが得られることが明らかになった。   Thus, when the hollow nanoparticle-containing heat-insulating coating material 11 according to the present embodiment obtained by preventing the silica nano hollow particles 1 from being aggregated and dispersed as fine aggregated particles in the coating material is applied to the substrate 5, It is clear that there is obtained a hollow particle-containing heat-insulating coating film 11A having a very small thermal conductivity close to the simulation calculation result when the silica shell 1A of the silica nano hollow particle 1 does not exist and the particle internal space 1B is a vacuum. Became.

このような優れた断熱性を有する本実施の形態に係る中空粒子含有断熱塗料11の応用分野について、図7及び図8を参照して説明する。   The application field of the hollow particle-containing heat insulating coating material 11 according to the present embodiment having such excellent heat insulating properties will be described with reference to FIGS.

図7に示されるように、自動車30用の窓ガラス、特にフロントガラス31においては、異物等が衝突して割れた場合にガラス破片の飛散を防止するために、強化ガラスとしての合わせガラスを使用することが義務付けられている。図7(b)の拡大断面図に示されるように、この合わせガラス31は、2枚のガラス32A,32Bの間に接着剤としてのポリビニルブチラール(PVB)33を挟んで貼り合わせたもので、割れた場合にガラス破片の飛散を防止するだけでなく、耐貫通性に優れているため、事故の場合に乗員がフロントガラス31を突き破って飛び出すのを防ぐことができる。   As shown in FIG. 7, a laminated glass as a tempered glass is used in a window glass for an automobile 30, particularly a windshield 31, in order to prevent scattering of glass fragments when a foreign object collides and breaks. It is obliged to do. As shown in the enlarged cross-sectional view of FIG. 7 (b), this laminated glass 31 is laminated by sandwiching polyvinyl butyral (PVB) 33 as an adhesive between two glasses 32A and 32B. In addition to preventing the glass fragments from being scattered when broken, it is excellent in penetration resistance, so that it is possible to prevent the occupant from breaking through the windshield 31 in the event of an accident.

しかしながら、自動車30においては、特に夏季における太陽光線による車内温度の上昇という問題があり、従来のフロントガラスでは、熱線である赤外線の透過率は低いものの、太陽光線によって暖められたフロントガラスの外表面から内部に熱貫流が生じて、自動車30内部の温度を上昇させていた。   However, the automobile 30 has a problem that the temperature inside the vehicle increases due to sunlight in the summer, and the conventional windshield has low transmittance of infrared rays, which are heat rays, but the outer surface of the windshield warmed by sunlight. As a result, a heat flow occurred inside and the temperature inside the automobile 30 was raised.

そこで、図7(b)の拡大断面図に示されるように、このポリビニルブチラール(PVB)33を基材として、本実施の形態に係る中空粒子含有断熱塗料11と同様の製造工程によってシリカナノ中空粒子1を多量に混入した中間層11Bを、フロントガラス(合わせガラス)31内に設けることによって、シリカナノ中空粒子1の断熱性が発揮されて、フロントガラス31の外表面から内部への熱貫流が遮断され、自動車30の内部の温度上昇を顕著に低減する効果が期待できる。   Accordingly, as shown in the enlarged cross-sectional view of FIG. 7B, silica nano hollow particles are produced by the same manufacturing process as that of the hollow particle-containing heat-insulating coating material 11 according to the present embodiment using the polyvinyl butyral (PVB) 33 as a base material. By providing the intermediate layer 11B mixed with a large amount of 1 in the windshield (laminated glass) 31, the heat insulation of the silica nano hollow particles 1 is exhibited, and the heat flow from the outer surface to the inside of the windshield 31 is blocked. Thus, the effect of significantly reducing the temperature rise inside the automobile 30 can be expected.

また、図8(a)に示されるように、高層ビル35において大通りに面した壁面の大部分をガラス張りとすることも行われているが、かかる窓ガラス36としても強化ガラスとしての合わせガラスが用いられている。このような高層ビル35用の窓ガラス36としても、図8(b)に示されるように、ポリビニルブチラール(PVB)33に本実施の形態に係る中空粒子含有断熱塗料11と同様の製造工程によってシリカナノ中空粒子1を多量に混入した中間層11Bを、窓ガラス(合わせガラス)36内に設けることによって、シリカナノ中空粒子1の断熱性が発揮されて、窓ガラス36の外表面から内部への熱貫流が遮断され、高層ビル35の室内の温度上昇を顕著に低減する効果が期待できる。   Further, as shown in FIG. 8 (a), most of the wall surface facing the main street in the high-rise building 35 is also made of glass, but laminated glass as tempered glass is also used as the window glass 36. It is used. Also as the window glass 36 for such a high-rise building 35, as shown in FIG. 8B, the polyvinyl butyral (PVB) 33 is made by the same manufacturing process as the hollow particle-containing heat-insulating paint 11 according to the present embodiment. By providing the intermediate layer 11B in which the silica nano hollow particles 1 are mixed in a large amount in the window glass (laminated glass) 36, the heat insulating property of the silica nano hollow particles 1 is exhibited, and the heat from the outer surface of the window glass 36 to the inside. Throughflow is interrupted, and the effect of significantly reducing the temperature rise in the room of the high-rise building 35 can be expected.

本実施の形態に係る中空粒子含有断熱塗料11の応用分野としては、その他にも、シリカナノ中空粒子1を多量に塗料中に分散してなる断熱塗料(特に、シリカナノ中空粒子1の透明性を生かした透明断熱塗膜を形成するための透明断熱塗料)や、透明合成樹脂フィルムの片面に金属を蒸着して他方の面に上記断熱塗料を均一に塗布してなる断熱フィルムや、合成樹脂中にシリカナノ中空粒子1を混入してこれをフィルムに加工してなる断熱フィルムや、合成繊維原料中にシリカナノ中空粒子1を混入してこれを紡糸してなる断熱繊維、等を挙げることができる。   In addition, as an application field of the hollow particle-containing heat-insulating paint 11 according to the present embodiment, a heat-insulating paint in which a large amount of silica nanohollow particles 1 are dispersed in the paint (particularly taking advantage of the transparency of the silica nanohollow particles 1). A transparent heat insulating paint for forming a transparent heat insulating coating), a heat insulating film obtained by depositing metal on one side of a transparent synthetic resin film and uniformly applying the heat insulating paint on the other side, or in a synthetic resin Examples thereof include a heat insulating film formed by mixing silica nano hollow particles 1 into a film, and a heat insulating fiber formed by mixing silica nano hollow particles 1 in a synthetic fiber raw material and spinning it.

本実施の形態においては、シリカ殻からなるナノ中空粒子として、略50nm〜100nmの範囲内の外径を有する平均外径70nmの、空隙率が略70%〜80%の立方体状形態のシリカ殻からなるナノ中空粒子1を用いた場合について説明したが、略30nm〜略300nmの外径を有するシリカ殻からなるナノ中空粒子であれば、その他の特性を有するものを使用しても良い。   In the present embodiment, the hollow silica particles made of silica shells have an outer diameter in the range of about 50 nm to 100 nm, an average outer diameter of 70 nm, and a cubic shaped silica shell with a porosity of about 70% to 80%. Although the case where the nano hollow particle 1 made of is used has been described, a nano hollow particle made of a silica shell having an outer diameter of about 30 nm to about 300 nm may be used as long as it has other characteristics.

また、本実施の形態においては、表面修飾用の有機溶媒としてn−ヘキサンを用いた場合についてのみ説明したが、これに限られるものではなく、他の有機溶媒、例えばメタノール、エタノール、プロパノール等の脂肪族アルコール、キシレン等の芳香族炭化水素、等を用いることができる。   Moreover, in this Embodiment, although demonstrated only about the case where n-hexane was used as the organic solvent for surface modification, it is not restricted to this, For example, other organic solvents, such as methanol, ethanol, propanol, etc. Aliphatic alcohols, aromatic hydrocarbons such as xylene, and the like can be used.

更に、表面修飾剤として、イソシアネート系化合物としてのトリエトキシプロピルイソシアネートシラン(TEIS)を用いた場合についてのみ説明したが、これに限られるものではなく、他の表面修飾剤、例えばアミン系化合物、ビニル系化合物、エポキシ系化合物、メタクリロキシ系化合物、アクリル系化合物、イミド系化合物、アルキル基を有する化合物、アリール基を有する化合物、等を用いても良い。  Further, the case where triethoxypropyl isocyanate silane (TEIS) as an isocyanate compound is used as the surface modifier has been described, but the present invention is not limited to this, and other surface modifiers such as amine compounds, vinyls, etc. A compound, an epoxy compound, a methacryloxy compound, an acrylic compound, an imide compound, a compound having an alkyl group, a compound having an aryl group, or the like may be used.

本発明を実施するに際しては、中空粒子含有断熱塗料及び中空粒子含有断熱塗膜のその他の部分の構成、成分、形状、数量、材質、大きさ、製造方法等についても、本実施の形態に限定されるものではない。   In practicing the present invention, the configuration, components, shape, quantity, material, size, manufacturing method, etc. of other parts of the hollow particle-containing heat-insulating paint and the hollow particle-containing heat-insulating coating film are also limited to the present embodiment. Is not to be done.

なお、本発明の実施の形態で挙げている数値は、臨界値を示すものではなく、実施に好適な好適値を示すものであるから、上記数値を若干変更してもその実施を否定するものではない。   In addition, since the numerical value quoted in the embodiment of the present invention does not indicate a critical value but indicates a preferable value suitable for implementation, even if the numerical value is slightly changed, the implementation is denied. is not.

図1は本発明の実施の形態に係る中空粒子含有断熱塗料の製造に用いられるシリカ殻からなるナノ中空粒子の製造工程を示す模式図である。FIG. 1 is a schematic view showing a process for producing nano hollow particles made of silica shells used for producing a hollow particle-containing heat-insulating coating according to an embodiment of the present invention. 図2は本発明の実施の形態に係る中空粒子含有断熱塗料の製造方法及びそれを用いた中空粒子含有断熱塗膜の基板上への形成工程を示すフローチャートである。FIG. 2 is a flowchart showing a method for producing a hollow particle-containing heat-insulating coating material according to an embodiment of the present invention and a process for forming a hollow particle-containing heat-insulating coating film on the substrate using the method. 図3は本発明の実施の形態に係る中空粒子含有断熱塗料を基材に塗布して形成した塗膜試料全体の熱伝導率の測定値を、塗膜の膜厚に対してプロットしたグラフである。FIG. 3 is a graph in which measured values of the thermal conductivity of the entire coating film sample formed by applying the hollow particle-containing heat insulating coating according to the embodiment of the present invention to the substrate are plotted against the film thickness of the coating film. is there. 図4は本発明の実施の形態に係る中空粒子含有断熱塗膜の膜厚を測定された全熱抵抗の値に対してプロットしたグラフである。FIG. 4 is a graph in which the film thickness of the hollow particle-containing heat insulating coating film according to the embodiment of the present invention is plotted against the measured value of total thermal resistance. 図5は本発明の実施の形態に係る中空粒子含有断熱塗膜の有限要素法(FEM)による膜内伝熱シミュレーションに用いた要素モデルと物性値を示すグラフ及び表である。FIG. 5 is a graph and a table showing element models and physical property values used in the in-film heat transfer simulation by the finite element method (FEM) of the hollow particle-containing heat insulating coating film according to the embodiment of the present invention. 図6(a)は本発明の実施の形態に係る中空粒子含有断熱塗膜の有限要素法(FEM)による熱流束の計算結果を示す図、(b)はその拡大図である。Fig.6 (a) is a figure which shows the calculation result of the heat flux by the finite element method (FEM) of the hollow particle containing heat insulation coating film which concerns on embodiment of this invention, (b) is the enlarged view. 図7(a)は本発明の実施の形態に係る中空粒子含有断熱塗料を自動車の合わせガラスに応用した一例を示す斜視図、(b)は拡大断面図である。FIG. 7A is a perspective view showing an example in which the hollow particle-containing heat insulating paint according to the embodiment of the present invention is applied to a laminated glass of an automobile, and FIG. 7B is an enlarged sectional view. 図8(a)は本発明の実施の形態に係る中空粒子含有断熱塗料を高層ビルの合わせガラスに応用した一例を示す斜視図、(b)は拡大断面図である。Fig.8 (a) is a perspective view which shows an example which applied the hollow particle containing heat insulation coating material concerning embodiment of this invention to the laminated glass of high-rise building, (b) is an expanded sectional view.

1 シリカ殻からなるナノ中空粒子
2 コア粒子(炭酸カルシウム)
3 シリカコーティング
5 基材
11 中空粒子含有断熱塗料
31,36 合わせガラス
1 Nano hollow particles made of silica shell 2 Core particles (calcium carbonate)
3 Silica coating 5 Base material 11 Hollow particle-containing heat insulating paint 31, 36 Laminated glass

Claims (1)

30nm〜300nmの範囲内の外径を有するシリカ殻からなるシリカナノ中空粒子及びイソシアネート系表面修飾剤を有機溶媒に混入し、前記シリカナノ中空粒子を微細凝集粒子に分散させる微細分散処理と、
前記有機溶媒を蒸発させて分散液を濃縮した後、高温高圧を加え前記有機溶媒の超臨界状態として、前記イソシアネート系表面修飾剤を前記シリカナノ中空粒子の表面の水酸基と反応させて前記シリカナノ中空粒子の表面全面に付加させ、前記微細凝集粒子として分散した状態で粉体状態とする表面修飾処理と、
前記粉体状態の表面修飾された前記シリカナノ中空粒子を用いて、前記シリカナノ中空粒子の塗料中の含有率が固形分で30体積%〜70体積%となるように、塗料樹脂と塗料溶媒を添加、混合し、前記シリカナノ中空粒子が塗料中に均一に微細分散した中空粒子含有断熱塗料とする調製
を備えることを特徴とする中空粒子含有断熱塗料の製造方法。
A fine dispersion treatment in which silica nano hollow particles composed of a silica shell having an outer diameter in a range of 30 nm to 300 nm and an isocyanate-based surface modifier are mixed in an organic solvent, and the silica nano hollow particles are dispersed in fine aggregated particles,
After concentrating the dispersion by evaporating the organic solvent, the silica nano hollow particles are reacted with the hydroxyl group on the surface of the silica nano hollow particles by applying high temperature and high pressure to make the organic solvent a supercritical state. Surface modification treatment that is added to the entire surface of the material and is in a powder state in a state of being dispersed as the fine aggregated particles,
Using the silica nano hollow particles whose surface is modified in the powder state , a coating resin and a coating solvent are added so that the content of the silica nano hollow particles in the coating is 30% by volume to 70% by volume in solid content Mixing and preparing a hollow particle-containing heat-insulating coating material in which the silica nano hollow particles are uniformly finely dispersed in the coating material.
A method for producing a hollow particle-containing heat-insulating coating material, comprising:
JP2007282906A 2007-10-31 2007-10-31 Method for producing hollow particle-containing heat insulating paint Active JP5311438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282906A JP5311438B2 (en) 2007-10-31 2007-10-31 Method for producing hollow particle-containing heat insulating paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282906A JP5311438B2 (en) 2007-10-31 2007-10-31 Method for producing hollow particle-containing heat insulating paint

Publications (2)

Publication Number Publication Date
JP2009108222A JP2009108222A (en) 2009-05-21
JP5311438B2 true JP5311438B2 (en) 2013-10-09

Family

ID=40777061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282906A Active JP5311438B2 (en) 2007-10-31 2007-10-31 Method for producing hollow particle-containing heat insulating paint

Country Status (1)

Country Link
JP (1) JP5311438B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5810361B2 (en) * 2010-09-07 2015-11-11 東洋包材株式会社 Thermal insulation film
WO2012063881A1 (en) * 2010-11-09 2012-05-18 積水化学工業株式会社 Intermediate film for laminated glasses, and laminated glass
PL2794956T3 (en) * 2011-12-19 2019-06-28 Praxair S.T. Technology, Inc. Aqueous slurry for the production of thermal and environmental barrier coatings
JP5859390B2 (en) * 2012-06-28 2016-02-10 三井化学株式会社 Method for producing thermal insulation composition
US9372291B2 (en) 2013-11-04 2016-06-21 Sung Nae CHO Heat blocking system utilizing particulates
WO2015065134A1 (en) * 2013-11-04 2015-05-07 조승래 Multi-layer coating system using voids for heat shielding system and method for manufacturing same
JP2018138503A (en) * 2017-02-24 2018-09-06 日立化成株式会社 Interlayer film for glass laminate, and glass laminate
JP2018138504A (en) * 2017-02-24 2018-09-06 日立化成株式会社 Interlayer film for glass laminate, and glass laminate
EP3943449A4 (en) * 2019-04-15 2022-05-25 Mazda Motor Corporation Heat insulating material, engine comprising heat insulating material, nanoparticle dispersion liquid, and production method for heat insulating material
CN115785809B (en) * 2022-12-07 2023-06-06 科顺防水科技股份有限公司 Radiation refrigeration coating and radiation refrigeration product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046921B2 (en) * 2000-02-24 2008-02-13 触媒化成工業株式会社 Silica-based fine particles, method for producing the fine particle dispersion, and coated substrate
WO2002083326A1 (en) * 2001-04-13 2002-10-24 Kansai Paint Co., Ltd. Method of finishing with heat insulation coating
JP2005207565A (en) * 2004-01-19 2005-08-04 Hokkaido Crest:Kk Pipe body having heat insulating and internal pollution preventing and removing function
JP4651098B2 (en) * 2005-09-07 2011-03-16 国立大学法人 名古屋工業大学 Anticorrosion film using nano hollow particles made of silica shell and anticorrosion coating using nano hollow particles made of silica shell
JP4748573B2 (en) * 2005-09-07 2011-08-17 国立大学法人 名古屋工業大学 Method for producing heat-insulating coating material using nano hollow particles made of silica shell
JP5083747B2 (en) * 2005-09-07 2012-11-28 国立大学法人 名古屋工業大学 Surface modification particles and surface modification method of fine inorganic particles

Also Published As

Publication number Publication date
JP2009108222A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP5311438B2 (en) Method for producing hollow particle-containing heat insulating paint
JP5079450B2 (en) Dispersible silica nano hollow particles and method for producing dispersion of silica nano hollow particles
Wei et al. Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements
US7166663B2 (en) Nanostructured compositions
US8846785B2 (en) Manufacturing method of core-shell-type ceria-polymer hybrid nanoparticles and dispersion sols of them
AU2002361585A1 (en) Nanostructured compositions
Suthabanditpong et al. Facile fabrication of light diffuser films based on hollow silica nanoparticles as fillers
KR20150137994A (en) Process for production of hollow silica particles, hollow silica particles, and composition and insulation sheet which contain same
TWI761649B (en) Porous silica particles and method for producing the same
Topuz et al. Preparation of monodisperse silica spheres and determination of their densification behaviour
KR20140026551A (en) Self-dispersing nanoparticles
Wu et al. Graphene nanoplatelet‐polyetherimide composites: Revealed morphology and relation to properties
TWI828674B (en) Alumina particles
US20200055234A1 (en) Polyarylene sulfide resin powder granular article mixture and method for producing three-dimensional molded article
Zhang et al. Rheological behaviors of fumed silica/low molecular weight hydroxyl silicone oil
Jesionowski et al. The influence of filler modification on its aggregation and dispersion behaviour in silica/PBT composite
JP5339627B2 (en) Nano hollow particles comprising low density silica shell and method for producing the same
Park et al. Effect of pH on monolayer properties of colloidal silica particles at the air/water interface
JP4774236B2 (en) Magnesium hydroxide particles, method for producing the same, and resin composition containing the same
Zheng et al. High performance shear thickening fluid based on calcinated colloidal silica microspheres
Zhang et al. One-step production of amine-functionalized hollow mesoporous silica microspheres via phase separation-induced cavity in miniemulsion system for opaque and matting coating
JP2007197655A (en) Microparticle-containing composition and method for producing the composition
JP4745713B2 (en) Magnesium hydroxide particles, method for producing the same, and resin composition containing the same
CN109437215B (en) Micro-nano composite particle and vacuum negative pressure embedding preparation process thereof
JP2011157506A (en) Coating composition

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20071108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250