JP5213583B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP5213583B2
JP5213583B2 JP2008209689A JP2008209689A JP5213583B2 JP 5213583 B2 JP5213583 B2 JP 5213583B2 JP 2008209689 A JP2008209689 A JP 2008209689A JP 2008209689 A JP2008209689 A JP 2008209689A JP 5213583 B2 JP5213583 B2 JP 5213583B2
Authority
JP
Japan
Prior art keywords
chamber
valve
flow rate
flow path
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008209689A
Other languages
Japanese (ja)
Other versions
JP2010044012A (en
Inventor
広宣 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Denki Kogyo KK
Original Assignee
Advance Denki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Denki Kogyo KK filed Critical Advance Denki Kogyo KK
Priority to JP2008209689A priority Critical patent/JP5213583B2/en
Publication of JP2010044012A publication Critical patent/JP2010044012A/en
Application granted granted Critical
Publication of JP5213583B2 publication Critical patent/JP5213583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、流体の流量測定装置に関し、特に差圧式流量センサーの流量測定域を可変することができる流量測定装置に関する。   The present invention relates to a fluid flow rate measuring device, and more particularly to a flow rate measuring device capable of varying a flow rate measuring area of a differential pressure type flow rate sensor.

流体の流量を測定する流量センサーとして、回転式流量センサー、浮子式流量センサー、超音波流量センサー、カルマン渦流量センサー等の種々の流量センサーがある。回転式流量センサーや浮子式流量センサーでは羽根車や浮子が流路内で可動することにより流路にパーティクル(微細なゴミ)が発生してしまう等の問題がある。超音波流量センサーやカルマン渦流量センサーは流体(液体)の流通時に発生する気泡に弱く流体の乱れによって精度にばらつきが生じる等の問題がある。特に、半導体製造等のように高清浄度が求められる環境や発泡性流体が用いられる現場での使用には難しい面があった。   There are various flow sensors such as a rotary flow sensor, a float flow sensor, an ultrasonic flow sensor, a Karman vortex flow sensor, and the like as flow sensors for measuring the flow rate of fluid. The rotary flow sensor and the float type flow sensor have a problem that particles (fine dust) are generated in the flow path when the impeller and the float move in the flow path. Ultrasonic flow rate sensors and Karman vortex flow rate sensors are vulnerable to bubbles generated during the flow of fluid (liquid) and have problems such as variations in accuracy due to fluid disturbance. In particular, it has been difficult to use in environments where high cleanliness is required, such as semiconductor manufacturing, or in the field where foaming fluid is used.

上記の問題点を解決した流量センサーとして、差圧式流量センサーが知られている。例えば、一体に対向配置された2つの受圧部に対して1つのセンサーで一の受圧部の背圧を検知するように構成された差圧式流量センサーが知られている(特許文献1参照)。特許文献1の差圧式流量センサーは、シャフト部の両端に第1ダイヤフラムと第2ダイヤフラムとを対向配置し、前記両ダイヤフラム間に、前記第1ダイヤフラム内側に接する第1チャンバと前記第2ダイヤフラム内側に接する第2チャンバと、前記第1チャンバと前記第2チャンバとを区画する中間ダイヤフラムを有する中間区画部と、第1ダイヤフラムの背面に配置された荷重差センサーとを備え、中間ダイヤフラムに形成したオリフィス部を介して差圧を生じさせた流体を流通させることにより、前記荷重差センサーが第1ダイヤフラムの背圧を荷重差として検知して流量を測定する。そのため、流体内にパーティクルを発生させるおそれもない流量センサーである。   A differential pressure type flow sensor is known as a flow sensor that solves the above problems. For example, there is known a differential pressure type flow rate sensor configured to detect the back pressure of one pressure receiving portion with one sensor with respect to two pressure receiving portions arranged integrally opposite to each other (see Patent Document 1). In the differential pressure type flow sensor of Patent Document 1, a first diaphragm and a second diaphragm are arranged opposite to each other at both ends of a shaft portion, and a first chamber and an inner side of the second diaphragm are in contact with the inside of the first diaphragm between the two diaphragms. A second chamber in contact with the first chamber, an intermediate partition portion having an intermediate diaphragm partitioning the first chamber and the second chamber, and a load difference sensor disposed on the back surface of the first diaphragm, and formed in the intermediate diaphragm By causing a fluid having a differential pressure to flow through the orifice portion, the load difference sensor detects the back pressure of the first diaphragm as a load difference and measures the flow rate. Therefore, the flow rate sensor is free from the possibility of generating particles in the fluid.

現状、上記差圧式流量センサーを用いて流量測定を行う場合、想定される流量測定範囲に対応した差圧式流量センサーが流通ラインに配置される。そして、測定部分の配管を変化させたり、流量センサーの流量測定範囲外に測定流量を変化させたりする際には、想定外の圧力変動が発生するため、その変動圧力に対応した他の流量測定範囲を設定した差圧式流量センサーに取り替えられていた。しかし、そのような作業は手間であり、ランニングコストもかさむ。このことから、各種の流量領域に対応して最適な測定精度を維持することができるようなレンジアビリティの大きい差圧式流量センサーが求められている。   Currently, when the flow rate is measured using the differential pressure type flow rate sensor, a differential pressure type flow rate sensor corresponding to an assumed flow rate measurement range is arranged in the distribution line. And when changing the piping of the measurement part or changing the measured flow rate outside the flow rate measurement range of the flow sensor, an unexpected pressure fluctuation occurs, so other flow measurement corresponding to the fluctuating pressure It was replaced by a differential pressure type flow sensor with a set range. However, such work is laborious and increases the running cost. For this reason, there is a demand for a differential pressure type flow rate sensor having a large range ability that can maintain optimum measurement accuracy corresponding to various flow rate regions.

例えば、医療機器において、人工透析機に内蔵される流量センサーの場合、透析を受ける患者が乳幼児、子供、大人等の体格差により、それぞれ透析機内を透過させる血液量が異なる。各患者毎に透析機を使い分けることや、1台の透析機内に何種類もの流量センサーを内蔵した透析機を採用することは病院等に過大な設備負担を強いる。   For example, in a medical device, in the case of a flow sensor built in an artificial dialysis machine, the amount of blood permeated through the dialysis machine varies depending on the physique of patients undergoing dialysis such as infants, children, and adults. The use of different dialysis machines for each patient and the use of dialysis machines with built-in flow sensors in a single dialysis machine impose an excessive burden on facilities such as hospitals.

また、半導体製造分野においても、シリコンウエハーに各種の加工を適宜行うため、フッ酸や硫酸、アンモニア等の化学薬液や、超純水を使用してウエハーの洗浄が行われる。ウエハーに供給される薬液の量は実施される工程によって異なるため、広範囲にわたって流量測定が可能な差圧式流量センサーが必要とされる。しかしながら、1台の半導体製造装置に複数のレンジの流量センサーを用いることは、装置が大型化するだけでなく、コストがかさむ等の問題がある。   Also in the field of semiconductor manufacturing, in order to perform various processing on silicon wafers as appropriate, the wafers are cleaned using a chemical solution such as hydrofluoric acid, sulfuric acid, and ammonia, or ultrapure water. Since the amount of the chemical solution supplied to the wafer varies depending on the process to be performed, a differential pressure type flow sensor capable of measuring the flow rate over a wide range is required. However, the use of a plurality of ranges of flow rate sensors in a single semiconductor manufacturing apparatus not only increases the size of the apparatus but also increases costs.

そこで、一の装置において、被計測流体の清浄度に影響を与えることなく、簡便に複数の測定範囲(計測レンジ)の異なる流体流量の測定に適応した流量測定装置が求められるに至った。
特許第3220283号公報
Accordingly, in one apparatus, there has been a demand for a flow rate measuring apparatus that can be easily adapted to measure different fluid flow rates in a plurality of measurement ranges (measurement ranges) without affecting the cleanliness of the fluid to be measured.
Japanese Patent No. 3220283

本発明は前記の点に鑑みなされたものであり、一の装置でありながら、計測対象である流体の清浄度に影響を与えることなく、簡便に複数の計測レンジの異なる流体流量を測定することができる流量測定装置を提供するものである。   The present invention has been made in view of the above points, and can easily measure different fluid flow rates in a plurality of measurement ranges without affecting the cleanliness of the fluid to be measured while being a single device. Provided is a flow measuring device capable of

すなわち、請求項1の発明は、被計測流体の主流路に1次側圧力流路及び2次側圧力流路を介して差圧式流量センサ部を接続する流量測定装置であって、前記差圧式流量センサー部は、シャフト部の両端に第1ダイヤフラムと第2ダイヤフラムとを対向配置し、前記両ダイヤフラム間に、前記第1ダイヤフラム内側に接する第1チャンバと前記第2ダイヤフラム内側に接する第2チャンバと、前記第1チャンバと前記第2チャンバとを区画する中間ダイヤフラムを有する中間区画部を備え、前記第1ダイヤフラムの背面にダイヤフラムの背圧を検出する荷重検出センサーと、前記荷重検出センサーからの信号を流量信号に変換する演算部とを備え、前記中間ダイヤフラムもしくは前記中間区画部の少なくともいずれかに前記第1チャンバから前記第2チャンバへ被計測流体を通過させると共に前記第1チャンバと前記第2チャンバとの間に差圧を生じさせる圧力損失部が形成され、前記1次側圧力流路は前記主流路と前記第1チャンバを接続し、前記2次側圧力流路は前記主流路と前記第2チャンバを接続し、前記1次側圧力流路及び前記2次側圧力流路が接続する間の前記主流路内に少なくとも一の開閉弁部を有し、前記開閉弁部は、ダイヤフラムを有するとともに貫通孔が形成されているポペット弁体を備え、バルブボディの弁室内を前記ポペット弁体が進退して前記弁室の流入口を開閉制御して流出口から流出する流体の流通を制御するとともに、前記貫通孔が前記ポペット弁体により前記弁室の前記流入口を閉鎖した際に前記流入口より流路径の小さい流路によって前記流入口と前記弁室とを連通させて、前記弁室への流入流路側と前記弁室からの流出流路側との間に差圧を生じさせることを特徴とする流量測定装置に係る。 That is, the invention of claim 1 is a flow rate measuring device in which a differential pressure type flow rate sensor unit is connected to a main flow channel of a fluid to be measured via a primary side pressure channel and a secondary side pressure channel. The flow rate sensor unit has a first diaphragm and a second diaphragm disposed opposite to each other at both ends of the shaft unit, and a first chamber in contact with the inside of the first diaphragm and a second chamber in contact with the inside of the second diaphragm between the two diaphragms. A load detecting sensor for detecting a back pressure of the diaphragm on a back surface of the first diaphragm, and a load detecting sensor for detecting a back pressure of the diaphragm on the back surface of the first diaphragm. and an arithmetic unit for converting a signal to the flow signal, from the intermediate diaphragm or said first chamber to at least one of said intermediate partition portion Serial pressure loss portion to generate a differential pressure between the first chamber and the second chamber with the passing the fluid to be measured into the second chamber is formed, the primary pressure passage the said main channel The first chamber is connected, the secondary pressure channel is connected to the main channel and the second chamber, and the main channel is connected between the primary pressure channel and the secondary pressure channel. It has at least one movable valve within the movable valve has a poppet valve body with a through-hole is formed which has a diaphragm, wherein the valve chamber of the valve body moves forward and backward said poppet valve body The flow of the fluid flowing out from the outlet is controlled by opening and closing the inlet of the valve chamber, and when the through hole closes the inlet of the valve chamber by the poppet valve body, the flow passage diameter is larger than that of the inlet. The small flow path of the flow A mouth and the valve chamber communicates, according to the flow rate measuring apparatus characterized by causing a differential pressure between the outlet flow path from the valve chamber and the inflow flow path to the valve chamber.

請求項の発明は、前記開閉弁部を一の流路に複数備える場合において、いずれの開閉弁部も当該開閉弁部が備えられる一の流路に対して並列に配置される請求項に記載の流量測定装置に係る。 A second aspect of the present invention, when provided with a plurality of the movable valve in one flow path, according to claim 1, any of the on-off valve unit also has the on-off valve unit is arranged in parallel with one flow channel provided The flow rate measuring device according to claim 1.

請求項1の発明に係る流量測定装置は、被計測流体の主流路に1次側圧力流路及び2次側圧力流路を介して差圧式流量センサ部を接続する流量測定装置であって、前記差圧式流量センサー部は、シャフト部の両端に第1ダイヤフラムと第2ダイヤフラムとを対向配置し、前記両ダイヤフラム間に、前記第1ダイヤフラム内側に接する第1チャンバと前記第2ダイヤフラム内側に接する第2チャンバと、前記第1チャンバと前記第2チャンバとを区画する中間ダイヤフラムを有する中間区画部を備え、前記第1ダイヤフラムの背面にダイヤフラムの背圧を検出する荷重検出センサーと、前記荷重検出センサーからの信号を流量信号に変換する演算部とを備え、前記中間ダイヤフラムもしくは前記中間区画部の少なくともいずれかに前記第1チャンバから前記第2チャンバへ被計測流体を通過させると共に前記第1チャンバと前記第2チャンバとの間に差圧を生じさせる圧力損失部が形成され、前記1次側圧力流路は前記主流路と前記第1チャンバを接続し、前記2次側圧力流路は前記主流路と前記第2チャンバを接続し、前記1次側圧力流路及び前記2次側圧力流路が接続する間の前記主流路内に少なくとも一の開閉弁部を有し、前記開閉弁部は、ダイヤフラムを有するとともに貫通孔が形成されているポペット弁体を備え、バルブボディの弁室内を前記ポペット弁体が進退して前記弁室の流入口を開閉制御して流出口から流出する流体の流通を制御するとともに、前記貫通孔が前記ポペット弁体により前記弁室の前記流入口を閉鎖した際に前記流入口より流路径の小さい流路によって前記流入口と前記弁室とを連通させて、前記弁室への流入流路側と前記弁室からの流出流路側との間に差圧を生じさせるため、様々な用途に適応する流量測定装置の柔軟な設計が可能となり、開閉弁部での流体の圧力損失が抑制されて置換特性にも優れるとともに、開閉弁部に圧力損失部を兼用させて当該流量測定装置の構成の簡素化を図ることができ、一の装置でありながら被計測流体の清浄度に影響を与えることなく、簡便に複数の測定範囲の異なる流体流量を測定することができる。 A flow rate measuring device according to the invention of claim 1 is a flow rate measuring device for connecting a differential pressure type flow rate sensor unit to a main flow channel of a fluid to be measured via a primary side pressure channel and a secondary side pressure channel, The differential pressure type flow rate sensor portion has a first diaphragm and a second diaphragm arranged opposite to each other at both ends of a shaft portion, and a first chamber in contact with the inner side of the first diaphragm and an inner side of the second diaphragm between the two diaphragms. A load detection sensor that includes a second chamber, an intermediate section having an intermediate diaphragm that divides the first chamber and the second chamber, and detects a back pressure of the diaphragm on a back surface of the first diaphragm; and the load detection and an arithmetic unit for converting a signal from the sensor to the flow signal, the intermediate diaphragm or said first channelization at least one of said intermediate partition portion From server to the second chamber pressure loss portion to generate a differential pressure between the first chamber and the second chamber with the passing the fluid to be measured is formed, the primary pressure passage the main channel And the first chamber, the secondary pressure flow path connects the main flow path and the second chamber, and the primary pressure flow path and the secondary pressure flow path are connected to each other. have at least one on-off valve unit within the main flow channel, the on-off valve unit is provided with a poppet valve member having a through hole is formed which has a diaphragm, a valve chamber of the valve body the poppet valve body moves back and forth The flow of the fluid flowing out from the outlet is controlled by opening and closing the inlet of the valve chamber, and when the through hole closes the inlet of the valve chamber by the poppet valve body, Depending on the channel with the smaller channel diameter And communicates with said valve chamber and said inlet, a flow measuring device for generating a differential pressure, to adapt to various applications between the outflow passage side from the inflow flow path between said valve chamber to said valve chamber The fluid pressure loss at the on-off valve part is suppressed and the replacement characteristics are excellent, and the on-off valve part is also used as the pressure loss part to simplify the configuration of the flow rate measuring device. It is possible to easily measure different fluid flow rates in a plurality of measurement ranges without affecting the cleanliness of the fluid to be measured even though it is a single device.

請求項の発明は、請求項において、前記開閉弁部を一の流路に複数備える場合において、いずれの開閉弁部も当該開閉弁部が備えられる一の流路に対して並列に配置されるため、一の流路を選択可能な複数の流路として構成することができる。 In a second aspect of the present invention, in the first aspect , in the case where a plurality of the on-off valve portions are provided in one flow path, any of the on-off valve portions is arranged in parallel to the single flow path provided with the on-off valve portion. Therefore, one flow path can be configured as a plurality of selectable flow paths.

以下添付の図面に従ってこの発明を詳細に説明する。
図1流量測定装置が配置された流体の供給ラインの概略図、図2は図1の差圧式流量センサー部の要部断面図、図3はポペット弁体を備えた開閉弁部の要部断面図、図本発明の第1実施例に係る流量測定装置の差圧式流量センサー部の要部断面図、図は第実施例の差圧式流量センサー部の中間区画部周辺の他の例を表す要部断面図ある。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic view of a fluid supply line in which a flow rate measuring device is arranged, FIG. 2 is a cross-sectional view of a main part of a differential pressure type flow sensor part of FIG. 1 , and FIG. 3 is a main part of an on-off valve part having a poppet valve body. sectional view, cross sectional view of a differential pressure type flow sensor of the flow rate measuring apparatus according to the first embodiment of FIG. 4 is the invention, FIG 5 is other peripheral intermediate section of the differential pressure type flow rate sensor of the first embodiment It is principal part sectional drawing showing the example of.

図1に示流量測定装置10Aは、被計測流体の主流路11に1次側圧力流路12及び2次側圧力流路13を介して差圧式流量センサー部20Aが接続される。図において、符号16は主流路11に被計測流体を供給するための供給部、17は供給された被計測流体の使用部を表す。なお、ここでいう1次側とは被計測流体が流通する供給ラインの上流側(供給部16側)であり、2次側とはその下流側(使用部17側)である。 Shown to the flow measuring device 10A in FIG. 1, the differential pressure type flow rate sensor part 20A via the primary pressure passage 12 and the secondary pressure passage 13 to the main channel 11 of the fluid to be measured is connected. In the figure, reference numeral 16 denotes a supply unit for supplying the fluid to be measured to the main flow path 11, and 17 denotes a use part of the supplied fluid to be measured. Here, the primary side is the upstream side (supply side 16 side) of the supply line through which the fluid to be measured flows, and the secondary side is the downstream side (use unit 17 side).

差圧式流量センサー部20Aは、図2に示すように、シャフト部36の両端に第1ダイヤフラム30と第2ダイヤフラム35とが対向配置される。前記両ダイヤフラム30,35間には、第1ダイヤフラム30の内側に面する第1チャンバ23と第2ダイヤフラム35の内側に面する第2チャンバ24と、第1チャンバ23と第2チャンバ24とを区画する中間ダイヤフラム26を有する中間区画部22を備える。第1ダイヤフラム30の背面にはダイヤフラム30の背圧を検出する荷重検出センサー40と、荷重検出センサー40からの信号を流体信号に変換する演算部Cとを備える。   As shown in FIG. 2, in the differential pressure type flow sensor unit 20 </ b> A, the first diaphragm 30 and the second diaphragm 35 are disposed opposite to each other at both ends of the shaft unit 36. Between the both diaphragms 30 and 35, a first chamber 23 facing the inside of the first diaphragm 30, a second chamber 24 facing the inside of the second diaphragm 35, a first chamber 23 and a second chamber 24 are provided. An intermediate section 22 having an intermediate diaphragm 26 for partitioning is provided. A back surface of the first diaphragm 30 includes a load detection sensor 40 that detects the back pressure of the diaphragm 30 and a calculation unit C that converts a signal from the load detection sensor 40 into a fluid signal.

差圧式流量センサー部20Aにおいて、荷重検出センサー40は、圧縮ひずみをひずみ計で検出して電圧信号として取り出す公知のロードセルからなる。また、演算部Cとしては、PLC等の公知の演算手段が用いられる。なお、図2において、符号21は差圧式流量センサー部20Aのボディ本体、27は第1チャンバ23に形成された被計測流体の流入部、28は第2チャンバ24に形成された被計測流体の流出部、41は荷重検出センサー40と演算部Cとを接続するリード線である。   In the differential pressure type flow sensor unit 20A, the load detection sensor 40 is a known load cell that detects a compressive strain with a strain gauge and extracts it as a voltage signal. As the calculation unit C, known calculation means such as PLC is used. In FIG. 2, reference numeral 21 denotes a body body of the differential pressure type flow rate sensor unit 20 </ b> A, 27 denotes an inflow portion of a fluid to be measured formed in the first chamber 23, and 28 denotes a fluid to be measured formed in the second chamber 24. An outflow part 41 is a lead wire for connecting the load detection sensor 40 and the calculation part C.

この差圧式流量センサー部20Aでは、後述する圧力損失部50の流路面積に応じて生じる差圧に基づいて流量の測定が行われる。そこで、差圧式流量センサー部20Aの演算部Cには、圧力損失部50の流路面積に対応する差圧の値と、該差圧に基づいて決定される流量値又はそれらの折れ線近似があらかじめ記憶され、測定誤差等を考慮して記憶された流量値に最適な流量測定範囲が設定される。また、後述するように測定対象の流路内に複数種類の圧力損失部50が配置されている場合には、各圧力損失部50の流路面積にそれぞれ対応した差圧の値とその流量値又はそれらの折れ線近似が記憶され、各流量値に最適な複数種類の流量測定範囲が設定される。   In the differential pressure type flow rate sensor unit 20A, the flow rate is measured based on the differential pressure generated according to the flow path area of the pressure loss unit 50 described later. Therefore, in the calculation unit C of the differential pressure type flow rate sensor unit 20A, a differential pressure value corresponding to the flow path area of the pressure loss unit 50, a flow rate value determined based on the differential pressure, or a polygonal line approximation thereof is previously stored. An optimum flow rate measurement range is set for the stored flow rate value in consideration of measurement errors and the like. As will be described later, when a plurality of types of pressure loss portions 50 are arranged in the flow channel to be measured, the differential pressure value and the flow rate value corresponding to the flow channel area of each pressure loss portion 50 respectively. Alternatively, those broken line approximations are stored, and a plurality of types of flow rate measurement ranges that are optimum for each flow rate value are set.

この流量測定装置10Aにあっては、1次側圧力流路12は主流路11と第1チャンバ23を接続し、2次側圧力流路13は主流路11と第2チャンバ24を接続する。第1チャンバ23と第2チャンバ24との間には、差圧を生じさせる圧力損失部50が配置され、1次側圧力流路12及び2次側圧力流路13が接続する間の主流路11内に少なくとも一の開閉弁部60が備えられている。   In this flow measuring device 10 </ b> A, the primary side pressure channel 12 connects the main channel 11 and the first chamber 23, and the secondary side pressure channel 13 connects the main channel 11 and the second chamber 24. Between the first chamber 23 and the second chamber 24, a pressure loss part 50 that generates a differential pressure is arranged, and the main flow path between the primary pressure flow path 12 and the secondary pressure flow path 13 is connected. 11 is provided with at least one on-off valve portion 60.

圧力損失部50は、差圧式流量センサー部20Aの第1チャンバ23と第2チャンバ24とを連通する流路内に少なくとも1以上設けられる。そして、該圧力損失部50によって生じた差圧に基づいて差圧式流量センサー部20Aが被計測流体の流量を測定するように構成される。なお、圧力損失部50としては、流路面積を絞って差圧を生じさせることが可能なものであればどのような構成であってもよく、例えば、流路を公知のベンチュリ管構造としたり、オリフィス部を設ける等、適宜の構成を採用することができる。   At least one pressure loss unit 50 is provided in a flow path that connects the first chamber 23 and the second chamber 24 of the differential pressure type flow rate sensor unit 20A. Then, the differential pressure type flow rate sensor unit 20A is configured to measure the flow rate of the fluid to be measured based on the differential pressure generated by the pressure loss unit 50. The pressure loss portion 50 may have any configuration as long as the flow path area can be reduced to generate a differential pressure. For example, the flow path has a known Venturi tube structure. An appropriate configuration, such as providing an orifice portion, can be employed.

開閉弁部60は、被計測流体が流通する適宜の流路を開閉自在に構成される。この開閉弁部60としては、適宜の流路の開閉が可能であればどのような構成であってもよい。例えば、図3に示すポペット弁体75を備えた開閉弁部70が用いられる。 The on-off valve unit 60 is configured to freely open and close an appropriate flow path through which the fluid to be measured flows. The on-off valve unit 60 may have any configuration as long as it can open and close an appropriate flow path. For example, the on-off valve part 70 provided with the poppet valve body 75 shown in FIG. 3 etc. is used.

図3に示す開閉弁部70は、バルブボディ71の弁室72内をダイヤフラム75Aを有するポペット弁体75が進退して弁室72の流入口73を開閉制御して流出口74から流出する流体の流通を制御する。この図において、符号76は流体の流入流路、77は流出流路、80はポペット弁体75の作動機構(シリンダ装置)、81はそのシリンダ室、82はシリンダ室81と弁室72とを区画する区画ブロック、83はポペット弁体75と連結されたピストン部材、84,85はピストン部材83を進退させる作動流体の流出入部、86はエア抜き部、87はポペット弁体75の取付部材、88はポペット弁体75を前進方向に付勢する弾性部材である。   The on-off valve portion 70 shown in FIG. 3 is a fluid that flows out of the outlet 74 by controlling the opening and closing of the inlet 73 of the valve chamber 72 by the poppet valve body 75 having a diaphragm 75A moving forward and backward in the valve chamber 72 of the valve body 71. Control the distribution of In this figure, reference numeral 76 is a fluid inflow channel, 77 is an outflow channel, 80 is an operating mechanism (cylinder device) of the poppet valve body 75, 81 is its cylinder chamber, 82 is a cylinder chamber 81 and a valve chamber 72. A partition block for partitioning, 83 is a piston member connected to the poppet valve body 75, 84 and 85 are inflow / outflow portions of the working fluid for moving the piston member 83 forward and backward, 86 is an air vent portion, 87 is a mounting member for the poppet valve body 75, Reference numeral 88 denotes an elastic member that urges the poppet valve body 75 in the forward direction.

この開閉弁部70では、図3に示したように、流出口74を弁室72の横側に形成して流出流路77を連接したことにより、流入流路76から流入口73を経て弁室72内に流入した流体が弁室72から流出口74を経て流出流路77に直線方向に流通する。そのため、流体の圧力損失が小さくなり、置換特性にも優れる。   In this on-off valve portion 70, as shown in FIG. 3, the outlet 74 is formed on the side of the valve chamber 72 and the outlet passage 77 is connected, so that the valve passes from the inlet passage 76 through the inlet 73. The fluid flowing into the chamber 72 flows from the valve chamber 72 through the outflow port 74 to the outflow channel 77 in the linear direction. Therefore, the pressure loss of the fluid is reduced and the replacement characteristics are excellent.

また、図3に示すように、ポペット弁体75には貫通孔78が形成される。この貫通孔78は、ポペット弁体75を前進させて流入口73を閉鎖した際に、流入口73より流路径の小さい流路によって流入口73と弁室72とを連通させる。そのため、貫通孔78は、流入流路76側と流出流路77側との間に差圧を生じさせるオリフィス部として作用する。これにより、開閉弁部70に圧力損失部50を兼用させることが可能となり、当該流量測定装置10Aの構成の簡素化を図ることができる。なお、ポペット弁体75に貫通孔78を形成した際には、当該開閉弁部70が配置されている流路内にオリフィス部等の圧力損失部50を配置しなくてもよい。   Further, as shown in FIG. 3, a through-hole 78 is formed in the poppet valve body 75. The through-hole 78 allows the inlet 73 and the valve chamber 72 to communicate with each other through a channel having a channel diameter smaller than that of the inlet 73 when the poppet valve body 75 is advanced to close the inlet 73. Therefore, the through-hole 78 acts as an orifice part that generates a differential pressure between the inflow channel 76 side and the outflow channel 77 side. Thereby, it becomes possible to make the on-off valve part 70 share the pressure loss part 50, and simplification of the structure of the said flow measurement apparatus 10A can be achieved. When the through-hole 78 is formed in the poppet valve body 75, the pressure loss part 50 such as an orifice part may not be arranged in the flow path in which the on-off valve part 70 is arranged.

量測定装置10Aでは、図1,2に示すように、複数(この例では2つ)の開閉弁部60(第1開閉弁部61,第2開閉弁部62)が主流路11に対して並列に配置されている。すなわち、主流路11が第1分岐流路15aと第2分岐流路15bとを有しており、各分岐流路15a,15bのそれぞれに第1開閉弁部61,第2開閉弁部62が配置されるように構成される。なお、こ開閉弁部60において、流入流路(76,96)は各分岐流路15a,15bの供給部16側流路に対応し、流出流路(77,97)は各分岐流路15a,15bの使用部17側流路に対応する。 In flow measuring apparatus 10A, as shown in FIGS. 1 and 2, a plurality off valve 60 (first opening and closing valve 61, second on-off valve 62) of (two in this example) relative to the main channel 11 Are arranged in parallel. That is, the main flow path 11 has a first branch flow path 15a and a second branch flow path 15b, and the first on-off valve section 61 and the second on-off valve section 62 are provided in each of the branch flow paths 15a and 15b. Configured to be deployed. Incidentally, the on-off valve unit 60 of this, inlet passages (76, 96) corresponds to the branch paths 15a, 15b supply 16 side flow path of the outflow channel (77,97) is the branch paths It corresponds to the use part 17 side flow path of 15a, 15b.

流量測定装置10Aにあっては、第1開閉弁部61が開放状態かつ第2開閉弁部62が閉鎖状態である場合、差圧式流量センサー部20Aの第1チャンバ23と第2チャンバ24とが1次側圧力流路12から第1分岐流路15aを経て2次側圧力流路13で連通される。   In the flow rate measuring device 10A, when the first on-off valve unit 61 is in the open state and the second on-off valve unit 62 is in the closed state, the first chamber 23 and the second chamber 24 of the differential pressure type flow rate sensor unit 20A The primary side pressure channel 12 communicates with the secondary side pressure channel 13 via the first branch channel 15a.

また、第1開閉弁部61が閉鎖状態かつ第2開閉弁部62が開放状態である場合、差圧式流量センサー部20Aの第1チャンバ23と第2チャンバ24とが1次側圧力流路12から第2分岐流路15bを経て2次側圧力流路13で連通される。   When the first on-off valve portion 61 is closed and the second on-off valve portion 62 is in the open state, the first chamber 23 and the second chamber 24 of the differential pressure type flow rate sensor portion 20A are connected to the primary side pressure channel 12. To the secondary branch pressure channel 13 through the second branch channel 15b.

一方、各開閉弁部61,62がともに開放状態である場合、差圧式流量センサー部20Aの第1チャンバ23と第2チャンバ24とが、1次側圧力流路12から第1分岐流路15aを経て2次側圧力流路13で連通されると共に、1次側圧力流路12から第2分岐流路15bを経て2次側圧力流路13で連通される。   On the other hand, when each of the on-off valve parts 61 and 62 is in an open state, the first chamber 23 and the second chamber 24 of the differential pressure type flow rate sensor part 20A are connected from the primary pressure flow path 12 to the first branch flow path 15a. In addition, the secondary side pressure channel 13 communicates with the secondary side pressure channel 13 and the secondary side pressure channel 13 communicates with the secondary side pressure channel 13 through the second branch channel 15b.

このように、複数の開閉弁部60(61,62)を主流路11に対して並列に配置することにより、差圧式流量センサー部20Aの第1チャンバ23と第2チャンバ24とを連通させる複数種類の流路を選択的に構成することが可能となる。   As described above, the plurality of on-off valve portions 60 (61, 62) are arranged in parallel to the main flow path 11, thereby allowing the first chamber 23 and the second chamber 24 of the differential pressure type flow rate sensor portion 20A to communicate with each other. It is possible to selectively configure the types of flow paths.

また、この流量測定装置10Aでは、上記のとおり、第1チャンバ23と第2チャンバ24とを連通させる流路を複数種類(この例では、第1分岐流路15a,第2分岐流路15b)構成した場合、第1チャンバ23と第2チャンバ24とを連通させるいずれの流路(第1分岐流路15a,第2分岐流路15b)に対しても、圧力損失部50を少なくとも1以上配置する(この例では、第1分岐流路15aに対して第1圧力損失部51,第2分岐流路15bに対して第2圧力損失部52)ように構成されている。その際、各圧力損失部51,52は、各流路15a,15bの流量にそれぞれ対応する差圧を発生させることができるように適宜設定される。 Further, in this flow measuring device 10A, as described above, there are a plurality of types of flow paths for communicating the first chamber 23 and the second chamber 24 (in this example, the first branch flow path 15a and the second branch flow path 15b). When configured, at least one or more pressure loss portions 50 are arranged for any flow path (the first branch flow path 15a and the second branch flow path 15b) that communicates the first chamber 23 and the second chamber 24. (In this example, the first pressure loss portion 51 is configured with respect to the first branch flow path 15a, and the second pressure loss portion 52 is configured with respect to the second branch flow path 15b). In that case, each pressure loss part 51 and 52 is suitably set so that the differential pressure | voltage corresponding to the flow volume of each flow path 15a, 15b can be generated, respectively.

ここで、当該流量測定装置10Aの作用について説明する。この流量測定装置10Aにおいて、差圧式流量センサー部20Aの演算部Cには、第1分岐流路15aに配置された第1圧力損失部51の差圧の値とそれに基づく流量値の折れ線近似、第2分岐流路15bに配置された第2圧力損失部52の差圧の値とそれに基づく流量値の折れ線近似、第1圧力損失部51及び第2圧力損失部52の差圧の値とそれに基づく流量値の折れ線近似がそれぞれ記憶されている。そして、各流量値に対応した流量測定範囲がそれぞれ設定される。仮に、第1圧力損失部51により測定可能な流量を10〜50mL/min、第2圧力損失部52により測定可能な流量を50〜150mL/min、第1圧力損失部51及び第2圧力損失部52により測定可能な流量を10〜200mL/minとして説明する。   Here, the operation of the flow measuring device 10A will be described. In this flow measurement device 10A, the calculation unit C of the differential pressure type flow sensor unit 20A has a polyline approximation of the differential pressure value of the first pressure loss unit 51 arranged in the first branch flow path 15a and the flow rate value based on the differential pressure value. The differential pressure value of the second pressure loss portion 52 arranged in the second branch flow path 15b and the broken line approximation of the flow rate value based on the differential pressure value, the differential pressure value of the first pressure loss portion 51 and the second pressure loss portion 52, and The broken line approximation of the flow rate value based on each is memorize | stored. And the flow measurement range corresponding to each flow value is set up, respectively. Temporarily, the flow rate measurable by the first pressure loss unit 51 is 10 to 50 mL / min, the flow rate measurable by the second pressure loss unit 52 is 50 to 150 mL / min, the first pressure loss unit 51 and the second pressure loss unit. The flow rate measurable by 52 is explained as 10 to 200 mL / min.

まず、50mL/minの被計測流体を流通させる場合、第1開閉弁部61を開放状態かつ第2開閉弁部62を閉鎖状態とし、差圧式流量センサー部20Aの第1チャンバ23と第2チャンバ24との間の主流路において、被計測流体が第1分岐流路15aのみを経由して流通するように流路が選択される。その際、差圧式流量センサー部20Aの演算部Cでは、第1圧力損失部51に基づく差圧の値と流量値の折れ線近似が選択されて、対応する流量測定範囲が設定される。   First, when a fluid to be measured of 50 mL / min is circulated, the first on-off valve unit 61 is opened and the second on-off valve unit 62 is closed, and the first chamber 23 and the second chamber of the differential pressure type flow rate sensor unit 20A. 24, the flow path is selected so that the fluid to be measured flows only through the first branch flow path 15a. At that time, the calculation unit C of the differential pressure type flow rate sensor unit 20A selects the value of the differential pressure based on the first pressure loss unit 51 and the broken line approximation of the flow rate value, and sets the corresponding flow rate measurement range.

また、150mL/minの被計測流体を流通させる場合、第1開閉弁部61を閉鎖状態かつ第2開閉弁部62を開放状態とし、差圧式流量センサー部20Aの第1チャンバ23と第2チャンバ24との間の主流路において、被計測流体が第2分岐流路15bのみを経由して流通するように流路が選択される。その際、差圧式流量センサー部20Aの演算部Cでは、第2圧力損失部52に基づく差圧の値と流量値の折れ線近似が選択されて、対応する流量測定範囲が設定される。   Further, when the fluid to be measured of 150 mL / min is circulated, the first on-off valve portion 61 is closed and the second on-off valve portion 62 is opened, and the first chamber 23 and the second chamber of the differential pressure type flow rate sensor portion 20A. In the main channel between the channels 24 and 24, the channel is selected so that the fluid to be measured flows only through the second branch channel 15b. At that time, the calculation unit C of the differential pressure type flow rate sensor unit 20A selects the value of the differential pressure based on the second pressure loss unit 52 and the broken line approximation of the flow rate value, and sets the corresponding flow rate measurement range.

さらに、200mL/minの被計測流体を流通させる場合、各開閉弁部61,62をともに開放状態とし、差圧式流量センサー部20Aの第1チャンバ23と第2チャンバ24との間の主流路において、被計測流体が第1分岐流路15a及び第2分岐流路15bの双方を経由して流通するように流路が選択される。その際、差圧式流量センサー部20Aの演算部Cでは、第1圧力損失部51及び第2圧力損失部52に基づく差圧の値と流量値の折れ線近似が選択されて、対応する流量測定範囲が設定される。   Further, when the fluid to be measured of 200 mL / min is circulated, both the on-off valve portions 61 and 62 are opened, and in the main flow path between the first chamber 23 and the second chamber 24 of the differential pressure type flow sensor unit 20A. The flow path is selected so that the fluid to be measured flows through both the first branch flow path 15a and the second branch flow path 15b. At that time, in the calculation unit C of the differential pressure type flow rate sensor unit 20A, a polygonal line approximation of the differential pressure value and the flow rate value based on the first pressure loss unit 51 and the second pressure loss unit 52 is selected, and the corresponding flow rate measurement range is selected. Is set.

よって流量測定装置10Aでは、異なる流量の被計測流体を切替選択して流通させる場合であっても、単一の装置でありながら目的とする各流量に対応した測定範囲を容易に設定することができる。 Therefore , in the flow measurement device 10A, even when the fluid to be measured having different flow rates is switched and circulated, the measurement range corresponding to each target flow rate can be easily set even though it is a single device. Can do.

に示す本発明の第実施例に係る流量測定装置10Bは、被計測流体の主流路11に1次側圧力流路12及び2次側圧力流路13を介して差圧式流量センサー部20Bが接続される。なお、以下のにおいて、流量測定装置10Aと同一符号は同一の構成を表すものとして、その説明を省略する。 The flow rate measuring device 10B according to the first embodiment of the present invention shown in FIG. 4 includes a differential pressure type flow rate sensor unit via a primary side pressure channel 12 and a secondary side pressure channel 13 in the main channel 11 of the fluid to be measured. 20B is connected. In the following examples , the same reference numerals as those of the flow measurement device 10A represent the same configuration, and the description thereof is omitted.

この流量測定装置10Bにおいて、差圧式流量センサー部20Bでは、中間ダイヤフラム26に第1チャンバ23から第2チャンバ24へ被計測流体を通過させる貫通流路29が形成されている。この貫通流路29は、第1チャンバ23と第2チャンバ24との間に差圧を生じさせる圧力損失部50として作用する。   In the flow rate measuring device 10B, in the differential pressure type flow rate sensor unit 20B, a through channel 29 is formed in the intermediate diaphragm 26 to allow the fluid to be measured to pass from the first chamber 23 to the second chamber 24. The through channel 29 acts as a pressure loss unit 50 that generates a differential pressure between the first chamber 23 and the second chamber 24.

この流量測定装置10Bにあっては、第1開閉弁部61が開放状態かつ第2開閉弁部62が閉鎖状態である場合、差圧式流量センサー部20Bの第1チャンバ23と第2チャンバ24とが1次側圧力流路12から第1分岐流路15aを経て2次側圧力流路13で連通されると共に、貫通流路29を介して連通される。   In the flow rate measuring device 10B, when the first on-off valve unit 61 is in the open state and the second on-off valve unit 62 is in the closed state, the first chamber 23 and the second chamber 24 of the differential pressure type flow rate sensor unit 20B Is communicated from the primary side pressure channel 12 via the first branch channel 15 a and through the secondary side pressure channel 13 and through the through channel 29.

また、第1開閉弁部61が閉鎖状態かつ第2開閉弁部62が開放状態である場合、差圧式流量センサー部20Bの第1チャンバ23と第2チャンバ24とが1次側圧力流路12から第2分岐流路15bを経て2次側圧力流路13で連通されると共に、貫通流路29を介して連通される。   When the first on-off valve portion 61 is closed and the second on-off valve portion 62 is in the open state, the first chamber 23 and the second chamber 24 of the differential pressure type flow rate sensor portion 20B are connected to the primary side pressure channel 12. To the secondary pressure flow channel 13 through the second branch flow channel 15 b and the through flow channel 29.

各開閉弁部61,62がともに開放状態である場合、差圧式流量センサー部20Bの第1チャンバ23と第2チャンバ24とが1次側圧力流路12から各分岐流路15a,15bを経て2次側圧力流路13で連通されると共に、貫通流路29を介して連通される。   When each of the on-off valve parts 61 and 62 is in an open state, the first chamber 23 and the second chamber 24 of the differential pressure type flow rate sensor part 20B pass from the primary pressure flow path 12 through the branch flow paths 15a and 15b. The secondary side pressure channel 13 communicates with each other and the through channel 29 communicates.

一方、各開閉弁部61,62がともに閉鎖状態である場合、差圧式流量センサー部20Aの第1チャンバ23と第2チャンバ24とが貫通流路29をのみ介して連通される。つまり、被計測流体は、1次側圧力流路12から貫通流路29を経て2次側圧力流路13に流通される。   On the other hand, when both of the on-off valve portions 61 and 62 are in the closed state, the first chamber 23 and the second chamber 24 of the differential pressure type flow rate sensor portion 20A are communicated only through the through passage 29. That is, the fluid to be measured is circulated from the primary side pressure channel 12 to the secondary side pressure channel 13 through the through channel 29.

このように、差圧式流量センサー部20Bの中間ダイヤフラム26に第1チャンバ23から第2チャンバ24へ被計側流体を通過させることができる圧力損失部50(貫通流路29)を設けるとともに、1次側圧力流路12及び2次側圧力流路13が接続する間の主流路11内に少なくとも一の開閉弁部60を備えることにより、差圧式流量センサー部20Bの第1チャンバ23と第2チャンバ24とを連通させる複数種類の流路を選択的に構成することが可能となる。   As described above, the intermediate diaphragm 26 of the differential pressure type flow rate sensor unit 20B is provided with the pressure loss unit 50 (through channel 29) through which the fluid to be measured can be passed from the first chamber 23 to the second chamber 24. By providing at least one on-off valve part 60 in the main flow path 11 while the secondary pressure flow path 12 and the secondary pressure flow path 13 are connected, the first chamber 23 and the second pressure sensor 20B of the differential pressure type flow rate sensor part 20B are provided. A plurality of types of flow paths that communicate with the chamber 24 can be selectively configured.

また、この流量測定装置10Bでは、上記のとおり、第1チャンバ23と第2チャンバ24とを連通させる流路を複数種類(実施例では、各分岐流路15a,15b、貫通流路29)構成した場合、第1チャンバ23と第2チャンバ24とを連通させるいずれの流路(各分岐流路15a,15b、貫通流路29)に対しても、圧力損失部50を少なくとも1以上配置する(この例では、第1分岐流路15aに対して第1圧力損失部51,第2分岐流路15bに対して第2圧力損失部52,貫通流路29は第3圧力損失部53に相当)ように構成されている。その際、各圧力損失部51,52,53は、各流路15a,15b,29Aの流量にそれぞれ対応する差圧を発生させることができるように適宜設定される。   Further, in the flow rate measuring device 10B, as described above, there are a plurality of types of flow paths for communicating the first chamber 23 and the second chamber 24 (in the embodiment, the branched flow paths 15a and 15b and the through flow path 29). In this case, at least one or more pressure loss portions 50 are disposed in any flow path (each branch flow path 15a, 15b, through flow path 29) that communicates the first chamber 23 and the second chamber 24 ( In this example, the first pressure loss section 51 corresponds to the first branch flow path 15a, the second pressure loss section 52 and the through flow path 29 correspond to the third pressure loss section 53 to the second branch flow path 15b) It is configured as follows. In that case, each pressure loss part 51,52,53 is suitably set so that the differential pressure | voltage corresponding to the flow volume of each flow path 15a, 15b, 29A can each be generated.

ここで、当該流量測定装置10Bの作用について説明する。この流量測定装置10Bにおいて、差圧式流量センサー部20Bの演算部Cには、貫通流路29である第3圧力損失部53の差圧の値とそれに基づく流量値の折れ線近似、第1分岐流路15aに配置された第1圧力損失部51及び第3圧力損失部53の差圧の値とそれに基づく流量値の折れ線近似、第2分岐流路15bに配置された第2圧力損失部52及び第3圧力損失部53の差圧の値とそれに基づく流量値の折れ線近似、第1圧力損失部51と第2圧力損失部52と第3圧力損失部53との差圧の値とそれに基づく流量値の折れ線近似がそれぞれ記憶されている。仮に、第3圧力損失部53により測定可能な流量を1〜10mL/min、第1圧力損失部51及び第3圧力損失部53により測定可能な流量を1〜60mL/min、第2圧力損失部52及び第3圧力損失部53により測定可能な流量を1〜160mL/min、第1圧力損失部51と第2圧力損失部52と第3圧力損失部53により測定可能な流量を1〜210mL/minとして説明する。   Here, the operation of the flow measurement device 10B will be described. In the flow rate measuring device 10B, the calculation unit C of the differential pressure type flow rate sensor unit 20B includes a value of the differential pressure of the third pressure loss unit 53, which is the through passage 29, and a polygonal line approximation of the flow rate value based on the differential pressure value. A value of the differential pressure between the first pressure loss part 51 and the third pressure loss part 53 arranged in the passage 15a and a broken line approximation of the flow rate value based on the value, a second pressure loss part 52 arranged in the second branch flow path 15b, and The differential pressure value of the third pressure loss part 53 and the polygonal line approximation of the flow rate value based on it, the differential pressure value between the first pressure loss part 51, the second pressure loss part 52 and the third pressure loss part 53 and the flow rate based thereon A broken line approximation of values is stored. Temporarily, the flow rate measurable by the 3rd pressure loss part 53 is 1-10 mL / min, The flow rate measurable by the 1st pressure loss part 51 and the 3rd pressure loss part 53 is 1-60 mL / min, 2nd pressure loss part The flow rate measurable by 52 and the third pressure loss part 53 is 1 to 160 mL / min, and the flow rate measurable by the first pressure loss part 51, the second pressure loss part 52 and the third pressure loss part 53 is 1 to 210 mL / min. This will be described as min.

まず、60mL/minの被計測流体を流通させる場合、第1開閉弁部61を開放状態かつ第2開閉弁部62を閉鎖状態とし、被計測流体が差圧式流量センサー部20Bの第1チャンバ23と第2チャンバ24との間の第1分岐流路15a及び貫通流路29を経由して流通するように流路が選択される。その際、差圧式流量センサー部20Bの演算部Cでは、第1圧力損失部51及び第3圧力損失部53に基づく差圧の値と流量値の折れ線近似が選択されて、対応する流量測定範囲が設定される。   First, when the fluid to be measured of 60 mL / min is circulated, the first on-off valve portion 61 is opened and the second on-off valve portion 62 is closed, and the fluid to be measured is the first chamber 23 of the differential pressure type flow sensor unit 20B. The flow path is selected so as to circulate via the first branch flow path 15 a and the through flow path 29 between the first chamber 24 and the second chamber 24. At that time, in the calculation unit C of the differential pressure type flow rate sensor unit 20B, a polygonal line approximation of the differential pressure value and the flow rate value based on the first pressure loss unit 51 and the third pressure loss unit 53 is selected, and the corresponding flow rate measurement range is selected. Is set.

160mL/minの被計測流体を流通させる場合、第1開閉弁部61を閉鎖状態かつ第2開閉弁部62を開放状態とし、被計測流体が差圧式流量センサー部20Bの第1チャンバ23と第2チャンバ24との間の第2分岐流路15b及び貫通流路29を経由して流通するように流路が選択される。その際、差圧式流量センサー部20Bの演算部Cでは、第2圧力損失部52及び第3圧力損失部53に基づく差圧の値と流量値の折れ線近似が選択されて、対応する流量測定範囲が設定される。   When the fluid to be measured of 160 mL / min is circulated, the first on-off valve unit 61 is closed and the second on-off valve unit 62 is opened, and the fluid to be measured is connected to the first chamber 23 of the differential pressure type flow rate sensor unit 20B and the first chamber 23. The flow path is selected so as to circulate via the second branch flow path 15 b and the through flow path 29 between the two chambers 24. At that time, the calculation unit C of the differential pressure type flow rate sensor unit 20B selects the line pressure approximation of the differential pressure value and the flow rate value based on the second pressure loss unit 52 and the third pressure loss unit 53, and the corresponding flow rate measurement range. Is set.

210mL/minの被計測流体を流通させる場合、第1及び第2開閉弁部61,62をともに開放状態とし、被計測流体が差圧式流量センサー部20Bの第1チャンバ23と第2チャンバ24との間の第1分岐流路15aと第2分岐流路15bの双方及び貫通流路29を経由して流通するように流路が選択される。その際、差圧式流量センサー部20Bの演算部Cでは、第1圧力損失部51と第2圧力損失部52と第3圧力損失部53に基づく差圧の値と流量値の折れ線近似が選択されて、対応する流量測定範囲が設定される。   When the fluid to be measured of 210 mL / min is circulated, both the first and second on-off valve portions 61 and 62 are opened, and the fluid to be measured is in the first chamber 23 and the second chamber 24 of the differential pressure type flow rate sensor portion 20B. The flow paths are selected so as to circulate through both the first branch flow path 15a and the second branch flow path 15b and the through flow path 29. At that time, the calculation unit C of the differential pressure type flow rate sensor unit 20B selects the polyline approximation of the differential pressure value and the flow rate value based on the first pressure loss unit 51, the second pressure loss unit 52, and the third pressure loss unit 53. Accordingly, the corresponding flow rate measurement range is set.

25mL/minの被計測流体を流通させる場合、第1及び第2開閉弁部61,62を閉鎖状態とし、被計測流体が貫通流路29のみを経由して流通するように流路が選択される。その際、差圧式流量センサー部20Bの演算部Cでは、第3圧力損失部53に基づく差圧の値と流量値の折れ線近似が選択されて、対応する流量測定範囲が設定される。   When circulating a fluid to be measured of 25 mL / min, the first and second on-off valve portions 61 and 62 are closed, and the flow path is selected so that the fluid to be measured flows only through the through flow path 29. The At that time, the calculation unit C of the differential pressure type flow rate sensor unit 20B selects the value of the differential pressure based on the third pressure loss unit 53 and the broken line approximation of the flow rate value, and sets the corresponding flow rate measurement range.

よって、本発明の流量測定装置10Bでは、異なる流量の被計測流体を切替選択して流通させる場合であっても、単一の装置でありながら目的とする各流量に対応した測定範囲を容易に設定することができる。なお、差圧式流量センサー部20Bでは、第1チャンバ23から第2チャンバ24へ被計測流体を通過させると共に第1チャンバ23と第2チャンバ24との間に差圧を生じさせる圧力損失部50として、図6に示すような中間区画部22に貫通流路29Aを形成した場合であっても、同様の効果を奏することができる。   Therefore, in the flow rate measuring device 10B of the present invention, even if the fluids to be measured having different flow rates are switched and circulated, a measurement range corresponding to each target flow rate can be easily obtained even though it is a single device. Can be set. In the differential pressure type flow rate sensor unit 20B, the pressure loss unit 50 that causes the fluid to be measured to pass from the first chamber 23 to the second chamber 24 and generates a differential pressure between the first chamber 23 and the second chamber 24. Even when the through flow passage 29A is formed in the intermediate partition 22 as shown in FIG. 6, the same effect can be obtained.

なお流量測定装置10A,10では、各流路11,12,13や、差圧式流量センサー部20A,20B圧力損失部50,開閉弁部60(70)等における被計測流体が接触する部材が、耐食性、耐薬品性に優れたフッ素樹脂から形成されている。部材の材料となるフッ素樹脂は、PTFE(ポリテトラフルオロエチレン)、PFA(パーフルオロアルコキシアルカン)、FEP(パーフルオロエチレンプロペンコポリマー)、PVDF(ポリビニリデンフルオライド)等である。これらのフッ素樹脂は、流通する流体の性質、加工のしやすさ等を考慮して選択される。これにより、被計測流体の計測時にその清浄度に影響を与えることが抑制される。 In the flow measuring device 10A, 10 B, each passage 11, 12, 13 and, differential pressure type flow sensor unit 20A, 20B, the pressure loss unit 50, the measured fluid contacts the movable valve 60 (70) or the like The member is made of a fluororesin excellent in corrosion resistance and chemical resistance. The fluororesin that is the material of the member is PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxyalkane), FEP (perfluoroethylene propene copolymer), PVDF (polyvinylidene fluoride), or the like. These fluororesins are selected in consideration of the properties of the flowing fluid, ease of processing, and the like. Thereby, it is suppressed that the cleanliness is influenced at the time of measurement of the fluid to be measured.

以上図示し説明したように、本発明の流量測定装置10Bでは一つの装置でありながら被計測流体の清浄度に影響を与えることなく、簡便に複数の測定範囲の異なる流体流量を測定することができる。そのため、例えば、医療機器において、人工透析機等に当該流量測定装置を内蔵すれば、透析を受ける患者が乳幼児、子供、大人等の体格差によって透析機内を透過させる血液量が異なる場合であっても、各患者毎に透析機を使い分ける必要がなくなり、作業効率や設備負担等を大幅に改善することができる。 Above illustrated as described, the flow measuring device 10B of the present invention, without affecting yet one device to cleanliness of the fluid to be measured, measuring the fluid flow rate of different conveniently plurality of measurement range Can do. Therefore, for example, in a medical device, if the flow measuring device is built in an artificial dialysis machine or the like, the patient undergoing dialysis may have different blood volume permeating through the dialysis machine due to differences in physique between infants, children, adults, etc. However, it is not necessary to use a different dialysis machine for each patient, and the work efficiency and equipment burden can be greatly improved.

特に、流量測定装置内において、第1チャンバと第2チャンバとを接続(間ダイヤフラムもしくは中間区画部に貫通流路を形成)する構成を採用することにより、前記のような様々な用途に適応する流量測定装置の柔軟な設計が可能となり、より的確な流量測定を実施することができる。 In particular, in the flow measuring device, by adopting the structure that (a through channel formed in the diaphragm or the intermediate partition portion between the medium) connecting the first chamber and the second chamber, adapted to a variety of applications, such as the Therefore, it is possible to design the flow rate measuring device flexibly and perform more accurate flow rate measurement.

また、半導体製造分野においても、必要とされる個々の処理毎に異なる測定範囲の流量センサーを使い分ける必要がなくなり、設備負担を軽減できる。   Also in the semiconductor manufacturing field, it is not necessary to use different flow rate sensors with different measurement ranges for each required process, and the equipment burden can be reduced.

なお、本発明の流量測定装置は、前述の実施例のみに限定されるものではなく、発明の趣旨を逸脱しない範囲において構成の一部を適宜に変更して実施することができる。例えば、各開閉弁部の開閉動作等を差圧式流量センサー部の演算部によって制御可能に構成してもよい。このように構成すれば、各流路の選択切替を効果的かつ効率よく行うことができる。   The flow rate measuring device of the present invention is not limited to the above-described embodiment, and can be implemented by appropriately changing a part of the configuration without departing from the spirit of the invention. For example, the opening / closing operation or the like of each opening / closing valve unit may be configured to be controllable by the calculation unit of the differential pressure type flow rate sensor unit. If comprised in this way, selection switching of each flow path can be performed effectively and efficiently.

また、実施例では、主流路に2つの分岐流路を設けて開閉弁部を並列に配置する構成としたが、並列させる開閉弁部の数はこれに限定されるものではなく、必要に応じて増減させることができる。   In the embodiment, the main flow path is provided with two branch flow paths and the on-off valve parts are arranged in parallel. However, the number of the on-off valve parts to be arranged in parallel is not limited to this, and as necessary. Can be increased or decreased.

量測定装置が配置された流体の供給ラインの概略図である。 Flow rate measuring device is a schematic view of a supply line arrangement fluid. 図1の差圧式流量センサー部の要部断面図である。It is a fragmentary cross-sectional view of a differential pressure type flow rate sensor of FIG. ポペット弁体を備えた開閉弁部の要部断面図である。It is principal part sectional drawing of the on-off valve part provided with the poppet valve body. 本発明の第1実施例に係る流量測定装置の差圧式流量センサー部の要部断面図である。It is principal part sectional drawing of the differential pressure type flow sensor part of the flow measuring apparatus which concerns on 1st Example of this invention . 実施例の差圧式流量センサー部の中間区画部周辺の他の例を表す要部断面図である。略図である。It is principal part sectional drawing showing the other example of the intermediate partition part periphery of the differential pressure type flow sensor part of 1st Example. It is a schematic diagram.

10A,10 流量測定装置
11 主流路
12 1次側圧力流路
13 2次側圧力流路
16 供給部
17 使用部
20A,20 差圧式流量センサー部
50 圧力損失部
60 開閉弁部
10A, 10 B flow measuring device 11 main flow path 12 primary pressure passage 13 secondary pressure passage 16 supplying unit 17 using unit 20A, 20 B difference pressure flow sensor unit 50 the pressure loss unit 60 on-off valve unit

Claims (2)

被計測流体の主流路に1次側圧力流路及び2次側圧力流路を介して差圧式流量センサ部を接続する流量測定装置であって、
前記差圧式流量センサー部は、シャフト部の両端に第1ダイヤフラムと第2ダイヤフラムとを対向配置し、前記両ダイヤフラム間に、前記第1ダイヤフラム内側に接する第1チャンバと前記第2ダイヤフラム内側に接する第2チャンバと、前記第1チャンバと前記第2チャンバとを区画する中間ダイヤフラムを有する中間区画部を備え、前記第1ダイヤフラムの背面にダイヤフラムの背圧を検出する荷重検出センサーと、前記荷重検出センサーからの信号を流量信号に変換する演算部とを備え、前記中間ダイヤフラムもしくは前記中間区画部の少なくともいずれかに前記第1チャンバから前記第2チャンバへ被計測流体を通過させると共に前記第1チャンバと前記第2チャンバとの間に差圧を生じさせる圧力損失部が形成され、
前記1次側圧力流路は前記主流路と前記第1チャンバを接続し、前記2次側圧力流路は前記主流路と前記第2チャンバを接続し、
前記1次側圧力流路及び前記2次側圧力流路が接続する間の前記主流路内に少なくとも一の開閉弁部を有し、
前記開閉弁部は、ダイヤフラムを有するとともに貫通孔が形成されているポペット弁体を備え、バルブボディの弁室内を前記ポペット弁体が進退して前記弁室の流入口を開閉制御して流出口から流出する流体の流通を制御するとともに、前記貫通孔が前記ポペット弁体により前記弁室の前記流入口を閉鎖した際に前記流入口より流路径の小さい流路によって前記流入口と前記弁室とを連通させて、前記弁室への流入流路側と前記弁室からの流出流路側との間に差圧を生じさせることを特徴とする流量測定装置。
A flow rate measuring device for connecting a differential pressure type flow rate sensor unit to a main flow channel of a fluid to be measured via a primary pressure channel and a secondary pressure channel,
The differential pressure type flow rate sensor portion has a first diaphragm and a second diaphragm arranged opposite to each other at both ends of a shaft portion, and a first chamber in contact with the inner side of the first diaphragm and an inner side of the second diaphragm between the two diaphragms. A load detection sensor that includes a second chamber, an intermediate section having an intermediate diaphragm that divides the first chamber and the second chamber, and detects a back pressure of the diaphragm on a back surface of the first diaphragm; and the load detection A calculation unit that converts a signal from the sensor into a flow signal, and allows the fluid to be measured to pass from the first chamber to the second chamber through at least one of the intermediate diaphragm and the intermediate partition unit, and the first chamber And a pressure loss portion that creates a differential pressure between the second chamber and the second chamber,
The primary pressure flow path connects the main flow path and the first chamber, the secondary pressure flow path connects the main flow path and the second chamber,
Possess the at least one movable valve in the main flow path between said primary pressure passage and the secondary pressure passage is connected,
The on-off valve portion includes a poppet valve body having a diaphragm and having a through-hole, and the poppet valve body advances and retreats in the valve chamber of the valve body to control opening and closing of the inlet of the valve chamber. And controlling the flow of the fluid flowing out of the inlet and the valve chamber by means of a channel having a smaller channel diameter than the inlet when the through hole closes the inlet of the valve chamber by the poppet valve body. To generate a differential pressure between the inflow channel side to the valve chamber and the outflow channel side from the valve chamber .
前記開閉弁部を一の流路に複数備える場合において、いずれの開閉弁部も当該開閉弁部が備えられる一の流路に対して並列に配置される請求項に記載の流量測定装置。 2. The flow rate measuring device according to claim 1 , wherein when a plurality of the on-off valve portions are provided in one flow path, any of the on-off valve portions is arranged in parallel to the one flow path provided with the on-off valve portion.
JP2008209689A 2008-08-18 2008-08-18 Flow measuring device Active JP5213583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008209689A JP5213583B2 (en) 2008-08-18 2008-08-18 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008209689A JP5213583B2 (en) 2008-08-18 2008-08-18 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2010044012A JP2010044012A (en) 2010-02-25
JP5213583B2 true JP5213583B2 (en) 2013-06-19

Family

ID=42015506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008209689A Active JP5213583B2 (en) 2008-08-18 2008-08-18 Flow measuring device

Country Status (1)

Country Link
JP (1) JP5213583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139527A (en) * 2013-01-21 2014-07-31 Tgk Co Ltd Flow rate detection unit and hot water supply system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220283B2 (en) * 1993-05-14 2001-10-22 アドバンス電気工業株式会社 Flow sensor
JPH09257534A (en) * 1996-03-26 1997-10-03 Hitachi Constr Mach Co Ltd Flow measuring device
JP3184126B2 (en) * 1997-08-04 2001-07-09 アドバンス電気工業株式会社 Flow sensor
JP2005114655A (en) * 2003-10-10 2005-04-28 Komatsu Seiki Kk Flowmeter
JP4856905B2 (en) * 2005-06-27 2012-01-18 国立大学法人東北大学 Flow rate variable type flow control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139527A (en) * 2013-01-21 2014-07-31 Tgk Co Ltd Flow rate detection unit and hot water supply system

Also Published As

Publication number Publication date
JP2010044012A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
KR100800088B1 (en) Chemically inert flow control with non-contaminating body
JP4461329B2 (en) Fluid control device
CN105144013B (en) Control valve for fluids
US8225814B2 (en) Differential-pressure flowmeter and flow-rate controller
JP5079401B2 (en) Pressure sensor, differential pressure type flow meter and flow controller
CN108027618A (en) Pressure flow-rate controller and its method for detecting abnormality
KR101783680B1 (en) Pressure Sensor, Differential Pressure Type Flowmeter and Flow Controller
WO2014002486A1 (en) Fluid measurement device
CN109716257B (en) Flow rate ratio control device, program storage medium storing program for flow rate ratio control device, and flow rate ratio control method
WO2006132025A1 (en) Flow rate meter and flow rate control system using the same
TW201530031A (en) Flow control valve and flow control system using same
US20100193056A1 (en) Flowmeter and flow-rate controller
US9500503B2 (en) Differential pressure type flowmeter and flow controller provided with the same
JP2008286812A (en) Differential flow meter
JP5213583B2 (en) Flow measuring device
JP5213582B2 (en) Flow measuring device
KR20120005549A (en) Differential pressure sensor and method
WO2020218138A1 (en) Flow rate control device
JP5357478B2 (en) Differential pressure type flow measuring device
AU2012219366B2 (en) Pressure transducer arrangement
JP4874576B2 (en) Flow control system
JP5202101B2 (en) Mixing valve and mixing device using the same
JP4691236B2 (en) Gas flow meter
JP5269285B2 (en) Flow meter
KR100418683B1 (en) Differential pressure type fluid mass flow controller for controlling flow gases used in semiconductor device fabrication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250