JP4867290B2 - 3-level voltage reversible chopper device - Google Patents

3-level voltage reversible chopper device Download PDF

Info

Publication number
JP4867290B2
JP4867290B2 JP2005316952A JP2005316952A JP4867290B2 JP 4867290 B2 JP4867290 B2 JP 4867290B2 JP 2005316952 A JP2005316952 A JP 2005316952A JP 2005316952 A JP2005316952 A JP 2005316952A JP 4867290 B2 JP4867290 B2 JP 4867290B2
Authority
JP
Japan
Prior art keywords
switching elements
connection point
series
diode
power supplies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005316952A
Other languages
Japanese (ja)
Other versions
JP2007097386A (en
Inventor
江桁 劉
直也 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005316952A priority Critical patent/JP4867290B2/en
Publication of JP2007097386A publication Critical patent/JP2007097386A/en
Application granted granted Critical
Publication of JP4867290B2 publication Critical patent/JP4867290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

この発明は電力変換装置、特に3レベルの直流出力電圧を得ることができる3レベル電圧可逆チョッパ装置に関する。   The present invention relates to a power conversion device, and more particularly to a three-level voltage reversible chopper device capable of obtaining a three-level DC output voltage.

従来から、直流モータ制御装置やリアクトルによるエネルギー蓄積装置では、電力変換回路として、非特許文献1に記載されているような、電流方向が一定であるのに対し電圧の極性が変化する、いわゆる電圧可逆チョッパ(二象限チョッパ)回路が知られている。その電圧可逆チョッパ回路例を図9に示す。
まず、その動作原理から説明する。図10に、正の直流電圧を出力する場合の動作を示す。
Conventionally, in a DC motor control device or an energy storage device using a reactor, as described in Non-Patent Document 1, as a power conversion circuit, a so-called voltage in which the polarity of the voltage changes while the current direction is constant. A reversible chopper (two-quadrant chopper) circuit is known. An example of the voltage reversible chopper circuit is shown in FIG.
First, the operation principle will be described. FIG. 10 shows an operation when outputting a positive DC voltage.

2つの半導体スイッチング素子10Aと10Cには、図10(a)に示すようなゲート制御信号を与える。図10(b)のように10Aと10Cが両方ともオンする期間Iには、負荷装置3は直流電源1に接続され、出力電圧は直流電源電圧となる。図10(c)に示すように、10Aがオンで10Cがオフの期間IIには、リアクトル負荷3に蓄積した電流を、オンした10Aとダイオード10Gを介して還流させ、出力電圧は零になる。同様に、図10(d)に示すように、10Aがオフで10Cがオンする期間IIIには、オンした10Cとダイオード10Eを介して還流し、出力電圧も零になる。
このように、10Aと10Cのオン・オフ時間を制御することにより、出力電圧を0〜Edの範囲で調整することができる。
負の直流電圧を出力させる場合の動作を図11に、また、零電圧を出力させる場合の動作を図12に示すが、上記と同様なので詳細は省略する。
A gate control signal as shown in FIG. 10A is given to the two semiconductor switching elements 10A and 10C. As shown in FIG. 10B, during the period I in which both 10A and 10C are turned on, the load device 3 is connected to the DC power source 1, and the output voltage becomes the DC power source voltage. As shown in FIG. 10 (c), during the period II in which 10A is on and 10C is off, the current accumulated in the reactor load 3 is circulated through the turned on 10A and the diode 10G, and the output voltage becomes zero. . Similarly, as shown in FIG. 10 (d), in the period III in which 10A is off and 10C is on, the output voltage is also reduced to zero through the turned-on 10C and the diode 10E.
Thus, the output voltage can be adjusted in the range of 0 to Ed by controlling the on / off times of 10A and 10C.
FIG. 11 shows the operation in the case of outputting a negative DC voltage, and FIG. 12 shows the operation in the case of outputting a zero voltage.

「半導体電力変換回路」電気学会、1987年3月31日、初版発行、第81〜82頁、5.2.2節「電圧可逆チョッパ回路」の項参照“Semiconductor Power Conversion Circuit” The Institute of Electrical Engineers of Japan, March 31, 1987, first edition, pages 81-82, section 5.2.2 “Reversible voltage chopper circuit” 「PWMインバータ制御方式の最新技術動向」電気学会技術報告第635号、1997年5月発行、第20〜21頁、3.1.2節「多レベル化の応用」の項参照"Latest technical trend of PWM inverter control system" IEEJ Technical Report No. 635, May 1997, pp. 20-21, Section 3.1.2 "Application of Multi-Level"

ところで、上記の電圧可逆チョッパ回路では、出力電圧の極性と大きさを制御するために、2つの半導体スイッチング素子を常時交互にスイッチングする必要がある。特に、零電圧を出力させる場合にも図12に示すように、2つの半導体スイッチング素子を50%のデューティで交互に動作させなければならない。その結果、従来の電圧可逆チョッパは半導体スイッチング素子のオン・オフによるスイッチング損失が大きいという問題がある。
また、図10と図11の出力波形からも分かるように、出力直流電圧は0とEdまたは0と−Edの2電圧レベルしかないため、出力電流のリプル成分も大きいという問題もある。
By the way, in the voltage reversible chopper circuit, in order to control the polarity and magnitude of the output voltage, it is necessary to always switch the two semiconductor switching elements alternately. In particular, even when a zero voltage is output, as shown in FIG. 12, the two semiconductor switching elements must be operated alternately with a duty of 50%. As a result, the conventional voltage reversible chopper has a problem that switching loss due to on / off of the semiconductor switching element is large.
Further, as can be seen from the output waveforms of FIGS. 10 and 11, the output DC voltage has only two voltage levels of 0 and Ed or 0 and −Ed. Therefore, there is also a problem that the ripple component of the output current is large.

したがって、この発明の課題は、スイッチング損失を小さくし出力電流のリップルを低減できるようにすることにある。   Therefore, an object of the present invention is to reduce switching loss and reduce output current ripple.

このような課題を解決するため、請求項1の発明では、第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1,第2のダイオードとを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第3のダイオードを接続し、前記第1,第2のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続してなる第1のハーフブリッジと、前記直列接続された直流電源の正極と負極間に第5,第6のダイオードと第3,第4のスイッチング素子とを直列に接続するとともに、前記第5,第6のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第7のダイオードを接続し、前記第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第8のダイオードを接続してなる第2のハーフブリッジとから構成し、前記第2と第3のスイッチング素子を常時オンしておき、前記第1と第4のスイッチング素子を交互にオン・オフ制御して3レベルの正の電位を得、前記第1と第4のスイッチング素子を常時オフしておき、前記第2と第3のスイッチング素子を交互にオン・オフ制御して3レベルの負の電位を得ることを特徴とする。 In order to solve such a problem, according to the first aspect of the present invention, the first and second DC power supplies are connected in series, and the first and second switching circuits are connected between the positive electrode and the negative electrode of the DC power supply connected in series. An element and the first and second diodes are connected in series, and a third diode is connected between the connection point of the first and second switching elements and the connection point of the first and second DC power supplies. A first half bridge formed by connecting a fourth diode between a connection point of the first and second diodes and a connection point of the first and second DC power supplies, and the series The fifth and sixth diodes and the third and fourth switching elements are connected in series between the positive and negative electrodes of the connected DC power supply, and the connection point between the fifth and sixth diodes and the first Connect the 7th diode between the connection points of the 2nd DC power supply The third, fourth the first connection point of the switching elements, and composed of a second half-bridge formed by connecting the eighth diode between a connection point of the second DC power supply, wherein The second and third switching elements are always turned on, and the first and fourth switching elements are alternately turned on / off to obtain a three-level positive potential, and the first and fourth switching elements are obtained. The element is always turned off, and the second and third switching elements are alternately turned on / off to obtain a three-level negative potential .

請求項2の発明では、第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1,第2のダイオードとを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第のダイオードを接続し、前記第1,第2のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続してなる第1のハーフブリッジと、前記直列接続された直流電源の正極と負極間に第5,第6のダイオードと第3,第4のスイッチング素子とを直列に接続するとともに、前記第5,第6のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第7のダイオードを接続し、前記第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第8のダイオードを接続してなる第2のハーフブリッジとから構成し、正の電圧を出力するときは前記第2と第3のスイッチング素子を常時オンし、負の電圧を出力するときは前記第1および第4のスイッチング素子を常時オフし、前記常時オンまたは常時オフしない残りのスイッチング素子をオン・オフ制御することにより、出力電圧の制御を可能とし、スイッチング損失の低減化を図ることを特徴とする。 In the invention of claim 2, the first and second DC power supplies are connected in series, and the first and second switching elements and the first and second diodes are connected between the positive and negative electrodes of the DC power supplies connected in series. Are connected in series, and a third diode is connected between a connection point of the first and second switching elements and a connection point of the first and second DC power supplies . A first half bridge formed by connecting a fourth diode between a connection point of two diodes and a connection point of the first and second DC power supplies, and a positive electrode and a negative electrode of the DC power supply connected in series Between the fifth and sixth diodes and the third and fourth switching elements connected in series, a connection point between the fifth and sixth diodes and a connection point between the first and second DC power supplies. A seventh diode is connected between the third and fourth switches. And a second half bridge formed by connecting an eighth diode between the connection point of the switching element and the connection point of the first and second DC power supplies, and when outputting a positive voltage, When the second and third switching elements are always turned on and a negative voltage is output, the first and fourth switching elements are always turned off, and the remaining switching elements that are not always turned on or always turned off are turned on / off. By controlling, the output voltage can be controlled and switching loss can be reduced .

請求項3の発明では、第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1,第2のダイオードとを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第3のダイオードを接続し、前記第1,第2のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続してなる第1のハーフブリッジと、前記直列接続された直流電源の正極と負極間に第5,第6のダイオードと第3,第4のスイッチング素子とを直列に接続するとともに、前記第5,第6のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第7のダイオードを接続し、前記第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第8のダイオードを接続してなる第2のハーフブリッジとから構成し、前記第2と第3のスイッチング素子をオンし、前記第1と第4スイッチング素子をオフすることにより、スイッチングせずに零電圧を出力し、スイッチング損失の低減化を図ることを特徴とする。In the invention of claim 3, the first and second DC power supplies are connected in series, and the first and second switching elements and the first and second diodes are connected between the positive and negative electrodes of the DC power supplies connected in series. Are connected in series, and a third diode is connected between a connection point of the first and second switching elements and a connection point of the first and second DC power supplies. A first half bridge formed by connecting a fourth diode between a connection point of two diodes and a connection point of the first and second DC power supplies, and a positive electrode and a negative electrode of the DC power supply connected in series Between the fifth and sixth diodes and the third and fourth switching elements connected in series, a connection point between the fifth and sixth diodes and a connection point between the first and second DC power supplies. A seventh diode is connected between the third and fourth switches. A second half bridge formed by connecting an eighth diode between a connection point of the element and a connection point of the first and second DC power supplies; and the second and third switching elements By turning on and turning off the first and fourth switching elements, zero voltage is output without switching, and switching loss is reduced.

請求項4発明では、第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1,第2のダイオードとを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第3のダイオードを接続し、前記第1,第2のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続してなる第1のハーフブリッジと、前記直列接続された直流電源の正極と負極間に第5,第6のダイオードと第3,第4のスイッチング素子とを直列に接続するとともに、前記第5,第6のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第7のダイオードを接続し、前記第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第8のダイオードを接続してなる第2のハーフブリッジとから構成し、振幅が0〜1の第1のキャリア三角波、振幅が−1〜0の第2のキャリア三角波、この第2のキャリア三角波と180°位相がずれた第3のキャリア三角波、前記第1のキャリア三角波と180°位相がずれた第4のキャリア三角波を出力電圧指令とそれぞれ比較し、前記第1,2,3,4の各スイッチング素子をオン・オフ制御することを特徴とする。According to a fourth aspect of the present invention, the first and second DC power supplies are connected in series, and the first and second switching elements and the first and second diodes are connected between the positive and negative electrodes of the DC power supplies connected in series. Are connected in series, and a third diode is connected between a connection point of the first and second switching elements and a connection point of the first and second DC power supplies. A first half bridge formed by connecting a fourth diode between a connection point of the first diode and a connection point of the first and second DC power supplies, and a positive electrode and a negative electrode of the DC power supply connected in series In addition, the fifth and sixth diodes and the third and fourth switching elements are connected in series, and the connection point of the fifth and sixth diodes and the connection point of the first and second DC power supplies A seventh diode is connected between the third and fourth switching elements. A first half carrier having an amplitude of 0 to 1 and comprising a second half bridge formed by connecting an eighth diode between a connecting point of the child and a connecting point of the first and second DC power supplies A triangular wave, a second carrier triangular wave having an amplitude of −1 to 0, a third carrier triangular wave that is 180 ° out of phase with the second carrier triangular wave, and a fourth carrier that is 180 ° out of phase with the first carrier triangular wave. The carrier triangular wave is respectively compared with an output voltage command, and each of the first, second, third, and fourth switching elements is controlled to be turned on / off.

請求項5の発明では、第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1のダイオードを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第2のダイオードを接続した第1のハーフブリッジと、前記直流電源の正極と負極間に第3のダイオードと第3,第4のスイッチング素子を直列接続するとともに、この第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続した第2のハーフブリッジとから構成し、前記第2と第3のスイッチング素子を常時オンしておき、前記第1と第4のスイッチング素子を交互にオン・オフ制御して3レベルの正の電位を得、前記第1と第4のスイッチング素子を常時オフしておき、前記第2と第3のスイッチング素子を交互にオン・オフ制御して3レベルの負の電位を得ることを特徴とする。In the invention of claim 5, the first and second DC power supplies are connected in series, and the first and second switching elements and the first diode are connected in series between the positive electrode and the negative electrode of the DC power supply connected in series. A first half bridge having a second diode connected between a connection point of the first and second switching elements and a connection point of the first and second DC power sources, and the DC power source A third diode and third and fourth switching elements are connected in series between the positive electrode and the negative electrode of the first and second connection points of the third and fourth switching elements and the first and second DC power supplies. And a second half bridge with a fourth diode connected between them, the second and third switching elements are always turned on, and the first and fourth switching elements are alternately turned on.・ Off-control and 3 level positive The first and fourth switching elements are always turned off, and the second and third switching elements are alternately turned on / off to obtain a three-level negative potential. To do.

請求項6の発明では、第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1のダイオードを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第2のダイオードを接続した第1のハーフブリッジと、前記直流電源の正極と負極間に第3のダイオードと第3,第4のスイッチング素子を直列接続するとともに、この第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続した第2のハーフブリッジとから構成し、正の電圧を出力するときは前記第2と第3のスイッチング素子を常時オンし、負の電圧を出力するときは前記第1および第4のスイッチング素子を常時オフし、前記常時オンまたは常時オフしない残りのスイッチング素子をオン・オフ制御することにより、出力電圧の制御を可能とし、スイッチング損失の低減化を図ることを特徴とする。In the invention of claim 6, the first and second DC power supplies are connected in series, and the first and second switching elements and the first diode are connected in series between the positive and negative electrodes of the DC power supplies connected in series. A first half bridge having a second diode connected between a connection point of the first and second switching elements and a connection point of the first and second DC power sources, and the DC power source A third diode and third and fourth switching elements are connected in series between the positive electrode and the negative electrode of the first and second connection points of the third and fourth switching elements and the first and second DC power supplies. When a positive voltage is output, the second and third switching elements are always turned on and a negative voltage is output. Is the first and fourth switch Always off the element, by controlling remaining on and off the switching element, wherein no off always on or always to allow control of the output voltage, and wherein possible to reduce the switching loss.

請求項7の発明では、第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1のダイオードを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第2のダイオードを接続した第1のハーフブリッジと、前記直流電源の正極と負極間に第3のダイオードと第3,第4のスイッチング素子を直列接続するとともに、この第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続した第2のハーフブリッジとから構成し、前記第2と第3のスイッチング素子をオンし、前記第1と第4スイッチング素子をオフすることにより、スイッチングせずに零電圧を出力し、スイッチング損失の低減化を図ることを特徴とする。In the invention of claim 7, the first and second DC power supplies are connected in series, and the first and second switching elements and the first diode are connected in series between the positive electrode and the negative electrode of the DC power supply connected in series. A first half bridge having a second diode connected between a connection point of the first and second switching elements and a connection point of the first and second DC power sources, and the DC power source A third diode and third and fourth switching elements are connected in series between the positive electrode and the negative electrode of the first and second connection points of the third and fourth switching elements and the first and second DC power supplies. And a second half bridge with a fourth diode connected between them, and switching on by turning on the second and third switching elements and turning off the first and fourth switching elements. Output zero voltage without , Characterized in that to achieve a reduction in switching loss.

請求項8の発明では、第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1のダイオードを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第2のダイオードを接続した第1のハーフブリッジと、前記直流電源の正極と負極間に第3のダイオードと第3,第4のスイッチング素子を直列接続するとともに、この第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続した第2のハーフブリッジとから構成し、振幅が0〜1の第1のキャリア三角波、振幅が−1〜0の第2のキャリア三角波、この第2のキャリア三角波と180°位相がずれた第3のキャリア三角波、前記第1のキャリア三角波と180°位相がずれた第4のキャリア三角波を出力電圧指令とそれぞれ比較し、前記第1,2,3,4の各スイッチング素子をオン・オフ制御することを特徴とする。In the invention of claim 8, the first and second DC power supplies are connected in series, and the first and second switching elements and the first diode are connected in series between the positive electrode and the negative electrode of the DC power supply connected in series. A first half bridge having a second diode connected between a connection point of the first and second switching elements and a connection point of the first and second DC power sources, and the DC power source A third diode and third and fourth switching elements are connected in series between the positive electrode and the negative electrode of the first and second connection points of the third and fourth switching elements and the first and second DC power supplies. And a second half bridge having a fourth diode connected therebetween, a first carrier triangular wave with an amplitude of 0 to 1, a second carrier triangular wave with an amplitude of -1 to 0, Third phase 180 ° out of phase with carrier triangle wave A carrier triangular wave and a fourth carrier triangular wave that is 180 ° out of phase with the first carrier triangular wave are respectively compared with an output voltage command, and each of the first, second, third, and fourth switching elements is controlled to be turned on / off. It is characterized by.

の発明によれば、低損失,低電流リプルの3レベル電圧可逆チョッパを得ることができる。
請求項1,5の発明によれば、出力電圧を0,Ed/2,Ed、または−Ed,−Ed/2,0の3つの電圧レベルで出力できるので、出力電流のリプル成分を大きく低減できる。
請求項2,6の発明によれば、出力電圧を調整するに当り、一部の半導体スイッチング素子のオン・オフ制御により実現できるから、従来と同容量の電圧可逆チョッパに比べてスイッチング損失を約半分に低減できる。
According to this invention, it is possible to obtain low loss, three-level voltage reversible chopper low current ripple.
According to the invention of claim 1, 5, the output voltage 0, Ed / 2, Ed, or -Ed, since it outputs three voltage levels of -Ed / 2, 0, greatly reduces the ripple component of the output current it can.
According to the second and sixth aspects of the invention, the adjustment of the output voltage can be realized by on / off control of a part of the semiconductor switching elements, so that the switching loss is reduced as compared with the voltage reversible chopper having the same capacity as the conventional one. Can be reduced to half.

請求項3,7の発明によれば、零電圧を出力するに当り半導体スイッチング素子のオン,オフがないので、スイッチング損失を零にすることができる。
請求項4,8の発明によれば、電圧指令と2段階のキャリア信号との比較により、3レベルのゲート制御信号を簡単に作成できる。
According to the third and seventh aspects of the invention, since the semiconductor switching element is not turned on / off when outputting the zero voltage, the switching loss can be made zero.
According to the fourth and eighth aspects of the present invention, a three-level gate control signal can be easily created by comparing the voltage command with the two-stage carrier signal.

図1はこの発明の実施の形態を示す回路図である。
図1において、1は直流電源であり、2aと2bは分圧コンデンサである。10はこの発明による3レベル電圧可逆チョッパ、3は負荷装置、40は3レベル電圧可逆チョッパを制御するためのパルス幅変調(PWM)回路である。なお、3レベル電圧可逆チョッパ10は例えばIGBT(絶縁ゲートバイポーラトランジスタ)からなる半導体スイッチング素子10A〜10Dと、還流ルートを提供するダイオード10E〜10Hと、クランプダイオード10I〜10L等より構成される。なお、半導体スイッチング素子はIGBTに限らず、BJT(バイポーラ接合トランジスタ)またはMOSFET(金属酸化膜電界効果トランジスタ)などの自己消弧型半導体スイッチング素子を用いても良い。
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
In FIG. 1, 1 is a DC power source, and 2a and 2b are voltage dividing capacitors. 10 is a three-level voltage reversible chopper according to the present invention, 3 is a load device, and 40 is a pulse width modulation (PWM) circuit for controlling the three-level voltage reversible chopper. The three-level voltage reversible chopper 10 includes semiconductor switching elements 10A to 10D made of, for example, an IGBT (insulated gate bipolar transistor), diodes 10E to 10H providing a return route, clamp diodes 10I to 10L, and the like. The semiconductor switching element is not limited to the IGBT, and a self-extinguishing semiconductor switching element such as a BJT (bipolar junction transistor) or a MOSFET (metal oxide field effect transistor) may be used.

図2A〜2Dにより、正の直流電圧を出力する場合の動作を説明する。
まず、半導体スイッチング素子10Bと10Cをベタオン(常時オン)しておき、半導体スイッチング素子10Aと10Dをオン・オフ制御する。図2Aで10Aと10D両方ともオンすると、負荷3は直流電源1に接続され、出力電圧はEdとなる。図2Bのように10Aがオン、10Dがオフすると、同図に点線で示す経路で電流が還流し、出力電圧は直流電圧の半分のEd/2となる。図2Cのように、10Aがオフ、10Dがオンすると、同図に点線で示す経路で電流が還流し、出力電圧も直流電圧の半分のEd/2となる。図2Dのように、10Aと10D両方ともオフすると、同図に点線で示す経路で電流が還流し、出力電圧は零となる。
The operation when a positive DC voltage is output will be described with reference to FIGS.
First, the semiconductor switching elements 10B and 10C are beta-on (always on), and the semiconductor switching elements 10A and 10D are on / off controlled. When both 10A and 10D are turned on in FIG. 2A, the load 3 is connected to the DC power source 1 and the output voltage becomes Ed. When 10A is turned on and 10D is turned off as shown in FIG. 2B, current flows through a path indicated by a dotted line in FIG. 2B, and the output voltage becomes Ed / 2, which is half of the DC voltage. As shown in FIG. 2C, when 10A is turned off and 10D is turned on, current flows through a path indicated by a dotted line in the figure, and the output voltage becomes Ed / 2, which is half of the DC voltage. As shown in FIG. 2D, when both 10A and 10D are turned off, current flows through a path indicated by a dotted line in the same figure, and the output voltage becomes zero.

以上の説明から分かるように、各半導体スイッチング素子に印加される最大電圧は直流電圧Edの半分である。これに対し、従来の電圧可逆チョッパでは、各半導体スイッチング素子に印加される最大電圧は直流電圧Edとなり、同じ定格の半導体スイッチング素子を用いた場合、この発明の方が従来のものに比べて容量が2倍となる。または、従来の電圧可逆チョッパでこの発明と同じ容量の電圧可逆チョッパを構築するには、半導体スイッチング素子を2直列にしなければならない。   As can be seen from the above description, the maximum voltage applied to each semiconductor switching element is half of the DC voltage Ed. On the other hand, in the conventional voltage reversible chopper, the maximum voltage applied to each semiconductor switching element is the DC voltage Ed. When semiconductor switching elements having the same rating are used, the capacity of the present invention is higher than that of the conventional one. Is doubled. Alternatively, in order to construct a voltage reversible chopper having the same capacity as that of the present invention with a conventional voltage reversible chopper, two semiconductor switching elements must be connected in series.

以上のように、この発明で正の電圧を出力する場合、0,Ed/2,Edの3つの電圧レベルとなり、オン・オフのタイミングを制御することにより、出力電圧を0からEdの範囲で調整することができる。また、10A,10B,10C,10Dの4つの半導体スイッチング素子のうち、10Aと10Dの2つだけを交互にオン・オフしているので、同容量の従来型電圧可逆チョッパと比べ、半導体スイッチング素子によるスイッチング損失を半分に低減することができる。
なお、半導体スイッチング素子10Aと10Dベタオフ(常時オフ)しておき、10Bと10Cを交互にオン・オフすることにより、3つの電圧レベル(−Ed,−Ed/2と0)を出力することができる。
As described above, when a positive voltage is output in the present invention, there are three voltage levels of 0, Ed / 2, and Ed. By controlling the on / off timing, the output voltage can be set in the range of 0 to Ed. Can be adjusted. Also, since only two of 10A, 10B, 10C, and 10D are switched on and off alternately, the semiconductor switching device is compared with the conventional voltage reversible chopper of the same capacity. Can reduce the switching loss by half.
Note that three voltage levels (-Ed, -Ed / 2 and 0) can be output by turning off the semiconductor switching elements 10A and 10D solidly (always off) and alternately turning on and off 10B and 10C. it can.

次に、3レベル電圧可逆チョッパのゲート制御信号の生成方法について説明する。以上から明らかなように、出力電圧を調整する場合は、10A,10B,10C,10Dの4つの半導体スイッチング素子のオン・オフ制御が必要となる。その各スイッチング素子に対するゲート制御信号の生成回路を、図3(a)に示す。これは、コンパレータ40A,40B,40C,40Dにより電圧指令Vrefとキャリア三角波信号Tr1,Tr2,Tr3,Tr4とを比較し、各スイッチング素子のオン・オフを制御するもので、三角波信号Tr1,Tr2,Tr3,Tr4の各波形例を図3(b)に示す。   Next, a method for generating a gate control signal of the three-level voltage reversible chopper will be described. As is apparent from the above, when the output voltage is adjusted, on / off control of the four semiconductor switching elements 10A, 10B, 10C, and 10D is required. A gate control signal generating circuit for each switching element is shown in FIG. This compares the voltage command Vref with the carrier triangular wave signals Tr1, Tr2, Tr3, Tr4 by the comparators 40A, 40B, 40C, 40D, and controls on / off of each switching element. The triangular wave signals Tr1, Tr2, Each waveform example of Tr3 and Tr4 is shown in FIG.

図4に、正の電圧を出力する場合のゲート制御信号と出力電圧波形を示す。
図4(a)は電圧指令Vref=0の場合で、10Bと10Cがベタオンで、10Aと10Dがベタオフで、スイッチングせずに零電圧を出力する場合である。
図4(b)は電圧指令Vrefが0〜0.5の場合で、10Bと10Cがベタオンで、10Aと10Dがオン・オフし、0〜Ed/2のパルス電圧を出力する場合である。
FIG. 4 shows a gate control signal and an output voltage waveform when a positive voltage is output.
FIG. 4A shows a case where the voltage command Vref = 0, 10B and 10C are beta-on, 10A and 10D are beta-off, and zero voltage is output without switching.
FIG. 4B shows a case where the voltage command Vref is 0 to 0.5, 10B and 10C are beta-on, 10A and 10D are turned on / off, and a pulse voltage of 0 to Ed / 2 is output.

図4(c)は電圧指令Vrefが0.5〜1.0の場合で、10Bと10Cがベタオンで、10Aと10Dがオン・オフし、Ed/2〜Edのパルス電圧を出力する場合である。
以上のように、出力電圧は電圧指令Vrefと比例しており、Vrefを調整することにより、0,Ed/2,Edの3つの電圧レベルを出力することができる。
図5は負の電圧を出力する場合のゲート制御信号と出力電圧波形を示す。10Aと10Dをベタオフし、10Bと10Cの交互オン・オフにより、出力を−Ed,−Ed/2,0の3つの電圧レベルに調整することが可能となる。
FIG. 4C shows a case where the voltage command Vref is 0.5 to 1.0, 10B and 10C are beta-on, 10A and 10D are turned on / off, and a pulse voltage of Ed / 2 to Ed is output. is there.
As described above, the output voltage is proportional to the voltage command Vref, and three voltage levels of 0, Ed / 2, and Ed can be output by adjusting Vref.
FIG. 5 shows a gate control signal and an output voltage waveform when a negative voltage is output. It is possible to adjust the output to three voltage levels of -Ed, -Ed / 2, and 0 by solidly turning off 10A and 10D and alternately turning on and off 10B and 10C.

図6にこの発明の他の実施の形態を示す。
これは、図1に示すものに対し、ダイオード10Eと10Fとの直列回路を10Eのみ、また、ダイオード10Gと10Hとの直列回路を10Gのみとし、クランプダイオード10Jと10Kを省略した点が特徴である。
FIG. 6 shows another embodiment of the present invention.
This is different from that shown in FIG. 1 in that the series circuit of diodes 10E and 10F is only 10E, the series circuit of diodes 10G and 10H is only 10G, and the clamp diodes 10J and 10K are omitted. is there.

こうすることにより、図1と同様の機能を持たせることができ、正の直流電圧を出力する場合は、図2A〜2Dでの説明がここでも同様に適用でき、図7A〜7Dとして説明することができる。図2A〜2Dと図7A〜7Dとで点線経路が殆ど同じであることが分かる。
なお、負の直流電圧を出力する場合は、図8A〜8Dのようになるが、逆にこの説明は図1で負の直流電圧を出力する場合にも適用することができる。同様に、図1に関する図3,4および5の説明は、図6の場合にも全く同様に適用することができ、機能,作用および効果についても殆ど変わりないものである。
In this way, the same function as in FIG. 1 can be provided, and when a positive DC voltage is output, the description in FIGS. 2A to 2D can be similarly applied here, and will be described as FIGS. 7A to 7D. be able to. It can be seen that the dotted line paths are almost the same in FIGS.
In addition, when outputting a negative DC voltage, it becomes like FIG. 8A-8D, but conversely this description is applicable also when outputting a negative DC voltage in FIG. Similarly, the description of FIGS. 3, 4 and 5 with respect to FIG. 1 can be applied to the case of FIG. 6 in the same manner, and the functions, operations and effects are almost the same.

この発明の実施の形態を示す回路図Circuit diagram showing an embodiment of the present invention 図1で正の電圧を出力する場合の第1電流経路の説明図Explanatory drawing of the 1st electric current path in the case of outputting a positive voltage in FIG. 図1で正の電圧を出力する場合の第2電流経路の説明図Explanatory diagram of the second current path when outputting a positive voltage in FIG. 図1で正の電圧を出力する場合の第3電流経路の説明図Explanatory diagram of the third current path when outputting a positive voltage in FIG. 図1で正の電圧を出力する場合の第4電流経路の説明図Explanatory diagram of the fourth current path when outputting a positive voltage in FIG. 図1でゲート制御信号を生成する回路構成とキャリア信号波形図The circuit configuration and carrier signal waveform diagram for generating the gate control signal in FIG. 図1で正の電圧を出力する場合のゲートパルスと出力電圧波形図Figure 1 shows the gate pulse and output voltage waveform when a positive voltage is output in Fig. 1. 図1で負の電圧を出力する場合のゲートパルスと出力電圧波形図Figure 1 shows the gate pulse and output voltage waveform when a negative voltage is output in Fig. 1. この発明の他の実施の形態を示す回路図Circuit diagram showing another embodiment of the present invention 図6で正の電圧を出力する場合の第1電流経路の説明図Explanatory diagram of the first current path when outputting a positive voltage in FIG. 図6で正の電圧を出力する場合の第2電流経路の説明図Explanatory diagram of the second current path when outputting a positive voltage in FIG. 図6で正の電圧を出力する場合の第3電流経路の説明図Explanatory diagram of the third current path when outputting a positive voltage in FIG. 図6で正の電圧を出力する場合の第4電流経路の説明図Explanatory diagram of the fourth current path when outputting a positive voltage in FIG. 図6で負の電圧を出力する場合の第1電流経路の説明図Explanatory drawing of the 1st electric current path in the case of outputting a negative voltage in FIG. 図6で負の電圧を出力する場合の第2電流経路の説明図Explanatory drawing of the 2nd electric current path in the case of outputting a negative voltage in FIG. 図6で負の電圧を出力する場合の第3電流経路の説明図Explanatory diagram of the third current path when outputting a negative voltage in FIG. 図6で負の電圧を出力する場合の第4電流経路の説明図Explanatory diagram of the fourth current path when outputting a negative voltage in FIG. 電圧可逆チョッパの従来例を示す回路図Circuit diagram showing a conventional example of a voltage reversible chopper 図9で正の直流電圧を出力する場合の動作説明図FIG. 9 is a diagram illustrating the operation when a positive DC voltage is output. 図9で負の直流電圧を出力する場合の動作説明図FIG. 9 is a diagram for explaining the operation when a negative DC voltage is output. 図9で零電圧を出力する場合の動作説明図Explanation of operation when outputting zero voltage in FIG.

1…直流電源、2a,2b…分圧コンデンサ、10…3レベル電圧可逆チョッパ、10A,10B,10C,10D…半導体スイッチング素子、10E,10F,10G,10H…ダイオード、10I,10J,10K,10L…クランプダイオード、40…パルス幅変調(PWM)回路、40A,40B,40C,40D…コンパレータ、Vref…電圧指令、Tr1〜Tr4…三角信号。 DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2a, 2b ... Voltage dividing capacitor, 10 ... 3 level voltage reversible chopper, 10A, 10B, 10C, 10D ... Semiconductor switching element, 10E, 10F, 10G, 10H ... Diode, 10I, 10J, 10K, 10L ... clamping diodes, 40 ... pulse width modulation (PWM) circuit, 40A, 40B, 40C, 40D ... comparator, Vref ... voltage command, Tr1 to Tr4 ... triangular wave signal.

Claims (8)

第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1,第2のダイオードとを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第3のダイオードを接続し、前記第1,第2のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続してなる第1のハーフブリッジと、前記直列接続された直流電源の正極と負極間に第5,第6のダイオードと第3,第4のスイッチング素子とを直列に接続するとともに、前記第5,第6のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第7のダイオードを接続し、前記第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第8のダイオードを接続してなる第2のハーフブリッジとから構成し、
前記第2と第3のスイッチング素子を常時オンしておき、前記第1と第4のスイッチング素子を交互にオン・オフ制御して3レベルの正の電位を得、前記第1と第4のスイッチング素子を常時オフしておき、前記第2と第3のスイッチング素子を交互にオン・オフ制御して3レベルの負の電位を得ることを特徴とする3レベル電圧可逆チョッパ装置。
The first and second DC power supplies are connected in series, and the first and second switching elements and the first and second diodes are connected in series between the positive and negative electrodes of the DC power supplies connected in series. A third diode is connected between a connection point of the first and second switching elements and a connection point of the first and second DC power supplies, and a connection point of the first and second diodes. A first half bridge formed by connecting a fourth diode between connection points of the first and second DC power supplies, and fifth and sixth terminals between the positive and negative electrodes of the DC power supplies connected in series. The diode and the third and fourth switching elements are connected in series, and a seventh point is connected between the connection point of the fifth and sixth diodes and the connection point of the first and second DC power supplies. A diode is connected, and the connection point of the third and fourth switching elements and the 1, and composed of a second half-bridge formed by connecting the eighth diode between a connection point of the second DC power supply,
The second and third switching elements are always turned on, and the first and fourth switching elements are alternately turned on / off to obtain a three-level positive potential. A three-level voltage reversible chopper device characterized in that a switching element is always turned off, and the second and third switching elements are alternately turned on / off to obtain a three-level negative potential .
第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1,第2のダイオードとを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第のダイオードを接続し、前記第1,第2のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続してなる第1のハーフブリッジと、前記直列接続された直流電源の正極と負極間に第5,第6のダイオードと第3,第4のスイッチング素子とを直列に接続するとともに、前記第5,第6のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第7のダイオードを接続し、前記第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第8のダイオードを接続してなる第2のハーフブリッジとから構成し、
正の電圧を出力するときは前記第2と第3のスイッチング素子を常時オンし、負の電圧を出力するときは前記第1および第4のスイッチング素子を常時オフし、前記常時オンまたは常時オフしない残りのスイッチング素子をオン・オフ制御することにより、出力電圧の制御を可能とし、スイッチング損失の低減化を図ることを特徴とする3レベル電圧可逆チョッパ装置。
The first and second DC power supplies are connected in series, and the first and second switching elements and the first and second diodes are connected in series between the positive electrode and the negative electrode of the DC power supply connected in series. A third diode is connected between a connection point of the first and second switching elements and a connection point of the first and second DC power supplies, and a connection point of the first and second diodes. A first half bridge formed by connecting a fourth diode between connection points of the first and second DC power supplies, and fifth and sixth terminals between the positive and negative electrodes of the DC power supplies connected in series. The diode and the third and fourth switching elements are connected in series, and a seventh point is connected between the connection point of the fifth and sixth diodes and the connection point of the first and second DC power supplies. A diode is connected, and the connection point of the third and fourth switching elements and the A second half bridge formed by connecting an eighth diode between the connection points of the first and second DC power supplies ;
When outputting a positive voltage, the second and third switching elements are always turned on. When outputting a negative voltage, the first and fourth switching elements are always turned off, and the always on or always off. A three-level voltage reversible chopper device characterized in that output voltage can be controlled and switching loss is reduced by controlling on / off of the remaining switching elements .
第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1,第2のダイオードとを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第3のダイオードを接続し、前記第1,第2のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続してなる第1のハーフブリッジと、前記直列接続された直流電源の正極と負極間に第5,第6のダイオードと第3,第4のスイッチング素子とを直列に接続するとともに、前記第5,第6のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第7のダイオードを接続し、前記第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第8のダイオードを接続してなる第2のハーフブリッジとから構成し、
前記第2と第3のスイッチング素子をオンし、前記第1と第4スイッチング素子をオフすることにより、スイッチングせずに零電圧を出力し、スイッチング損失の低減化を図ることを特徴とする3レベル電圧可逆チョッパ装置。
The first and second DC power supplies are connected in series, and the first and second switching elements and the first and second diodes are connected in series between the positive and negative electrodes of the DC power supplies connected in series. A third diode is connected between a connection point of the first and second switching elements and a connection point of the first and second DC power supplies, and a connection point of the first and second diodes. A first half bridge formed by connecting a fourth diode between connection points of the first and second DC power supplies, and fifth and sixth terminals between the positive and negative electrodes of the DC power supplies connected in series. The diode and the third and fourth switching elements are connected in series, and a seventh point is connected between the connection point of the fifth and sixth diodes and the connection point of the first and second DC power supplies. A diode is connected, and the connection point of the third and fourth switching elements and the 1, and composed of a second half-bridge formed by connecting the eighth diode between a connection point of the second DC power supply,
By turning on the second and third switching elements and turning off the first and fourth switching elements, zero voltage is output without switching, and switching loss is reduced. Level voltage reversible chopper device.
第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1,第2のダイオードとを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第3のダイオードを接続し、前記第1,第2のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続してなる第1のハーフブリッジと、前記直列接続された直流電源の正極と負極間に第5,第6のダイオードと第3,第4のスイッチング素子とを直列に接続するとともに、前記第5,第6のダイオードの接続点と前記第1,第2の直流電源の接続点との間に第7のダイオードを接続し、前記第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第8のダイオードを接続してなる第2のハーフブリッジとから構成し、
振幅が0〜1の第1のキャリア三角波、振幅が−1〜0の第2のキャリア三角波、この第2のキャリア三角波と180°位相がずれた第3のキャリア三角波、前記第1のキャリア三角波と180°位相がずれた第4のキャリア三角波を出力電圧指令とそれぞれ比較し、前記第1,2,3,4の各スイッチング素子をオン・オフ制御することを特徴とする3レベル電圧可逆チョッパ装置。
The first and second DC power supplies are connected in series, and the first and second switching elements and the first and second diodes are connected in series between the positive and negative electrodes of the DC power supplies connected in series. A third diode is connected between a connection point of the first and second switching elements and a connection point of the first and second DC power supplies, and a connection point of the first and second diodes. A first half bridge formed by connecting a fourth diode between connection points of the first and second DC power supplies, and fifth and sixth terminals between the positive and negative electrodes of the DC power supplies connected in series. The diode and the third and fourth switching elements are connected in series, and a seventh point is connected between the connection point of the fifth and sixth diodes and the connection point of the first and second DC power supplies. A diode is connected, and the connection point of the third and fourth switching elements and the 1, and composed of a second half-bridge formed by connecting the eighth diode between a connection point of the second DC power supply,
A first carrier triangular wave having an amplitude of 0 to 1, a second carrier triangular wave having an amplitude of −1 to 0, a third carrier triangular wave that is 180 ° out of phase with the second carrier triangular wave, and the first carrier triangular wave And a fourth carrier triangular wave that is 180 ° out of phase with the output voltage command, and the on / off control of each of the first, second, third, and fourth switching elements is performed. apparatus.
第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1のダイオードを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第2のダイオードを接続した第1のハーフブリッジと、前記直流電源の正極と負極間に第3のダイオードと第3,第4のスイッチング素子を直列接続するとともに、この第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続した第2のハーフブリッジとから構成し、
前記第2と第3のスイッチング素子を常時オンしておき、前記第1と第4のスイッチング素子を交互にオン・オフ制御して3レベルの正の電位を得、前記第1と第4のスイッチング素子を常時オフしておき、前記第2と第3のスイッチング素子を交互にオン・オフ制御して3レベルの負の電位を得ることを特徴とする3レベル電圧可逆チョッパ装置。
The first and second DC power supplies are connected in series, and the first and second switching elements and the first diode are connected in series between the positive and negative electrodes of the DC power supplies connected in series. , A first half bridge in which a second diode is connected between the connection point of the second switching element and the connection point of the first and second DC power supplies, and the first half bridge between the positive electrode and the negative electrode of the DC power supply. The third diode and the third and fourth switching elements are connected in series, and a fourth point is connected between the connection point of the third and fourth switching elements and the connection point of the first and second DC power supplies. A second half bridge connected with a diode,
The second and third switching elements are always turned on, and the first and fourth switching elements are alternately turned on / off to obtain a three-level positive potential. A three-level voltage reversible chopper device characterized in that a switching element is always turned off, and the second and third switching elements are alternately turned on / off to obtain a three-level negative potential .
第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1のダイオードを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第2のダイオードを接続した第1のハーフブリッジと、前記直流電源の正極と負極間に第3のダイオードと第3,第4のスイッチング素子を直列接続するとともに、この第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続した第2のハーフブリッジとから構成し、
正の電圧を出力するときは前記第2と第3のスイッチング素子を常時オンし、負の電圧を出力するときは前記第1および第4のスイッチング素子を常時オフし、前記常時オンまたは常時オフしない残りのスイッチング素子をオン・オフ制御することにより、出力電圧の制御を可能とし、スイッチング損失の低減化を図ることを特徴とする3レベル電圧可逆チョッパ装置。
The first and second DC power supplies are connected in series, and the first and second switching elements and the first diode are connected in series between the positive and negative electrodes of the DC power supplies connected in series. , A first half bridge in which a second diode is connected between the connection point of the second switching element and the connection point of the first and second DC power supplies, and the first half bridge between the positive electrode and the negative electrode of the DC power supply. The third diode and the third and fourth switching elements are connected in series, and a fourth point is connected between the connection point of the third and fourth switching elements and the connection point of the first and second DC power supplies. A second half bridge connected with a diode,
When outputting a positive voltage, the second and third switching elements are always turned on. When outputting a negative voltage, the first and fourth switching elements are always turned off, and the always on or always off. A three-level voltage reversible chopper device characterized in that output voltage can be controlled and switching loss is reduced by controlling on / off of the remaining switching elements .
第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1のダイオードを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第2のダイオードを接続した第1のハーフブリッジと、前記直流電源の正極と負極間に第3のダイオードと第3,第4のスイッチング素子を直列接続するとともに、この第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続した第2のハーフブリッジとから構成し、
前記第2と第3のスイッチング素子をオンし、前記第1と第4スイッチング素子をオフすることにより、スイッチングせずに零電圧を出力し、スイッチング損失の低減化を図ることを特徴とする3レベル電圧可逆チョッパ装置。
The first and second DC power supplies are connected in series, and the first and second switching elements and the first diode are connected in series between the positive and negative electrodes of the DC power supplies connected in series. , A first half bridge in which a second diode is connected between the connection point of the second switching element and the connection point of the first and second DC power supplies, and the first half bridge between the positive electrode and the negative electrode of the DC power supply. The third diode and the third and fourth switching elements are connected in series, and a fourth point is connected between the connection point of the third and fourth switching elements and the connection point of the first and second DC power supplies. A second half bridge connected with a diode,
By turning on the second and third switching elements and turning off the first and fourth switching elements, zero voltage is output without switching, and switching loss is reduced. Level voltage reversible chopper device.
第1,第2の直流電源を直列に接続し、この直列接続された直流電源の正極と負極間に第1,第2のスイッチング素子と第1のダイオードを直列に接続するとともに、前記第1,第2のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第2のダイオードを接続した第1のハーフブリッジと、前記直流電源の正極と負極間に第3のダイオードと第3,第4のスイッチング素子を直列接続するとともに、この第3,第4のスイッチング素子の接続点と前記第1,第2の直流電源の接続点との間に第4のダイオードを接続した第2のハーフブリッジとから構成し、
振幅が0〜1の第1のキャリア三角波、振幅が−1〜0の第2のキャリア三角波、この第2のキャリア三角波と180°位相がずれた第3のキャリア三角波、前記第1のキャリア三角波と180°位相がずれた第4のキャリア三角波を出力電圧指令とそれぞれ比較し、前記第1,2,3,4の各スイッチング素子をオン・オフ制御することを特徴とする3レベル電圧可逆チョッパ装置。
The first and second DC power supplies are connected in series, and the first and second switching elements and the first diode are connected in series between the positive and negative electrodes of the DC power supplies connected in series. , A first half bridge in which a second diode is connected between the connection point of the second switching element and the connection point of the first and second DC power supplies, and the first half bridge between the positive electrode and the negative electrode of the DC power supply. The third diode and the third and fourth switching elements are connected in series, and a fourth point is connected between the connection point of the third and fourth switching elements and the connection point of the first and second DC power supplies. A second half bridge connected with a diode,
A first carrier triangular wave having an amplitude of 0 to 1, a second carrier triangular wave having an amplitude of −1 to 0, a third carrier triangular wave that is 180 ° out of phase with the second carrier triangular wave, and the first carrier triangular wave And a fourth carrier triangular wave that is 180 ° out of phase with the output voltage command, and the on / off control of each of the first, second, third, and fourth switching elements is performed. apparatus.
JP2005316952A 2005-09-01 2005-10-31 3-level voltage reversible chopper device Active JP4867290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005316952A JP4867290B2 (en) 2005-09-01 2005-10-31 3-level voltage reversible chopper device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005253349 2005-09-01
JP2005253349 2005-09-01
JP2005316952A JP4867290B2 (en) 2005-09-01 2005-10-31 3-level voltage reversible chopper device

Publications (2)

Publication Number Publication Date
JP2007097386A JP2007097386A (en) 2007-04-12
JP4867290B2 true JP4867290B2 (en) 2012-02-01

Family

ID=37982371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005316952A Active JP4867290B2 (en) 2005-09-01 2005-10-31 3-level voltage reversible chopper device

Country Status (1)

Country Link
JP (1) JP4867290B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095075A (en) * 2007-10-04 2009-04-30 Fuji Electric Systems Co Ltd 3 level voltage reversible chopper

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196503A (en) * 1985-02-26 1986-08-30 Toshiba Corp Power source for electromagnet
JPH10108474A (en) * 1996-09-27 1998-04-24 Denso Corp Multilevel switching type power converter
JPH11233298A (en) * 1998-02-19 1999-08-27 Hitachi Ltd Power supply device and particle accelerator
JP4356434B2 (en) * 2003-11-27 2009-11-04 富士電機システムズ株式会社 3-level inverter circuit

Also Published As

Publication number Publication date
JP2007097386A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP2009095075A (en) 3 level voltage reversible chopper
JP5631499B2 (en) Power converter
JP2007181253A (en) Power converter
US8773870B2 (en) Power converter and method for controlling same
JPWO2010146637A1 (en) Power converter
US11165359B2 (en) Power conversion system configured to perform power conversion between direct current and three-phase alternating current
JP5043585B2 (en) Power converter
JP4661256B2 (en) Power converter
JP4867290B2 (en) 3-level voltage reversible chopper device
JP6516182B2 (en) Power converter circuit and power converter using the same
US20220140748A1 (en) Semiconductor device and inverter device
JP6516181B2 (en) Power converter circuit and power converter using the same
JP6016836B2 (en) Power conversion device and power conversion control method
WO2016128819A1 (en) Power conversion device
US10461662B1 (en) AC/DC converter
KR20130088606A (en) Apparatus for controlling three-level inverter, and power supplying device and motor driver having the three-level inverter
JP5400956B2 (en) Power converter
WO2014118818A1 (en) Power conversion device
JP6440067B2 (en) Power converter
US20210218344A1 (en) Boost inverter system with enhanced tolerance for low voltage input bus
JP7201045B2 (en) power converter
JP5734120B2 (en) Power converter
US9294008B2 (en) Two-quadrant chopper
JP2018057156A (en) Power converter
JP5423264B2 (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250