JP4953224B2 - Composite particle-containing slurry and method for producing composite particles - Google Patents

Composite particle-containing slurry and method for producing composite particles Download PDF

Info

Publication number
JP4953224B2
JP4953224B2 JP2005253466A JP2005253466A JP4953224B2 JP 4953224 B2 JP4953224 B2 JP 4953224B2 JP 2005253466 A JP2005253466 A JP 2005253466A JP 2005253466 A JP2005253466 A JP 2005253466A JP 4953224 B2 JP4953224 B2 JP 4953224B2
Authority
JP
Japan
Prior art keywords
solvent
polymer substance
particles
composite
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005253466A
Other languages
Japanese (ja)
Other versions
JP2007063468A (en
Inventor
知 石原
聡之 西村
英彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005253466A priority Critical patent/JP4953224B2/en
Publication of JP2007063468A publication Critical patent/JP2007063468A/en
Application granted granted Critical
Publication of JP4953224B2 publication Critical patent/JP4953224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、高分子物質に第二相粒子を含む複合体粒子、例えば、プラスチック材料、ゴ
ム材料などの複合添加粒子として利用できる粒子に関し、特に、複合体粒子を含有するス
ラリー及び該複合体粒子を簡便に製造する方法に関する
The present invention relates to a composite particle containing a second phase particle in a polymer substance, for example, a particle that can be used as a composite additive particle such as a plastic material or a rubber material, and in particular, a slurry containing the composite particle and the composite particle Relating to a simple method for producing

プラスチック材料やゴム材料などの高分子マトリックス中に第二相粒子を分散させた複
合材料が、優れた機械的性質や導電性など、マトリックス材料のみでは発現できない特性
を示すことが知られている。例えば、プラスチック材料に炭素繊維のような炭素系フィラ
ーや炭化チタンウイスカーのような導電性の第二相粒子を分散させることにより、強度特
性と導電性を併せて向上できることが知られている。
It is known that a composite material in which second-phase particles are dispersed in a polymer matrix such as a plastic material or a rubber material exhibits characteristics that cannot be expressed only by the matrix material, such as excellent mechanical properties and conductivity. For example, it is known that the strength characteristics and conductivity can be improved by dispersing carbon-based fillers such as carbon fibers and conductive second phase particles such as titanium carbide whiskers in a plastic material.

また、カーボンナノチューブは直径1μm以下の中空繊維状材料であり、その導電性や
電子放出特性などを利用した機能的材料として期待されている。そして、高分子マトリッ
クス中に分散させた複合材料が、高い機械的性質や導電性などの有用な特性を示すと報告
されている。さらには、カーボンナノチューブ以外に、窒化物系や酸化物系のナノチュー
ブも合成されている。
Carbon nanotubes are hollow fiber materials having a diameter of 1 μm or less, and are expected as functional materials utilizing their conductivity and electron emission characteristics. And it is reported that the composite material disperse | distributed in the polymer matrix shows useful characteristics, such as a high mechanical property and electroconductivity. In addition to carbon nanotubes, nitride and oxide nanotubes have also been synthesized.

このような複合材料を作製するためには、溶融樹脂あるいは溶媒に所望の第二相粒子を
均一に分散させる必要があるが、粒子相互の凝集力及び溶媒等に対する低い親和性のため
に、均一に分散させることは必ずしも容易ではない。特に、カーボンナノチューブのよう
な微細な繊維状材料の場合、その傾向が強い。相互の凝集力及び溶媒等に対する低い親和
性のために、カーボンナノチューブを均一に分散したポリマー系ナノコンポジットなどを
製造することは容易ではない。
In order to produce such a composite material, it is necessary to uniformly disperse the desired second phase particles in the molten resin or solvent. However, due to the low cohesion between the particles and the low affinity for the solvent, it is uniform. It is not always easy to disperse them. This tendency is particularly strong in the case of fine fibrous materials such as carbon nanotubes. Due to the mutual cohesive strength and low affinity for a solvent, it is not easy to produce a polymer-based nanocomposite in which carbon nanotubes are uniformly dispersed.

これまでに、カーボンナノチューブの溶媒に対する分散性を改善するために様々な試み
がなされている。まず、超音波をかけながらカーボンナノチューブを溶媒中に分散させる
方法(特許文献1)が提案されている。しかし、超音波を照射している間は分散していて
も照射が終了するとカーボンナノチューブが凝集してしまうという問題がある。また、カ
ーボンナノチューブと比較的親和性の高い溶媒を用いることが提案されており、そのよう
な溶媒として、種々の溶媒(特許文献2)、界面活性剤(非特許文献1)、アミド系極性
有機溶媒(特許文献3)などが開示されている。さらには、導電性ポリマーを混合する(
特許文献4)方法や、複数のアミノ基を有する高分子系化合物を混合する(特許文献5)
方法も開示されている。しかしながら、親和性の高い溶媒を用いる方法では、溶媒の種類
が限定されるという問題があり、また、用途によっては、他の高分子物質を混合すること
が好ましくない場合もある。
Until now, various attempts have been made to improve the dispersibility of carbon nanotubes in a solvent. First, a method of dispersing carbon nanotubes in a solvent while applying ultrasonic waves (Patent Document 1) has been proposed. However, there is a problem that the carbon nanotubes are aggregated when the irradiation is completed even if they are dispersed during the irradiation of the ultrasonic waves. In addition, it has been proposed to use a solvent having a relatively high affinity with the carbon nanotube. As such a solvent, various solvents (Patent Document 2), surfactants (Non-Patent Document 1), amide-based polar organics are used. A solvent (Patent Document 3) and the like are disclosed. Furthermore, a conductive polymer is mixed (
Patent Document 4) Method and polymer compounds having a plurality of amino groups are mixed (Patent Document 5)
A method is also disclosed. However, the method using a solvent having a high affinity has a problem that the type of the solvent is limited, and depending on the application, it may not be preferable to mix other polymer substances.

一方、SiOガスなどを利用した気相反応により、カーボンナノチューブ表面にSiCを析出
させる手法が報告されている(非特許文献2及び特許文献6)。しかしながら、この手法
では、カーボンナノチューブ表面にSiCを薄く析出させる目的としては適しているが、SiC
の析出膜を厚くする場合には工業的生産性としては問題がある。また、ポリジベンゾジシ
ラアゼピンなどのポリマーでカーボンナノチューブ表面を被覆することにより、カーボン
ナノチューブ表面に絶縁性、反応性、光学的可視性、溶媒分散性を付与すること(特許文
献7)も報告されている。しかしながら、この報告においては、カーボンナノチューブ表
面に光学的可視性を付与することを主目的としており、溶媒分散性については具体的に開
示されていない。また、ポリマーを第二相粒子に吸着被覆する方法では、マトリックスと
なる溶融樹脂あるいは分散のための溶媒と混合した際に、吸着被覆したポリマーが再溶解
する可能性もある。
On the other hand, a technique for depositing SiC on the surface of a carbon nanotube by a gas phase reaction using SiO gas or the like has been reported (Non-patent Document 2 and Patent Document 6). However, this method is suitable for the purpose of thinly depositing SiC on the carbon nanotube surface.
In the case of increasing the thickness of the deposited film, there is a problem in industrial productivity. It has also been reported that the carbon nanotube surface is provided with insulating properties, reactivity, optical visibility, and solvent dispersibility by coating the carbon nanotube surface with a polymer such as polydibenzodisilaazepine (Patent Document 7). ing. However, in this report, the main purpose is to impart optical visibility to the carbon nanotube surface, and the solvent dispersibility is not specifically disclosed. Further, in the method of adsorbing and coating the polymer on the second phase particles, there is a possibility that the adsorbed and coated polymer may be redissolved when mixed with a molten resin as a matrix or a solvent for dispersion.

特開2000−86219号公報JP 2000-86219 A 特開2000−72422号公報Japanese Patent Laid-Open No. 2000-72422 特開2005−162877号公報JP 2005-162877 A 特開2005−97499号公報JP-A-2005-97499 特開2004−276232号公報JP 2004-276232 A 特開2005−75720号公報JP 2005-75720 A 特開2004−2119号公報JP 2004-2119 A M. J. O’Connel 他:SCIENCE, 297, 26 July (2002), 593-596.M. J. O’Connel et al .: SCIENCE, 297, 26 July (2002), 593-596. J. W. Liu他:Chem. Phys. Lett., 348 (2001), 357-360.J. W. Liu et al .: Chem. Phys. Lett., 348 (2001), 357-360.

本発明は上記の問題点を解決し、マトリックス材料に対する分散性のよい粒子、すなわ
ち、高分子物質に第二相粒子を含む複合体粒子及び該複合体粒子を含有するスラリーを簡
便に製造する方法を提供することを目的とする。
The present invention solves the above-mentioned problems, and a method for easily producing particles having good dispersibility with respect to a matrix material, that is, composite particles containing second-phase particles in a polymer substance and slurry containing the composite particles The purpose is to provide.

本発明者は、ポリカルボシランのような高分子前駆体物質の各種溶媒に対する溶解度を
詳細に検討した結果、高分子物質を溶媒に溶解し、この溶液、及び、該高分子物質を溶解
しない溶媒を混合して混合溶媒溶液を形成すると、該高分子物質粒子を混合溶媒溶液中に
均一微細に析出させ、該高分子物質粒子を含有するスラリーを容易に作製できることを見
い出した。さらに、混合溶媒溶液の溶媒を除去することにより、該高分子物質粒子を容易
に作製できることを見い出した。ここで、該高分子物質粒子を混合溶媒溶液中に析出させ
る際に、予め第二相粒子を溶液中に分散させておくことにより、第二相粒子を含有して該
高分子物質粒子を析出させることができることを見い出した。
As a result of examining in detail the solubility of a polymer precursor material such as polycarbosilane in various solvents, the present inventor has dissolved the polymer material in a solvent, and this solution and a solvent that does not dissolve the polymer material It was found that when a mixed solvent solution is formed by mixing the polymer substance particles, the polymer substance particles are uniformly and finely precipitated in the mixed solvent solution, and a slurry containing the polymer substance particles can be easily produced. Furthermore, it has been found that the polymer substance particles can be easily produced by removing the solvent of the mixed solvent solution. Here, when the polymer substance particles are precipitated in the mixed solvent solution, the polymer substance particles are precipitated by containing the second phase particles by dispersing the second phase particles in the solution in advance. I found out that I can make it happen.

すなわち、本発明による高分子物質に第二相粒子を含む複合体の製造方法は、溶媒可溶
な高分子物質、該高分子物質を溶解する溶媒及び第二相粒子を混合し、さらに、この混合
液と該高分子物質を溶解しない溶媒を混合することにより混合溶媒溶液を形成し、溶解さ
れた該高分子物質の粒子を第二相粒子を核とする複合体として混合溶媒溶液中に析出させ
ることを特徴とするものである。さらに、混合溶媒溶液の溶媒を除去して複合体粒子を製
造することを特徴とするものである。
That is, the method for producing a composite containing the second phase particles in the polymer material according to the present invention comprises mixing the solvent-soluble polymer material, the solvent dissolving the polymer material, and the second phase particles, A mixed solvent solution is formed by mixing the mixed solution and a solvent that does not dissolve the polymer substance, and the dissolved polymer substance particles are precipitated in the mixed solvent solution as a composite having the second phase particles as nuclei. It is characterized by making it. Further, the composite particles are produced by removing the solvent of the mixed solvent solution.

本発明の製造方法では、高分子物質の溶媒への溶解度を利用しているため、2種の溶媒
を使用した液体の混合方式により室温でも短時間の反応で容易に複合体粒子の析出が可能
であるため、複雑な装置や多大なエネルギーを必要とせず、溶媒への分散性のよい粒子の
量産に適している。
Since the production method of the present invention utilizes the solubility of the polymer substance in the solvent, the composite particles can be easily precipitated in a short reaction at room temperature by the liquid mixing method using two kinds of solvents. Therefore, it is suitable for mass production of particles having good dispersibility in a solvent without requiring a complicated apparatus or a large amount of energy.

本発明では、原料として、溶媒に可溶な高分子物質を用いる。本発明に適した高分子物
質の例としては、ポリカルボシラン、ポリビニルシランなどのポリシリレン類が挙げられ
る。なお、ポリシリレン類は、ポリシラン類とも称されている。また、このような高分子
物質を基本として、酸素、窒素、燐、ホウ素、チタン、ジルコニウム、アルミニウムなど
の元素を含むものであっても構わない。さらには、複数の高分子物質を混合したもの、重
縮合したものであっても構わない。本発明では、溶媒に可溶な高分子物質を用いるが、加
熱などによる不融化処理の可能な高分子物質を用いることが好ましい。この不融化処理を
施すことにより、該高分子物質を該溶媒に不溶なものに変化させることができる。
In the present invention, a polymer material soluble in a solvent is used as a raw material. Examples of the polymer substance suitable for the present invention include polysilylenes such as polycarbosilane and polyvinylsilane. Polysilylenes are also called polysilanes. Further, based on such a polymer substance, it may contain an element such as oxygen, nitrogen, phosphorus, boron, titanium, zirconium, and aluminum. Further, a mixture of a plurality of polymer substances or a polycondensation may be used. In the present invention, a polymer substance that is soluble in a solvent is used, but a polymer substance that can be infusibilized by heating or the like is preferably used. By applying this infusibilization treatment, the polymer substance can be changed into one insoluble in the solvent.

本発明における複合体の製造方法として、溶媒可溶な高分子物質、該高分子物質を溶解
する溶媒及び第二相粒子を混合し、さらに、この混合液と該高分子物質を溶解しない溶媒
を混合することにより混合溶媒溶液を形成し、混合溶媒溶液全体における該高分子物質の
溶解度が低下することにより、第二相粒子を核として高分子物質粒子を混合溶媒溶液中に
析出させてスラリーを形成することを特徴とする。さらに、混合溶媒溶液の溶媒を除去し
て複合体粒子を製造することを特徴とする。
As a method for producing a composite in the present invention, a solvent-soluble polymer substance, a solvent that dissolves the polymer substance, and second-phase particles are mixed, and a mixed solvent and a solvent that does not dissolve the polymer substance are further mixed. A mixed solvent solution is formed by mixing, and the solubility of the polymer substance in the entire mixed solvent solution is reduced, so that the polymer substance particles are precipitated in the mixed solvent solution with the second phase particles as nuclei, thereby forming a slurry. It is characterized by forming. Further, the composite particles are produced by removing the solvent of the mixed solvent solution.

含有する第二相粒子は、高分子物質の溶解及び析出に用いる両種の溶媒に溶解しないも
のであれば、種類を問わない。用途に応じて、セラミックス粉末、金属粉末、金属間化合
物粉末、炭素粉末、フラーレン物質粒子などを選択することができる。相互の凝集力及び
溶媒等に対する低い親和性のために分散が容易ではない、繊維状やウィスカー状のもので
も、本発明では容易に複合化することが可能である。すなわち、第二相粒子の形状アスペ
クト比が2以上であっても適用可能である。例えば、セラミックスウィスカーやカーボン
繊維ウィスカーなどが選択できる。さらには、第二相粒子として、カーボンナノチューブ
などの直径が1μm以下の繊維状物質は特に有用である。カーボンナノチューブのみなら
ず、窒化物系や酸化物系などのナノチューブも有用である。これらの繊維状物質は、化学
組成による種類、化学結合状態の種類、また、単層又は多層の構造による種類を問わない
The second phase particles to be contained are not limited as long as they do not dissolve in both types of solvents used for dissolution and precipitation of the polymer substance. Ceramic powder, metal powder, intermetallic compound powder, carbon powder, fullerene substance particles and the like can be selected according to the application. Even in the form of fibers or whiskers that are not easily dispersed due to mutual cohesion and low affinity for solvents, the present invention can be easily combined. That is, it is applicable even if the shape aspect ratio of the second phase particles is 2 or more. For example, ceramic whiskers or carbon fiber whiskers can be selected. Furthermore, a fibrous substance having a diameter of 1 μm or less such as a carbon nanotube is particularly useful as the second phase particle. Not only carbon nanotubes but also nanotubes such as nitrides and oxides are useful. These fibrous substances may be of any kind depending on the chemical composition, kind of chemical bonding state, and kind depending on the structure of a single layer or a multilayer.

ここで、該高分子物質を溶解する溶媒として、ノルマルヘキサンやキシレンなどの有機
溶媒が好適である。該高分子物質を溶解するものであれば、複数の溶媒を混合したもので
あってもよい。特に粘性の低いノルマルヘキサンが好ましい。溶解する方法は問わないが
、迅速な溶解のため、撹拌することが望ましい。一方、該高分子物質を溶解しない溶媒の
例としては、エタノール、メタノール、アセトン、水などが挙げられる。該高分子物質を
溶解しないものであれば、複数の溶媒を混合したものであってもよい。混合の容易さから
、粘性の低い溶媒が好ましい。さらには、該高分子物質を溶解する溶媒、及び、該高分子
物質を溶解しない溶媒は、互いに溶解し合うものを選択することが、均一な析出のために
好ましい。ここで、該高分子物質を溶解しない溶媒の量は析出の均一性のために多い方が
好ましく、溶解に用いた溶媒の量に対し、体積比で2倍以上が好ましい。
Here, an organic solvent such as normal hexane or xylene is suitable as a solvent for dissolving the polymer substance. As long as the polymer substance can be dissolved, a mixture of a plurality of solvents may be used. In particular, normal hexane having a low viscosity is preferred. Although the method of melt | dissolving is not ask | required, stirring is desirable for quick melt | dissolution. On the other hand, examples of the solvent that does not dissolve the polymer substance include ethanol, methanol, acetone, and water. As long as the polymer substance is not dissolved, a mixture of a plurality of solvents may be used. A solvent with low viscosity is preferable because of easy mixing. Furthermore, it is preferable for the uniform precipitation that a solvent that dissolves the polymer substance and a solvent that does not dissolve the polymer substance are selected so as to dissolve each other. Here, the amount of the solvent that does not dissolve the polymer substance is preferably large for the uniformity of precipitation, and is preferably twice or more by volume with respect to the amount of the solvent used for dissolution.

混合方法は問わないが、まず該高分子物質を溶媒に溶解して溶液を形成し、次に第二相
粒子をこの溶液に混合し、該高分子物質を溶解しない溶媒を撹拌しながら、該粒子分散溶
液を該溶媒に滴下して混合溶媒溶液を形成することが好ましい。この順序で混合すること
により、該粒子分散溶液が該溶媒中に短時間で拡散し、希釈され、該高分子物質の溶解度
が低下するにつれて溶解された該高分子物質が第二相粒子を核として混合溶媒溶液中に析
出し、第二相粒子を内部に含有する複合体粒子を含有するスラリーとなる。第二相粒子の
溶媒分散が容易である場合には、該高分子物質を溶解する溶媒に第二相粒子を分散させ、
次に該高分子物質をこの混合液に溶解させ、この粒子分散溶液を該溶媒に滴下して混合溶
媒溶液を形成してもよい。
The mixing method is not limited, but first, the polymer substance is dissolved in a solvent to form a solution, then the second phase particles are mixed with the solution, and the solvent that does not dissolve the polymer substance is stirred, It is preferable to add the particle dispersion solution dropwise to the solvent to form a mixed solvent solution. By mixing in this order, the particle dispersion solution diffuses in the solvent in a short time, is diluted, and the dissolved polymer substance nucleates the second phase particles as the solubility of the polymer substance decreases. As a slurry containing composite particles containing the second phase particles therein. When the solvent dispersion of the second phase particles is easy, the second phase particles are dispersed in a solvent that dissolves the polymer substance,
Next, the polymer substance may be dissolved in the mixed solution, and the particle dispersion solution may be dropped into the solvent to form a mixed solvent solution.

このように、本発明の方法により、複合体粒子を溶媒中に含有するスラリーを容易に作
製することができる。このスラリーから後述するように複合体粒子を作製することができ
るが、このスラリーは、基板上に塗布して乾燥することによる複合皮膜の作製などの用途
にも用いることができる。なお、必要に応じてスラリーの溶媒を置換することもできる。
例えば、得られたスラリーから静置や遠心分離などの方法で上澄液を分離し、所望の溶媒
を加えて撹拌することにより、スラリーの溶媒を置換できる。
Thus, according to the method of the present invention, a slurry containing the composite particles in a solvent can be easily prepared. As described later, composite particles can be produced from this slurry, but this slurry can also be used for applications such as production of a composite film by coating on a substrate and drying. In addition, the solvent of a slurry can also be substituted as needed.
For example, the solvent of the slurry can be replaced by separating the supernatant from the obtained slurry by a method such as standing or centrifuging, adding a desired solvent and stirring.

本発明の方法により得られたスラリーから溶媒を除去することによって、微細な複合体
粒子を得ることができる。ここで、溶媒を除去する方法は問わない。加熱乾燥、真空乾燥
、凍結乾燥などが選択できる。とくに噴霧乾燥法は量産に適している。
Fine composite particles can be obtained by removing the solvent from the slurry obtained by the method of the present invention. Here, the method for removing the solvent does not matter. Heat drying, vacuum drying, freeze drying, etc. can be selected. The spray drying method is particularly suitable for mass production.

得られた複合体粒子は、その高分子物質の性質に基づき、任意の処理を施すことができ
る。例えば、高分子物質の種類によっては、該高分子物質の融点以下の温度で酸化性雰囲
気中において加熱する酸化不融化処理を施すことが可能であり、該高分子物質の分子量が
高くなるため、当初に溶解に用いた溶媒に対しても溶解を抑制することができる。また、
酸化不融化処理の代わりに電子線照射などの方法でも不融化処理をすることができる。
The obtained composite particles can be subjected to any treatment based on the properties of the polymer substance. For example, depending on the type of polymer substance, it is possible to perform an oxidative infusibilization treatment that is performed in an oxidizing atmosphere at a temperature lower than the melting point of the polymer substance, and the molecular weight of the polymer substance increases. Dissolution can also be suppressed with respect to the solvent originally used for dissolution. Also,
Instead of the oxidative infusibilization treatment, the infusibilization treatment can also be performed by a method such as electron beam irradiation.

0.2gのポリカルボシラン高分子固体を、70mLのノルマルヘキサンに加えてマグ
ネチックスターラーで撹拌し、溶解した。これに1gの多層カーボンナノチューブ(和光
純薬製、40〜70nm径)を混合し、超音波を照射して均一に分散させて黒色の粒子分散溶液
を形成した。一方、500mLのエタノールをマグネチックスターラーで撹拌し、その上
から前述の粒子分散溶液を滴下し混合溶媒溶液を形成した。その結果、第二相粒子である
多層カーボンナノチューブを含有する高分子物質粒子が析出し、混合溶媒溶液に多層カー
ボンナノチューブを含有する高分子物質粒子が分散した黒色のスラリーとなった。この黒
色のスラリーを6時間静置したが、50%以上のカーボンナノチューブは沈殿することな
く、混合溶媒溶液中に分散した状態であった。
[比較例1]
0.2 g of polycarbosilane polymer solid was added to 70 mL of normal hexane and stirred with a magnetic stirrer to dissolve. 1 g of multi-walled carbon nanotubes (manufactured by Wako Pure Chemical Industries, 40-70 nm diameter) were mixed with this, and irradiated with ultrasonic waves to uniformly disperse to form a black particle dispersion solution. On the other hand, 500 mL of ethanol was stirred with a magnetic stirrer, and the particle dispersion solution was dropped from above to form a mixed solvent solution. As a result, polymer substance particles containing multi-walled carbon nanotubes as second phase particles were precipitated, resulting in a black slurry in which polymer substance particles containing multi-walled carbon nanotubes were dispersed in a mixed solvent solution. This black slurry was allowed to stand for 6 hours, but 50% or more of the carbon nanotubes were dispersed in the mixed solvent solution without precipitation.
[Comparative Example 1]

70mLのノルマルヘキサンに実施例1と同じ多層カーボンナノチューブを1g加え、
超音波を照射して均一に分散させて黒色の混合液を形成した。一方、500mLのエタノ
ールをマグネチックスターラーで撹拌し、その上から前述の混合液を滴下し混合溶媒溶液
を形成した。その結果、混合溶媒溶液に多層カーボンナノチューブが分散した黒色のスラ
リーとなった。このスラリーを静置したところ、6時間後にはカーボンナノチューブの9
0%以上が沈殿するか、又は、1mm程度径の凝集体として液中に分散していた。
1 g of the same multi-walled carbon nanotube as in Example 1 was added to 70 mL of normal hexane,
Ultrasonic wave was irradiated and uniformly dispersed to form a black mixed solution. On the other hand, 500 mL of ethanol was stirred with a magnetic stirrer, and the above-mentioned mixed solution was dropped from above to form a mixed solvent solution. As a result, a black slurry in which multi-walled carbon nanotubes were dispersed in the mixed solvent solution was obtained. This slurry was allowed to stand, and after 6 hours, 9% of carbon nanotubes were observed.
0% or more precipitated, or was dispersed in the liquid as an aggregate having a diameter of about 1 mm.

実施例1と比較例1の結果は、カーボンナノチューブを本発明の方法を用いてポリカル
ボシラン高分子で複合化することにより、スラリー中の分散性を大幅に改善することがで
きることを示している。
The results of Example 1 and Comparative Example 1 show that the dispersibility in the slurry can be greatly improved by complexing the carbon nanotubes with the polycarbosilane polymer using the method of the present invention. .

実施例1で形成したスラリーの一部を取り出してガラス板上に滴下して自然乾燥させた
。図1に、得られた粒子の走査型電子顕微鏡写真を示す。この複合体粒子は、繊維状のカ
ーボンナノチューブの表面がポリカルボシランで被覆されていることを示している。
A part of the slurry formed in Example 1 was taken out and dropped on a glass plate to be naturally dried. FIG. 1 shows a scanning electron micrograph of the obtained particles. This composite particle indicates that the surface of the fibrous carbon nanotube is coated with polycarbosilane.

本発明による高分子物質に第二相粒子を含有する複合体粒子は、プラスチック材料、ゴ
ム材料などの複合添加粒子として利用できる。特に、カーボンナノチューブは一般に凝集
しやすく、溶媒への均一分散が容易ではない。しかし、該高分子物質で被覆することによ
り、溶媒に均一分散することが可能となる。すなわち、カーボンナノチューブのようにプ
ラスチック、ゴムに対する分散性が低い粒子を該高分子物質で複合化することにより、溶
媒中への分散性を大幅に改善することができる。
The composite particles containing the second phase particles in the polymer material according to the present invention can be used as composite additive particles such as plastic materials and rubber materials. In particular, carbon nanotubes generally tend to aggregate and are not easily uniformly dispersed in a solvent. However, by coating with the polymer substance, it becomes possible to uniformly disperse in the solvent. That is, the dispersibility in a solvent can be greatly improved by compounding particles having low dispersibility in plastics and rubber such as carbon nanotubes with the polymer substance.

実施例2において、カーボンナノチューブとポリカルボシランより作製した複合体粒子の図面代用走査型電子顕微鏡写真。In Example 2, the drawing substitute scanning electron micrograph of the composite particle produced from the carbon nanotube and the polycarbosilane.

Claims (4)

以下のステップ(ア)及び(イ)を設けた複合体含有スラリーの製造方法。The manufacturing method of the composite containing slurry which provided the following steps (A) and (I).
(ア)ポリカルボシラン及びポリビニルシランからなる群から選択される高分子物質、前記高分子物質を溶解する溶媒及び第二相粒子を混合した溶液を形成する。(A) A solution in which a polymer material selected from the group consisting of polycarbosilane and polyvinylsilane, a solvent for dissolving the polymer material, and second phase particles is mixed is formed.
(イ)前記溶液と前記高分子物質を溶解しない溶媒とを混合することにより、前記第二相粒子を核として前記高分子物質が析出した複合体含有スラリーを得る。(A) By mixing the solution and a solvent that does not dissolve the polymer substance, a complex-containing slurry in which the polymer substance is precipitated with the second phase particles as nuclei is obtained.
前記ステップ(イ)における前記溶液と前記高分子物質を溶解しない溶媒との混合は、前記高分子物質を溶解しない溶媒に前記溶液を滴下することにより行う、請求項1に記載の複合体含有スラリーの製造方法。2. The composite-containing slurry according to claim 1, wherein the mixing of the solution and the solvent that does not dissolve the polymer substance in the step (a) is performed by dropping the solution into a solvent that does not dissolve the polymer substance. Manufacturing method. 前記第二相粒子は直径が1μm以下の繊維状物質である、請求項1または2に記載の複合体含有スラリーの製造方法。The method for producing a composite-containing slurry according to claim 1 or 2, wherein the second phase particles are a fibrous substance having a diameter of 1 µm or less. 請求項1から3の何れかに記載の方法で製造したスラリーから溶媒を除去するステップを設けた、複合体粒子の製造方法。The manufacturing method of composite particle | grains provided with the step which removes a solvent from the slurry manufactured by the method in any one of Claim 1 to 3.
JP2005253466A 2005-09-01 2005-09-01 Composite particle-containing slurry and method for producing composite particles Expired - Fee Related JP4953224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005253466A JP4953224B2 (en) 2005-09-01 2005-09-01 Composite particle-containing slurry and method for producing composite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005253466A JP4953224B2 (en) 2005-09-01 2005-09-01 Composite particle-containing slurry and method for producing composite particles

Publications (2)

Publication Number Publication Date
JP2007063468A JP2007063468A (en) 2007-03-15
JP4953224B2 true JP4953224B2 (en) 2012-06-13

Family

ID=37926021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005253466A Expired - Fee Related JP4953224B2 (en) 2005-09-01 2005-09-01 Composite particle-containing slurry and method for producing composite particles

Country Status (1)

Country Link
JP (1) JP4953224B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008068B2 (en) * 2007-03-20 2012-08-22 独立行政法人物質・材料研究機構 Porous composite and method for producing the same
JP5280016B2 (en) * 2007-05-11 2013-09-04 大日精化工業株式会社 Coating liquid
KR102576859B1 (en) * 2021-07-21 2023-09-12 금호타이어 주식회사 Tread rubber composition for tires

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227444A (en) * 1985-07-29 1987-02-05 Mitsubishi Chem Ind Ltd Production of electrically conductive resin composition
JP2613252B2 (en) * 1988-04-21 1997-05-21 日機装株式会社 Method for producing homogeneously mixed preform powder of whisker and thermoplastic resin
DE4107691A1 (en) * 1991-03-09 1992-09-10 Basf Ag METHOD FOR COMPOUNDING CERAMIC INJECTION MOLDING AND FIBER MATING
JP2006117779A (en) * 2004-10-21 2006-05-11 Calp Corp Electroconductive resin composition and method for producing the same

Also Published As

Publication number Publication date
JP2007063468A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
Lee et al. Highly improved interfacial affinity in carbon fiber-reinforced polymer composites via oxygen and nitrogen plasma-assisted mechanochemistry
KR101135672B1 (en) Conductive thermosets by extrusion
WO2004058899A9 (en) Liquid mixture, structure, and method for forming structure
US7985354B1 (en) Carbon nanomaterials dispersion and stabilization
JP2005520021A (en) Composite materials containing polar polymers and single-walled carbon nanotubes
TW200922872A (en) Carbon nano tube aggregation and the producing method thereof
JP2006111870A (en) Electrically-conductive resin composition, method for producing the same, and use of the same
JP2008274060A (en) Method for mixing resin material and conductive filler, composite material produced by the method and master pellet
JP2009235650A (en) Fibrous carbon-based insulator, resin composite material containing the fibrous carbon-based insulator, and method for manufacturing the fibrous carbon-based insulator
JP2013091783A (en) Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
Wang et al. Application of carbon nanotubes from waste plastics as filler to epoxy resin composite
KR100713222B1 (en) Modification of carbon nanotubee by pyrene derivatives and its application to preparation of polymer/carbon nanotube nanocomposite of high dielectric constant
JP4953224B2 (en) Composite particle-containing slurry and method for producing composite particles
KR101135055B1 (en) Fabrication method of polymer/carbon nanotube composite with good electromagnetic interference shielding efficiency and polymer/carbon nanotube composite using the same
KR101055620B1 (en) Polymer / carbon nanotube composite with excellent electrical properties and its manufacturing method
Feng et al. Preparation of PEEK/MWCNT nanocomposites via MWCNT-induced interfacial crystallization mediated compatibilization
TW201730282A (en) Polymer coated multiwall carbon nanotubes
JP2010242091A (en) Carbon fiber-containing resin dispersion and resin composite material
US20210237509A1 (en) Dispersions for additive manufacturing comprising discrete carbon nanotubes
JP2011084844A (en) Carbon nanofiber, carbon nanofiber assembly, method for producing carbon nanofiber, method for producing carbon fiber composite material, and carbon fiber composite material
JP2008143743A (en) Carbon-based composite composition and molding made from the same
Nayak et al. Effect of modified MWCNT on the properties of PPO/LCP blend
KR102087248B1 (en) Functionalized carbon material-based conductive filler, preparation method thereof, and preparation method for conducting fiber using the same
EP1615969B1 (en) Carbon fiber-containing resin dispersion solution and resin composite material
Rangari et al. Synthesis Fabrication and Characterization of Ag/CNT‐Polymer Nanocomposites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees