JP4934561B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP4934561B2
JP4934561B2 JP2007254796A JP2007254796A JP4934561B2 JP 4934561 B2 JP4934561 B2 JP 4934561B2 JP 2007254796 A JP2007254796 A JP 2007254796A JP 2007254796 A JP2007254796 A JP 2007254796A JP 4934561 B2 JP4934561 B2 JP 4934561B2
Authority
JP
Japan
Prior art keywords
power
voltage
power converter
switch
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007254796A
Other languages
Japanese (ja)
Other versions
JP2009089502A (en
Inventor
徹郎 児島
嶋田  基巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007254796A priority Critical patent/JP4934561B2/en
Publication of JP2009089502A publication Critical patent/JP2009089502A/en
Application granted granted Critical
Publication of JP4934561B2 publication Critical patent/JP4934561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明は蓄電池を用いた電力変換装置に関し、特に、補助変換器を備えた電力変換装置に関する。   The present invention relates to a power conversion device using a storage battery, and particularly to a power conversion device including an auxiliary converter.

最近、ガソリンエンジンやディーゼルエンジンなど内燃機関駆動による車両に対して、騒音や排気、省資源など環境問題対応のため、電動機駆動による車両が注目されている。これらのシステムでは、電動機の動力源が必要となり、エンジンによって発電機を駆動して電力を発生させ、電動機の負荷変動を吸収するための蓄電池を備えているものがある(例えば、特許文献1参照)。   Recently, a vehicle driven by an electric motor has been attracting attention in order to deal with environmental problems such as noise, exhaust, and resource saving with respect to a vehicle driven by an internal combustion engine such as a gasoline engine or a diesel engine. Some of these systems require a power source for an electric motor, and some have a storage battery for driving the generator by the engine to generate electric power and absorbing load fluctuations of the electric motor (see, for example, Patent Document 1). ).

これらの電動機駆動システムの効率をさらに上げるためには、発電機や電動機、介在する電力変換器の動作電圧を上げることが有効である。一般的に車両駆動用の電動機以外にも車両内には空調機や照明などの低圧負荷があり、システムの簡素化の面から車両駆動用の電動機と低圧負荷の電源を共用することは合理的である。この場合、低圧負荷に電力を供給するために専用の電力変換器を備えているものがある(例えば、特許文献2参照)。
特開平10−191503号公報 特開平9−74601号公報
In order to further increase the efficiency of these motor drive systems, it is effective to increase the operating voltage of the generator, the motor, and the intervening power converter. In general, there are low-pressure loads such as air conditioners and lights in the vehicle other than the motor for driving the vehicle, and it is reasonable to share the power source of the low-voltage load and the motor for driving the vehicle from the viewpoint of simplification of the system. It is. In this case, some have a dedicated power converter for supplying power to the low-voltage load (see, for example, Patent Document 2).
JP-A-10-191503 JP-A-9-74601

上記特許文献1記載のシステムでは、エンジンによって発電機を駆動して交流電力を発生し、順変換器によって交流電力を直流電力に変換した後で、直流電力を蓄積する蓄電池と、車両駆動用の電動機に交流電力を供給する逆変換器を並列に接続している。蓄電池は、過渡的な電力の変動を吸収する緩衝器(バッファ)としての役割を果たし、動力源となるエンジンもしくは発電機が故障した場合、蓄電池のみで長時間走行することはできない。   In the system described in Patent Document 1, a generator is driven by an engine to generate AC power, and after the AC power is converted to DC power by a forward converter, a storage battery for storing DC power, and a vehicle drive Inverters that supply AC power to the motor are connected in parallel. The storage battery serves as a buffer that absorbs transient power fluctuations, and when the engine or generator serving as a power source fails, the storage battery alone cannot run for a long time.

このような発電装置の故障に備えて、車両外部から蓄電池に充電できるように非常用の充電機能を備えることが望ましい。しかし、外部から電力供給を受けるためには、以下の課題が生じる。   In preparation for such a failure of the power generation device, it is desirable to provide an emergency charging function so that the storage battery can be charged from the outside of the vehicle. However, in order to receive power supply from the outside, the following problems arise.

(a)そもそも受電側の発電機の故障が要因であることを考慮すると、電源系統の地絡やノイズに対する保護の点から、給電側と受電側の両者は変圧器によって絶縁され、交流電力を伝達する構成が望ましい。
(b)給電側と受電側の両者を非常用給電ケーブルで接続し、その配線長および配線インダクタンスが電力変換器のスイッチング速度に対して無視できない場合、電圧や電流の反射による跳ね上がりに注意する必要がある。
(c)非常用の受電機能は発電機の故障時など非常時・緊急時しか使用しないので、できるだけ既存の設備・機能を流用し、共用化を図ることで、新たに追加する設備は必要最小限に抑えたい。
(A) Considering that the failure of the generator on the power receiving side is a factor in the first place, both the power supply side and the power receiving side are insulated by the transformer from the viewpoint of protection against ground faults and noise in the power system, and AC power is A transmission configuration is desirable.
(B) When both the power supply side and the power reception side are connected by an emergency power supply cable and the wiring length and wiring inductance cannot be ignored with respect to the switching speed of the power converter, it is necessary to pay attention to the jump due to the reflection of voltage and current. There is.
(C) Since the emergency power receiving function is used only in the event of an emergency or emergency such as a generator failure, existing equipment and functions should be diverted as much as possible and shared, and new equipment to be added is the minimum necessary. I want to limit it to the limit.

本発明は、蓄電池を動力源とし、車両駆動用の電動機に電力を供給する第1の電力変換器(主変換器)に加えて、車両内の照明や空調機などの低圧負荷に電力を供給する第2の電力変換器(補助変換器)を備え、前記補助変換器は波形整形用のフィルタ回路と絶縁用の変圧器を介して低圧負荷に接続し、前記低圧負荷に供給する交流電圧を検出し、この交流電圧を制御する電力変換装置において、前記変圧器の低圧負荷側に非常用の交流電圧源もしくは交流電圧源を接続する端子と、前記補助変換器の直流電圧を制御する手段を設け、前記補助変換器を充電用の電力変換器として兼用することを最も主要な特徴とする。   The present invention uses a storage battery as a power source and supplies power to a low-voltage load such as an illumination or an air conditioner in the vehicle, in addition to the first power converter (main converter) that supplies power to a motor for driving the vehicle. A second power converter (auxiliary converter) that is connected to a low-voltage load through a filter circuit for waveform shaping and a transformer for insulation, and supplies an AC voltage supplied to the low-voltage load. In the power converter for detecting and controlling the AC voltage, a terminal for connecting an emergency AC voltage source or AC voltage source to the low-voltage load side of the transformer, and means for controlling the DC voltage of the auxiliary converter The main feature is that the auxiliary converter is also used as a power converter for charging.

本発明によれば、非常用の交流電圧源と充電に用いる補助変換器を、変圧器を介して接続することにより、給電側と受電側を絶縁できる。   According to the present invention, the power supply side and the power receiving side can be insulated by connecting the emergency AC voltage source and the auxiliary converter used for charging via the transformer.

また、波形整形用のフィルタ回路によって補助変換器のスイッチングによって生じる高周波成分を除去できるため、給電側と受電側を接続する非常用給電ケーブル内で発生する電圧および電流の跳ね上がりを抑制することができる。   Further, since the high-frequency component generated by the switching of the auxiliary converter can be removed by the waveform shaping filter circuit, it is possible to suppress the jump of voltage and current generated in the emergency power supply cable connecting the power supply side and the power reception side. .

さらに、充電用に用いる電力変換器(補助変換器)と波形整形用のフィルタ回路、絶縁用の変圧器は、低圧負荷に電力を供給するための設備と共用できるため、非常用の充電機能に関わる追加コストを抑制できる。   In addition, the power converter (auxiliary converter) used for charging, the filter circuit for waveform shaping, and the transformer for insulation can be shared with facilities for supplying power to the low-voltage load. Additional costs involved can be reduced.

加えて、本発明は非常用の給電装置としても使用可能であり、給電用の交流電源装置を別途用意できない場合でも、本発明の2台のシステムを非常用の受給電端子を介して接続するだけで、互いに電力を融通し合うことができる。   In addition, the present invention can also be used as an emergency power supply device, and even when an AC power supply device for power supply cannot be prepared separately, the two systems of the present invention are connected via an emergency power supply / reception terminal. It is only possible to exchange power with each other.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の第1の実施例の電力変換装置を図1に示す。
図1において、電力変換装置1は、蓄電池2と、蓄電池2の供給する直流電力を交流電力に変換する第1の電力変換器(主変換器)4と、蓄電池2と主変換器4の直流側に並列接続される平滑化コンデンサ3と、主変換器4の供給する交流電力によって駆動される交流電動機5と、蓄電池2と主変換器4の直流側に並列接続される第2の電力変換器(補助変換器)7と、蓄電池2と補助変換器7の直流側に並列接続される平滑化コンデンサ6と、平滑化コンデンサ6の電圧を検出する直流電圧検出器25と、補助変換器7の交流電流を検出する交流電流検出器24と、Δ−Y結線の三相交流変圧器10と、補助変換器7の交流側と三相交流変圧器10のΔ側を接続するフィルタリアクトル8と、三相交流変圧器10のΔ側にフィルタリアクトル8と並列接続されるフィルタコンデンサ9と、三相交流変圧器10のY側の線間電圧を測定する交流電圧検出器11と、三相交流変圧器10のY側の中性点とアース点g1を接続するスイッチ23から構成されている。
A power conversion apparatus according to a first embodiment of the present invention is shown in FIG.
In FIG. 1, a power conversion device 1 includes a storage battery 2, a first power converter (main converter) 4 that converts DC power supplied from the storage battery 2 into AC power, and a DC of the storage battery 2 and the main converter 4. Smoothing capacitor 3 connected in parallel to the side, AC motor 5 driven by the AC power supplied from main converter 4, and second power conversion connected in parallel to the DC side of storage battery 2 and main converter 4. , A smoothing capacitor 6 connected in parallel to the DC side of the storage battery 2 and the auxiliary converter 7, a DC voltage detector 25 for detecting the voltage of the smoothing capacitor 6, and the auxiliary converter 7. An AC current detector 24 for detecting the AC current of the current, a three-phase AC transformer 10 of Δ-Y connection, a filter reactor 8 for connecting the AC side of the auxiliary converter 7 and the Δ side of the three-phase AC transformer 10, The filter reactor on the Δ side of the three-phase AC transformer 10 Filter capacitor 9 connected in parallel, AC voltage detector 11 for measuring the line voltage on the Y side of the three-phase AC transformer 10, neutral point on the Y side of the three-phase AC transformer 10, and ground point g1 It is comprised from the switch 23 which connects.

電力変換装置1に対して、低圧交流負荷12と、電力変換装置1内の三相交流変圧器10のY側と低圧交流負荷12をスイッチ22を介して接続し、アース点g2に接地した三相交流電源21と、電力変換装置1内の三相交流変圧器10のY側と三相交流電源21をスイッチ20を介して接続する。   A low-voltage AC load 12, the Y side of the three-phase AC transformer 10 in the power conversion device 1, and the low-voltage AC load 12 are connected to the power conversion device 1 via the switch 22 and are grounded to the ground point g2. The phase AC power source 21 is connected to the Y side of the three-phase AC transformer 10 in the power converter 1 via the switch 20.

図2は、電力変換装置1の制御装置を示している。図2において、電力変換装置1の制御装置は、交流電圧検出器11の出力(交流負荷電圧検出値)Vuv、Vvwを交流周波数で回転座標変換して実効値を求める手段30と、交流負荷電圧指令Vd*、Vq*と座標変換30の出力(交流負荷電圧実効値)Vd、Vqの差を求める減算器31と、減算器31の出力(交流負荷電圧偏差)を用いて電圧制御を行う電圧制御器32と、電圧制御器32の出力を開閉可能なスイッチ40と、回転座標変換手段30の出力(交流負荷電圧実効値)Vd、Vqとスイッチ40の出力の和を求める加算器33と、直流電圧指令Ecf*と直流電圧検出手段25の出力(直流電圧検出値)Ecfの差を求める減算器41と、減算器41の出力(直流電圧偏差)を用いて電圧制御を行う電圧制御器42と、交流電流検出器24の出力(交流電流)iu、ivを交流周波数で回転座標変換して実効値Id、Iqを求める手段43と、電圧制御器42の出力(交流電流指令)Id*、Iq*と回転座標変換手段43の出力(交流電流実効値)Id、Iqの差を求める減算器44と、減算器44の出力(交流電流偏差)を用いて電流制御を行う電流制御器45と、電流制御器45の出力を開閉可能なスイッチ46と、加算器33の出力とスイッチ46の出力の和を求める加算器47と、加算器47の出力を交流周波数で静止座標変換して瞬時値を求める手段34と、静止座標変換手段34の出力を直流電圧検出手段25の出力(直流電圧検出値)Ecfで正規化する除算器35と、除算器35の出力よりPWMパルス信号Su、Sv、Swを求めるパルス幅変調器36から構成される。   FIG. 2 shows a control device of the power conversion device 1. In FIG. 2, the control device of the power conversion device 1 includes means 30 for obtaining an effective value by converting rotational coordinates of outputs (AC load voltage detection values) Vuv and Vvw of the AC voltage detector 11 at AC frequencies, and an AC load voltage. A voltage for voltage control using the subtractor 31 for obtaining the difference between the commands Vd *, Vq * and the output of the coordinate transformation 30 (AC load voltage effective value) Vd, Vq, and the output of the subtractor 31 (AC load voltage deviation) A controller 32; a switch 40 that can open and close the output of the voltage controller 32; A subtractor 41 for obtaining a difference between the DC voltage command Ecf * and the output (DC voltage detection value) Ecf of the DC voltage detecting means 25, and a voltage controller 42 for performing voltage control using the output (DC voltage deviation) of the subtractor 41. And exchange Means 43 for obtaining the effective values Id and Iq by rotationally converting the outputs (alternating currents) iu and iv of the current detector 24 at the alternating frequency, and the outputs (alternating current commands) Id * and Iq * of the voltage controller 42 A subtractor 44 that obtains the difference between the output (AC current effective value) Id and Iq of the rotating coordinate conversion means 43, a current controller 45 that performs current control using the output (AC current deviation) of the subtractor 44, and current control A switch 46 capable of opening and closing the output of the adder 45; an adder 47 for calculating the sum of the output of the adder 33 and the output of the switch 46; 34, the divider 35 for normalizing the output of the stationary coordinate conversion means 34 with the output (DC voltage detection value) Ecf of the DC voltage detection means 25, and the PWM pulse signals Su, Sv, Sw from the output of the divider 35. pulse Composed of the modulator 36.

補助変換器7はパルス幅変調器36の出力(PWMパルス信号)Su、Sv、Swによってスイッチングを行う。補助変換器7を交流電圧源として動作させ、低圧交流負荷12に電力を供給する通常モードにおける各スイッチの開閉状態を以下に示す。   The auxiliary converter 7 performs switching according to outputs (PWM pulse signals) Su, Sv, Sw of the pulse width modulator 36. The open / close state of each switch in the normal mode in which the auxiliary converter 7 is operated as an AC voltage source and power is supplied to the low-voltage AC load 12 is shown below.

スイッチ20 OFF、スイッチ22 ON、スイッチ23 ON、スイッチ40 ON、スイッチ45 OFF
補助変換器7の交流出力電圧に対して、フィルタリアクトル8の抵抗分とフィルタリアクトル8を流れる電流の大きさに応じて電圧降下が生じる。低圧交流負荷12に供給する電圧を一定に保つためには、低圧交流負荷12に供給する交流負荷電圧を検出し、低圧交流負荷12の定格電圧に一致するようなフィードバック制御を構成する必要がある。このため交流電圧検出器11と電圧制御器32を備えている。回路保護の観点から補助変換器7と低圧交流負荷12を三相交流変圧器10によって絶縁する。また低圧交流負荷12に供給する相電圧を確定するため(中性点が浮かないように)三相交流変圧器10の低圧交流負荷側はY結線とし、中性点を電力変換装置1のケース(アース電位g1)に設置する。
Switch 20 OFF, Switch 22 ON, Switch 23 ON, Switch 40 ON, Switch 45 OFF
A voltage drop occurs with respect to the AC output voltage of the auxiliary converter 7 according to the resistance of the filter reactor 8 and the magnitude of the current flowing through the filter reactor 8. In order to keep the voltage supplied to the low-voltage AC load 12 constant, it is necessary to configure the feedback control so that the AC load voltage supplied to the low-voltage AC load 12 is detected and matches the rated voltage of the low-voltage AC load 12. . For this purpose, an AC voltage detector 11 and a voltage controller 32 are provided. From the viewpoint of circuit protection, the auxiliary converter 7 and the low-voltage AC load 12 are insulated by the three-phase AC transformer 10. Further, in order to determine the phase voltage supplied to the low-voltage AC load 12 (so that the neutral point does not float), the low-voltage AC load side of the three-phase AC transformer 10 is Y-connected, and the neutral point is the case of the power converter 1. Install at (ground potential g1).

一方、補助変換器7を順変換器として動作させ、外部から電力供給を受けて蓄電池2に充電する非常モードにおける各スイッチの開閉状態を以下に示す。   On the other hand, the open / close state of each switch in the emergency mode in which the auxiliary converter 7 is operated as a forward converter and the storage battery 2 is charged by receiving power supply from the outside is shown below.

スイッチ20 ON、スイッチ22 OFF、スイッチ23 OFF、スイッチ40 OFF、スイッチ45 ON
蓄電池2に充電する場合、平滑化コンデンサ6の端子電圧を蓄電池2の端子電圧よりも高くする必要がある。このため直流電圧検出器25と電圧制御器42を備え、平滑化コンデンサ6の端子電圧に対するフィードバック制御を構成している。フィルタリアクトル8および三相交流変圧器10を流れる電流は、補助変換器7の交流出力電圧と三相交流電源21の交流出力電圧の電位差に応じて流れるので、逆に、三相交流電圧21の交流出力電圧と流すべき電流が与えられれば、補助変換器7の交流出力電圧を求めることができる。このため交流電圧検出器11と交流電流検出器24と電流制御器45を備え、電圧制御器42の出力を交流電流指令として電流のフィードバック制御を行っている。三相交流電源21のアース電位g2と、電力変換装置1のアース電位g1は必ずしも同電位になるとは限らないので、スイッチ23を開放する必要がある。
Switch 20 ON, Switch 22 OFF, Switch 23 OFF, Switch 40 OFF, Switch 45 ON
When charging the storage battery 2, the terminal voltage of the smoothing capacitor 6 needs to be higher than the terminal voltage of the storage battery 2. For this reason, the DC voltage detector 25 and the voltage controller 42 are provided, and feedback control for the terminal voltage of the smoothing capacitor 6 is configured. Since the current flowing through the filter reactor 8 and the three-phase AC transformer 10 flows in accordance with the potential difference between the AC output voltage of the auxiliary converter 7 and the AC output voltage of the three-phase AC power supply 21, the current of the three-phase AC voltage 21 is reversed. If the AC output voltage and the current to be supplied are given, the AC output voltage of the auxiliary converter 7 can be obtained. Therefore, the AC voltage detector 11, the AC current detector 24, and the current controller 45 are provided, and current feedback control is performed using the output of the voltage controller 42 as an AC current command. Since the ground potential g2 of the three-phase AC power supply 21 and the ground potential g1 of the power converter 1 are not necessarily the same potential, it is necessary to open the switch 23.

本発明の第2の実施例を図3に示す。図3は、第1の実施例に示す電力変換装置1を複数台接続したときの構成例を示す。複数台の電力変換装置1は、第1の電力変換装置1と、第2の電力変換装置1’と、第3の電力変換装置1”とから成る。   A second embodiment of the present invention is shown in FIG. FIG. 3 shows a configuration example when a plurality of power conversion devices 1 shown in the first embodiment are connected. The plurality of power conversion devices 1 includes a first power conversion device 1, a second power conversion device 1 ', and a third power conversion device 1 ".

図3の装置は、第1の電力変換装置1と、第2の電力変換装置1’と、第3の電力変換装置1”と、非常用受給電用の電力バスライン50と、低圧交流負荷共通の電力バスライン51と、第1の電力変換装置1内の三相交流変圧器のY側と電力バスライン50を接続するスイッチ22と、第1の電力変換装置1内の三相交流変圧器のY側と電力バスライン51を接続するスイッチ20と、第1の電力変換装置1’内の三相交流変圧器のY側と電力バスライン50を接続するスイッチ22’と、第1の電力変換装置1’内の三相交流変圧器のY側と電力バスライン51を接続するスイッチ20’と、第1の電力変換装置1”内の三相交流変圧器のY側と電力バスライン50を接続するスイッチ22”と、第1の電力変換装置1”内の三相交流変圧器のY側と電力バスライン51を接続するスイッチ20”と、電力バスライン51に接続される第1の低圧交流負荷12と、電力バスライン51に接続される第2の低圧交流負荷12’と、電力バスライン51に接続される第3の低圧交流負荷12”と、から構成される。   3 includes a first power conversion device 1, a second power conversion device 1 ′, a third power conversion device 1 ″, a power bus line 50 for emergency power supply and reception, and a low-voltage AC load. A common power bus line 51, a switch 22 connecting the Y side of the three-phase AC transformer in the first power converter 1 and the power bus line 50, and a three-phase AC transformer in the first power converter 1 A switch 20 that connects the Y side of the transformer and the power bus line 51, a switch 22 'that connects the Y side of the three-phase AC transformer in the first power converter 1' and the power bus line 50, a first Switch 20 ′ for connecting the power bus line 51 and the Y side of the three-phase AC transformer in the power converter 1 ′, and the Y side of the three-phase AC transformer and the power bus line in the first power converter 1 ″ Switch 22 ″ connecting 50 and the three-phase AC converter in the first power converter 1 ″. Switch 20 ″ for connecting the power bus line 51 to the Y side of the device, a first low-voltage AC load 12 connected to the power bus line 51, and a second low-voltage AC load 12 ′ connected to the power bus line 51. And a third low-voltage AC load 12 ″ connected to the power bus line 51.

電力変換装置1、1’、1”を交流電圧源として動作させ、低圧交流負荷12、12’、12”に電力を供給する通常モードにおける各スイッチの開閉状態を以下に示す。   The open / close state of each switch in the normal mode in which the power converters 1, 1 ', 1 "are operated as an AC voltage source and power is supplied to the low-voltage AC loads 12, 12', 12" is shown below.

スイッチ20 OFF、スイッチ22 ON、スイッチ20’ OFF、スイッチ22’ ON、スイッチ20” OFF、スイッチ22” ON   Switch 20 OFF, Switch 22 ON, Switch 20 'OFF, Switch 22' ON, Switch 20 "OFF, Switch 22" ON

低圧交流負荷12、12’、12”を共通の電力バスライン51に接続することで、3台の電力変換装置のいずれかが故障した場合でも、全ての負荷に電力を供給でき、フェイルセーフ性を高めている。なお電力変換装置1が故障した場合にはスイッチ22をOFFとし、同様に電力変換装置1’もしくは1”が故障した場合には、それぞれスイッチ22’もしくは22”をOFFとする。   By connecting the low-voltage AC loads 12, 12 ′, 12 ″ to the common power bus line 51, even if one of the three power converters fails, power can be supplied to all loads, and fail-safe characteristics When the power converter 1 fails, the switch 22 is turned off, and when the power converter 1 ′ or 1 ″ fails, the switch 22 ′ or 22 ″ is turned off, respectively. .

電力変換装置1を交流電圧源として電力変換装置1’の蓄電池を充電し、電力変換装置1”が低圧交流負荷12、12’、12”に電力を供給する非常モードにおける各スイッチの開閉状態を以下に示す。   The power converter 1 is used as an AC voltage source to charge the storage battery of the power converter 1 ′, and the open / close state of each switch in the emergency mode in which the power converter 1 ″ supplies power to the low-voltage AC loads 12, 12 ′, 12 ″. It is shown below.

スイッチ20 ON、スイッチ22 OFF、スイッチ20’ ON、スイッチ22’ OFF、スイッチ20” OFF、スイッチ22” ON   Switch 20 ON, Switch 22 OFF, Switch 20 'ON, Switch 22' OFF, Switch 20 "OFF, Switch 22" ON

本実施例では、本発明の電力変換装置を複数台接続し、電力バスラインを低圧交流負荷に電力を供給する電力バスライン51と、非常用受給電用の電力バスライン50の2系統設けることによって、低圧交流負荷に電力供給を停止させることなく、蓄電池の充電を行うことができる。   In this embodiment, a plurality of power conversion devices of the present invention are connected, and two systems are provided: a power bus line 51 for supplying power to the low-voltage AC load and a power bus line 50 for emergency power supply and reception. Thus, the storage battery can be charged without stopping the power supply to the low-voltage AC load.

図1は、本発明の第1の実施例の電力変換装置を示す構成図である。FIG. 1 is a configuration diagram illustrating a power conversion apparatus according to a first embodiment of the present invention. 図2は、図1の電力変換装置の制御装置を示す図である。FIG. 2 is a diagram illustrating a control device of the power conversion device in FIG. 1. 図3は、本発明の第2の実施例の電力変換装置を複数台接続したときの構成図である。FIG. 3 is a configuration diagram when a plurality of power converters according to the second embodiment of the present invention are connected.

符号の説明Explanation of symbols

1 電力変換装置
2 蓄電池
3 第1の平滑化コンデンサ
4 第1の電力変換器(主変換器)
5 交流電動機
6 第2の平滑化コンデンサ
7 第2の電力変換器(補助変換器)
8 フィルタリアクトル
9 フィルタコンデンサ
10 三相交流変圧器(Δ−Y結線)
11 交流電圧検出器
12 低圧交流負荷
20 三相スイッチ
21 三相交流電源
22 三相スイッチ
23 スイッチ
24 交流電流検出器
25 直流電圧検出器
30 回転座標変換手段
31 減算器
32 電圧制御器(ACR:Automatic Voltage Regulatorの略)
33 加算器
34 静止座標変換手段
35 除算器
36 パルス幅変調器(PWM:Pulse Width Modurationの略)
40 スイッチ
41 減算器
42 電圧制御器(AVR)
43 回転座標変換手段
44 減算器
45 電流制御器(ACR:Automatic Current Regulatorの略)
46 スイッチ
47 加算器
Ecf* 第2の平滑化コンデンサの端子電圧指令値
Ecf 第2の平滑化コンデンサの端子電圧検出値
iu、iv 第2の電力変換器7のu、v相出力電流検出値
Vuv、Vvw 三相交流変圧器10のY側u−v間v−w間電圧検出値
g1 電力変換装置1のケース設置によるアース電位
g2 三相交流電源21のアース電位
su、sv、sw 第2の電力変換器7のu、v、w相スイッチング信号
Vd*、Vq* 三相交流変圧器10のY側d、q軸電圧指令値
Vd、 Vq 三相交流変圧器10のY側d、q軸電圧実効値
Id*、Iq* 第2の電力変換器7のd、q軸出力電流指令値
Id、 Iq 第2の電力変換器)7のd、q軸出力電流実効値
DESCRIPTION OF SYMBOLS 1 Power converter 2 Storage battery 3 1st smoothing capacitor 4 1st power converter (main converter)
5 AC motor 6 Second smoothing capacitor 7 Second power converter (auxiliary converter)
8 Filter reactor 9 Filter capacitor 10 Three-phase AC transformer (Δ-Y connection)
DESCRIPTION OF SYMBOLS 11 AC voltage detector 12 Low voltage AC load 20 Three-phase switch 21 Three-phase AC power supply 22 Three-phase switch 23 Switch 24 AC current detector 25 DC voltage detector 30 Rotation coordinate conversion means 31 Subtractor 32 Voltage controller (ACR: Automatic Abbreviation of Voltage Regulator)
33 Adder 34 Static coordinate conversion means 35 Divider 36 Pulse width modulator (PWM: Abbreviation of Pulse Width Moduration)
40 switch 41 subtractor 42 voltage controller (AVR)
43 Rotating coordinate conversion means 44 Subtractor 45 Current controller (ACR: Automatic Current Regulator)
46 switch 47 adder Ecf * terminal voltage command value of second smoothing capacitor Ecf terminal voltage detection value of second smoothing capacitor iu, iv u, v-phase output current detection value Vuv of second power converter 7 , Vvw V-w voltage detection value between Y side u-v of three-phase AC transformer 10 g1 Ground potential due to case installation of power converter 1 g2 Ground potential of three-phase AC power supply 21 su, sv, sw Second U, v, w phase switching signal of power converter 7 Vd *, Vq * Y side d, q axis voltage command value Vd, Vq of three phase AC transformer 10 Y side d, q axis of three phase AC transformer 10 Voltage effective value Id *, Iq * d of the second power converter 7, q-axis output current command value Id, Iq second power converter) d, q-axis output current effective value

Claims (4)

蓄電池と、
前記蓄電池の供給する直流電力を交流電力に変換する第1の電力変換器と、
記第1の電力変換器の供給する交流電力によって駆動される交流電動機と、
前記蓄電池と前記第1の電力変換器の直流部とに並列接続され、前記蓄電池の供給する直流電力を交流電力に変換する第2の電力変換器と、
前記第2の電力変換器の交流出力を整形するフィルタ回路と、
前記フィルタ回路に接続する変圧器と、
前記変圧器に接続する交流負荷と、
前記変圧器と前記交流負荷との間に配置された第1のスイッチと、
前記変圧器の交流負荷側に配置され、前記交流負荷と交流電圧源とを並列に接続可能な第2のスイッチと、
前記変圧器の前記交流電圧源側の中性点とアースを接続する第3のスイッチと、
前記第1のスイッチが接続され、前記第2のスイッチが開放され、前記第3のスイッチが接続された際に、前記第2の電力変換器を操作することで前記変圧器の前記交流負荷側の電圧制御を行う第1の制御手段と、
前記第1のスイッチが開放され、前記第2のスイッチが接続され、前記第3のスイッチが開放された際に、前記第2の電力変換器を操作することで前記直流部の電圧制御を行う第2の制御手段と、を備えたことを特徴とする電力変換装置。
A storage battery,
A first power converter that converts DC power supplied by the storage battery into AC power;
An AC motor driven by the AC power supply before Symbol first power converter,
Connected in parallel with the storage battery and the DC portion of the first power converter, a second power converter for converting DC power supplied by the battery to AC power,
A filter circuit for shaping the AC output of the second power converter;
A transformer connected to the filter circuit;
AC load connected to the transformer;
A first switch disposed between the transformer and the AC load;
A second switch disposed on the AC load side of the transformer and capable of connecting the AC load and an AC voltage source in parallel;
A third switch for connecting a neutral point of the transformer on the side of the AC voltage source and ground;
The AC load side of the transformer is operated by operating the second power converter when the first switch is connected, the second switch is opened, and the third switch is connected. First control means for performing voltage control of
When the first switch is opened, the second switch is connected, and the third switch is opened , voltage control of the DC unit is performed by operating the second power converter. And a second control means.
請求項1記載の電力変換装置において、前記平滑化コンデンサの電圧を測定する直流電圧検出手段を備え、前記第2の制御手段は前記直流電圧検出手段の出力を用いて電圧制御を行うことを特徴とする電力変換装置。 2. The power conversion device according to claim 1, further comprising a DC voltage detecting means for measuring a voltage of the smoothing capacitor , wherein the second control means performs voltage control using an output of the DC voltage detecting means. A power converter. 請求項記載の電力変換装置において、前記第2の電力変換器の交流側出力電流を測定する流電検出手段を備え、前記第2の制御手段は前記流電検出手段の出力を用いて電圧制御を行うことを特徴とする電力変換装置。 The power converter of claim 2, further comprising a ac current detecting means for measuring the AC side output current of the second power converter, said second control means outputs said ac current detecting means A power conversion device that performs voltage control using a power converter. 蓄電池と、
前記蓄電池の供給する直流電力を交流電力に変換する第1の電力変換器と、
前記第1の電力変換器の直流側に前記蓄電池と並列接続する平滑化コンデンサと、
前記第1の電力変換器の供給する交流電力によって駆動される交流電動機と、
前記蓄電池と前記第1の電力変換器の直流側に並列接続され、前記蓄電池の供給する直流電力を交流電力に変換する第2の電力変換器と、
前記第2の電力変換器の交流出力を整形するフィルタ回路と、
前記フィルタ回路に接続する変圧器と、
前記変圧器に接続する低圧交流負荷と、
前記変圧器の交流負荷側電圧を測定する交流電圧検出手段と、
前記交流電圧検出手段の出力を用い、前記第2の電力変換器を操作することで前記変圧器の低圧交流負荷側の電圧制御を行う第1の制御手段と、から構成され、
前記変圧器の低圧交流負荷側に前記低圧交流負荷と並列接続する交流電圧源と、
前記第2の電力変換器を操作することで前記平滑化コンデンサの電圧制御を行う第2の制御手段と、を備えた電力変換装置が複数台設置され、
前記複数台の電力変換装置の各電力変換装置が第1のスイッチ手段を介して非常用受給電源用の第1の電力バスラインにより前記交流電圧源と接続され、前記複数台の電力変換装置の各電力変換装置が第2のスイッチ手段を介して共通の第2の電力バスラインにより各低圧交流負荷に接続されて、前記低圧交流負荷に電力供給を停止させることなく、前記蓄電池の充電を行うことを特徴とする電力変換装置。
A storage battery,
A first power converter that converts DC power supplied by the storage battery into AC power;
A smoothing capacitor connected in parallel with the storage battery on the DC side of the first power converter;
An AC motor driven by AC power supplied by the first power converter;
A second power converter that is connected in parallel to the DC side of the storage battery and the first power converter, and converts the DC power supplied by the storage battery into AC power;
A filter circuit for shaping the AC output of the second power converter;
A transformer connected to the filter circuit;
A low voltage AC load connected to the transformer;
AC voltage detection means for measuring the AC load side voltage of the transformer;
Using the output of the AC voltage detection means, the first control means for performing voltage control on the low-voltage AC load side of the transformer by operating the second power converter,
AC voltage source connected in parallel with the low-voltage AC load on the low-voltage AC load side of the transformer,
A plurality of power converters installed with second control means for controlling the voltage of the smoothing capacitor by operating the second power converter,
Each of the power converters of the plurality of power converters is connected to the AC voltage source by a first power bus line for an emergency receiving power supply via a first switch means, and the power converters of the plurality of power converters Each power conversion device is connected to each low-voltage AC load via a second switch means through a common second power bus line, and charges the storage battery without stopping power supply to the low-voltage AC load. The power converter characterized by the above-mentioned.
JP2007254796A 2007-09-28 2007-09-28 Power converter Expired - Fee Related JP4934561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254796A JP4934561B2 (en) 2007-09-28 2007-09-28 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254796A JP4934561B2 (en) 2007-09-28 2007-09-28 Power converter

Publications (2)

Publication Number Publication Date
JP2009089502A JP2009089502A (en) 2009-04-23
JP4934561B2 true JP4934561B2 (en) 2012-05-16

Family

ID=40662160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254796A Expired - Fee Related JP4934561B2 (en) 2007-09-28 2007-09-28 Power converter

Country Status (1)

Country Link
JP (1) JP4934561B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234472A (en) * 2010-04-27 2011-11-17 Denso Corp Power supply for vehicle
US8415904B2 (en) * 2010-06-29 2013-04-09 Ac Propulsion, Inc. Open delta motor drive with integrated recharge
JP5397410B2 (en) * 2011-05-16 2014-01-22 株式会社デンソー Automotive electrical system
JP5742483B2 (en) * 2011-06-03 2015-07-01 トヨタ自動車株式会社 vehicle
CN103946050B (en) 2011-11-24 2016-04-20 三菱电机株式会社 Auxiliary power supply for vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10191506A (en) * 1996-12-25 1998-07-21 Denso Corp Vehicle-driving device
JP3386728B2 (en) * 1998-10-21 2003-03-17 株式会社東芝 Power conversion equipment for railway vehicles
JP2000152408A (en) * 1998-11-10 2000-05-30 Meidensha Corp Electric vehicle

Also Published As

Publication number Publication date
JP2009089502A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5660317B2 (en) Inter-vehicle charger
JP5644070B2 (en) Power control device
KR0127288B1 (en) Electric system for electric vehicle
US7834578B2 (en) Load driving apparatus, vehicle, and abnormality processing method at load driving apparatus
US9312692B2 (en) System for charging an energy store, and method for operating the charging system
US7388353B2 (en) Discharging system for smoothing capacitor
JP5471079B2 (en) Power control device
US9083267B2 (en) Electric motor vehicle
JP4258692B2 (en) Automotive power supply
JP2012019673A (en) Charger of plug-in hybrid vehicle
JP2013158232A (en) Control device for electric vehicle
JP6080507B2 (en) Railway vehicle drive system
JP4934561B2 (en) Power converter
EP2965940B1 (en) Main conversion device for electric vehicle
JP2013051831A (en) Power source control device of electric vehicle
JPWO2016092985A1 (en) Power converter
US9758043B2 (en) Method for operating an energy supply unit for a motor vehicle electrical system
US20140292077A1 (en) Method for operating an energy supply unit for a motor vehicle electrical system
JP2007104822A (en) Parallelization system of power converter
JP2000152408A (en) Electric vehicle
JP2010220384A (en) Device for control of rotary electric machine
CN210351037U (en) Voltage converter and power supply system for ship
JP2012090458A (en) Power supply device
JP2021093779A (en) On-vehicle charging device
WO2023228436A1 (en) Electric power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

R150 Certificate of patent or registration of utility model

Ref document number: 4934561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees