JP5061599B2 - Parallel multiplex AC / DC converter and control method - Google Patents

Parallel multiplex AC / DC converter and control method Download PDF

Info

Publication number
JP5061599B2
JP5061599B2 JP2006322962A JP2006322962A JP5061599B2 JP 5061599 B2 JP5061599 B2 JP 5061599B2 JP 2006322962 A JP2006322962 A JP 2006322962A JP 2006322962 A JP2006322962 A JP 2006322962A JP 5061599 B2 JP5061599 B2 JP 5061599B2
Authority
JP
Japan
Prior art keywords
converter
phase
current
output
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006322962A
Other languages
Japanese (ja)
Other versions
JP2008141808A (en
Inventor
達人 中島
聡 宮崎
純弥 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006322962A priority Critical patent/JP5061599B2/en
Publication of JP2008141808A publication Critical patent/JP2008141808A/en
Application granted granted Critical
Publication of JP5061599B2 publication Critical patent/JP5061599B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、複数台の電力変換器が三相各相にそれぞれ並列に接続された並列多重変換器を備えた並列多重型交直変換装置及び制御方法に関する。   The present invention relates to a parallel multiple AC / DC converter and a control method including a parallel multiple converter in which a plurality of power converters are respectively connected in parallel to three phases.

例えば、直流を交流に変換する電力変換器として、三相各相に対して複数台の変換器を並列に接続して並列多重変換器を構成したものがある。通常、三相各相に並列接続される変換器は定格容量が同じものであり、通常運転時においては各相の変換器の出力電流は同じである。   For example, as a power converter that converts direct current into alternating current, there is one in which a parallel multiple converter is configured by connecting a plurality of converters in parallel for each phase of three phases. Normally, the converters connected in parallel to each of the three-phase phases have the same rated capacity, and the output currents of the respective-phase converters are the same during normal operation.

このような並列多重変換器のいずれかの変換器に故障等が発生すると、並列多重変換器を停止させ、故障した変換器を健全な変換器と交換するようにしている。この交換作業には、健全な変換器への現地取替作業や確認試験等が必要であり、通常、半日以上の時間が掛かるので、その間は電力変換器は停止となっている。   When a failure or the like occurs in any converter of such a parallel multiple converter, the parallel multiple converter is stopped and the failed converter is replaced with a sound converter. This replacement work requires on-site replacement work to a healthy converter, a confirmation test, and the like, and usually takes more than half a day, so the power converter is stopped during that time.

電力用途の大容量の並列多重変換器では、並列多重変換器を構成する変換器の点検を各アーム単位または各相単位で行うので数日間に亘ってシステム停止することもある。特に、電力分野では、故障時の復旧時間をできるだけ短縮したいという要望があるので、そのような長期間に亘って連続で並列多重変換器を停止できない場合は、各アーム単位または各相単位ごとに時間をおいて順次点検を実施しているのが現状である。   In a large-capacity parallel multiple converter for electric power use, the converter constituting the parallel multiple converter is inspected for each arm or each phase, so the system may be stopped for several days. In particular, in the electric power field, there is a desire to reduce the recovery time at the time of failure as much as possible. Therefore, if the parallel multiple converter cannot be stopped continuously over such a long period of time, for each arm unit or each phase unit The current situation is that inspections are carried out sequentially over time.

また、産業用の並列多重変換器や分散型電源用の並列多重変換器では、点検時は並列多重変換器を停止したり、あるいは並列多重変換器を停止した際にバイパス回路で給電するなどしているが、バイパス回路で給電する場合には商用電源から給電することとなり、並列多重変換器本来のメリットを維持することができない。   For industrial parallel multiplexers and distributed power converters, stop the parallel multiplexer during inspection, or supply power with a bypass circuit when the parallel multiplexer is stopped. However, when power is supplied by a bypass circuit, power is supplied from a commercial power source, and the original merit of the parallel multiple converter cannot be maintained.

ここで、複数台の電力変換器の直流側を接続して電力の融通を行うシステムにおいて、1台の電力変換器が系統事故や変換器の故障等で停止しても、残りの健全な電力変換器で運転を継続できるようにしたものがある(特許文献1参照)。
特開平9−74769号公報
Here, in a system in which the DC side of multiple power converters is connected to provide power interchange, even if one power converter stops due to a grid fault or converter failure, the remaining healthy power There is one in which operation can be continued with a converter (see Patent Document 1).
Japanese Patent Laid-Open No. 9-74769

しかし、特許文献1のものでは予備の電力変換器を設ける必要がある。複数台の変換器を並列に接続して構成された並列多重変換器の故障や点検時の対策として、予備の変換器(例えば1相分)を用意することも考えられる。例えば、並列多重変換器を構成する変換器の故障や点検時に予備の変換器に切り替え、運転を継続するようにすることも考えられるが、そうすると、1台あたりの稼働率が低下するとともに変換器1台分のシステム容量が増えることになり、設置スペース等の制約を受けることになる。   However, in the thing of patent document 1, it is necessary to provide a spare power converter. As a countermeasure at the time of failure or inspection of a parallel multiple converter configured by connecting a plurality of converters in parallel, a spare converter (for example, one phase) may be prepared. For example, it is conceivable to switch to a spare converter at the time of failure or inspection of the converter constituting the parallel multiple converter and continue the operation. In this case, the operating rate per unit decreases and the converter The system capacity for one unit will increase, and the installation space will be limited.

さらに、通常、三相各相に並列接続される変換器は定格容量が同一のものであるので、所望の容量の並列多重変換器を構成することができない場合がある。例えば、変換器の単体の定格容量が50kVAである場合、3相分の定格容量として、各相1台の変換器を用いる場合は150kVAとなり、各相2台の変換器を用いる場合は300kVAとなる。同様に、変換器の単体の定格容量が200kVAである場合、3相分の定格容量として、各相1台の変換器を用いる場合は600kVAとなり、各相2台の変換器を用いる場合は1200kVAとなる。すなわち、設計の標準化、合理化から変換器の単体の定格容量の3の倍数の定格容量の製造が望まれており、変換器の単体の定格容量の3の倍数でない出力を得るには、部分負荷運転をすることになる。   Furthermore, since the converters connected in parallel to the three-phase phases usually have the same rated capacity, it may not be possible to construct a parallel multiple converter having a desired capacity. For example, when the rated capacity of a single converter is 50 kVA, the rated capacity for three phases is 150 kVA when using one converter for each phase, and 300 kVA when using two converters for each phase. Become. Similarly, when the rated capacity of a single converter is 200 kVA, the rated capacity for three phases is 600 kVA when using one converter for each phase, and 1200 kVA when using two converters for each phase. It becomes. That is, it is desired to produce a rated capacity that is a multiple of 3 times the rated capacity of a single converter because of standardization and rationalization of the design. To obtain an output that is not a multiple of 3 of the rated capacity of a single converter, a partial load I will drive.

変換器を部分負荷で運転すると、変換器の効率が低下するという課題があり、部分負荷でも効率が低下しない変換器が求められていた。例えば、風力発電、太陽光発電などに適用する変換器においては、部分負荷運転の頻度が高い。このため、出力が変動しても効率のよい発電が継続できれば、再生可能エネルギーを有効利用することになり、CO排出削減につながる。その結果、地球温暖化を防ぐことも期待できる。 When the converter is operated at a partial load, there is a problem that the efficiency of the converter decreases, and a converter that does not decrease the efficiency even at a partial load has been demanded. For example, in a converter applied to wind power generation, solar power generation, etc., the frequency of partial load operation is high. For this reason, if efficient power generation can be continued even if the output fluctuates, renewable energy will be used effectively, leading to a reduction in CO 2 emissions. As a result, it can be expected to prevent global warming.

本発明の目的は、並列多重変換器のいずれかの変換器が故障停止した場合であっても運転を継続でき、また出力が変動しても効率を下げることなく運転できる並列多重型交直変換装置及び制御方法を提供することである。   An object of the present invention is a parallel multiple AC / DC converter capable of continuing operation even when any converter of the parallel multiple converter is stopped due to failure, and capable of operating without lowering the efficiency even when the output fluctuates. And providing a control method.

請求項1の発明に係わる並列多重型交直変換装置は、定格容量が同一のもの及び異なるものを含んだ複数個の電力変換器を組み合わせて三相各相にそれぞれ並列に接続して形成された並列多重変換器と、前記並列多重変換器の三相各相の出力線電流が平衡三相電流を保持するように前記並列多重変換器の三相各相に接続された変換器の運転台数または変換器の出力電流の位相または大きさを調整制御する変換器制御装置とを備え、前記変換器制御装置は、三相各相の変換器の運転台数または変換器の出力電圧の位相または大きさを調整制御するにあたり前記変換器の効率変動を極力抑制することを特徴とする。 The parallel multiple AC / DC converter according to the invention of claim 1 is formed by combining a plurality of power converters including the same rated capacity and different rated capacities and connecting them in parallel to each of the three phases. Number of operating units of parallel multiple converters and converters connected to the three phases of the parallel multiple converters such that the output line currents of the three phases of the parallel multiple converters maintain balanced three-phase currents. A converter control device that adjusts and controls the phase or magnitude of the output current of the converter, the converter control device operating the number of converters in each of the three phases or the phase or magnitude of the output voltage of the converter. It is characterized in that the efficiency fluctuation of the converter is suppressed as much as possible when adjusting the control .

請求項2の発明に係わる並列多重型交直変換装置は、請求項1の発明において、前記並列多重変換器のいずれかの変換器が故障停止したことを検出する故障検出器を設け、前記変換器制御装置は、前記故障検出器が故障停止した変換器を検出したときは、前記並列多重型変換器の現在の出力電力が所定値を超えるか否かを判定し、前記並列多重型変換器の現在の出力電力が所定値以下であるときは、前記並列多重変換器の三相各相の出力線電流が故障前の電流を保持するように前記並列多重型変換器の効率変動を極力抑制して故障停止した変換器を除いた健全な変換器の出力電流の位相または大きさを調整制御することを特徴とする。 According to a second aspect of the present invention, there is provided a parallel multiplex type AC / DC converter according to the first aspect of the present invention, further comprising a fault detector for detecting that one of the converters of the parallel multiple converter has stopped. When the failure detector detects a converter that has failed, the control device determines whether or not the current output power of the parallel multiple converter exceeds a predetermined value, and the parallel multiple converter When the current output power is below a predetermined value, the efficiency variation of the parallel multiplex converter is suppressed as much as possible so that the output line current of each phase of the three phases of the parallel multiplex converter maintains the current before the failure. It is characterized by adjusting and controlling the phase or magnitude of the output current of a healthy converter excluding the converter that has failed and stopped.

請求項3の発明に係わる並列多重型交直変換装置は、請求項2の発明において、前記変換器制御装置は、前記並列多重型変換器の現在の出力電力が所定値を超えるときは、故障停止した変換器を除いた健全な変換器の各々の出力電流の大きさが所定の制限値を超えない範囲内で前記並列多重型変換器の効率変動を極力抑制して出力電流の位相または大きさを調整制御することを特徴とする。 According to a third aspect of the present invention, there is provided a parallel multiplex type AC / DC converter according to the second aspect of the present invention, wherein the converter control unit stops a fault when the current output power of the parallel multiplex type converter exceeds a predetermined value. The phase or magnitude of the output current by suppressing the fluctuation in efficiency of the parallel multiplex converter as much as possible within a range where the magnitude of the output current of each of the healthy converters excluding the converted converter does not exceed a predetermined limit value. It is characterized by adjusting and controlling.

請求項4の発明に係わる並列多重型交直変換装置は、請求項2または3の発明において、前記変換器制御装置は、故障停止した変換器が接続された相の健全な変換器の出力電流の大きさを大きくするとともに、故障停止した変換器が接続された相の位相を健全時と同一位相とすることを特徴とする。 A parallel multiple AC / DC converter according to a fourth aspect of the present invention is the parallel or multiple AC / DC converter according to the second or third aspect of the present invention, wherein the converter control unit is configured to control the output current of the healthy converter in the phase to which the converter that has failed is connected. In addition to increasing the size, the phase of the phase to which the faulty converter is connected is set to the same phase as in the normal state.

請求項5の発明に係わる並列多重型交直変換装置の制御方法は、複数台の電力変換器が三相各相にそれぞれ並列に接続され三相交流電力を供給する並列多重型交直変換装置の制御方法において、前記並列多重型変換器の現在の出力電力を検出し、前記並列多重変換器のいずれかの変換器が故障停止したか否かを判定し、前記変換器のいずれも故障停止していないときは前記並列多重変換器の三相各相の出力線電流が所定電流となるように前記並列多重型変換器の効率変動を極力抑制して三相各相の運転台数または変換器の出力電圧の位相または大きさを調整制御し、前記変換器のいずれかが故障停止したときは前記並列多重型変換器の現在の出力電力が所定値を超えるか否かを判定し、前記並列多重型変換器の現在の出力電力が所定値以下であるときは前記並列多重変換器の三相各相の出力線電流が故障前の電流を保持するように前記並列多重型変換器の効率変動を極力抑制して故障停止した変換器を除いた健全な変換器の出力電流の位相または大きさを調整制御し、前記並列多重型変換器の現在の出力電力が所定値を超えるときは故障停止した変換器を除いた健全な変換器の各々の出力電流の大きさが所定の制限値を超えない範囲内で前記並列多重型変換器の効率変動を極力抑制して出力電流の位相または大きさを調整制御することを特徴とする According to a fifth aspect of the present invention, there is provided a control method for a parallel multiplex AC / DC converter, in which a plurality of power converters are connected in parallel to each of three phases to supply three-phase AC power. In the method, the present output power of the parallel multiplex converter is detected, it is determined whether any converter of the parallel multiplex converter has stopped by failure, and all of the converters have stopped by failure. When there is not, the number of operating units of the three-phase or the output of the converter by suppressing the fluctuation of the efficiency of the parallel-multiplexed converter as much as possible so that the output line current of the three-phase each phase of the parallel multiple converter becomes a predetermined current The phase or magnitude of the voltage is adjusted and controlled, and when any of the converters has failed, it is determined whether the current output power of the parallel multiplex converter exceeds a predetermined value, and the parallel multiplex type If the current output power of the converter is below the specified value Rutoki is healthy, except for the converter failed stopped by minimizing the efficiency variation of the parallel multi-transducer so as to hold the three-phase phase output line current before fault current of the parallel multi-converter The output of each of the healthy converters excluding the converter that has failed and stopped when the current output power of the parallel multiplex converter exceeds a predetermined value by adjusting and controlling the phase or magnitude of the output current of the correct converter The phase or magnitude of the output current is adjusted and controlled by suppressing the fluctuation in efficiency of the parallel multiple converter as much as possible within a range in which the magnitude of the current does not exceed a predetermined limit value.

請求項6の発明に係わる並列多重型交直変換装置の制御方法は、請求項5の発明において、前記健全な変換器が過負荷運転を許容するときは、所定の制限値を超えない範囲内で前記並列多重型変換器の効率変動を極力抑制して出力電流の位相または大きさを調整制御することに代えて、前記並列多重変換器の三相各相の出力線電流が故障前の電流を保持するように前記並列多重型変換器の効率変動を極力抑制して前記健全な変換器の出力電流の位相または大きさを調整制御することを特徴とする。 The control method of the parallel multiplex AC / DC converter according to the invention of claim 6 is the invention according to claim 5 , wherein when the healthy converter allows overload operation, it does not exceed a predetermined limit value. Instead of adjusting and controlling the phase or magnitude of the output current by suppressing the efficiency fluctuation of the parallel multiple converter as much as possible, the output line current of each phase of the three phases of the parallel multiple converter It is characterized by adjusting and controlling the phase or the magnitude of the output current of the healthy converter by suppressing the fluctuation in efficiency of the parallel multiplex converter as much as possible so as to hold it.

請求項7の発明に係わる並列多重型交直変換装置の制御方法は、請求項5または6の発明において、前記変換器のいずれかが故障停止したとき、前記並列多重変換器の三相各相の出力線電流が故障前の所定電流を保持するように故障停止した変換器を除いた健全な変換器の出力電流の位相または大きさを調整制御するにあたり、故障停止した変換器が接続された相の健全な変換器の出力電流の大きさを大きくするとともに、故障停止した変換器が接続された相の位相を健全時と同一位相とすることを特徴とする。 According to a seventh aspect of the present invention, there is provided a method for controlling a parallel multiple AC / DC converter according to the fifth or sixth aspect of the present invention, wherein any one of the three phases of the parallel multiple converter is stopped when one of the converters is stopped due to a failure. When adjusting and controlling the phase or magnitude of the output current of a healthy converter, excluding the converter that has failed and stopped so that the output line current maintains the predetermined current before the failure, the phase to which the converter that has failed is connected The size of the output current of the healthy converter is increased, and the phase of the phase to which the failed converter is connected is set to the same phase as that of the healthy state.

本発明によれば、定格容量が同一または異なる変換器を三相各相に接続して並列多重変換器を形成し、並列多重変換器の三相各相の出力線電流が平衡三相電流を保持するように、三相各相に接続された変換器の出力電流の位相または大きさを調整制御するので、出力が変動しても効率を下げることなく運転できる並列多重変換器を構成することができる。   According to the present invention, converters having the same or different rated capacities are connected to each of the three-phase phases to form a parallel multiple converter, and the output line current of each of the three-phase phases of the parallel multiple converter is set to a balanced three-phase current. Adjusting and controlling the phase or magnitude of the output current of the converter connected to each phase of the three phases so as to hold, so that a parallel multiple converter that can be operated without lowering the efficiency even if the output fluctuates is configured Can do.

また、並列多重変換器の1台の変換器が故障停止になってもその他の健全な変換器で分担して運転するので、予備の変換器を設けることなく、並列多重変換器の出力電流を健全時の電流にほぼ維持できる。また、予備の変換器を設置する必要がなくなり設置スペースを縮小できる。さらに、並列多重変換器を停止することなく点検ができるので信頼性が向上し、設備の予防保全やシステム故障率を低下できる。   In addition, even if one converter of the parallel multiple converter is stopped due to failure, it is operated by sharing with other healthy converters, so the output current of the parallel multiple converter can be reduced without providing a spare converter. It can be almost maintained at a healthy current. Further, it is not necessary to install a spare converter, and the installation space can be reduced. Further, since the inspection can be performed without stopping the parallel multiple converter, the reliability is improved, and the preventive maintenance of the equipment and the system failure rate can be reduced.

図1は本発明の第1の実施の形態に係わる並列多重型交直変換装置の構成図である。並列多重変換器11は、三相各相に対してそれぞれ複数台の変換器12が設けられる。三相各相に対して並列接続される変換器12の台数は、同じ台数もしくは三相各相の少なくともいずれか1相は異なる台数が並列接続される。図1では三相各相のU相、V相、W相に対して、それぞれ2台の変換器12が設けられた場合を示している。すなわち、U相には変換器12U1、12U2が設けられ、V相には変換器12V1、12V2が設けられ、W相には変換器12W1、12W2が設けられている。また、変換器12U1〜12W2は、定格容量が同一のものまたは異なるものが組み合わせて接続される。   FIG. 1 is a block diagram of a parallel multiplex AC / DC converter according to a first embodiment of the present invention. The parallel multiple converter 11 is provided with a plurality of converters 12 for each of the three phases. As for the number of converters 12 connected in parallel to each of the three-phase phases, the same number or at least one of the three-phase phases is connected in parallel. FIG. 1 shows a case where two converters 12 are provided for the U phase, V phase, and W phase of each of the three phases. That is, converters 12U1 and 12U2 are provided in the U phase, converters 12V1 and 12V2 are provided in the V phase, and converters 12W1 and 12W2 are provided in the W phase. Further, converters 12U1 to 12W2 are connected in combination with the same or different rated capacities.

図2は、変換器12の一例を示す回路構成図である。変換器12は、例えば絶縁ゲート形半導体素子である4個のIGBT(Insulated Gate Bipolar Transistor)モジュール13を直並列に接続して構成され、直流電源14からの直流電力を交流電力に変換して巻線15に出力するようになっている。   FIG. 2 is a circuit configuration diagram illustrating an example of the converter 12. The converter 12 is configured by connecting, for example, four IGBT (Insulated Gate Bipolar Transistor) modules 13, which are insulated gate semiconductor elements, in series and parallel, and converts DC power from the DC power supply 14 into AC power for winding. It outputs to the line 15.

そして、図1に示すように、変換器12の巻線15を変圧器16の一次巻線に磁気結合させ、三相各相に2個ずつ並列に配置する。これにより、変圧器16の各々の一次巻線からは、各相につき並列接続された2個の変換器12の出力電流が出力される。図1では、変圧器16の一次巻線はΔ結線である場合を示している。   Then, as shown in FIG. 1, the winding 15 of the converter 12 is magnetically coupled to the primary winding of the transformer 16, and two coils are arranged in parallel in each of the three phases. As a result, the output currents of the two converters 12 connected in parallel for each phase are output from the primary windings of the transformer 16. FIG. 1 shows a case where the primary winding of the transformer 16 is a Δ connection.

変換器制御装置18は、各々の変換器12U1〜12W2を制御するものであり、三相各相の変換器12U1〜12W2の運転台数を一定または変更して、並列多重変換器の三相各相の出力線電流が平衡三相電流となるように、変換器12U1〜12W2の電流指令値及び位相指令値を演算する。   The converter control device 18 controls each of the converters 12U1 to 12W2, and changes the number of operating converters 12U1 to 12W2 of the three-phase each phase to be constant or changed so that the three-phase each phase of the parallel multiple converter The current command value and phase command value of the converters 12U1 to 12W2 are calculated so that the output line current becomes a balanced three-phase current.

変換器制御装置18には、出力電力検出器23で時々刻々検出される並列多重型変換器11の現在の出力電力が更新記憶され、並列多重型変換器11の現在の出力電力と予め定められた所定値とを比較し、並列多重型変換器11の現在の出力電力が所定値を超えるか否かを判定する。ここで、所定値は変換器12が過負荷運転とならないときの並列多重型変換器11の出力電力である。   The converter control device 18 updates and stores the current output power of the parallel multiplex converter 11 detected every moment by the output power detector 23, and is determined in advance as the current output power of the parallel multiplex converter 11. The predetermined value is compared, and it is determined whether or not the current output power of the parallel multiplex converter 11 exceeds the predetermined value. Here, the predetermined value is the output power of the parallel multiple converter 11 when the converter 12 is not overloaded.

一方、設定器24には、過負荷運転を許容する旨、過負荷運転する際の変換器12の出力電流の上限値、過負荷運転を許容しない場合の変換器12の出力電流の上限値等が設定される。変換器制御装置18は、過負荷運転を許容する場合には、変換器の各々の出力電流の大きさがその上限値を超えないように、また、過負荷運転を許容しない場合には、変換器の各々の出力電流の大きさがその過負荷運転時の上限値を超えないように、並列多重変換器11の電流指令値及び位相指令値を演算する。   On the other hand, the setting device 24 indicates that the overload operation is permitted, the upper limit value of the output current of the converter 12 when the overload operation is performed, the upper limit value of the output current of the converter 12 when the overload operation is not permitted, and the like. Is set. When the converter control device 18 allows the overload operation, the converter control device 18 prevents the output current of each converter from exceeding its upper limit value. When the converter control device 18 does not allow the overload operation, the converter control device 18 converts the output current. The current command value and the phase command value of the parallel multiple converter 11 are calculated so that the magnitude of each output current of the converter does not exceed the upper limit value during the overload operation.

変換器制御装置18で演算された変換器12U1〜12W2の電流指令値及び位相指令値はゲート制御回路26に入力され、ゲート制御回路26は、変換器制御装置18からの電流指令値及び位相指令値を満たすように変換器12U1〜12W2にゲート信号を出力する。   The current command value and phase command value of the converters 12U1 to 12W2 calculated by the converter control device 18 are input to the gate control circuit 26, and the gate control circuit 26 receives the current command value and phase command from the converter control device 18. A gate signal is output to the converters 12U1 to 12W2 so as to satisfy the value.

このように、変換器制御装置18は三相各相の変換器12U1〜12W2の運転台数を一定または変更した場合の電流指令値及び位相指令値を出力するので、三相各相の変換器12U1〜12W2の出力電流や位相は不平衡となることがあるが、変換器制御装置18は並列多重変換器11の三相各相の出力線電流U、V、Wが平衡三相電流となるように調整制御するので、並列多重変換器11の三相各相の出力線電流U、V、Wは平衡三相電流となる。   Thus, the converter control device 18 outputs the current command value and the phase command value when the number of operating converters 12U1 to 12W2 of the three-phase each phase is constant or changed, and therefore the converter 12U1 of the three-phase each phase. Although the output current and phase of ˜12W2 may be unbalanced, the converter control device 18 makes the output line current U, V, W of each of the three phases of the parallel multiple converter 11 become a balanced three-phase current. Therefore, the output line currents U, V, and W of the three-phase phases of the parallel multiple converter 11 become balanced three-phase currents.

図3は本発明の第1の実施の形態における並列多重変換器11の三相各相の変換器12の台数が同一で定格容量も同一である場合の並列多重変換器11の出力電流の一例を示す出力電流ベクトル図である。図3(a)に示すように、変圧器16の一次巻線はΔ結線されるので、並列多重変換器11の各相の変換器出力電流はΔ電流であり、通常運転時においては、並列多重変換器11のU相の変換器12U1、12U2の出力電流U1、U2、V相の変換器12V1、12V2の出力電流V1、V2、W相の変換器12W1、12W2の出力電流W1、W2は、それぞれ大きさが同じであり、並列多重変換器11のU相、V相、W相の変換器出力電流は、それぞれ120°の位相差を持つ三相平衡電流を維持している。   FIG. 3 shows an example of the output current of the parallel multiple converter 11 when the number of the three-phase converters 12 in the parallel multiple converter 11 in the first embodiment of the present invention is the same and the rated capacity is the same. FIG. As shown in FIG. 3A, since the primary winding of the transformer 16 is Δ-connected, the converter output current of each phase of the parallel multiple converter 11 is Δ current, and in parallel during normal operation, The output currents U1 and U2 of the U-phase converters 12U1 and 12U2 of the multiple converter 11 and the output currents V1 and V2 of the V-phase converters 12V1 and 12V2, and the output currents W1 and W2 of the W-phase converters 12W1 and 12W2 are The U-phase, V-phase, and W-phase converter output currents of the parallel multiple converter 11 each maintain a three-phase balanced current having a phase difference of 120 °.

また、並列多重変換器11の三相各相の出力線電流であるU相、V相、W相の出力電流U、V、Wも、図3(b)に示すように、それぞれ120°の位相差を持つ三相平衡電流を維持している。すなわち、U相の出力線電流は並列多重変換器11のU相の変換器出力電流とW相の変換器出力電流とのベクトル差、V相の出力線電流はV相の変換器出力電流とU相の変換器出力電流とのベクトル差、W相の出力線電流はW相の変換器出力電流とV相の変換器出力電流とのベクトル差で示される。   Further, the output currents U, V, and W of the three-phase output phases of the parallel multiple converter 11 are also 120 ° as shown in FIG. A three-phase balanced current with a phase difference is maintained. That is, the U-phase output line current is the vector difference between the U-phase converter output current and the W-phase converter output current of the parallel multiple converter 11, and the V-phase output line current is the V-phase converter output current. The vector difference between the U-phase converter output current and the W-phase output line current is indicated by the vector difference between the W-phase converter output current and the V-phase converter output current.

この状態で、並列多重変換器11の変換器12U1〜W2の運転台数を一定としたままで並列多重変換器11の三相各相の出力線電流U、V、Wの大きさを小さく変更する場合を考える。   In this state, the magnitudes of the output line currents U, V, and W of each of the three phases of the parallel multiple converter 11 are changed to be small while the number of converters 12U1 to W2 of the parallel multiple converter 11 is kept constant. Think about the case.

図4は、変換器12の運転台数を一定としたままで並列多重変換器11の三相各相の出力線電流が小さな平衡三相電流となるように並列多重変換器11の相電流を調整した場合の一例を示す出力電流ベクトル図であり、図4(a)は変換器12の運転台数を一定としたままで並列多重変換器11の三相各相の出力線電流が小さな平衡三相電流となるように変換器12の出力電流の大きさを調整制御した場合の出力電流ベクトル図、図4(b)は変換器12の運転台数を一定としたままで並列多重変換器11の三相各相の出力線電流が小さな平衡三相電流となるように変換器12の出力電流及び位相を調整制御した場合の出力電流ベクトル図である。   4 adjusts the phase current of the parallel multiple converter 11 so that the output line current of each of the three phases of the parallel multiple converter 11 becomes a small balanced three-phase current while keeping the number of converters 12 in operation constant. 4A is an output current vector diagram showing an example of the case, and FIG. 4A is a balanced three phase in which the output line current of each of the three phases of the parallel multiple converter 11 is small while the number of converters 12 is kept constant. FIG. 4B is a diagram showing an output current vector when the magnitude of the output current of the converter 12 is adjusted and controlled so that the current becomes the current, and FIG. 4B is a diagram of three parallel multiple converters 11 while the number of converters 12 is kept constant. It is an output current vector figure at the time of adjusting and controlling the output current and phase of the converter 12 so that the output line current of each phase becomes a small balanced three-phase current.

図4(a)では、図3(b)に示す並列多重変換器11の三相各相の各々の変換器12のいずれか一つの変換器12の出力電流の大きさを調整して、並列多重変換器11の三相各相の出力線電流U、V、Wの大きさを変更した場合を示している。すなわち、並列多重変換器11のU相については変換器12U2の出力電流をU2からu2とし、V相については変換器12V2の出力電流をV2からv2とし、W相については変換器12W2の出力電流をW2からw2として、並列多重変換器11の三相各相の出力線電流U、V、Wの大きさを変更する。   In FIG. 4A, the magnitude of the output current of any one converter 12 of the converters 12 of each of the three phases of the parallel multiple converter 11 shown in FIG. The case where the magnitude | sizes of the output line current U, V, and W of the three-phase each phase of the multiple converter 11 are shown is shown. That is, for the U phase of the parallel multiple converter 11, the output current of the converter 12U2 is changed from U2 to u2, the output current of the converter 12V2 is changed from V2 to v2 for the V phase, and the output current of the converter 12W2 is set for the W phase. Is changed from W2 to w2, the magnitudes of the output line currents U, V, W of each of the three phases of the parallel multiple converter 11 are changed.

一方、図4(b)は、図3(b)に示す並列多重変換器11の三相各相のいずれか一相の変換器12の出力電流の大きさを調整するとともに、二相の変換器12の出力電流の大きさは一定のままで位相を調整して、並列多重変換器11の三相各相の出力線電流U、V、Wの大きさを変更した場合を示している。すなわち、並列多重変換器11のW相については変換器12W1、12W2の出力電流を小さく変更し、U相及びV相については変換器12U1(12V1)、12U2(12V2)の出力電流は一定とし、並列多重変換器11の三相各相の出力線電流U、V、Wが三相平衡電流を維持するように、U相及びV相の位相を変更する。   On the other hand, FIG. 4B adjusts the magnitude of the output current of the converter 12 of any one of the three phases of the parallel multiple converter 11 shown in FIG. In this example, the phase of the output current of the converter 12 is kept constant and the phase is adjusted to change the magnitudes of the output line currents U, V, and W of the three phases of the parallel multiple converter 11. That is, the output currents of the converters 12W1 and 12W2 are changed to be small for the W phase of the parallel multiple converter 11, and the output currents of the converters 12U1 (12V1) and 12U2 (12V2) are constant for the U phase and the V phase. The phases of the U phase and the V phase are changed so that the output line currents U, V, and W of the three phases of the parallel multiple converter 11 maintain the three-phase balanced current.

この場合、図4(b)に示すように、並列多重変換器11の三相各相の出力線電流や位相は不平衡となっているが、並列多重変換器11の三相各相の出力線電流U、V、Wは平衡三相電流となる。このように、並列多重変換器11の三相各相の出力線電流U、V、Wが平衡三相電流となる限りは、並列多重変換器11の三相各相の変換器出力電流や位相が不平衡となる運転を許容し、並列多重変換器11の三相の出力電流U、V、Wの変更を可能としている。これにより、所望の容量の並列多重変換器を構成することができる。   In this case, as shown in FIG. 4B, the output line current and phase of each of the three phases of the parallel multiple converter 11 are unbalanced, but the output of each of the three phases of the parallel multiple converter 11 is output. The line currents U, V and W are balanced three-phase currents. Thus, as long as the output line currents U, V, W of the three-phase each phase of the parallel multiple converter 11 become balanced three-phase currents, the converter output current and phase of the three-phase each phase of the parallel multiple converter 11 Is allowed to be unbalanced, and the three-phase output currents U, V, W of the parallel multiple converter 11 can be changed. Thereby, a parallel multiple converter having a desired capacity can be configured.

図5は本発明の第1の実施の形態における並列多重変換器11の三相各相の変換器の台数が同じで定格容量が異なる場合の並列多重変換器11の出力電流の一例を示す出力電流ベクトル図である。図5(a)は通常運転時の出力電流ベクトル図、図5(b)は変換器12の運転台数を変更して並列多重変換器11の三相各相の出力線電流を小さな平衡三相電流となるように変換器の出力電流の大きさを調整制御した場合の出力電流ベクトル図である。   FIG. 5 shows an example of the output current of the parallel multiple converter 11 when the number of three-phase converters in the parallel multiple converter 11 in the first embodiment of the present invention is the same and the rated capacities are different. It is an electric current vector diagram. FIG. 5 (a) is an output current vector diagram during normal operation, and FIG. 5 (b) is a balanced three-phase small output line current for each of the three phases of the parallel multiple converter 11 by changing the number of converters 12 operated. It is an output current vector figure at the time of carrying out adjustment control of the magnitude | size of the output current of a converter so that it may become electric current.

図5(a)に示すように、三相各相の変換器12の台数はそれぞれ2台で同じであるが、W相の2台の変換器の定格容量は、U相及びV相の変換器の定格容量の1/2であるものを用いている。従って、通常運転時においては、並列多重変換器11のU相の変換器12U1、12U2の出力電流U1、U2、V相の変換器12V1、12V2の出力電流V1、V2はそれぞれ同じであるが、W相の変換器12W1、12W2の出力電流W1、W2は、U相及びV相の変換器の出力電流の1/2となっている。このため、並列多重変換器11の三相各相の出力線電流や位相は不平衡となっている。   As shown in FIG. 5 (a), the number of converters 12 for each of the three phases is the same for each two, but the rated capacity of the two converters for the W phase is the conversion between the U phase and the V phase. What is half the rated capacity of the vessel is used. Therefore, during normal operation, the output currents U1 and U2 of the U-phase converters 12U1 and 12U2 of the parallel multiple converter 11 and the output currents V1 and V2 of the V-phase converters 12V1 and 12V2 are the same. The output currents W1 and W2 of the W-phase converters 12W1 and 12W2 are ½ of the output currents of the U-phase and V-phase converters. For this reason, the output line current and phase of each of the three phases of the parallel multiple converter 11 are unbalanced.

なお、並列多重変換器11の三相各相の出力線電流や位相は不平衡であるが、並列多重変換器11の三相各相の出力線電流U、V、Wは平衡三相電流となるように調整されている。従って、並列多重変換器11の三相各相の出力線電流であるU相、V相、W相の出力電流U、V、Wはそれぞれ120°の位相差を持つ三相平衡電流を維持している。このように、通常運転時においても、並列多重変換器11の三相各相の出力線電流U、V、Wが平衡三相電流となる限りは、並列多重変換器11の三相各相の出力線電流や位相が不平衡となる運転を許容している。   The output line currents and phases of the three-phase phases of the parallel multiple converter 11 are unbalanced, but the output line currents U, V, and W of the three-phase phases of the parallel multiple converter 11 are the balanced three-phase currents. It has been adjusted to be. Accordingly, the output currents U, V and W of the three-phase output phases of the parallel multiple converter 11 maintain a three-phase balanced current having a phase difference of 120 °. ing. Thus, even during normal operation, as long as the output line currents U, V, and W of the three-phase each phase of the parallel multiple converter 11 are balanced three-phase currents, the three-phase each phase of the parallel multiple converter 11 is Operation where the output line current and phase are unbalanced is allowed.

この状態で、並列多重変換器11の変換器12U1〜W2の運転台数を変更して、並列多重変換器11の三相各相の出力線電流U、V、Wの大きさを小さく変更する場合を考える。図5(b)は、並列多重変換器11のU相及びV相の変換器U2、V2を停止または出力電流を0として、並列多重変換器11のU相及びV相出力電流の大きさを調整し、並列多重変換器11の三相各相の出力線電流U、V、Wの大きさを変更した場合を示している。すなわち、並列多重変換器11のW相については変換器12W1、12W2の出力電流をそのままとし、U相及びV相については変換器12U2(12V2)の出力電流が0となるようにし、並列多重変換器11の三相各相の出力線電流U、V、Wが三相平衡電流を維持するように、U相及びV相の位相を変更する。これにより、並列多重変換器11の三相各相の出力線電流U、V、Wの大きさを小さく変更できる。   In this state, when the number of operating converters 12U1 to W2 of the parallel multiple converter 11 is changed and the magnitudes of the output line currents U, V, and W of the three-phase phases of the parallel multiple converter 11 are changed to be small. think of. FIG. 5B shows the magnitudes of the U-phase and V-phase output currents of the parallel multiple converter 11 by stopping the U-phase and V-phase converters U2 and V2 of the parallel multiple converter 11 or setting the output current to 0. The case where the magnitudes of the output line currents U, V, and W of the three-phase each phase of the parallel multiple converter 11 are adjusted and changed is shown. That is, for the W phase of the parallel multiple converter 11, the output currents of the converters 12W1 and 12W2 are left as they are, and the output current of the converter 12U2 (12V2) is set to 0 for the U phase and the V phase. The phases of the U phase and the V phase are changed so that the output line currents U, V, and W of the three phases of the device 11 maintain the three-phase balanced current. Thereby, the magnitude | sizes of the output line current U, V, W of the three-phase each phase of the parallel multiple converter 11 can be changed small.

以上の説明では、三相各相に対して同じ台数の変換器12が並列接続された場合について説明したが、三相各相の少なくともいずれか1相は異なる台数の変換器12が並列接続された場合に同様である。   In the above description, the case where the same number of converters 12 are connected in parallel to each of the three-phase phases has been described, but at least one of the three-phase phases is connected in parallel to a different number of converters 12. The same applies to the case.

図6は本発明の第1の実施の形態における並列多重変換器11の三相各相の変換器の台数が異なり定格容量も異なる場合の並列多重変換器11の出力電流の一例を示す出力電流ベクトル図である。   FIG. 6 is an output current showing an example of the output current of the parallel multiple converter 11 when the number of three-phase converters in the parallel multiple converter 11 in the first embodiment of the present invention is different and the rated capacity is also different. It is a vector diagram.

図6(a)に示すように、三相各相の変換器12の台数が異なり、U相及びV相には3台の変換器12U1、U2、U3(12V1、V2、V3)が接続され、W相には2台の変換器12W1、12W2が接続されている。また、W相の2台の変換器12W1、12W2の定格容量は、U相の変換器12U3及びV相の変換器12V3の定格容量と同じであり、U相の変換器12U1、12U2及びV相の変換器12V1、12V2の定格容量は、W相の変換器12W1、12W2の定格容量の1/2であるものを用いている。通常運転時においては、並列多重変換器11のU相、V相、W相の変換器出力電流は、それぞれ120°の位相差を持つ三相平衡電流を維持している。   As shown in FIG. 6A, the number of converters 12 for each of the three phases is different, and three converters 12U1, U2, U3 (12V1, V2, V3) are connected to the U phase and the V phase. In the W phase, two converters 12W1 and 12W2 are connected. The rated capacities of the two W-phase converters 12W1 and 12W2 are the same as the rated capacities of the U-phase converter 12U3 and the V-phase converter 12V3, and the U-phase converters 12U1, 12U2 and the V-phase The rated capacities of the converters 12V1 and 12V2 are ½ of the rated capacities of the W-phase converters 12W1 and 12W2. During normal operation, the U-phase, V-phase, and W-phase converter output currents of the parallel multiple converter 11 maintain three-phase balanced currents each having a phase difference of 120 °.

また、並列多重変換器11の三相各相の出力線電流であるU相、V相、W相の電流U、V、Wも、図6(b)に示すように、それぞれ120°の位相差を持つ三相平衡電流を維持している。すなわち、U相の出力電流は並列多重変換器11のU相の変換器出力電流とW相の変換器出力電流とのベクトル差、V相の出力電流はV相の変換器出力電流とU相の変換器出力電流とのベクトル差、W相の出力電流はW相の変換器出力電流とV相の変換器出力電流とのベクトル差で示される。   Also, the U-phase, V-phase, and W-phase currents U, V, and W, which are the output line currents of the three-phase phases of the parallel multiple converter 11, are each at 120 ° as shown in FIG. It maintains a three-phase equilibrium current with a phase difference. That is, the U-phase output current is the vector difference between the U-phase converter output current and the W-phase converter output current of the parallel multiple converter 11, and the V-phase output current is the V-phase converter output current and the U-phase. The vector difference between the converter output current and the W-phase output current is represented by the vector difference between the W-phase converter output current and the V-phase converter output current.

この状態で、並列多重変換器11の変換器12の運転台数を一定としたままで並列多重変換器11の三相各相の出力線電流U、V、Wの大きさを小さく変更する場合を考える。   In this state, a case where the magnitudes of the output line currents U, V, and W of the three-phase phases of the parallel multiple converter 11 are changed to be small while the number of the converters 12 of the parallel multiple converter 11 is kept constant. Think.

図7は、変換器12の運転台数を一定としたままで並列多重変換器11の三相各相の出力線電流が小さな平衡三相電流となるように並列多重変換器11の変換器出力電流を調整した場合の他の一例の出力電流ベクトル図であり、図7(a)は変換器12の運転台数を一定としたままで並列多重変換器11の三相各相の出力線電流が小さな平衡三相電流となるように変換器の出力電流の大きさを調整制御した場合の出力電流ベクトル図、図7(b)は変換器12の運転台数を一定としたままで並列多重変換器11の三相各相の出力線電流が小さな平衡三相電流となるように変換器の出力電流及び位相を調整制御した場合の出力電流ベクトル図である。   FIG. 7 shows the converter output current of the parallel multiple converter 11 so that the output line current of each of the three phases of the parallel multiple converter 11 becomes a small balanced three-phase current while the number of converters 12 operated is constant. FIG. 7A is a diagram illustrating an output current vector of another example of the case where the number of operating converters 12 is kept constant, and the output line current of each of the three phases of the parallel multiple converter 11 is small. FIG. 7B is an output current vector diagram when the magnitude of the output current of the converter is adjusted and controlled so that a balanced three-phase current is obtained. FIG. It is an output current vector figure at the time of adjusting and controlling the output current and phase of a converter so that the output line current of each three-phase phase may become a small balanced three-phase current.

図7(a)では、図6(b)に示す並列多重変換器11の三相各相の各々の変換器12のいずれか一つの変換器12の出力電流の大きさを調整して、並列多重変換器11の三相各相の出力線電流U、V、Wの大きさを変更した場合を示している。すなわち、並列多重変換器11のU相については変換器12U3の出力電流をU3からu3とし、V相については変換器12V3の出力電流をV3からv3とし、W相については変換器12W2の出力電流をW2からw2として、並列多重変換器11の三相各相の出力線電流U、V、Wの大きさを変更する。   In FIG. 7A, the magnitude of the output current of any one converter 12 of the converters 12 in each of the three phases of the parallel multiple converter 11 shown in FIG. The case where the magnitude | sizes of the output line current U, V, and W of the three-phase each phase of the multiple converter 11 are shown is shown. That is, for the U phase of the parallel multiple converter 11, the output current of the converter 12U3 is changed from U3 to u3, for the V phase, the output current of the converter 12V3 is changed from V3 to v3, and for the W phase, the output current of the converter 12W2 is changed. Is changed from W2 to w2, the magnitudes of the output line currents U, V, W of each of the three phases of the parallel multiple converter 11 are changed.

一方、図7(b)は、図6(b)に示す並列多重変換器11の三相各相のいずれか一相の変換器12の出力電流の大きさを調整するとともに、二相の変換器12の出力電流の大きさは一定のままで位相を調整して、並列多重変換器11の三相各相の出力線電流U、V、Wの大きさを変更した場合を示している。すなわち、並列多重変換器11のW相については変換器12W1、12W2の出力電流を小さく変更し、U相及びV相については変換器12U1(12V1)、12U2(12V2)、12U3(12V3)の出力電流は一定とし、並列多重変換器11の三相各相の出力線電流U、V、Wが三相平衡電流を維持するように、U相及びV相の位相を変更する。 On the other hand, FIG. 7B adjusts the magnitude of the output current of the converter 12 of any one of the three phases of the parallel multiple converter 11 shown in FIG. In this example, the phase of the output current of the converter 12 is kept constant and the phase is adjusted to change the magnitudes of the output line currents U, V, and W of the three phases of the parallel multiple converter 11. That is, the output current of the converters 12W1 and 12W2 is changed to be small for the W phase of the parallel multiple converter 11, and the outputs of the converters 12U1 (12V1), 12U2 (12V2), and 12U3 (12V3) for the U phase and the V phase. The current is constant, and the phases of the U phase and the V phase are changed so that the output line currents U, V, and W of the three phases of the parallel multiple converter 11 maintain the three-phase balanced current.

図8は本発明の第1の実施の形態における並列多重変換器11の三相各相の変換器の台数が異なり定格容量も異なる場合の並列多重変換器11の出力電流の他の一例を示す出力電流ベクトル図である。図8(a)は通常運転時の出力電流ベクトル図、図8(b)は変換器12の運転台数を変更して並列多重変換器11の三相各相の出力線電流を小さな平衡三相電流となるように変換器の出力電流の大きさを調整制御した場合の出力電流ベクトル図である。   FIG. 8 shows another example of the output current of the parallel multiple converter 11 when the number of three-phase converters in the parallel multiple converter 11 in the first embodiment of the present invention is different and the rated capacities are also different. It is an output current vector diagram. FIG. 8 (a) is an output current vector diagram during normal operation, and FIG. 8 (b) is a balanced three-phase small output line current of each of the three phases of the parallel multiple converter 11 by changing the number of converters 12 operated. It is an output current vector figure at the time of carrying out adjustment control of the magnitude | size of the output current of a converter so that it may become electric current.

図8(a)に示すように、三相各相の変換器12の台数が異なり、U相及びV相には3台の変換器12U1、U2、U3(12V1、V2、V3)が接続され、W相には2台の変換器12W1、12W2が接続されている。また、W相の2台の変換器12W1、12W2の定格容量は、U相の変換器12U1、12U2及びV相の変換器12V1、12V2の定格容量と同じであり、U相の変換器12U3及びV相の変換器12V3の定格容量の1/2であるものを用いている。   As shown in FIG. 8A, the number of three-phase converters 12 is different, and three converters 12U1, U2, U3 (12V1, V2, V3) are connected to the U phase and the V phase. In the W phase, two converters 12W1 and 12W2 are connected. The rated capacities of the two W-phase converters 12W1 and 12W2 are the same as the rated capacities of the U-phase converters 12U1 and 12U2 and the V-phase converters 12V1 and 12V2, and the U-phase converter 12U3 and What is 1/2 of the rated capacity of the V-phase converter 12V3 is used.

通常運転時においては、並列多重変換器11のU相、V相、W相の変換器出力電流は、三相不平衡電流であるが、並列多重変換器11の三相各相の出力線電流であるU相、V相、W相の出力電流U、V、Wはそれぞれ120°の位相差を持つ三相平衡電流を維持している。このように、通常運転時においても、並列多重変換器11の三相各相の出力線電流U、V、Wが平衡三相電流となる限りは、並列多重変換器11の三相各相の出力線電流や位相が不平衡となる運転を許容している。   In normal operation, the U-phase, V-phase, and W-phase converter output currents of the parallel multiple converter 11 are three-phase unbalanced currents. The U-phase, V-phase, and W-phase output currents U, V, and W each maintain a three-phase balanced current having a phase difference of 120 °. Thus, even during normal operation, as long as the output line currents U, V, and W of the three-phase each phase of the parallel multiple converter 11 are balanced three-phase currents, the three-phase each phase of the parallel multiple converter 11 is Operation where the output line current and phase are unbalanced is allowed.

この状態で、並列多重変換器11の変換器12の運転台数を変更して、並列多重変換器11の三相各相の出力線電流U、V、Wの大きさを小さく変更する場合を考える。図8(b)は、並列多重変換器11のU相及びV相の変換器U3、V3を停止または出力電流を0として、並列多重変換器11のU相及びV相出力電流の大きさを調整し、並列多重変換器11の三相の出力電流U、V、Wの大きさを変更した場合を示している。すなわち、並列多重変換器11のW相については変換器12W1、12W2の出力電流をそのままとし、U相及びV相については変換器12U3(12V3)の出力電流が0となるようにし、並列多重変換器11の三相の出力電流U、V、Wが三相平衡電流を維持するように、U相及びV相の位相を変更する。これにより、並列多重変換器11の三相の出力電流U、V、Wの大きさを小さく変更できる。   In this state, consider a case where the number of converters 12 in the parallel multiple converter 11 is changed and the magnitudes of the output line currents U, V, and W of the three-phase phases of the parallel multiple converter 11 are changed to be small. . FIG. 8B shows the magnitudes of the U-phase and V-phase output currents of the parallel multiple converter 11 when the U-phase and V-phase converters U3 and V3 of the parallel multiple converter 11 are stopped or the output current is zero. The case where the magnitudes of the three-phase output currents U, V and W of the parallel multiple converter 11 are adjusted and changed is shown. That is, the output currents of the converters 12W1 and 12W2 are left as they are for the W phase of the parallel multiple converter 11, and the output current of the converter 12U3 (12V3) is set to 0 for the U phase and the V phase. The phases of the U phase and the V phase are changed so that the three-phase output currents U, V, and W of the device 11 maintain the three-phase balanced current. Thereby, the magnitude | size of the three-phase output current U, V, W of the parallel multiple converter 11 can be changed small.

以上の説明では、平衡三相電流を小さくする場合について説明したが、並列多重変換器11の三相各相の出力線電流や位相が不平衡となる調整操作を行い、過負荷運転の上限値を超えない範囲で平衡三相電流の値を三相各相の変換器の運転台数の変更前の値と同じ値に保持するようにしてもよい。   In the above description, the case where the balanced three-phase current is reduced has been described. However, an adjustment operation is performed in which the output line current and phase of each of the three phases of the parallel multiple converter 11 are unbalanced, and the upper limit value of the overload operation The value of the balanced three-phase current may be held at the same value as the value before the change of the number of operating converters of the three-phase each phase within a range not exceeding.

また、並列多重型交直変換装置に接続される負荷や系統が不平衡三相電流を必要とする場合には、不平衡三相電流を発生させることも可能である。この場合、不平衡三相電流を発生させるのに必要とする最小限の台数の変換器のみを用いて行うことにより、高効率運転を維持しながら不平衡三相電流を発生できる。   In addition, when a load or system connected to the parallel multiplex AC / DC converter requires an unbalanced three-phase current, it is also possible to generate an unbalanced three-phase current. In this case, the unbalanced three-phase current can be generated while maintaining high efficiency operation by using only the minimum number of converters necessary for generating the unbalanced three-phase current.

以上の説明では、三相各相の出力電流の大きさを下げた場合について説明したが、三相各相の出力線電流を変えずに各変換器の台数や位相などを変更することにより、定格出力を維持することもできる。   In the above description, the case where the magnitude of the output current of each phase of the three phases is reduced was explained, but by changing the number and phase of each converter without changing the output line current of each phase of the three phases, The rated output can also be maintained.

また、出力線電流を平衡三相状態に維持する条件の中で、三相各相の変換器の出力電流ベクトルの位相と大きさを自由自在に変えることもできる。さらに、三相各相の変換器の出力電流ベクトルの位相と大きさを自由自在に変えることで、三相各相の出力線電流の電流ベクトルの位相と大きさを自由自在に変えることもできる。これにより、高効率運転を維持しながら所望の三相平衡あるいは三相不平衡の出力線電流を得ることができる。   In addition, the phase and magnitude of the output current vector of the three-phase converter can be freely changed under the condition of maintaining the output line current in a balanced three-phase state. Furthermore, by freely changing the phase and magnitude of the output current vector of the three-phase phase converter, the phase and magnitude of the output line current of the three-phase phase can be freely changed. . Thus, a desired three-phase balanced or three-phase unbalanced output line current can be obtained while maintaining high efficiency operation.

次に、各相の変換器12の運転台数を変更した場合の損失について説明する。図9は、各相の各々の変換器12が4台ずつ設けられ、合計12台の変換器12を有した並列多重型交直変換装置11の出力電力(p.u.)と損失(%)との関係を示すグラフである。折れ線L1は従来方式(運転台数を3の倍数のみ選んで出力電流を調整する方式)の場合の特性、折れ線L2は本発明の場合の特性を表している。図9中の折れ点での数値は変換器の運転台数を示している。   Next, the loss when the number of operating converters 12 of each phase is changed will be described. FIG. 9 shows the relationship between the output power (pu) and loss (%) of the parallel multiplex AC / DC converter 11 having four converters 12 for each phase and having a total of 12 converters 12. It is a graph which shows. The broken line L1 represents the characteristic in the case of the conventional method (the method in which the output current is adjusted by selecting only a multiple of 3), and the broken line L2 represents the characteristic in the present invention. The numerical values at the break points in FIG. 9 indicate the number of operating converters.

表1は従来方式での折れ線L1の各折れ点における変換器の運転台数、出力電力(p.u.)及び損失(%)を示す表である。

Figure 0005061599
Table 1 is a table showing the number of operating converters, output power (pu) and loss (%) at each break point of the broken line L1 in the conventional method.
Figure 0005061599

また、表2は本発明の方式での折れ線L2の各折れ点における変換器の運転台数、出力電力(p.u.)及び損失(%)を示す表である。

Figure 0005061599
Table 2 is a table showing the number of operating converters, output power (pu) and loss (%) at each break point of the broken line L2 in the method of the present invention.
Figure 0005061599

いま、各相の4台の変換器12(12台運転の場合)が4台とも最大出力(出力電力が1.00p.u.)であるとし、変換器12を最大出力で運転した場合の並列多重型交直変換装置11の変換器12の損失は、表1及び表2に示すように約1.08%であるとする。   Now, assuming that all four converters 12 in each phase (when 12 units are operated) have the maximum output (output power is 1.00 p.u.), the converter 12 is operated at the maximum output. It is assumed that the loss of the converter 12 of the parallel multiple AC / DC converter 11 is about 1.08% as shown in Tables 1 and 2.

そうすると、各相の変換器12が同じ台数でしかも最大出力で運転されている場合は、並列多重型交直変換装置11の変換器12の損失は、従来方式のときも本発明のときもいずれの場合も約1.08%で同じある。   Then, when the converters 12 of each phase are operated with the same number and the maximum output, the loss of the converter 12 of the parallel multiplex AC / DC converter 11 is the same in both the conventional method and the present invention. The case is the same at about 1.08%.

すなわち、各相の1台の変換器12(3台運転の場合)が最大出力で運転されている場合、各相の2台の変換器12(6台運転の場合が最大出力で運転されている場合)、各相の3台の変換器12(9台運転の場合)が最大出力で運転されている場合は、並列多重型交直変換装置11の変換器12の損失はいずれの場合も約1.08で同じある。   That is, when one converter 12 for each phase (when three units are operated) is operated at the maximum output, two converters 12 for each phase (when six units are operated are operated at the maximum output) When the three converters 12 for each phase (when nine units are operated) are operated at the maximum output, the loss of the converter 12 of the parallel multiplex AC / DC converter 11 is approximately in any case. It is the same at 1.08.

次に、例えば、出力電力を0.82 p.u.としたい場合、従来方式では各相の4台(12台運転)の出力を最大出力の0.82倍に下げて運転することになり、損失は約1.24%に増加する。一方、本発明方式では合計が3の倍数以外の台数でも運転できるので、U相の4台、V相の3台、W相の3台(10台運転)を最大出力を1 p.u.に保ちながら運転すれば、損失は約1.08%からほとんど変動しない約1.10%となる。このように、三相各相の運転台数または変換器の出力電流の位相もしくは大きさを変更しても変換器の効率変動を極力抑制することができる。   Next, for example, when it is desired to set the output power to 0.82 pu, in the conventional method, the output of 4 units (12 units operation) of each phase is reduced to 0.82 times the maximum output, and the loss is Increase to about 1.24%. On the other hand, since the system of the present invention can be operated with a total number other than a multiple of 3, while maintaining the maximum output at 1 pu for 4 units of U phase, 3 units of V phase, and 3 units of W phase (10 units operation). When operating, the loss goes from about 1.08% to about 1.10% with little variation. Thus, even if the number of operating units of each of the three phases or the phase or magnitude of the output current of the converter is changed, the efficiency fluctuation of the converter can be suppressed as much as possible.

本発明の第1の実施の形態によれば、定格容量が同一または異なる変成器12を三相各相に接続して並列多重変換器11を形成し、並列多重変換器11の三相各相の出力線電流が平衡三相電流を保持するように、並列多重変換器11の三相各相の出力線電流や位相が不平衡となる運転を許容して、三相各相に接続された変換器12の出力電流の位相または大きさを調整制御するので、並列多重変換器11は、変換器12の定格容量の制約を受けることなく所望の容量とすることができる。また、経年変化等により容量が低下した変換器12に対して、他の健全な変換器12により出力電流の一部を肩代わりすることも可能である。   According to the first embodiment of the present invention, the transformer 12 having the same or different rated capacity is connected to each phase of the three phases to form the parallel multiple converter 11, and each of the three phases of the parallel multiple converter 11 is formed. So that the output line current and phase of each phase of the parallel multiple converter 11 are unbalanced, and the output line current of the parallel multiple converter 11 is connected to each of the three phases. Since the phase or magnitude of the output current of the converter 12 is adjusted and controlled, the parallel multiple converter 11 can have a desired capacity without being restricted by the rated capacity of the converter 12. Moreover, it is also possible to replace a part of the output current with another healthy converter 12 with respect to the converter 12 whose capacity has decreased due to secular change or the like.

次に、本発明の第2の実施の形態を説明する。図10は本発明の第2の実施の形態に係わる並列多重型交直変換装置の構成図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、故障検出器17を設け、変換器制御装置18は、故障検出器17が故障停止した変換器12を検出したときは並列多重変換器11の三相各相の出力線電流が故障前の電流を保持するように故障停止した変換器12を除いた健全な変換器12の出力電流の大きさまたは位相を調整制御するようにしたものである。   Next, a second embodiment of the present invention will be described. FIG. 10 is a block diagram of a parallel multiplex AC / DC converter according to the second embodiment of the present invention. In the second embodiment, a failure detector 17 is provided with respect to the first embodiment shown in FIG. 1, and the converter controller 18 detects the converter 12 in which the failure detector 17 has stopped. In this case, the magnitude or phase of the output current of the healthy converter 12 excluding the converter 12 that has failed and stopped so that the output line current of each of the three phases of the parallel multiple converter 11 retains the current before the failure. Adjustment control is performed.

図10において、並列多重変換器11は、三相各相に対してそれぞれ複数台の変換器12が設けられる。図10では三相各相のU相、V相、W相に対して、それぞれ2台の変換器12が設けられた場合を示している。すなわち、U相には変換器12U1、12U2が設けられ、V相には変換器12V1、12V2が設けられ、W相には変換器12W1、12W2が設けられている。なお、変換器12は第1の実施の形態と同様に図2に示したものである。   In FIG. 10, the parallel multiple converter 11 is provided with a plurality of converters 12 for each of the three phases. FIG. 10 shows a case where two converters 12 are provided for the U phase, V phase, and W phase of each of the three phases. That is, converters 12U1 and 12U2 are provided in the U phase, converters 12V1 and 12V2 are provided in the V phase, and converters 12W1 and 12W2 are provided in the W phase. The converter 12 is the same as that of the first embodiment shown in FIG.

そして、図10に示すように、変換器12の巻線15を変圧器16の一次巻線に磁気結合させ、三相各相に2個ずつ並列に配置する。これにより、変圧器16の各々の一次巻線からは、各相につき並列接続された2個の変換器12の出力電流が出力される。図10では、変圧器16の一次巻線はΔ結線である場合を示している。   Then, as shown in FIG. 10, the winding 15 of the converter 12 is magnetically coupled to the primary winding of the transformer 16, and two coils are arranged in parallel in each of the three phases. As a result, the output currents of the two converters 12 connected in parallel for each phase are output from the primary windings of the transformer 16. FIG. 10 shows a case where the primary winding of the transformer 16 is a Δ connection.

また、並列多重変換器11の各々の変換器12U1〜12W2のいずれかが故障停止したことを検出する故障検出器17が設けられており、この故障検出器17で検出された変換器12U1〜12W2の故障停止信号は変換器制御装置18に入力される。   Further, a failure detector 17 for detecting that any of the converters 12U1 to 12W2 of the parallel multiple converter 11 has stopped is provided. The converters 12U1 to 12W2 detected by the failure detector 17 are provided. The failure stop signal is input to the converter controller 18.

変換器制御装置18は、各々の変換器12U1〜12W2を制御するものであり、正常時指令値演算手段19及び故障停止時指令値演算手段20を有する。正常時指令値演算手段19は、各々の変換器12U1〜12W2が三相交流の所定電流を出力するように電流指令値及び位相指令値を演算する。   The converter control device 18 controls each of the converters 12U1 to 12W2, and includes a normal time command value calculation means 19 and a failure stop time command value calculation means 20. The normal command value calculation means 19 calculates the current command value and the phase command value so that each of the converters 12U1 to 12W2 outputs a predetermined three-phase AC current.

一方、故障停止時指令値演算手段20は故障停止判定手段21により起動され、並列多重変換器11の三相各相の出力線電流が健全時の電流を極力維持するように、故障停止した変換器12を除いた健全な変換器12の電流指令値及び位相指令値を演算する。この場合、故障停止時指令値演算手段20は、健全な変換器12の運転が過負荷運転となるかどうかを判定し、過負荷運転を許容しているときは、三相各相の出力線電流が健全時の電流となるような電流指令値及び位相指令値を出力し、過負荷運転を許容していないときは、健全な変換器12の各々の出力電流の大きさが所定の制限値を超えない範囲内での電流指令値及び位相指令値を出力する。   On the other hand, the command value calculation means 20 at the time of failure stop is started by the failure stop determination means 21, and the conversion that has failed and stopped so that the output line current of each of the three phases of the parallel multiple converter 11 maintains the current at the normal state as much as possible. The current command value and phase command value of the healthy converter 12 excluding the converter 12 are calculated. In this case, the failure stop command value calculation means 20 determines whether the operation of the sound converter 12 is an overload operation, and when the overload operation is allowed, the output line of each of the three phases. When the current command value and the phase command value are output so that the current becomes a healthy current and the overload operation is not permitted, the magnitude of each output current of the healthy converter 12 is a predetermined limit value. Output current command value and phase command value within the range not exceeding.

すなわち、変換器制御装置18の記憶部22には、出力電力検出器23で時々刻々検出される並列多重型変換器11の現在の出力電力が更新記憶され、故障停止時指令値演算手段20は、並列多重型変換器11の現在の出力電力と予め定められた所定値とを比較し、並列多重型変換器11の現在の出力電力が所定値以下であるときは、並列多重変換器11の三相各相の出力線電流が故障前の電流を保持するように健全な変換器12の電流指令値及び位相指令値を出力する。ここで所定値は、健全な変換器12が過負荷運転とならないときの並列多重型変換器11の出力電力である。   That is, the storage unit 22 of the converter control device 18 updates and stores the current output power of the parallel multiplex converter 11 detected by the output power detector 23 every moment, and the failure stop command value calculation means 20 The current output power of the parallel multiple converter 11 is compared with a predetermined value, and when the current output power of the parallel multiple converter 11 is equal to or less than the predetermined value, the parallel multiple converter 11 Sound current command values and phase command values of the converter 12 are output so that the output line current of each of the three phases holds the current before the failure. Here, the predetermined value is the output power of the parallel multiplex converter 11 when the healthy converter 12 is not overloaded.

設定器24には、過負荷運転を許容する旨、過負荷運転する際の健全な変換器12の出力電流の上限値、過負荷運転を許容しない場合の健全な変換器12の出力電流の上限値等が設定される。   The setter 24 indicates that the overload operation is permitted, the upper limit value of the healthy converter 12 output current when the overload operation is performed, and the upper limit of the healthy converter 12 output current when the overload operation is not permitted. Value etc. are set.

故障停止判定手段21は、故障検出器17により故障停止した変換器12が検出されたときは、故障停止した変換器12を識別し、故障停止時指令値演算手段20を起動するとともに切換手段25を起動する。切換手段25は、正常時においては、正常時指令値演算手段19の出力を選択してゲート制御回路26に出力し、故障検出器17により故障停止した変換器12が検出されたときは、故障停止時指令値演算手段20の出力を選択する。ゲート制御回路26は、切換手段25からの電流指令値及び位相指令値を満たすように変換器12U1〜12W2にゲート信号を出力する。   The failure stop determination means 21 identifies the converter 12 that has stopped by failure when the failure detector 17 detects the converter 12 that has failed to stop, activates the failure stop command value calculation means 20 and switches the switching means 25. Start up. In the normal state, the switching means 25 selects the output of the normal time command value calculating means 19 and outputs it to the gate control circuit 26. When the fault detector 17 detects the faulty converter 12, the fault means 17 The output of the command value calculation means 20 at the time of stop is selected. The gate control circuit 26 outputs a gate signal to the converters 12U1 to 12W2 so as to satisfy the current command value and the phase command value from the switching unit 25.

これにより、並列多重変換器11の各々の変換器12U1〜12W2が正常であるときは、正常時指令値演算手段19からの電流指令値及び位相指令値により各々の変換器12U1〜12W2は制御され、一方、並列多重変換器11の各々の変換器12U1〜12W2のいずれかが故障停止したときは、故障停止時指令値演算手段20からの電流指令値及び位相指令値により各々の変換器12U1〜12W2は制御される。   Thereby, when each converter 12U1 to 12W2 of the parallel multiple converter 11 is normal, each converter 12U1 to 12W2 is controlled by the current command value and the phase command value from the normal command value calculation means 19. On the other hand, when any one of the converters 12U1 to 12W2 of the parallel multiplex converter 11 is stopped due to a failure, the converters 12U1 to 12U1 are converted according to the current command value and the phase command value from the failure stop command value calculation means 20. 12W2 is controlled.

図11は、並列多重変換器11のいずれか1台の変換器12が故障停止したときの並列多重変換器11の出力電流ベクトル図であり、図11(a)は並列多重変換器11の各々の変換器12U1〜12W2が正常である場合の各相の変換器出力電流の出力電流ベクトル図、図11(b)は並列多重変換器11の変換器12W2が故障停止し、残りの健全な変換器12U1〜12W1で出力を分担した場合の各相の変換器出力電流の出力電流ベクトル図である。   FIG. 11 is an output current vector diagram of the parallel multiple converter 11 when any one of the converters 12 of the parallel multiple converter 11 is out of order. FIG. 11A shows each of the parallel multiple converters 11. FIG. 11B shows the output current vector diagram of the converter output current of each phase when the converters 12U1 to 12W2 are normal. FIG. 11B shows that the converter 12W2 of the parallel multiplex converter 11 is out of order and the remaining healthy conversions. It is an output current vector figure of the converter output current of each phase at the time of sharing an output with 12U1-12W1.

また、図12は、並列多重変換器11のいずれか1台の変換器12が故障停止したときの変圧器16の一次巻線の出力線電流ベクトル図であり、図12(a)は並列多重変換器11の各々の変換器12U1〜12W2が正常である場合の各相の出力電流の出力電流ベクトル図、図12(b)は並列多重変換器11の変換器12W2が故障停止し、残りの健全な変換器12U1〜12W1で出力を分担した場合の各相の出力電流の出力電流ベクトル図である。   FIG. 12 is an output line current vector diagram of the primary winding of the transformer 16 when any one converter 12 of the parallel multiplex converter 11 is stopped due to a failure. FIG. The output current vector diagram of the output current of each phase when each of the converters 12U1 to 12W2 of the converter 11 is normal, FIG. 12B is a diagram illustrating the failure of the converter 12W2 of the parallel multiple converter 11 and the remaining It is an output current vector figure of the output current of each phase at the time of sharing an output with sound converters 12U1-12W1.

図12(a)に示すように、並列多重変換器11の各々の変換器12U1〜12W2が正常である場合には、U相の変換器12U1、12U2の出力電流U1、U2、V相の変換器12V1、12V2の出力電流V1、V2、W相の変換器12W1、12W2の出力電流W1、W2は、それぞれ大きさが同じであり、120°の位相差を持つ三相平衡電流を維持している。また、図12(a)に示すように、変圧器16の一次巻線のU相、V相、W相の出力線電流もそれぞれ120°の位相差を持つ三相平衡電流を維持している。   As shown in FIG. 12A, when each of the converters 12U1 to 12W2 of the parallel multiple converter 11 is normal, the output currents U1, U2 and V phase of the U phase converters 12U1 and 12U2 are converted. The output currents V1 and V2 of the converters 12V1 and 12V2 and the output currents W1 and W2 of the W-phase converters 12W1 and 12W2 are the same in magnitude and maintain a three-phase balanced current having a phase difference of 120 °. Yes. Further, as shown in FIG. 12A, the U-phase, V-phase, and W-phase output line currents of the primary winding of the transformer 16 also maintain a three-phase balanced current having a phase difference of 120 °. .

この状態で、並列多重変換器11の変換器12W2が故障停止したとすると、W相の変換器12W2の出力電流が零となる。そこで、故障停止したW相の変換器12W2を除いた健全な変換器12U1〜12W1の出力電流U1〜W1の位相または大きさを調整制御して、三相各相の出力線電流が健全時の電流を保持するように制御する。   In this state, assuming that the converter 12W2 of the parallel multiple converter 11 is out of order, the output current of the W-phase converter 12W2 becomes zero. Therefore, the phase or magnitude of the output currents U1 to W1 of the healthy converters 12U1 to 12W1 excluding the W-phase converter 12W2 that has failed is adjusted and controlled so that the output line current of each of the three phases is healthy. Control to keep current.

図12(b)に示すように、残りの健全な変換器12U1〜12W1で出力を分担した場合、変換器出力電流は不平衡状態であるが、図12(b)に示すように、変圧器16の一次巻線のU相、V相、W相の出力線電流は三相平衡電流となる。図12(b)では、健全な変換器12U1〜12W1の各々の出力電流u1〜w1の大きさを同一とし、故障停止した変換器12W2が接続されたW相の位相を健全時と同一位相とした場合を示している。   As shown in FIG. 12B, when the output is shared by the remaining healthy converters 12U1 to 12W1, the converter output current is in an unbalanced state, but as shown in FIG. The U-phase, V-phase, and W-phase output line currents of the 16 primary windings are three-phase balanced currents. In FIG. 12B, the magnitudes of the output currents u1 to w1 of the sound converters 12U1 to 12W1 are the same, and the phase of the W phase to which the converter 12W2 that has failed is connected is the same as that at the time of sound. Shows the case.

図13は、健全な変換器12U1〜12W2の出力電流U1〜W2の位相または大きさの調整制御についての説明図である。いま、図13に示すように、健全な変換器12U1〜12W2の分担前の各々の出力電流をU1〜W2、並列多重変換器11の三相の出力電流の出力端をA、B、C、分担後の健全な変換器12U1〜12W1の各々の出力電流をu1〜w1、並列多重変換器11の三相の出力電流の出力端をA、B’、C’とする。そして、U1=U2=V1=V2=W1=1、∠BAB’=θ、AB=BC=CA=a、u1=u2=v1=v2=w1=bとする。そうすると、△BCC’に対する余弦定理より下記の(1)式が成立する。   FIG. 13 is an explanatory diagram of the phase or magnitude adjustment control of the output currents U1 to W2 of the healthy converters 12U1 to 12W2. Now, as shown in FIG. 13, the output currents of the healthy converters 12U1 to 12W2 before being shared are U1 to W2, and the output terminals of the three-phase output currents of the parallel multiple converter 11 are A, B, C, Assume that the output currents of the healthy converters 12U1 to 12W1 after sharing are u1 to w1, and the output terminals of the three-phase output currents of the parallel multiple converter 11 are A, B ′, and C ′. Then, U1 = U2 = V1 = V2 = W1 = 1, ∠BAB '= θ, AB = BC = CA = a, u1 = u2 = v1 = v2 = w1 = b. Then, the following equation (1) is established from the cosine theorem for ΔBCC ′.

(2b)=(2−b)+2−4(2−b)cos(120°) …(1)
(1)式からbを求めると、b>0であるから(2)式が得られる。
(2b) 2 = (2-b) 2 +2 2 -4 (2-b) cos (120 °) (1)
When b is obtained from the equation (1), since b> 0, the equation (2) is obtained.

b=√5−1=1.24 …(2)
また、△CBC’に対する余弦定理より下記の(3)式が成立する。
b = √5-1 = 1.24 (2)
Further, the following equation (3) is established from the cosine theorem for ΔCBC ′.

(2−b)=2+4b−8bcosθ …(3)
(3)式に(2)式を代入してθを求めると(4)式が得られる。
(2-b) 2 = 2 2 + 4b 2 -8b cos θ (3)
Substituting equation (2) into equation (3) to obtain θ yields equation (4).

θ=±15.5° …(4)
以上のことから、健全な変換器12U1〜12W1で故障した変換器W1の出力を分担するには、健全な変換器12U1〜12W1の出力電流の大きさを1.24倍にし、故障相であるW相以外のU相、V相の位相を15.5°ずらせばよいことになる。以上の説明では、各相の変換器12が2台の場合について説明したが、各相の変換器12が3台の場合も同様に適用できる。この場合、各相の変換器12の多重数を増やすことにより、1台の変換器12の故障停止時に残りの健全な変換器12が負担する電流が緩和できる。
θ = ± 15.5 ° (4)
From the above, in order to share the output of the converter W1 that has failed in the sound converters 12U1 to 12W1, the magnitude of the output current of the sound converters 12U1 to 12W1 is increased 1.24 times, which is a failure phase. It is sufficient to shift the phase of the U phase and the V phase other than the W phase by 15.5 °. In the above description, the case where there are two converters 12 for each phase has been described, but the same applies to the case where there are three converters 12 for each phase. In this case, by increasing the number of multiplexed converters 12 for each phase, the current borne by the remaining healthy converters 12 when one converter 12 is stopped can be reduced.

ここで、故障停止した変換器12を除いた健全な変換器12の各々の出力電流の大きさを同一とし、故障停止した変換器12が接続された相の位相を健全時と同一位相としたが、健全な変換器12の各々の出力電流が確保でき、三相各相の出力線電流が健全時の電流を確保できる限りは、その範囲内で、健全な変換器12の各々の出力電流の大きさを任意の値とするようにしてもよい。   Here, the magnitude of the output current of each of the healthy converters 12 excluding the converter 12 that has failed and stopped is made the same, and the phase of the phase to which the converter 12 that has failed and stopped is connected is the same as that at the time of sound. However, as long as the output current of each of the healthy converters 12 can be secured, and the output line current of each of the three phases can secure the current when healthy, the output current of each of the healthy converters 12 within that range. The magnitude of may be an arbitrary value.

図14は本発明の第2の実施の形態に係わる並列多重型交直変換装置の制御方法を示すフローチャートである。出力電力検出器23で検出された並列多重変換器11の出力電力を入力し、記憶部22に更新記憶する(S1)。そして、並列多重変換器11のいずれかの変換器12は故障停止したか否かを判定し(S2)、いずれの変換器12も故障停止していないときは、正常時指令値演算手段19で正常時の電流指令値及び位相指令値を演算し(S3)、その正常時の電流指令値及び位相指令値に基づいて並列多重変換器11を制御する(S4)。   FIG. 14 is a flowchart showing a control method of the parallel multiplex AC / DC converter according to the second embodiment of the present invention. The output power of the parallel multiple converter 11 detected by the output power detector 23 is input and updated and stored in the storage unit 22 (S1). Then, it is determined whether any of the converters 12 of the parallel multiple converter 11 has stopped due to a failure (S2). The normal current command value and the phase command value are calculated (S3), and the parallel multiple converter 11 is controlled based on the normal current command value and the phase command value (S4).

一方、ステップS2の判定で、並列多重変換器11のいずれかの変換器12が故障停止していると判定されたときは、更新記憶している現在の並列多重変換器11の出力電力が所定値以上か否かを判定する(S5)。そして、所定値以上であるときは、故障停止した変換器12を除く健全な変換器12の過負荷運転が許容されているか否かを判定し(S6)、過負荷運転が許容されているときは、故障停止時指令値演算手段20は、故障停止前の出力電力を維持する電流指令値及び位相指令値を演算する(S7)。そして、ステップS7で求めた電流指令値及び位相指令値に基づいて並列多重変換器11を制御する(S8)。   On the other hand, if it is determined in step S2 that one of the converters 12 of the parallel multiple converter 11 has stopped due to a failure, the current output power of the parallel multiple converter 11 that has been updated and stored is predetermined. It is determined whether or not the value is greater than or equal to (S5). When the value is equal to or greater than the predetermined value, it is determined whether or not a healthy overload operation of the converter 12 excluding the converter 12 that has failed and stopped is permitted (S6), and the overload operation is permitted. The failure stop command value calculation means 20 calculates a current command value and a phase command value for maintaining the output power before the failure stop (S7). Then, the parallel multiple converter 11 is controlled based on the current command value and the phase command value obtained in step S7 (S8).

ステップS6の判定で、過負荷運転が許容されていないときは、健全な変換器12が過負荷運転とならない範囲で出力電力を下げた故障停止時の電流指令値及び位相指令値を演算し(S9)、ステップS9で求めた電流指令値及び位相指令値に基づいて並列多重変換器11を制御する(S8)。また、ステップS5の判定で、現在の並列多重変換器11の出力電力が所定値以上でないときは、故障停止前の出力電力を維持する電流指令値及び位相指令値を演算し(S7)、その電流指令値及び位相指令値に基づいて並列多重変換器11を制御する(S8)。   If it is determined in step S6 that overload operation is not permitted, the current command value and phase command value at the time of failure stop when the output power is reduced within a range where the healthy converter 12 does not perform overload operation are calculated ( In step S9, the parallel multiple converter 11 is controlled based on the current command value and the phase command value obtained in step S9 (S8). If it is determined in step S5 that the current output power of the parallel multiple converter 11 is not equal to or greater than a predetermined value, a current command value and a phase command value for maintaining the output power before the failure stop is calculated (S7). The parallel multiple converter 11 is controlled based on the current command value and the phase command value (S8).

本発明の第2の実施の形態によれば、並列多重変換器11の1台の変換器12が故障停止になってもその他の健全な変換器12で出力を分担するので、健全時の電流をほぼ維持した運転の継続ができる。従って、直流送電系統に適用した場合には送電停止に伴う系統への影響を与えることがなく信頼性を確保できる。また、産業用のインバータに適用した場合には、インバータ停止に伴う製造不良の発生を防止でき、原子力発電所等の補機で使用した場合には、インバータ停止に伴う発電機の不要な停止を防止できる。   According to the second embodiment of the present invention, even if one converter 12 of the parallel multiple converter 11 is in a failure stop, the other healthy converter 12 shares the output. The operation can be continued with almost maintained. Therefore, when applied to a DC power transmission system, reliability can be ensured without affecting the system due to power transmission stoppage. In addition, when applied to industrial inverters, it is possible to prevent manufacturing defects due to inverter shutdown, and when used in auxiliary equipment such as nuclear power plants, the generator can be stopped unnecessarily due to inverter shutdown. Can be prevented.

また、予備の変換器を設置することなく運転継続することができるので、並列多重変換器の設置スペースを縮小できる。なお、事故前と同じ定格出力する場合には、半導体素子に多少の冗長が必要であるが、設置スペースに影響を与えるほどではない。また、変換器を停止することなく点検ができるため信頼性が向上し、設備の予防保全だけでなく、システムの故障率も低下させることができる。   Further, since the operation can be continued without installing a spare converter, the installation space for the parallel multiple converter can be reduced. In the case of the same rated output as before the accident, the semiconductor element needs some redundancy, but it does not affect the installation space. Further, since the inspection can be performed without stopping the converter, the reliability is improved, and not only the preventive maintenance of the equipment but also the failure rate of the system can be reduced.

以上のとおり、本発明の第1の実施形態および第2の実施形態において、任意の台数、任意の容量を組み合わせても、三相各相の出力線電流を平衡三相にすることができるため、変換器設計の標準化や合理化の制約を打破することができる。   As described above, in the first and second embodiments of the present invention, even if any number and any capacity are combined, the output line current of each of the three phases can be balanced to three phases. It can break down restrictions on standardization and rationalization of converter design.

本発明の第1の実施の形態に係わる並列多重型交直変換装置の構成図。1 is a configuration diagram of a parallel multiplex AC / DC converter according to a first embodiment of the present invention. 本発明の第1の実施の形態における単位変換器の一例を示す回路構成図。The circuit block diagram which shows an example of the unit converter in the 1st Embodiment of this invention. 本発明の第1の実施の形態における並列多重変換器の三相各相の変換器の台数が同一で定格容量も同一である場合の並列多重変換器の出力電流の一例を示す出力電流ベクトル図。The output current vector diagram which shows an example of the output current of a parallel multiple converter when the number of the converters of the three-phase each phase of the parallel multiple converter in the 1st Embodiment of this invention is the same, and the rated capacity is also the same . 本発明の第1の実施の形態における並列多重変換器の三相各相の変換器の運転台数を一定としたままで並列多重変換器の三相各相の出力線電流が小さな平衡三相電流となるように並列多重変換器の変換器出力電流を調整した場合の出力電流ベクトル図。The balanced three-phase current in which the output line current of each of the three phases of the parallel multiple converter is small while the number of operated converters of the three phases of the parallel multiple converter in the first embodiment of the present invention is constant. The output current vector figure at the time of adjusting the converter output current of a parallel multiple converter so that it may become. 本発明の第1の実施の形態における並列多重変換器の三相各相の変換器の台数が同じで定格容量が異なる場合の並列多重変換器の出力電流の一例を示す出力電流ベクトル図。The output current vector figure which shows an example of the output current of a parallel multiple converter in case the number of converters of the three-phase each phase of the parallel multiple converter in the 1st Embodiment of this invention is the same, and rating capacity differs. 本発明の第1の実施の形態における並列多重変換器の三相各相の変換器の台数が異なり定格容量も異なる場合の並列多重変換器の出力電流の一例を示す出力電流ベクトル図。The output current vector figure which shows an example of the output current of a parallel multiple converter in case the number of converters of the three-phase each phase of the parallel multiple converter in the 1st Embodiment of this invention, and rated capacity differ. 本発明の第1の実施の形態における並列多重変換器の三相各相の変換器の運転台数を一定としたままで並列多重変換器の三相各相の出力線電流が小さな平衡三相電流となるように並列多重変換器の変換器出力電流を調整した場合の他の一例を示す出力電流ベクトル図。The balanced three-phase current in which the output line current of each of the three phases of the parallel multiple converter is small while the number of operated converters of the three phases of the parallel multiple converter in the first embodiment of the present invention is constant. The output current vector figure which shows another example at the time of adjusting the converter output current of a parallel multiple converter so that it may become. 本発明の第1の実施の形態における並列多重変換器の三相各相の変換器の台数が異なり定格容量も異なる場合の並列多重変換器の出力電流の他の一例を示す出力電流ベクトル図。The output current vector figure which shows another example of the output current of a parallel multiple converter in case the number of converters of the three-phase each phase of the parallel multiple converter in the 1st Embodiment of this invention, and rated capacity differ. 本発明の第1の実施の形態における並列多重変換器の各相の各々の変換器が4台ずつ設けられ、合計12台の変換器を有した並列多重型交直変換装置の出力電力(p.u.)と損失(%)との関係を示すグラフ。Output power (pu) of a parallel multiplex AC / DC converter having four converters for each phase of the parallel multiplex converter in the first embodiment of the present invention and having a total of 12 converters And graph showing the relationship between loss (%). 本発明の第2の実施の形態に係わる並列多重型交直変換装置の構成図。The block diagram of the parallel multiplex type | mold AC / DC converter concerning the 2nd Embodiment of this invention. 本発明の第2の実施の形態における並列多重変換器のいずれか1台の変換器が故障停止したときの並列多重変換器の出力電流ベクトル図。The output current vector diagram of a parallel multiple converter when any one converter of the parallel multiple converter in the 2nd Embodiment of this invention stops a failure. 本発明の第2の実施の形態における並列多重変換器のいずれか1台の変換器が故障停止したときの変圧器の一次巻線の出力電流ベクトル図。The output current vector figure of the primary winding of a transformer when any one converter of the parallel multiple converter in a 2nd embodiment of the present invention stops a failure. 本発明の第2の実施の形態における健全な変換器の出力電流の位相または大きさの調整制御についての説明図。Explanatory drawing about the adjustment control of the phase or magnitude | size of the output current of the healthy converter in the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係わる並列多重型交直変換装置の制御方法を示すフローチャートThe flowchart which shows the control method of the parallel multiplex type | mold AC / DC converter concerning the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

11…並列多重変換器、12…変換器、13…IGBTモジュール、14…直流電源、15…巻線、16…変圧器、17…故障検出器、18…変換器制御装置、19…正常時指令値演算手段、20…故障停止時指令値演算手段、21…故障停止判定手段、22…記憶部、23…出力電力検出器、24…設定器、25…切換手段、26…ゲート制御回路 DESCRIPTION OF SYMBOLS 11 ... Parallel multiple converter, 12 ... Converter, 13 ... IGBT module, 14 ... DC power supply, 15 ... Winding, 16 ... Transformer, 17 ... Fault detector, 18 ... Converter control apparatus, 19 ... Normal time command Value calculating means, 20 ... Failure stop command value calculating means, 21 ... Failure stop determining means, 22 ... Storage section, 23 ... Output power detector, 24 ... Setting device, 25 ... Switching means, 26 ... Gate control circuit

Claims (7)

定格容量が同一のもの及び異なるものを含んだ複数個の電力変換器を組み合わせて三相各相にそれぞれ並列に接続して形成された並列多重変換器と、前記並列多重変換器の三相各相の出力線電流が平衡三相電流を保持するように前記並列多重変換器の三相各相に接続された変換器の運転台数または変換器の出力電流の位相または大きさを調整制御する変換器制御装置とを備え、前記変換器制御装置は、三相各相の変換器の運転台数または変換器の出力電圧の位相または大きさを調整制御するにあたり前記変換器の効率変動を極力抑制することを特徴とする並列多重型交直変換装置。 A parallel multiple converter formed by combining a plurality of power converters including the same and different rated capacities and connected in parallel to each of the three phases, and each of the three phases of the parallel multiple converter Conversion that adjusts and controls the number of converters connected to each of the three phases of the parallel multiple converter or the phase or magnitude of the output current of the converter so that the phase output line current maintains a balanced three-phase current. The converter controller suppresses fluctuations in the efficiency of the converter as much as possible when adjusting and controlling the number of operating converters of each phase of three phases or the phase or magnitude of the output voltage of the converter. A parallel multiplex AC / DC converter characterized by that. 前記並列多重変換器のいずれかの変換器が故障停止したことを検出する故障検出器を設け、前記変換器制御装置は、前記故障検出器が故障停止した変換器を検出したときは、前記並列多重型変換器の現在の出力電力が所定値を超えるか否かを判定し、前記並列多重型変換器の現在の出力電力が所定値以下であるときは、前記並列多重変換器の三相各相の出力線電流が故障前の電流を保持するように前記並列多重型変換器の効率変動を極力抑制して故障停止した変換器を除いた健全な変換器の出力電流の位相または大きさを調整制御することを特徴とする請求項1に記載の並列多重型交直変換装置。 Provided is a failure detector that detects that one of the converters of the parallel multiple converter has failed. When the converter detects the converter that has failed, the parallel controller It is determined whether or not the current output power of the multiplex converter exceeds a predetermined value, and when the current output power of the parallel multiplex converter is less than or equal to a predetermined value, each of the three phases of the parallel multiplex converter The phase or magnitude of the output current of a healthy converter excluding the converter that has failed and stopped by suppressing the fluctuation in efficiency of the parallel multiple converter as much as possible so that the phase output line current retains the current before the failure. 2. The parallel multiple AC / DC converter according to claim 1, wherein adjustment control is performed . 前記変換器制御装置は、前記並列多重型変換器の現在の出力電力が所定値を超えるときは、故障停止した変換器を除いた健全な変換器の各々の出力電流の大きさが所定の制限値を超えない範囲内で前記並列多重型変換器の効率変動を極力抑制して出力電流の位相または大きさを調整制御することを特徴とする請求項2に記載の並列多重型交直変換装置。 When the current output power of the parallel multiplex converter exceeds a predetermined value, the converter control device is configured such that the magnitude of the output current of each healthy converter excluding the converter that has failed and stopped is a predetermined limit. 3. The parallel multiple AC / DC converter according to claim 2 , wherein the phase or magnitude of the output current is adjusted and controlled by suppressing the fluctuation in efficiency of the parallel multiple converter as much as possible within a range not exceeding the value. 前記変換器制御装置は、故障停止した変換器が接続された相の健全な変換器の出力電流の大きさを大きくするとともに、故障停止した変換器が接続された相の位相を健全時と同一位相とすることを特徴とする請求項2または3に記載の並列多重型交直変換装置。 The converter control device increases the magnitude of the output current of the healthy converter of the phase to which the faulty stopped converter is connected, and the same phase of the phase to which the faulty stopped converter is connected. The parallel multiple AC / DC converter according to claim 2 or 3 , wherein the phase is a phase. 複数台の電力変換器が三相各相にそれぞれ並列に接続され三相交流電力を供給する並列多重型交直変換装置の制御方法において、前記並列多重型変換器の現在の出力電力を検出し、前記並列多重変換器のいずれかの変換器が故障停止したか否かを判定し、前記変換器のいずれも故障停止していないときは前記並列多重変換器の三相各相の出力線電流が所定電流となるように前記並列多重型変換器の効率変動を極力抑制して三相各相の運転台数または変換器の出力電圧の位相または大きさを調整制御し、前記変換器のいずれかが故障停止したときは前記並列多重型変換器の現在の出力電力が所定値を超えるか否かを判定し、前記並列多重型変換器の現在の出力電力が所定値以下であるときは前記並列多重変換器の三相各相の出力線電流が故障前の電流を保持するように前記並列多重型変換器の効率変動を極力抑制して故障停止した変換器を除いた健全な変換器の出力電流の位相または大きさを調整制御し、前記並列多重型変換器の現在の出力電力が所定値を超えるときは故障停止した変換器を除いた健全な変換器の各々の出力電流の大きさが所定の制限値を超えない範囲内で前記並列多重型変換器の効率変動を極力抑制して出力電流の位相または大きさを調整制御することを特徴とする並列多重型交直変換装置の制御方法。 In a control method of a parallel multiplex AC / DC converter that supplies three-phase AC power by connecting a plurality of power converters in parallel to each of the three-phase phases, the current output power of the parallel multiplex converter is detected, It is determined whether any of the converters of the parallel multiple converter has stopped by failure. When none of the converters have stopped by failure, the output line current of each of the three phases of the parallel multiple converter is By controlling the efficiency variation of the parallel multiplex converter as much as possible so as to obtain a predetermined current, the number of operating units of each of the three phases or the phase or magnitude of the output voltage of the converter is adjusted and controlled. When the failure is stopped, it is determined whether the current output power of the parallel multiplex converter exceeds a predetermined value. When the current output power of the parallel multiplex converter is less than a predetermined value, the parallel multiplex converter The output line current of each of the three phases of the converter Current to adjust control the phase or magnitude of the output current of the parallel multi-transducer sound transducer excluding the transducer failed stopped by minimizing the efficiency variation of to hold, the parallel multi-type conversion When the current output power of the converter exceeds a predetermined value, the parallel multiple converter is within a range in which the magnitude of the output current of each of the healthy converters excluding the converter that has failed and stopped does not exceed a predetermined limit value . A control method for a parallel multiplex AC / DC converter, characterized in that the phase or magnitude of the output current is adjusted and controlled by suppressing fluctuations in efficiency of the output as much as possible . 前記健全な変換器が過負荷運転を許容するときは、所定の制限値を超えない範囲内で前記並列多重型変換器の効率変動を極力抑制して出力電流の位相または大きさを調整制御することに代えて、前記並列多重変換器の三相各相の出力線電流が故障前の電流を保持するように前記並列多重型変換器の効率変動を極力抑制して前記健全な変換器の出力電流の位相または大きさを調整制御することを特徴とする請求項5に記載の並列多重型交直変換装置の制御方法。 When the healthy converter allows overload operation, the phase or magnitude of the output current is adjusted and controlled by suppressing the fluctuation in efficiency of the parallel multiplex converter as much as possible within a range not exceeding a predetermined limit value. Instead, the output of the sound converter is controlled by suppressing the fluctuation in efficiency of the parallel multiplexer converter as much as possible so that the output line current of each phase of the three phases of the parallel multiplexer is maintained at the current before the failure. 6. The method for controlling a parallel multiplex AC / DC converter according to claim 5 , wherein the phase or magnitude of the current is adjusted and controlled. 前記変換器のいずれかが故障停止したとき、前記並列多重変換器の三相各相の出力線電流が故障前の所定電流を保持するように故障停止した変換器を除いた健全な変換器の出力電流の位相または大きさを調整制御するにあたり、故障停止した変換器が接続された相の健全な変換器の出力電流の大きさを大きくするとともに、故障停止した変換器が接続された相の位相を健全時と同一位相とすることを特徴とする請求項5または6に記載の並列多重型交直変換装置の制御方法。 When any one of the converters is stopped due to failure, a sound converter other than the converter that is stopped due to failure so that the output line current of each phase of the three phases of the parallel multiple converters maintains a predetermined current before the failure. In adjusting and controlling the phase or magnitude of the output current, the magnitude of the output current of the healthy converter in the phase to which the faulty converter is connected is increased and the phase of the phase to which the faulty converter is connected is adjusted. The method of controlling a parallel multiplex AC / DC converter according to claim 5 or 6 , wherein the phase is the same as that in a healthy state.
JP2006322962A 2006-11-30 2006-11-30 Parallel multiplex AC / DC converter and control method Expired - Fee Related JP5061599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322962A JP5061599B2 (en) 2006-11-30 2006-11-30 Parallel multiplex AC / DC converter and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322962A JP5061599B2 (en) 2006-11-30 2006-11-30 Parallel multiplex AC / DC converter and control method

Publications (2)

Publication Number Publication Date
JP2008141808A JP2008141808A (en) 2008-06-19
JP5061599B2 true JP5061599B2 (en) 2012-10-31

Family

ID=39602720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322962A Expired - Fee Related JP5061599B2 (en) 2006-11-30 2006-11-30 Parallel multiplex AC / DC converter and control method

Country Status (1)

Country Link
JP (1) JP5061599B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029138A1 (en) * 2013-08-27 2015-03-05 東芝三菱電機産業システム株式会社 Solar generator system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986909A (en) * 1998-05-21 1999-11-16 Robicon Corporation Multiphase power supply with plural series connected cells and failed cell bypass
JP3431506B2 (en) * 1998-07-28 2003-07-28 株式会社東芝 Multiple inverter device
JP4070121B2 (en) * 2003-05-29 2008-04-02 三菱電機株式会社 Power converter
JP4687177B2 (en) * 2005-03-23 2011-05-25 日本電気株式会社 Power supply system and input current balancing control method
US7359223B2 (en) * 2005-03-30 2008-04-15 General Electric Company Power converter system and method

Also Published As

Publication number Publication date
JP2008141808A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
KR102609347B1 (en) Power systems for marine applications
US7359223B2 (en) Power converter system and method
US8097970B2 (en) Method and arrangement in wind power plant
JP6001098B2 (en) DC power supply system having system protection capability
JP5926946B2 (en) Method and system for operating a power generation system
US7863773B2 (en) Apparatus for the redundant power supply of at least one load
US9479011B2 (en) Method and system for a dual conversion uninterruptible power supply
JP2011115018A (en) Self-exciting reactive-power compensator
CN103262377A (en) Photovoltaic power generation system and power feeding system
US20140103886A1 (en) Method for producing reactive current with a converter and converter arrangement and energy supply plant
JP2015156740A (en) Power conversion device
JP2014079089A (en) Control method for digital grid router
JP2008141804A (en) Serial multiplexing ac/dc converter and control method
Strzelecki et al. Distribution transformer with multi-zone voltage regulation for smart grid system application
JP5061599B2 (en) Parallel multiplex AC / DC converter and control method
JP2014083900A (en) Control device of electric power supply system for electric railroad
WO2021205700A1 (en) Power conversion device
JP2007104822A (en) Parallelization system of power converter
JP6371254B2 (en) Power converter
WO2009027520A2 (en) Modular converter system with interchangeable converter modules
JP3431506B2 (en) Multiple inverter device
JP6805613B2 (en) Power converter
US9300131B2 (en) Internal electrification scheme for power generation plants
JP6690880B2 (en) Power converter
JP4440879B2 (en) Electric motor drive system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees