JP4846147B2 - Method for producing material coated or impregnated with oxidized polysaccharide material - Google Patents

Method for producing material coated or impregnated with oxidized polysaccharide material Download PDF

Info

Publication number
JP4846147B2
JP4846147B2 JP2001382872A JP2001382872A JP4846147B2 JP 4846147 B2 JP4846147 B2 JP 4846147B2 JP 2001382872 A JP2001382872 A JP 2001382872A JP 2001382872 A JP2001382872 A JP 2001382872A JP 4846147 B2 JP4846147 B2 JP 4846147B2
Authority
JP
Japan
Prior art keywords
oxidized
cellulose
water
polysaccharide material
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001382872A
Other languages
Japanese (ja)
Other versions
JP2003180812A (en
Inventor
純一 神永
龍吉 松尾
友美子 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2001382872A priority Critical patent/JP4846147B2/en
Publication of JP2003180812A publication Critical patent/JP2003180812A/en
Application granted granted Critical
Publication of JP4846147B2 publication Critical patent/JP4846147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、生体適合性等の特性に優れる酸化多糖類材料を被覆又は含浸させた材料に関し、特に加工性が良く、分子構造の制御された酸化多糖類材料を被覆又は含浸させた材料に関する。
【0002】
【従来の技術】
セルロースは、植物の主成分として自然界に最も大量に存在する多糖類である。その化学構造は、D−グルコースがβ1,4グリコシド結合したもので、グルコース単位当たり3個(D−グルコースのC2位、C3位、C6位)の水酸基を有する。セルロースは、分子内に親水性の水酸基を多く持ちながら、分子間で強固に水素結合した高次構造を形成しているため、水には不溶である。
【0003】
また、エビやカニ等の甲殻類、昆虫類の生体構造多糖類はキチンであり、D−グルコースのC2位の水酸基の代わりにアセトアミド基が付いたN−アセチルグルコサミンがセルロースと同様にβ1,4結合したものである。天然に存在するキチンは、C2位にアミノ基が付いたグルコサミンのユニットを一部含み、タンパク質等の生体物質とアミノ基を介して結合していることが知られており、N−アセチルグルコサミン100%からなる訳ではない。一方キトサンは、キチンをアルカリ等により脱アセチル化することで得られる物質である。これらキチンとキトサンは、アセチル化度により明確に区別できるものではない。またキトサンは希酸に対してアミノ基が塩を形成して溶解するが、キチンはセルロース同様に水不溶である。
【0004】
さらに自然界に大量に存在する多糖類として澱粉が挙げられる。澱粉はD−グルコースがα1,4或いは1,6結合したものである。澱粉は、熱水には可溶であるが、冷水には溶けない。
【0005】
これら水不溶性の多糖類の水溶化手法としては、前記水酸基を利用したエーテル化が代表的である。カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース(HPC)等は、水溶性のセルロース誘導体として、増粘剤、分散安定剤、食品・化粧品添加剤、医療用材料等にも広く用いられている。
【0006】
しかしこれらのエーテル化反応は、前記したグルコース単位当たり3個の水酸基に対してランダムに反応し、選択性が低く、置換基分布は不均一なものである。さらにCMC、MC、HEC、HPCの水溶液は、重合度によるが2%水溶液で粘度が20〜2000mPa・s程度と割合高粘度で、溶液濃度も3〜10%程度が上限である。従って高濃度溶液での含浸加工やコーティング加工等は困難であった。また医療用材料等に用いる場合には、CMC、MC、HEC、HPCの代謝の成り行きが明かでない等の問題もある。
【0007】
また酸化反応による水溶化手法として、クロロホルム中で二酸化窒素によりC6位の1級水酸基をカルボキシル基に酸化して、水溶性のポリグルクロン酸を得る方法が知られている。グルクロン酸は生体内で完全に代謝されると言われている。しかし、二酸化窒素による酸化反応は、副反応で、主鎖の解裂や、C2位、C3位のケトンへの酸化も起こり、反応選択性が高いとは言えない。さらに試薬の有害性にも問題がある。
【0008】
一方で、医療分野において、創傷被覆剤や止血用の生体吸収材料、体器官の癒合を抑制する医療用材料等の生体適合性材料として、酸化セルロースやキチン、キトサン、或いはコラーゲンやヒアルロン酸等の材料の有用性が報告されている(特開平10−66723、特開平10−99422、特開平4−370258、等)。
【0009】
しかしコラーゲンやヒアルロン酸等の生体由来材料は、生体適合性に優れる特徴を有するものの、高価で材料の入手がしにくく、抗原性を有したり、細菌感染による劣化等の問題がある。
【0010】
キチン、キトサンに関しては、創傷治癒促進効果や抗菌性等の優位性も報告されているが、アミド系の溶剤に溶解して湿式紡糸する等の工程が必要となる。
【0011】
酸化セルロースとしては、再生セルロースガーゼを二酸化窒素で酸化したり、CMCやMCを塗工したガーゼを酸化したりする手法(特開平10−66723)が報告されているが、前記したようにCMCやMCの塗工性や、二酸化窒素の有害性に問題点を有する。
【0012】
【発明が解決しようとする課題】
本発明の目的は、化学構造の均一な水溶性或いは水分散性の多糖類材料を被覆又は含浸させた材料を、加工性良く、安価且つ安全に提供することにある。また化学構造の均一な水溶性或いは水分散性の多糖類材料を被覆又は含浸させた材料からなる生体適合性材料を提供することにある。
【0022】
【課題を解決するための手段】
請求項1の発明は、酸化多糖類材料を被覆又は含浸させた材料の製造方法であって、セルロース、再生セルロース、微細化セルロースから選ばれる多糖類材料を水中にてN−オキシル化合物の存在下で酸化処理することにより、前記多糖類材料の分子の還元末端またはピラノース環の第6位のみを選択的に酸化してカルボキシル基とした水溶性のウロン酸構造を有する水溶性あるいは水分散性の酸化多糖類材料を得る工程と、前記酸化多糖類材料を水溶液もしくは水分散液とする工程と、該酸化多糖類材料を含む水溶液もしくは水分散液を材料に含浸あるいは塗布する工程とを備え、かつ、前記酸化多糖類材料を被覆または含浸させるための材料が天然セルロース、再生セルロース、或いは酸化再生セルロースからなることを特徴とする酸化多糖類材料を被覆又は含浸させた材料の製造方法である。
【0023】
請求項記載の発明は、前記酸化多糖類材料の水溶液もしくは水分散液のB型粘度計で測定される25℃での粘度が、7〜70mPa・sであることを特徴とする請求項1記載の酸化多糖類材料を被覆又は含浸させた材料の製造方法である。
【0024】
【発明の実施の形態】
以下、本発明の詳細について説明する。
【0025】
本発明は、多糖類材料を水中にて、N−オキシル化合物(オキソアンモニウム塩)の存在下で、酸化処理された酸化多糖類材料を材料に被覆又は含浸させた材料に関するものである。本発明でいう被覆又は含浸させたとは、被覆のみをしていること、含浸のみをしていること、一部含浸し表面を被覆していることの3態様を意味するものである。
【0026】
本発明における酸化多糖類材料の酸化は、多糖類分子の還元末端、または構成単糖のピラノース環中一級水酸基を選択的に酸化するものである。また、酸化の程度に応じて、多糖類材料にカルボキシル基を均一かつ効率よく導入できる。
この酸化方法は、N−オキシル化合物を触媒として、共酸化剤を用いて酸化することを特徴とする。N−オキシル化合物としては水溶性の安定ラジカルである2,2,6,6−テトラメチル−1−ピペリジンN−オキシル(以下TEMPOと称する)などが含まれる。N−オキシル化合物は触媒量で済み、例えば、多糖類の構成単糖のモル数に対して10ppm〜5%あれば充分であるが、0.05%〜3%が好ましい。
【0027】
この共酸化剤としては、ハロゲン、次亜ハロゲン酸,亜ハロゲン酸や過ハロゲン酸又はそれらの塩、ハロゲン酸化物、窒素酸化物、過酸化物など、目的の酸化反応を推進し得る酸化剤であれば、いずれの酸化剤も使用できる。
【0028】
本酸化反応は、前記N−オキシル化合物と、臭化物又はヨウ化物との共存下で行うのが有利である。臭化物又はヨウ化物としては、水中で解離してイオン化可能な化合物、例えば、臭化アルカリ金属やヨウ化アルカリ金属などが使用できる。
臭化物及び/又はヨウ化物の使用量は、酸化反応を促進できる範囲で選択でき、例えば、多糖類材料の構成単糖のモル数に対し0〜100%、好ましくは1〜50%である。
また、特にN−オキシル化合物にはTEMPOを用い、臭化ナトリウムの存在下、共酸化剤として次亜塩素酸ナトリウムを用いるのが好ましい。
【0029】
本発明の酸化反応条件などは特に限定されず、材料、及び使用する設備などによって最適化されるべきであるが、反応温度は室温以下で反応させると構成単糖の一級水酸基への酸化の選択性を上げ、副反応を抑えることができ、望ましい。
また、反応系のpHは、反応の効率の面から、pH9〜12の間で反応を行うことが望ましい。また、臭化物やヨウ化物との共存下で酸化反応を行うと、温和な条件下でも酸化反応を円滑に進行させることができ、カルボキシル基の導入効率を大きく改善できるため、好ましい。
【0030】
上記酸化方法では、共酸化剤の量と、系内のpHを一定に保つために加えられるアルカリの量と、反応時間をコントロールすることで、酸化度(1級水酸基を変換して導入されるカルボキシル基量)をコントロールすることが可能である。
【0031】
本発明に用いられる多糖類材料としては、特に制限するものではないが、セルロース、再生セルロース、澱粉、キチン、キトサン、再生キチン、再生キトサン、微細化セルロース等が挙げられ、目的、用途に応じて様々なものを用いることができる。
【0032】
本発明において、多糖類材料としてセルロースやキチン等の結晶性の高い材料を用いる場合は、アルカリにより膨潤させたり、溶解−再生の処理を行うことで、均一に、選択性高く1級水酸基のみを酸化して、ポリウロン酸類を得ることができる。
【0033】
また本発明における微細化セルロースとは、物理的にセルロース繊維を微細化したもので、例えばミクロフィブリル化セルロースや結晶セルロースのコロイダルグレード等が好ましく用いられる。これらの酸化物は水溶性とはならないが、表面のセルロース分子がウロン酸化され、安定性の高い水分散体を得ることができる。
【0034】
酸化多糖類中のカルボキシル基量が、多糖類材料の構成単糖のモル数に対して60%以上(酸化度60%以上)まで酸化されると、水に対する溶解性が向上してくる。一方結晶性の微細化セルロース等の酸化においては、酸化度を60%以上に上げるには、反応条件を厳しくする必要があり、副反応の増加や、分子量低下を招き好ましくない。これらの材料においては、水不溶でも酸化度を10〜60%に調整することが好ましい。
【0035】
上記酸化反応により得られた酸化多糖類は、アルコール或いは水に可溶な有機溶剤で十分に洗浄し、必要に応じて乾燥工程を経て、所定濃度の水溶液或いは水分散液に調製される。
【0036】
こうして得られた、酸化多糖類材料の水溶液或いは水分散液は、CMCやMC等、従来の水溶性多糖類の水溶液に比べて低粘度であり、より高濃度で溶解させることが可能である。本発明の酸化多糖類材料の溶液粘度は、多糖類原料の重合度にもよるが、例えば重合度600の再生セルロースから得られた酸化度100%の酸化セルロースの5%水溶液では、25℃での粘度が3〜20mPa・sと低粘度であり、20%程度の水溶液まで調製することも可能である。
【0037】
本発明の酸化多糖類材料を被覆又は含浸させた材料は、前記酸化多糖類材料の水溶液或いは水分散液を、公知の含浸或いはコーティング設備を用いて、ディッピングコートやロールコート、スプレーコート、ブレードコート、コンマコート、サイズプレス等公知の手法により、材料に被覆することが可能である。
【0038】
本発明の酸化多糖類材料を被覆又は含浸させるための材料は、特に制限するものではなく、用途に応じて適宜選択することができる。例えば、ガーゼなどの織布、不織布、スポンジ、紙材などのシートなどが挙げられる。これらは、天然セルロース或いは再生セルロース或いは酸化再生セルロース繊維等からなるものであってもよいし、セルロース系以外の材料からなるものであってもよい。酸化多糖類材料を含浸させる場合は、多孔質又は網目状質の材料が好ましい。
【0039】
本発明に用いられる酸化多糖類材料の水溶液或いは水分散液は、低粘度で、溶液濃度も高く設定できることから、含浸やコーティングの加工における加工性および効率を高めることができる。つまり、例えばセルロース織布基材に3kgの酸化多糖類材料をコーティングする場合、3%濃度の水溶液では100kgの液量を必要とするが、10%濃度であれば液量は30kgで済み、乾燥工程に要する熱量の大幅な低減、および加工速度の向上が可能である。また低粘度であるため、特に含浸加工において基材への浸透性が高く、加工速度は上がり、より均一な含浸物が得られる。
【0040】
本発明の酸化多糖類材料を被覆又は含浸させた材料を、生体適合性材料として、医療用途に用いる場合は、医療用に利用可能な材料を用いるとともに、酸化多糖類を被覆後、適切な滅菌処理を施すことが望ましい。
【0041】
【実施例】
以下、本発明の実施例について詳細に説明するが本発明を限定するものではない。
【0042】
<実施例1>
TEMPO0.192g、臭化ナトリウム2.54gを200mlの水に溶解し冷却しておく。再生セルロース繊維ベンリーゼ(旭化成工業(株)製)の小片10gを200mlの水中に分散させ、前記TEMPO溶液と混合し、反応系を冷却し、次に次亜塩素酸ナトリウム水溶液(Cl=5%)100mlを添加し、酸化反応を開始する。反応温度は常に5℃に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整した。6位の一級水酸基の全モル数に対し、100%のモル数に対応するアルカリ添加量に達した時点で、エタノールを添加し、反応を停止させ、水:アルコール=2:8により十分洗浄した後、アセトンで脱水し、40℃で減圧乾燥させ、白色粉末の酸化セルロースを得た。
【0043】
得られた酸化セルロースから10%水溶液を調製した。酸化セルロースは完全に溶解し、25℃でB型粘度計にて測定した粘度は10〜15mPa・sであった。この溶液に日本薬局方ガーゼ3gを10秒間浸漬して、金網上に広げて風乾し、実施例1の酸化セルロース被覆ガーゼを得た。
【0044】
酸化セルロースの被覆状態は均一であり、重量増加から約1.5gの酸化セルロースが被覆されていた。
【0045】
<実施例2>
TEMPO0.192g、臭化ナトリウム2.54gを200mlの水に溶解し冷却しておく。でんぷん試料としてACS(ACROS社製)10gを200mlの水中に分散させ、60℃にて加熱溶解後、5℃まで冷却し、前記TEMPO溶液と混合し、次に次亜塩素酸ナトリウム水溶液(Cl=5%)100mlを添加し、酸化反応を開始する。反応温度は常に5℃に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整した。6位の一級水酸基の全モル数に対し、100%のモル数に対応するアルカリ添加量に達した時点で、エタノールを添加し、反応を停止させ、水:アルコール=2:8により十分洗浄した後、アセトンで脱水し、40℃で減圧乾燥させ、白色粉末の酸化澱粉を得た。
【0046】
得られた酸化澱粉から10%水溶液を調製した。酸化澱粉は加熱することなく完全に溶解し、25℃でB型粘度計にて測定した粘度は7〜12mPa・sであった。この溶液に日本薬局方ガーゼ3gを10秒間浸漬して、金網上に広げて風乾し、実施例2の酸化澱粉被覆ガーゼを得た。
【0047】
酸化澱粉の被覆状態は均一であり、重量増加から約1.5gの酸化澱粉が被覆されていた。
【0048】
<実施例3>
キチン(和光純薬工業(株)製)10gを、45%水酸化ナトリウム水溶液150gに浸漬し、室温以下で2時間攪拌した。これに砕いた氷850gを少しずつ加え、容器の周囲を氷水で冷却しながら攪拌した。この処理によりキチンはほぼ溶解する。その後塩酸を加えて中和し、十分に水洗した後、乾燥させずに、この再生キチンを水200mlに懸濁した。TEMPO0.192g、臭化ナトリウム2.54gを200mlの水に溶解した水溶液を加え、反応系を冷却し、次に次亜塩素酸ナトリウム水溶液(Cl=5%)90mlを添加し、酸化反応を開始する。反応温度は常に5℃に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整した。6位の一級水酸基の全モル数に対し、100%のモル数に対応するアルカリ添加量に達した時点で、エタノールを添加し、反応を停止させ、水:アルコール=2:8により十分洗浄した後、アセトンで脱水し、40℃で減圧乾燥させて、白色粉末の酸化キチンを得た。
【0049】
得られた酸化キチンから10%水溶液を調製した。酸化キチンは完全に溶解し、25℃でB型粘度計にて測定した粘度は50〜70mPa・sであった。この溶液に日本薬局方ガーゼ3gを10秒間浸漬して、金網上に広げて風乾し、実施例3の酸化キチン被覆ガーゼを得た。
【0050】
酸化キチンの被覆状態は均一であり、重量増加から約1.6gの酸化キチンが被覆されていた。
【0051】
<実施例4>
市販のペースト状微結晶セルロース セオラスクリームFP−03(旭化成工業(株)製)の絶乾重量10g分に、TEMPO0.125g、臭化ナトリウム1.25gを200mlの水に溶解し冷却しておいた水溶液を添加し、反応系を冷却して、次に次亜塩素酸ナトリウム水溶液(Cl=5%)100mlを添加し、酸化反応を開始する。反応温度は常に5℃に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整した。1日後にエタノールを添加して反応を停止し、水或いはアルコールにて十分洗浄し、最終的に10%濃度の酸化セルロース水分散液に調製した。ここで酸化反応中に添加されたアルカリの量は、グルコース単位の6位の一級水酸基の全モル数に対し、100%であった。
【0052】
この溶液に日本薬局方ガーゼ3gを10秒間浸漬して、金網上に広げて風乾し、実施例4の酸化セルロース被覆ガーゼを得た。
【0053】
酸化セルロースの被覆状態は均一であり、重量増加から約1.2gの酸化セルロースが被覆されていた。
【0054】
この酸化セルロースの酸化度を、以下のIR分析による方法で求めたところ、その酸化度は約50%であった。
【0055】
十分に乾燥した試料を用いて、KBr法によりIR分析を行った。試料中の水酸基に由来する3350cm−1付近の吸光度と、カルボキシルアニオンに由来する1620cm−1付近の吸光度比から、酸化度を求めた。この際、未酸化の乾燥セルロース試料と実施例1で作成した酸化度100%の乾燥酸化セルロース試料を所定の混合比で混合して同様にIR分析を行い、100%酸化セルロースの含有率と上記吸光度比から検量線を作成した。100%酸化セルロース含率をもって、上記酸化セルロースの酸化度とした。
【0056】
<比較例1>
置換度が0.6〜0.7のCMC セロゲンPR(第一工業製薬(株)製)5gを、水95gに懸濁した。完全には溶解せず、粘調な液体となった。これに日本薬局方ガーゼ3gを10秒間浸漬して、金網上に広げて風乾し、比較例1のCMC被覆ガーゼを得たが、CMCの被覆状態にはムラがあり、不均一なものであった。
【0057】
<比較例2>
置換度が0.6〜0.7のCMC セロゲンPR(第一工業製薬(株)製)2gを、水98gに溶解し、2%水溶液を得た。溶液の粘度を25℃にてB型粘度計で測定したところ100〜110mPa・sであった。これに日本薬局方ガーゼ3gを10秒間浸漬して、金網上に広げて風乾し、比較例2のCMC被覆ガーゼを得た。
【0058】
CMCの被覆状態はおよそ均一であったが、重量増加から計算した被覆されたCMC量は約0.1gと少なかった。
【0059】
【発明の効果】
本発明の酸化多糖類材料を被覆又は含浸させた材料は、被覆又は含浸されている酸化多糖類の化学構造が均一であり、完全に代謝されるウロン酸構造を有するため、生体に対する安全性が高い。またその酸化反応も水系で温和な条件下で行われ、二酸化窒素による酸化方法に比べて安全性が高いと言える。
【0060】
さらに本発明における酸化多糖類は、水に対する溶解性が高く、溶液粘度も低いことから、材料に対して含浸やコーティング加工を行う際の加工性が良く、均一で良好な酸化多糖類材料を被覆又は含浸させた材料が得られる。さらに、溶液濃度を高く設定できることから、乾燥熱量の低減、加工速度の向上による、加工コストの削減にも繋がる。
【0061】
またさらに、保湿性や生体適合性に優れるヒアルロン酸やコンドロイチン等の生体由来材料の化学構造は、グルクロン酸とN−アセチルグルコサミンの共重合構造を成しているが、本発明における酸化キチン及び酸化キトサンの化学構造はN−アセチルグルコサミン或いはグルコサミンのC6位にカルボキシル基が導入された構造であり、化学構造が類似しており、同様の機能を発現することも期待できる。本発明の酸化多糖類材料を被覆又は含浸させた材料、特に酸化キチン及び酸化キトサンの被覆材料は、生体適合性材料としての可能性が大きく、未確認ではあるが、生理活性等を有することにも期待が持たれる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material coated or impregnated with an oxidized polysaccharide material having excellent characteristics such as biocompatibility, and particularly relates to a material coated with or impregnated with an oxidized polysaccharide material having good processability and a controlled molecular structure.
[0002]
[Prior art]
Cellulose is a polysaccharide present in the largest amount in nature as the main component of plants. Its chemical structure is a β-1,4 glycosidic bond of D-glucose and has 3 hydroxyl groups (C2-position, C3-position, C6-position of D-glucose) per glucose unit. Cellulose is insoluble in water because it has a high-order structure in which hydrogen bonds are strongly bonded between molecules while having many hydrophilic hydroxyl groups in the molecule.
[0003]
In addition, the biostructural polysaccharide of crustaceans and insects such as shrimp and crab is chitin, and N-acetylglucosamine with an acetamide group instead of the hydroxyl group at the C2 position of D-glucose is β1,4 like cellulose. It is a combination. Chitin that exists in nature is known to contain a part of a glucosamine unit with an amino group at the C2 position and bind to biological substances such as proteins via an amino group, and N-acetylglucosamine 100 It is not necessarily composed of%. On the other hand, chitosan is a substance obtained by deacetylating chitin with an alkali or the like. These chitin and chitosan cannot be clearly distinguished by the degree of acetylation. Chitosan dissolves in a dilute acid with an amino group forming a salt, but chitin is insoluble in water like cellulose.
[0004]
Furthermore, starch is mentioned as a polysaccharide which exists in large quantities in nature. Starch is D-glucose with α1,4 or 1,6 bonds. Starch is soluble in hot water but not in cold water.
[0005]
A representative water-solubilization method for these water-insoluble polysaccharides is etherification using the hydroxyl group. Carboxymethylcellulose (CMC), methylcellulose (MC), hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), etc. are water-soluble cellulose derivatives, thickeners, dispersion stabilizers, food / cosmetic additives, medical materials It is also widely used.
[0006]
However, these etherification reactions react randomly with the three hydroxyl groups per glucose unit described above, have low selectivity, and have a non-uniform substituent distribution. Further, the aqueous solution of CMC, MC, HEC, and HPC is a 2% aqueous solution with a high viscosity of about 20 to 2000 mPa · s depending on the degree of polymerization, and the upper limit of the solution concentration is about 3 to 10%. Therefore, impregnation processing and coating processing with a high concentration solution are difficult. In addition, when used as a medical material, there is a problem that the metabolism of CMC, MC, HEC, and HPC is not clear.
[0007]
As a water-solubilization technique using an oxidation reaction, a method is known in which water-soluble polyglucuronic acid is obtained by oxidizing a primary hydroxyl group at the C6 position to a carboxyl group with chloroform in nitrogen dioxide. Glucuronic acid is said to be completely metabolized in vivo. However, the oxidation reaction with nitrogen dioxide is a side reaction, and cleavage of the main chain and oxidation to ketones at the C2 position and C3 position occur, and it cannot be said that the reaction selectivity is high. There is also a problem with the toxicity of the reagent.
[0008]
On the other hand, in the medical field, biocompatible materials such as wound dressings, bioabsorbable materials for hemostasis, and medical materials that suppress the healing of body organs, such as oxidized cellulose, chitin, chitosan, collagen, hyaluronic acid, etc. The usefulness of materials has been reported (Japanese Patent Laid-Open Nos. 10-66723, 10-99422, 4-370258, etc.).
[0009]
However, although bio-derived materials such as collagen and hyaluronic acid have characteristics of excellent biocompatibility, they are expensive and difficult to obtain, have antigenicity, and have problems such as deterioration due to bacterial infection.
[0010]
With regard to chitin and chitosan, superiority such as a wound healing promoting effect and antibacterial properties have been reported, but a process such as wet spinning by dissolving in an amide solvent is required.
[0011]
As the oxidized cellulose, a method of oxidizing regenerated cellulose gauze with nitrogen dioxide or oxidizing gauze coated with CMC or MC (JP-A-10-66723) has been reported. There are problems with the coating properties of MC and the harmfulness of nitrogen dioxide.
[0012]
[Problems to be solved by the invention]
An object of the present invention is to provide a material which is coated or impregnated with a water-soluble or water-dispersible polysaccharide material having a uniform chemical structure with good processability, inexpensively and safely. Another object of the present invention is to provide a biocompatible material comprising a material coated or impregnated with a water-soluble or water-dispersible polysaccharide material having a uniform chemical structure.
[0022]
[Means for Solving the Problems]
The presence of claims of the present invention is the first aspect, a method for producing a material obtained by coating or impregnating the oxidized polysaccharide materials, cellulose, regenerated cellulose, a polysaccharide material selected from the further shrinking cellulose in water N- oxyl compound Water-soluble or water-dispersible having a water-soluble uronic acid structure by selectively oxidizing only the reducing end of the molecule of the polysaccharide material or the 6th position of the pyranose ring to form a carboxyl group A step of obtaining the oxidized polysaccharide material, a step of making the oxidized polysaccharide material an aqueous solution or an aqueous dispersion, and an step of impregnating or applying the aqueous solution or aqueous dispersion containing the oxidized polysaccharide material to the material , and, oxidizing the material for coated or impregnated with the oxidized polysaccharide material is characterized in that it consists of natural cellulose, regenerated cellulose, or oxidized regenerated cellulose A method for producing a material obtained by coating or impregnating a saccharide material.
[0023]
According to a second aspect of the invention, the viscosity at 25 ° C. as measured with a B type viscometer of aqueous solution or aqueous dispersion of the oxidized polysaccharide material according to claim 1, characterized in that the 7~70mPa · s serial is a method for producing oxidized polysaccharide material are coated or impregnated material of the mounting.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
[0025]
The present invention relates to a material obtained by coating or impregnating an oxidized polysaccharide material that has been oxidized in water in the presence of an N-oxyl compound (oxoammonium salt). The term “coated or impregnated” as used in the present invention means three modes: only coating, only impregnation, and partial impregnation and surface coating.
[0026]
The oxidation of the oxidized polysaccharide material in the present invention selectively oxidizes the reducing end of the polysaccharide molecule or the primary hydroxyl group in the pyranose ring of the constituent monosaccharide. Moreover, according to the degree of oxidation, a carboxyl group can be uniformly and efficiently introduced into the polysaccharide material.
This oxidation method is characterized by oxidizing using a co-oxidant using an N-oxyl compound as a catalyst. Examples of the N-oxyl compound include 2,2,6,6-tetramethyl-1-piperidine N-oxyl (hereinafter referred to as TEMPO) which is a water-soluble stable radical. The N-oxyl compound may be a catalytic amount. For example, 10 ppm to 5% is sufficient relative to the number of moles of the constituent monosaccharide of the polysaccharide, but 0.05% to 3% is preferable.
[0027]
Examples of the co-oxidant include halogens, hypohalous acids, halous acids, perhalogen acids or salts thereof, halogen oxides, nitrogen oxides, peroxides, and the like that can promote the target oxidation reaction. Any oxidizing agent can be used if present.
[0028]
This oxidation reaction is advantageously performed in the presence of the N-oxyl compound and bromide or iodide. As the bromide or iodide, a compound that can be dissociated and ionized in water, such as an alkali metal bromide or an alkali metal iodide, can be used.
The amount of bromide and / or iodide used can be selected within a range that can promote the oxidation reaction, and is, for example, 0 to 100%, preferably 1 to 50%, relative to the number of moles of the constituent monosaccharides of the polysaccharide material .
In particular, TEMPO is preferably used for the N-oxyl compound, and sodium hypochlorite is preferably used as a co-oxidant in the presence of sodium bromide.
[0029]
The oxidation reaction conditions and the like of the present invention are not particularly limited, and should be optimized depending on the materials and equipment used. Selection of oxidation to primary hydroxyl groups of constituent monosaccharides when the reaction temperature is not more than room temperature. This is desirable because it can increase the properties and suppress side reactions.
Moreover, it is desirable that the reaction system has a pH of 9 to 12 in terms of reaction efficiency. In addition, it is preferable to perform the oxidation reaction in the presence of bromide or iodide because the oxidation reaction can proceed smoothly even under mild conditions and the introduction efficiency of the carboxyl group can be greatly improved.
[0030]
In the above oxidation method, the degree of oxidation (primary hydroxyl group is converted and introduced by controlling the amount of co-oxidant, the amount of alkali added to keep the pH in the system constant, and the reaction time. The amount of carboxyl groups) can be controlled.
[0031]
The polysaccharide material used in the present invention is not particularly limited, and examples thereof include cellulose, regenerated cellulose, starch, chitin, chitosan, regenerated chitin, regenerated chitosan, and refined cellulose. Various things can be used.
[0032]
In the present invention, when a highly crystalline material such as cellulose or chitin is used as the polysaccharide material, it is swollen with alkali or subjected to dissolution-regeneration treatment, so that only the primary hydroxyl group is uniformly and highly selective. Oxidation can yield polyuronic acids.
[0033]
The refined cellulose in the present invention is a physically refined cellulose fiber. For example, microfibrillated cellulose or colloidal grade of crystalline cellulose is preferably used. Although these oxides do not become water-soluble, the cellulose molecules on the surface are oxidized with uron and a highly stable aqueous dispersion can be obtained.
[0034]
When the amount of carboxyl groups in the oxidized polysaccharide is oxidized to 60% or more (oxidation degree 60% or more) with respect to the number of moles of the constituent monosaccharide of the polysaccharide material, the solubility in water is improved. On the other hand, in the oxidation of crystalline fine cellulose, etc., it is necessary to make the reaction conditions strict in order to increase the degree of oxidation to 60% or more, which is not preferable because it causes an increase in side reactions and a decrease in molecular weight. In these materials, it is preferable to adjust the degree of oxidation to 10 to 60% even if water-insoluble.
[0035]
The oxidized polysaccharide obtained by the oxidation reaction is sufficiently washed with an alcohol or water-soluble organic solvent, and if necessary, a drying step is performed to prepare an aqueous solution or aqueous dispersion having a predetermined concentration.
[0036]
The aqueous solution or aqueous dispersion of the oxidized polysaccharide material thus obtained has a lower viscosity than conventional aqueous solutions of water-soluble polysaccharides such as CMC and MC, and can be dissolved at a higher concentration. The solution viscosity of the oxidized polysaccharide material of the present invention depends on the polymerization degree of the polysaccharide raw material. For example, in a 5% aqueous solution of oxidized cellulose having a degree of oxidation of 100% obtained from regenerated cellulose having a degree of polymerization of 600, the viscosity is 25 ° C. Can be prepared to an aqueous solution of about 20%.
[0037]
The material coated or impregnated with the oxidized polysaccharide material of the present invention is a dipping coat, roll coat, spray coat, blade coat using an aqueous solution or aqueous dispersion of the oxidized polysaccharide material using a known impregnation or coating equipment. The material can be coated by a known method such as comma coating or size press.
[0038]
The material for coating or impregnating the oxidized polysaccharide material of the present invention is not particularly limited, and can be appropriately selected depending on the application. For example, woven fabrics such as gauze, non-woven fabrics, sponges, sheets of paper, etc. can be mentioned. These may be made of natural cellulose, regenerated cellulose, oxidized regenerated cellulose fiber, or the like, or may be made of a material other than cellulose. In the case of impregnating the oxidized polysaccharide material, a porous or network material is preferable.
[0039]
Since the aqueous solution or aqueous dispersion of the oxidized polysaccharide material used in the present invention has a low viscosity and a high solution concentration, the processability and efficiency in the impregnation and coating processes can be improved. That is, for example, when 3 kg of oxidized polysaccharide material is coated on a cellulose woven fabric substrate, a 3% aqueous solution requires 100 kg of liquid, but if it is 10%, the liquid may be 30 kg and dried. It is possible to greatly reduce the amount of heat required for the process and improve the processing speed. Moreover, since it has a low viscosity, it has a high permeability to the substrate, particularly in the impregnation process, the processing speed is increased, and a more uniform impregnation product is obtained.
[0040]
When the material coated or impregnated with the oxidized polysaccharide material of the present invention is used as a biocompatible material for medical purposes, a material that can be used for medical purposes is used, and after coating the oxidized polysaccharide, appropriate sterilization is performed. It is desirable to perform processing.
[0041]
【Example】
Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited thereto.
[0042]
<Example 1>
0.192 g of TEMPO and 2.54 g of sodium bromide are dissolved in 200 ml of water and cooled. 10 g of a small piece of regenerated cellulose fiber Benize (manufactured by Asahi Kasei Kogyo Co., Ltd.) is dispersed in 200 ml of water, mixed with the TEMPO solution, the reaction system is cooled, and then an aqueous sodium hypochlorite solution (Cl = 5%) Add 100 ml and start the oxidation reaction. The reaction temperature was always maintained at 5 ° C. During the reaction, the pH in the system was lowered, but 0.5N-NaOH aqueous solution was sequentially added to adjust the pH to around 10.8. When the alkali addition amount corresponding to 100% of the total number of moles of the primary hydroxyl group at the 6-position was reached, ethanol was added to stop the reaction, and washing was sufficiently performed with water: alcohol = 2: 8. Then, it dehydrated with acetone and dried under reduced pressure at 40 ° C. to obtain a white powder of oxidized cellulose.
[0043]
A 10% aqueous solution was prepared from the obtained oxidized cellulose. The oxidized cellulose was completely dissolved, and the viscosity measured with a B-type viscometer at 25 ° C. was 10 to 15 mPa · s. 3 g of Japanese Pharmacopoeia gauze was immersed in this solution for 10 seconds, spread on a wire mesh and air-dried to obtain an oxidized cellulose-coated gauze of Example 1.
[0044]
The coated state of the oxidized cellulose was uniform, and about 1.5 g of oxidized cellulose was coated due to the increase in weight.
[0045]
<Example 2>
0.192 g of TEMPO and 2.54 g of sodium bromide are dissolved in 200 ml of water and cooled. As a starch sample, 10 g of ACS (manufactured by ACROS) was dispersed in 200 ml of water, heated and dissolved at 60 ° C., cooled to 5 ° C., mixed with the TEMPO solution, and then sodium hypochlorite aqueous solution (Cl = 5%) Add 100 ml and start the oxidation reaction. The reaction temperature was always maintained at 5 ° C. During the reaction, the pH in the system was lowered, but 0.5N-NaOH aqueous solution was sequentially added to adjust the pH to around 10.8. When the alkali addition amount corresponding to 100% of the total number of moles of the primary hydroxyl group at the 6-position was reached, ethanol was added to stop the reaction, and washing was sufficiently performed with water: alcohol = 2: 8. Then, it dehydrated with acetone and dried under reduced pressure at 40 ° C. to obtain a white powdered oxidized starch.
[0046]
A 10% aqueous solution was prepared from the resulting oxidized starch. The oxidized starch was completely dissolved without heating, and the viscosity measured with a B-type viscometer at 25 ° C. was 7 to 12 mPa · s. 3 g of Japanese Pharmacopoeia gauze was immersed in this solution for 10 seconds, spread on a wire mesh and air-dried to obtain an oxidized starch-coated gauze of Example 2.
[0047]
The coated state of the oxidized starch was uniform, and about 1.5 g of oxidized starch was coated due to the increase in weight.
[0048]
<Example 3>
10 g of chitin (manufactured by Wako Pure Chemical Industries, Ltd.) was immersed in 150 g of a 45% aqueous sodium hydroxide solution and stirred at room temperature or lower for 2 hours. To this, 850 g of crushed ice was added little by little, and the mixture was stirred while being cooled with ice water. This treatment almost dissolves chitin. Thereafter, hydrochloric acid was added to neutralize, and after thoroughly washing with water, the regenerated chitin was suspended in 200 ml of water without drying. An aqueous solution prepared by dissolving 0.192 g of TEMPO and 2.54 g of sodium bromide in 200 ml of water was added, the reaction system was cooled, and then 90 ml of an aqueous sodium hypochlorite solution (Cl = 5%) was added to start the oxidation reaction. To do. The reaction temperature was always maintained at 5 ° C. During the reaction, the pH in the system was lowered, but 0.5N-NaOH aqueous solution was sequentially added to adjust the pH to around 10.8. When the alkali addition amount corresponding to 100% of the total number of moles of the primary hydroxyl group at the 6-position was reached, ethanol was added to stop the reaction, and washing was sufficiently performed with water: alcohol = 2: 8. Thereafter, it was dehydrated with acetone and dried under reduced pressure at 40 ° C. to obtain white powdered chitin oxide.
[0049]
A 10% aqueous solution was prepared from the obtained chitin oxide. The chitin oxide was completely dissolved, and the viscosity measured with a B-type viscometer at 25 ° C. was 50 to 70 mPa · s. 3 g of Japanese Pharmacopoeia gauze was immersed in this solution for 10 seconds, spread on a wire mesh and air-dried to obtain an oxidized chitin-coated gauze of Example 3.
[0050]
The coated state of chitin oxide was uniform, and about 1.6 g of chitin oxide was coated due to the increase in weight.
[0051]
<Example 4>
TEMPO 0.125 g and sodium bromide 1.25 g were dissolved in 200 ml of water and cooled in an absolute dry weight of 10 g of commercially available paste-like microcrystalline cellulose Theo's cream FP-03 (manufactured by Asahi Kasei Kogyo Co., Ltd.). An aqueous solution is added, the reaction system is cooled, and then 100 ml of an aqueous sodium hypochlorite solution (Cl = 5%) is added to initiate the oxidation reaction. The reaction temperature was always maintained at 5 ° C. During the reaction, the pH in the system was lowered, but 0.5N-NaOH aqueous solution was sequentially added to adjust the pH to around 10.8. One day later, ethanol was added to stop the reaction, and the mixture was sufficiently washed with water or alcohol to finally prepare an aqueous dispersion of oxidized cellulose having a concentration of 10%. Here, the amount of alkali added during the oxidation reaction was 100% with respect to the total number of moles of the primary hydroxyl group at the 6-position of the glucose unit.
[0052]
In this solution, 3 g of Japanese Pharmacopoeia gauze was immersed for 10 seconds, spread on a wire mesh and air-dried to obtain an oxidized cellulose-coated gauze of Example 4.
[0053]
The coated state of the oxidized cellulose was uniform, and about 1.2 g of oxidized cellulose was coated due to the increase in weight.
[0054]
The degree of oxidation of the oxidized cellulose was determined by the following IR analysis method, and the degree of oxidation was about 50%.
[0055]
IR analysis was performed by the KBr method using a sufficiently dried sample. The degree of oxidation was determined from the absorbance near 3350 cm −1 derived from the hydroxyl group in the sample and the absorbance ratio near 1620 cm −1 derived from the carboxyl anion. At this time, the unoxidized dry cellulose sample and the dry oxidized cellulose sample having a degree of oxidation of 100% prepared in Example 1 were mixed at a predetermined mixing ratio and similarly subjected to IR analysis. The content of 100% oxidized cellulose and the above A calibration curve was prepared from the absorbance ratio. The 100% oxidized cellulose content was defined as the degree of oxidation of the oxidized cellulose.
[0056]
<Comparative Example 1>
5 g of CMC Serogen PR (Daiichi Kogyo Seiyaku Co., Ltd.) having a substitution degree of 0.6 to 0.7 was suspended in 95 g of water. It did not dissolve completely and became a viscous liquid. This was dipped in 3 g of Japanese Pharmacopoeia gauze for 10 seconds, spread on a wire mesh and air-dried to obtain CMC-coated gauze of Comparative Example 1, but the CMC coating state was uneven and non-uniform. It was.
[0057]
<Comparative example 2>
2 g of CMC Serogen PR (Daiichi Kogyo Seiyaku Co., Ltd.) having a substitution degree of 0.6 to 0.7 was dissolved in 98 g of water to obtain a 2% aqueous solution. It was 100-110 mPa * s when the viscosity of the solution was measured with the B-type viscosity meter at 25 degreeC. 3 g of Japanese Pharmacopoeia gauze was immersed in this for 10 seconds, spread on a wire mesh and air-dried to obtain a CMC-coated gauze of Comparative Example 2.
[0058]
The coated state of CMC was almost uniform, but the amount of coated CMC calculated from the weight increase was as small as about 0.1 g.
[0059]
【The invention's effect】
The material coated or impregnated with the oxidized polysaccharide material of the present invention has a uniform chemical structure of the coated or impregnated oxidized polysaccharide and a completely metabolized uronic acid structure. high. Moreover, the oxidation reaction is carried out under mild conditions in an aqueous system, and can be said to be safer than the oxidation method using nitrogen dioxide.
[0060]
Furthermore, since the oxidized polysaccharide in the present invention has high solubility in water and low solution viscosity, it has good processability when impregnating and coating the material and is coated with a uniform and excellent oxidized polysaccharide material. Alternatively, an impregnated material is obtained. Furthermore, since the solution concentration can be set high, the processing cost can be reduced by reducing the amount of drying heat and improving the processing speed.
[0061]
Furthermore, the chemical structure of bio-derived materials such as hyaluronic acid and chondroitin, which are excellent in moisture retention and biocompatibility, is a copolymer structure of glucuronic acid and N-acetylglucosamine. The chemical structure of chitosan is a structure in which a carboxyl group is introduced at the C6 position of N-acetylglucosamine or glucosamine, the chemical structure is similar, and it can be expected to exhibit the same function. Acid polysaccharide material material obtained by coating or impregnating the present invention, in particular coating material oxide chitin and oxidation chitosan, large potential as biocompatible materials, although it is unconfirmed, that have physiological activity, etc. Also have expectations.

Claims (2)

酸化多糖類材料を被覆又は含浸させた材料の製造方法であって、
セルロース、再生セルロース、微細化セルロースから選ばれる多糖類材料を水中にてN−オキシル化合物の存在下で酸化処理することにより、前記多糖類材料の分子の還元末端またはピラノース環の第6位のみを選択的に酸化してカルボキシル基とした水溶性のウロン酸構造を有する水溶性あるいは水分散性の酸化多糖類材料を得る工程と、
前記酸化多糖類材料を水溶液もしくは水分散液とする工程と、
該酸化多糖類材料を含む水溶液もしくは水分散液を材料に含浸あるいは塗布する工程と
を備え、かつ、
前記酸化多糖類材料を被覆または含浸させるための材料が天然セルロース、再生セルロース、或いは酸化再生セルロースからなる
ことを特徴とする酸化多糖類材料を被覆又は含浸させた材料の製造方法。
A method for producing a material coated or impregnated with an oxidized polysaccharide material, comprising:
Cellulose, regenerated cellulose, by oxidation in the presence of N- oxyl compound polysaccharide material selected from the further shrinking cellulose in water, only the 6-position of the reducing end or pyranose ring of the molecule of the polysaccharide material Obtaining a water-soluble or water-dispersible oxidized polysaccharide material having a water-soluble uronic acid structure which is selectively oxidized to a carboxyl group;
Making the oxidized polysaccharide material an aqueous solution or an aqueous dispersion;
Impregnating or coating the material with an aqueous solution or aqueous dispersion containing the oxidized polysaccharide material , and
A method for producing a material coated or impregnated with an oxidized polysaccharide material, wherein the material for coating or impregnating the oxidized polysaccharide material comprises natural cellulose, regenerated cellulose, or oxidized regenerated cellulose .
前記酸化多糖類材料の水溶液もしくは水分散液のB型粘度計で測定される25℃での粘度が、7〜70mPa・sであることを特徴とする請求項1記載の酸化多糖類材料を被覆又は含浸させた材料の製造方法。  2. The coated polysaccharide material according to claim 1, wherein the viscosity of the oxidized polysaccharide material in an aqueous solution or aqueous dispersion measured at 25 ° C. with a B-type viscometer is 7 to 70 mPa · s. Or the manufacturing method of the impregnated material.
JP2001382872A 2001-12-17 2001-12-17 Method for producing material coated or impregnated with oxidized polysaccharide material Expired - Fee Related JP4846147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001382872A JP4846147B2 (en) 2001-12-17 2001-12-17 Method for producing material coated or impregnated with oxidized polysaccharide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001382872A JP4846147B2 (en) 2001-12-17 2001-12-17 Method for producing material coated or impregnated with oxidized polysaccharide material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008267354A Division JP5024262B2 (en) 2008-10-16 2008-10-16 Material and biocompatible material coated or impregnated with oxidized polysaccharide material

Publications (2)

Publication Number Publication Date
JP2003180812A JP2003180812A (en) 2003-07-02
JP4846147B2 true JP4846147B2 (en) 2011-12-28

Family

ID=27593084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001382872A Expired - Fee Related JP4846147B2 (en) 2001-12-17 2001-12-17 Method for producing material coated or impregnated with oxidized polysaccharide material

Country Status (1)

Country Link
JP (1) JP4846147B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671596B2 (en) * 2003-11-26 2011-04-20 京セラ株式会社 Porous bone repair material and method for producing the same
DE102005007016A1 (en) * 2005-02-15 2006-08-24 Fleischmann, Wilhelm, Dr.med. Device for the treatment of wounds
FR2898502B1 (en) * 2006-03-16 2012-06-15 Sofradim Production THREE DIMENSIONAL PROTHETIC FABRIC WITH RESORBABLE DENSE FACE
JP5343302B2 (en) * 2005-12-21 2013-11-13 凸版印刷株式会社 Method for producing inclusion complex
EP2216345B1 (en) * 2007-11-26 2014-07-02 The University of Tokyo Cellulose nanofiber, production method of same and cellulose nanofiber dispersion
JP5456269B2 (en) * 2007-12-11 2014-03-26 花王株式会社 Method for producing cellulose dispersion
JP5586833B2 (en) * 2008-02-21 2014-09-10 花王株式会社 Resin composition
EP2267222B1 (en) 2008-03-31 2018-05-16 Nippon Paper Industries Co., Ltd. Additive for papermaking and paper containing the same
US9376648B2 (en) 2008-04-07 2016-06-28 The Procter & Gamble Company Foam manipulation compositions containing fine particles
JP5269512B2 (en) * 2008-07-31 2013-08-21 第一工業製薬株式会社 Cosmetic composition
JP5788323B2 (en) * 2008-10-02 2015-09-30 エル.アール. アールアンドディー リミテッド Interfacial layer wound dressing
EP3437629A1 (en) 2010-01-22 2019-02-06 Dai-Ichi Kogyo Seiyaku Co., Ltd. Viscous composition
JP5588465B2 (en) * 2010-02-15 2014-09-10 甲陽ケミカル株式会社 Chitin-derived sponge hemostatic material and method for producing the same
JP5259028B1 (en) * 2011-09-12 2013-08-07 グンゼ株式会社 Method for producing hydrophilic cellulose fiber
CN105566674B (en) * 2016-01-27 2019-03-01 中国林业科学研究院木材工业研究所 A kind of chitin nano fiber aeroge of high-specific surface area and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579610B2 (en) * 1990-09-28 1997-02-05 鳥取大学長 In vivo filler
NL194919C (en) * 1993-09-07 2003-07-04 Tno Process for oxidizing carbohydrates.
IN192791B (en) * 1996-06-28 2004-05-22 Johnson & Johnson Medical
JP4074680B2 (en) * 1997-03-12 2008-04-09 ダイセル化学工業株式会社 Cellulose derivative and method for producing the same
JP4395573B2 (en) * 1999-03-08 2010-01-13 多木化学株式会社 Oxidized chitosan compound

Also Published As

Publication number Publication date
JP2003180812A (en) 2003-07-02

Similar Documents

Publication Publication Date Title
JP4846147B2 (en) Method for producing material coated or impregnated with oxidized polysaccharide material
JP5024262B2 (en) Material and biocompatible material coated or impregnated with oxidized polysaccharide material
JP4356289B2 (en) Polysaccharide complex and method for producing the same
JP4984417B2 (en) Method for producing water-soluble polyuronic acid
JP2003321398A (en) Polysaccharide complex and its production method
JPH1088429A (en) Production of chitosan fiber
JP4470410B2 (en) Polysaccharide complex
JP5343302B2 (en) Method for producing inclusion complex
JP4310967B2 (en) Method for producing polysaccharide complex
JP5901112B2 (en) Cellulose porous gel
JP5110046B2 (en) Polysaccharide complex and method for producing the same
JPH10509753A (en) Cationic polymer
JP5083493B2 (en) Moisturizer and external preparation for skin using the same
JP2005015680A (en) Polyglucuronic acid
JP5060063B2 (en) Adhesive composition
JP4759997B2 (en) Polyuronic acid molded article and method for producing the same
JP4929581B2 (en) Method for producing water-soluble polyuronic acid
JP2009068014A (en) Water-soluble oxidized chitin and its producing method
JP4254142B2 (en) Method for producing chitin oxide
JP5205686B2 (en) Polyglucuronic acid and process for producing the same
JP4254120B2 (en) Method for producing oxidized chitosan
JP2754162B2 (en) Manufacturing method of chitin sponge, chitin paper and chitin film
JP4411847B2 (en) Method for producing polyuronic acid
JP2011195659A (en) Method for producing oxidized cellulose
JP4277473B2 (en) Method for producing oxidized chitosan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081024

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees