JP4775101B2 - AC-AC direct conversion device - Google Patents

AC-AC direct conversion device Download PDF

Info

Publication number
JP4775101B2
JP4775101B2 JP2006125143A JP2006125143A JP4775101B2 JP 4775101 B2 JP4775101 B2 JP 4775101B2 JP 2006125143 A JP2006125143 A JP 2006125143A JP 2006125143 A JP2006125143 A JP 2006125143A JP 4775101 B2 JP4775101 B2 JP 4775101B2
Authority
JP
Japan
Prior art keywords
input current
direct conversion
magnitude
current
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006125143A
Other languages
Japanese (ja)
Other versions
JP2007300710A (en
Inventor
裕吾 只野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2006125143A priority Critical patent/JP4775101B2/en
Publication of JP2007300710A publication Critical patent/JP2007300710A/en
Application granted granted Critical
Publication of JP4775101B2 publication Critical patent/JP4775101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ac-Ac Conversion (AREA)

Description

本発明は、単相または多相の交流電源から入力する電圧または周波数を、任意の電圧または周波数に変換して出力する交流−交流直接変換装置(マトリックスコンバータ)に係り、特に装置単体で負荷を駆動する場合の無効電力制御に関する。   The present invention relates to an AC-AC direct conversion device (matrix converter) that converts a voltage or frequency input from a single-phase or multi-phase AC power source into an arbitrary voltage or frequency and outputs the voltage or frequency. The present invention relates to reactive power control when driving.

従来から存在するこの種の交流−交流直接変換装置は、自己消弧形の半導体素子を用いた双方向スイッチを高速に切換え、単相または多相の交流入力を任意の電圧または周波数の電力に変換する変換装置であり、図5に基本構成を示す。三相交流電源1のR,S,Tの各相に入力フィルタ(InputFilter)2と双方向スイッチS1〜S9構成の交流−交流直接変換回路3を介挿し、制御装置(コントローラ)4によって各双方向スイッチを電源周波数よりも十分高い周波数でPWM制御することにより、入力電圧をモータなどの負荷Loadに直接に印加しながら任意の電圧または周波数に制御したU,V,Wの交流出力を得る。   This type of AC-AC direct conversion device that has existed in the past switches a bidirectional switch using a self-extinguishing semiconductor element at high speed, and converts a single-phase or multi-phase AC input to power of an arbitrary voltage or frequency. FIG. 5 shows a basic configuration of a conversion device for conversion. An input filter (InputFilter) 2 and an AC-AC direct conversion circuit 3 having bidirectional switches S1 to S9 are inserted in the R, S, and T phases of the three-phase AC power source 1, and both are controlled by a controller (controller) 4. By performing PWM control of the direction switch at a frequency sufficiently higher than the power supply frequency, an AC output of U, V, W controlled to an arbitrary voltage or frequency is obtained while directly applying an input voltage to a load Load such as a motor.

交流−交流直接変換装置における双方向スイッチのスイッチングパターンは、例えばキャリア振幅による変調方式の場合には、入力電圧と同期した信号となるPWMコンバータパターンと、出力周波数と電圧に従って作成されるPWMインバータパターンとのAND条件で決まる。これにより、交流−交流直接変換装置の入力電流はPWMコンバータパターンで制限され、出力電圧と周波数はPWMインバータパターンで制御され、入力力率を「1」に保ちながら入力電流の正弦波化、出力波形の正弦波化、周波数変換動作を同時に実現する。なお、双方向スイッチは、図示のように単方向スイッチを複数用いて構成する場合もある。   The switching pattern of the bidirectional switch in the AC-AC direct conversion device includes, for example, a PWM converter pattern that is a signal synchronized with the input voltage and a PWM inverter pattern that is created according to the output frequency and voltage in the case of a modulation method using carrier amplitude. And the AND condition. As a result, the input current of the AC-AC direct conversion device is limited by the PWM converter pattern, the output voltage and frequency are controlled by the PWM inverter pattern, and the input current is converted to a sine wave and output while keeping the input power factor “1”. Realizes waveform sine wave and frequency conversion at the same time. The bidirectional switch may be configured by using a plurality of unidirectional switches as shown in the figure.

上記のような交流−交流直接変換装置において、一般には入力力率を「1」に制御するが、入力力率の制御、すなわち無効電力を能動的に制御する場合がある。この無効電力の制御にはコンバータの入力電流ベクトルと入力電圧ベクトルの位相差Δθを無効電力指令値に従って制御することになる。また、PWMサイクロコンバータの力率制御に入力電流検出器および電圧検出器を不要にして電源側の位相差Δθを推定する方法も提案されている(例えば特許文献1参照)。
特開2001−69759号公報
In the AC-AC direct conversion device as described above, the input power factor is generally controlled to “1”, but the input power factor may be controlled, that is, reactive power may be actively controlled. The reactive power is controlled by controlling the phase difference Δθ between the input current vector and the input voltage vector of the converter according to the reactive power command value. In addition, a method for estimating the phase difference Δθ on the power supply side without using an input current detector and a voltage detector for power factor control of the PWM cycloconverter has been proposed (see, for example, Patent Document 1).
JP 2001-69759 A

交流−交流直接変換装置は、交流電源と負荷を直接接続して電流・電圧・周波数を任意に変換するため、低負荷状態では入力電流も小さくなり、電源に並列に無効電力制御機器等がなく、単体で負荷を駆動する場合には交流電源側で発生できる無効電力量も限られる。
また、PWMコンバータとPWMインバータとの組み合わせによる直流回路を介挿させた装置構成では、入力の交流リアクトルとコンバータで、負荷状態とは独立に無効電力制御を行うことができるが(ただし、負荷の要求する有効電力量と、入力で制御する無効電力量から決まる装置定格容量オーバーには注意が必要)、直流回路を介挿しない交流−交流直接変換装置を単体で用いた場合では独立に制御することができない。また、交流−交流直接変換装置の出力電圧を制御する場合、無作為にそのときの負荷電流に応じた無効電力量を制御すると、出力電圧指令どおりの電圧が忠実に出力されない問題がある。
The AC-AC direct conversion device converts the current, voltage, and frequency arbitrarily by directly connecting the AC power supply and the load. Therefore, the input current is reduced in the low load state, and there is no reactive power control device in parallel with the power supply. When the load is driven alone, the amount of reactive power that can be generated on the AC power supply side is also limited.
In addition, in a device configuration in which a DC circuit is inserted by a combination of a PWM converter and a PWM inverter, reactive power control can be performed independently of the load state using an input AC reactor and converter (however, the load Care must be taken when the device rated capacity exceeds the required active energy and the reactive energy controlled by the input), and when an AC-AC direct conversion device without a DC circuit is used alone, it is controlled independently. I can't. Further, when controlling the output voltage of the AC-AC direct conversion device, there is a problem that if the reactive energy corresponding to the load current at that time is randomly controlled, the voltage according to the output voltage command is not faithfully output.

本発明の目的は、負荷状態と独立に無効電力量を制御でき、さらには波形歪みを起こすことなく安定した無効電力制御ができる交流−交流直接変換装置を提供することにある。   An object of the present invention is to provide an AC-AC direct conversion device capable of controlling the amount of reactive power independently of the load state and capable of performing stable reactive power control without causing waveform distortion.

前記の課題を解決するための本発明は、以下の構成を特徴とする。   The present invention for solving the above-described problems is characterized by the following configuration.

(1)単相または多相交流電源の各相に双方向スイッチ構成の交流−交流直接変換回路を介挿して負荷に接続し、前記各双方向スイッチのPWM制御を行う制御装置によって無効電力を制御する交流−交流直接変換装置において、
前記交流−交流直接変換回路の電力変換効率ηも含めた入力有効電力と負荷が要求する有効電力の一致条件から交流−交流直接変換回路の入力電流Isの大きさ|Is|を推定し、この入力電流の大きさ|Is|と電源相電圧Vsの大きさ|Vs|および無効電力指令値Qrefから電源相電圧Vsに対する該入力電流Isの位相差Δθを推定し、該入力電流Isの大きさ|Is|と電源相電圧Vsおよび該位相差Δθから無効電力制御に必要な入力電流Isを推定する演算手段を備え、
前記制御装置は、前記演算手段で推定した入力電流Isと、電源相電圧Vsと出力電流I0、および出力相電圧指令値Vrefpに応じて前記位相差Δθを調整することで、交流−交流直接変換回路の無効電力を制御することを特徴とする。
(1) Reactive power is supplied to each phase of a single-phase or multi-phase AC power source by a control device that is connected to a load via an AC-AC direct conversion circuit having a bidirectional switch configuration and performs PWM control of each bidirectional switch. In the AC-AC direct conversion device to be controlled,
The magnitude | Is | of the input current Is of the AC-AC direct conversion circuit is estimated from the matching condition between the input active power including the power conversion efficiency η of the AC-AC direct conversion circuit and the active power required by the load. The phase difference Δθ of the input current Is with respect to the power supply phase voltage Vs is estimated from the magnitude of the input current | Is |, the magnitude of the power supply phase voltage Vs | Vs |, and the reactive power command value Qref, and the magnitude of the input current Is | Is |, arithmetic means for estimating the input current Is required for reactive power control from the power supply phase voltage Vs and the phase difference Δθ,
The control device adjusts the phase difference Δθ in accordance with the input current Is estimated by the calculation means, the power supply phase voltage Vs, the output current I 0 , and the output phase voltage command value Vrefp, whereby AC-AC direct The reactive power of the conversion circuit is controlled.

(2)前記演算手段は、前記推定入力電流Isの推定演算と前記位相差Δθの推定演算とを並列的に行う構成にしたことを特徴とする。
(3)前記演算手段は、前記出力電流I0の大きさ|I0|と予め設定した係数値とを掛け合わした値となるように前記推定入力電流Isの大きさ|Is|を制限する手段を備えたことを特徴とする。
(2) The calculation means is configured to perform an estimation calculation of the estimated input current Is and an estimation calculation of the phase difference Δθ in parallel.
(3) The computing means limits the magnitude | Is | of the estimated input current Is so as to be a value obtained by multiplying the magnitude | I 0 | of the output current I 0 by a preset coefficient value. It is provided with.

(4)前記演算手段は、前記位相差Δθの最大値を予め設定した値に制限する手段を備えたことを特徴とする。   (4) The calculation means includes means for limiting the maximum value of the phase difference Δθ to a preset value.

以上のとおり、本発明によれば、負荷状態と独立に無効電力量を制御でき、さらには波形歪みを起こすことなく安定した無効電力制御ができる。   As described above, according to the present invention, the amount of reactive power can be controlled independently of the load state, and further, stable reactive power control can be performed without causing waveform distortion.

具体的には、出力電圧指令と有効電力の一致条件から入力電流の大きさ、および入力電流ベクトルと入力電圧ベクトルとの位相差を導くことにより、負荷が変動しても所望の無効電力量が電源側で得られるように入力電流位相を制御することができる。   Specifically, by deriving the magnitude of the input current and the phase difference between the input current vector and the input voltage vector from the matching condition between the output voltage command and the active power, the desired reactive energy can be obtained even if the load fluctuates. The input current phase can be controlled so as to be obtained on the power supply side.

また、無効電力制御機能を持った制御装置に必要な入力電流指令値|Is|と入力電流電圧位相差Δθの計算で、予め数式を簡単化し、制御にフィードバックループをなくすことで、演算の高速化が期待できる。   In addition, the calculation of the input current command value | Is | and the input current voltage phase difference Δθ necessary for a control device having a reactive power control function is simplified in advance, and the feedback loop is eliminated in the control, thereby speeding up the calculation. Can be expected.

また、入出力電流電圧波形を歪みなく制御するための原理的な制約条件である電流・電圧利用率の最大値0.866などを考慮し、予め設定した値に入力電流指令値を制限することで、歪み発生を防止できる。また、出力電流検出値I0を基にした入力電流指令値を制限するため、負荷の状態に応じて随時制限値を変更することができ、負荷変動にも対応できる。 In addition, the input current command value is limited to a preset value in consideration of the maximum current / voltage utilization ratio of 0.866, which is a fundamental constraint for controlling the input / output current voltage waveform without distortion. Thus, distortion can be prevented. In addition, since the input current command value based on the output current detection value I 0 is limited, the limit value can be changed at any time according to the state of the load, and load fluctuations can be dealt with.

また、低負荷時に無効電力指令を与える場合に、位相差Δθの最大値を予め設定した値に制限することで、不安定動作を引き起こしやすい条件を常に回避することができる。   In addition, when a reactive power command is given at a low load, by limiting the maximum value of the phase difference Δθ to a preset value, it is possible to always avoid a condition that easily causes unstable operation.

(実施形態1)
図1は本発明の実施形態を示す交流−交流直接変換装置の構成図であり、制御装置4に付加する無効電力制御の演算ブロック構成を示す。
(Embodiment 1)
FIG. 1 is a configuration diagram of an AC-AC direct conversion device showing an embodiment of the present invention, and shows a calculation block configuration of reactive power control added to the control device 4.

まず、本実施形態による無効電力制御を原理的に説明する。図5のような一般的な交流−交流直接変換装置の構成において、交流電源1に並列に無効電力制御機器等が接続されることなく、かつ装置単体で負荷を駆動する場合、低負荷の場合には無効電力を制御するための入力電流も小さくなるため、制御できる無効電力量は負荷が要求する有効電力に依存する。   First, reactive power control according to the present embodiment will be described in principle. In the configuration of a general AC-AC direct conversion device as shown in FIG. 5, when a reactive power control device or the like is not connected in parallel to the AC power source 1 and the load is driven by the device alone, the load is low Since the input current for controlling the reactive power is also small, the amount of reactive power that can be controlled depends on the active power required by the load.

いま、交流−交流直接変換装置の入出力で有効電力の授受が一致するとすれば、交流−交流直接変換回路の電力変換効率も含めて、(1)式のように定義できる。   Now, assuming that the exchange of active power coincides with the input and output of the AC-AC direct conversion device, the power conversion efficiency of the AC-AC direct conversion circuit can be defined as shown in equation (1).

Figure 0004775101
Figure 0004775101

ただし、ηは電力変換効率、Vsは電源側入力相電圧、Isは入力電流、cosθは入力力率、Vrefpは出力相電圧指令値、I0は出力電流、cosφは出力力率である。 Where η is the power conversion efficiency, Vs is the power source side input phase voltage, Is is the input current, cos θ is the input power factor, Vrefp is the output phase voltage command value, I 0 is the output current, and cos φ is the output power factor.

この(1)式の一致条件から、電源相電圧Vsおよび出力電流I0を検出し、出力相電圧指令Vrefpに従った出力を発生させて交流−交流直接変換する場合を考えると、出力力率cosφは出力相電圧指令Vrefpと出力電流I0の位相関係より求めることができる。したがって、未知量としては入力電流Isの大きさと入力力率cosθとなる。 Considering the case where the power supply phase voltage Vs and the output current I 0 are detected from the coincidence condition of the equation (1), and the output according to the output phase voltage command Vrefp is generated to perform the AC-AC direct conversion, the output power factor is considered. cos φ can be obtained from the phase relationship between the output phase voltage command Vrefp and the output current I 0 . Therefore, the unknown amount is the magnitude of the input current Is and the input power factor cos θ.

ここで、入力電流Isと入力力率cosθおよび無効電力指令値Qrefとの関係を(2)式のように定義すると、(1)式および(2)式の連立方程式から、入力電流Isの大きさ、および電源相電圧Vsに対する入力電流Isとの間に必要な位相差Δθを求めることができる。   Here, when the relationship between the input current Is, the input power factor cos θ, and the reactive power command value Qref is defined as in the equation (2), the magnitude of the input current Is is calculated from the simultaneous equations of the equations (1) and (2). In addition, the necessary phase difference Δθ between the input current Is with respect to the power supply phase voltage Vs can be obtained.

Figure 0004775101
Figure 0004775101

以上のことから、本実施形態では図1中に示す演算ブロック11~17で無効電力指令値Qrefに従った無効電力制御に必要な入力電流(大きさと位相)を推定し、制御装置による無効電力制御を可能にする。
演算ブロック11は電源相電圧Vsの絶対値(大きさ)|Vs|を求め、演算ブロック12は出力電流I0の大きさ|I0|を求め、演算ブロック13は出力電圧指令Vrefの大きさ|Vref|を求める。演算ブロック14は出力電流I0と出力電圧指令Vrefの位相から出力力率cosφを求める。
演算ブロック15は、演算ブロック11〜14からの電源相電圧Vsと出力電流I0と出力相電圧指令Vrefpの各大きさ、および出力力率cosφを入力し、さらに変換回路の変換効率ηと位相差(推定値)Δθから上記(1)式の演算を行い、推定した入力電流Isの大きさ|Is|を求める。
演算ブロック16は、入力電流の大きさ|Is|と電源相電圧の大きさ|Vs|および無効電力指令値Qrefから上記(2)式の演算を行い、電源相電圧Vsに対する推定入力電流Isの位相差Δθを求める。演算ブロック17は推定入力電流の大きさ|Is|と電源相電圧Vsおよび位相差Δθから推定入力電流Isのベクトル(位相と大きさ)を求める。
以上の演算ブロック11〜17により推定入力電流Isのベクトル(位相と大きさ)が求められ、制御装置4はこの推定入力電流Isと、電源相電圧Vsと出力電流I0の検出値、および出力相電圧指令値Vrefpから、出力電流I0に応じた有効電力で入力力率cosθを制御、つまり無効電力指令値Qrefに従った無効電力量が得られるように交流−交流直接変換回路3の入力電流位相θを制御する。
本実施形態によれば、交流−交流直接変換回路の入力有効電力と負荷が要求する有効電力の一致条件から、そのときの入力電流Isの大きさと位相を推定して電源相電圧Vsとの位相差Δθを調整するため、負荷条件(有効電力)が変化した場合にも指令どおりの任意の無効電力制御ができる。
From the above, in this embodiment, the calculation blocks 11 to 17 shown in FIG. 1 estimate the input current (magnitude and phase) necessary for reactive power control according to the reactive power command value Qref, and the reactive power by the control device. Allows control.
The calculation block 11 calculates the absolute value (magnitude) | Vs | of the power supply phase voltage Vs, the calculation block 12 calculates the magnitude | I 0 | of the output current I 0 , and the calculation block 13 calculates the magnitude of the output voltage command Vref. | Vref | is obtained. The calculation block 14 obtains the output power factor cos φ from the phase of the output current I 0 and the output voltage command Vref.
The calculation block 15 receives the power supply phase voltage Vs, the output current I 0 , the output phase voltage command Vrefp, and the output power factor cos φ from the calculation blocks 11 to 14, and further converts the conversion efficiency η and the level of the conversion circuit. The above equation (1) is calculated from the phase difference (estimated value) Δθ to obtain the estimated magnitude | Is | of the input current Is.
The calculation block 16 performs the calculation of the above equation (2) from the magnitude of the input current | Is |, the magnitude of the power supply phase voltage | Vs |, and the reactive power command value Qref, and calculates the estimated input current Is with respect to the power supply phase voltage Vs. A phase difference Δθ is obtained. The calculation block 17 obtains a vector (phase and magnitude) of the estimated input current Is from the magnitude | Is | of the estimated input current, the power supply phase voltage Vs, and the phase difference Δθ.
More arithmetic blocks 11 to 17 by the vector of the estimated input current Is (phase and magnitude) is determined, the control unit 4 and the estimated input current Is, the detection value of the power supply phase voltage Vs output current I 0, and the output The input power factor cos θ is controlled from the phase voltage command value Vrefp with the active power corresponding to the output current I 0 , that is, the input of the AC-AC direct conversion circuit 3 so as to obtain the reactive power amount according to the reactive power command value Qref. The current phase θ is controlled.
According to the present embodiment, the magnitude and phase of the input current Is at that time are estimated from the matching condition between the input active power of the AC-AC direct conversion circuit and the active power required by the load, and the level of the power supply phase voltage Vs is estimated. Since the phase difference Δθ is adjusted, arbitrary reactive power control can be performed as instructed even when the load condition (active power) changes.

(実施形態2)
前記の(1)式と(2)式の連立方程式を解くと、(3)、(4)式となる。
(Embodiment 2)
Solving the simultaneous equations of the above equations (1) and (2) yields equations (3) and (4).

Figure 0004775101
Figure 0004775101

本実施形態では、図2に演算ブロック構成を示すように、(3)、(4)式による演算を行い、無効電力を制御する。演算ブロック11〜14および17は図1と同じものであり、演算ブロック21はこれらの演算出力と効率ηおよび無効電力指令Qrefから(3)式に従った演算で推定入力電流Isの大きさ|Is|を求め、演算ブロック22は(4)式に従った演算で位相差Δθを求める。
本実施形態によれば、実施形態1と同様に負荷状態に応じた無効電力が制御できるのに加えて、推定位相差Δθのフィードバックループがなくなるため、これらの並列的演算により高速制御が期待できる。
In the present embodiment, as shown in the operation block configuration in FIG. 2, calculations are performed according to equations (3) and (4) to control reactive power. The calculation blocks 11 to 14 and 17 are the same as those in FIG. 1, and the calculation block 21 calculates the magnitude of the estimated input current Is by calculating according to the expression (3) from the calculation output, the efficiency η, and the reactive power command Qref. Is | is calculated | required and the calculation block 22 calculates | requires phase difference (DELTA) (theta) by the calculation according to (4) Formula.
According to the present embodiment, in addition to being able to control reactive power according to the load state as in the first embodiment, since there is no feedback loop of the estimated phase difference Δθ, high speed control can be expected by these parallel operations. .

(実施形態3)
実施形態1、2は、無効電力指令値に応じて(3)式の演算で求められる入力電流Isの大きさに従った入力電流制御に対し、実際の交流−交流直接変換回路3の入力電流値もその通りに流れる場合に所望の無効電力量が得られる。
一方で、交流−交流直接変換回路の場合、電源電圧の逆相分の出力も可能であるため、出力電圧波形の包絡線は逆相分も含めた6相交流からなる。このため、交流−交流直接変換装置が入出力波形を歪みなく制御できる電圧・電流利用率の最大値は0.866となる。それを超えると正弦波状の電流電圧波形が得られないが、(3)式で求めた推定入力電流指令値は、あくまで無効電力指令に対して必要となる入力電流値を計算的に導いたものであるため、原理上の制約条件を無視して負荷電流の大きさの0.866倍を超える場合が存在する。そのまま指令値として与えると、実際の入力電流は推定入力電流指令値どおりの大きさとはならずに誤差と歪みを生じながら、(3)式の入力電流Isのみを大きくしてしまう。
そこで、本実施形態では、実施形態1に加えて推定入力電流の大きさ|Is|と出力電流検出値の大きさ|I0|を常時比較し、|Is|>0.866×|I0|となるときは無効電力指令値Qrefを制限、すなわち(3)式の入力電流Isの大きさ|Is|を制限する。
図3は本実施形態の制御ブロック図であり、図1および図2と同等の演算ブロックは同一符号で示す。演算ブロック16では(2)式に従った演算で入力位相差Δθを求め、演算ブロック21では(3)式に従った演算で入力電流の大きさ|Is|を求める。ここで、本実施形態では、演算ブロック16の入力となる|Is|を0.866×|I0|で制限する演算ブロック31を介挿する。
この演算ブロック31の介挿により、(4)式の位相差Δθも制限され、歪みを生じることはない。ただし、このときは無効電力指令値どおりの無効電力量は得られず、負荷電流に依存した任意の値で制限されることになるが、波形の歪み防止を優先させた無効電力制御を得ることができる。
本実施形態によれば、無効電力指令値が原理上の制約条件を超える場合は飽和させるため、推定入力電流指令値誤差および波形歪みを防止することができる。
(Embodiment 3)
In the first and second embodiments, the input current of the actual AC-AC direct conversion circuit 3 is compared with the input current control according to the magnitude of the input current Is obtained by the calculation of the expression (3) according to the reactive power command value. When the value also flows as it is, a desired reactive power amount is obtained.
On the other hand, in the case of an AC-AC direct conversion circuit, the output voltage waveform can be output in the reverse phase, so the envelope of the output voltage waveform is composed of 6-phase AC including the reverse phase. For this reason, the maximum value of the voltage / current utilization rate at which the AC-AC direct conversion device can control the input / output waveform without distortion is 0.866. Beyond that, a sinusoidal current-voltage waveform cannot be obtained, but the estimated input current command value obtained by equation (3) is a calculation derived from the input current value required for the reactive power command. For this reason, there are cases in which 0.866 times the magnitude of the load current is exceeded, ignoring the constraints in principle. If it is given as it is as a command value, the actual input current will not be as large as the estimated input current command value, but errors and distortion will be produced, and only the input current Is in equation (3) will be increased.
Therefore, in this embodiment, in addition to the first embodiment, the estimated input current magnitude | Is | and the output current detection value magnitude | I 0 | are always compared, and | Is |> 0.866 × | I 0. When |, the reactive power command value Qref is limited, that is, the magnitude | Is | of the input current Is in Expression (3) is limited.
FIG. 3 is a control block diagram of the present embodiment, and operation blocks equivalent to those in FIGS. 1 and 2 are denoted by the same reference numerals. The calculation block 16 calculates the input phase difference Δθ by calculation according to the equation (2), and the calculation block 21 calculates the magnitude | Is | of the input current by calculation according to the equation (3). Here, in the present embodiment, an arithmetic block 31 is inserted that limits | Is |, which is an input of the arithmetic block 16, by 0.866 × | I 0 |.
By the insertion of the calculation block 31, the phase difference Δθ in the equation (4) is also limited, and no distortion occurs. However, at this time, the reactive power amount according to the reactive power command value cannot be obtained, and it is limited by an arbitrary value depending on the load current. However, the reactive power control that gives priority to the prevention of waveform distortion is obtained. Can do.
According to this embodiment, when the reactive power command value exceeds the theoretical constraint, it is saturated, so that an estimated input current command value error and waveform distortion can be prevented.

なお、制限値は上記の0.866×|I0|に限るものでなく、負荷電流I0の状態を基に決定することができ、負荷条件に応じてリアルタイムに変動させながら制限できる。 The limit value is not limited to the above 0.866 × | I 0 | but can be determined based on the state of the load current I 0 and can be limited while changing in real time according to the load condition.

(実施形態4)
前記の(4)式から明らかなように、有効電流(出力電流I0×cosφ)が小さい低負荷時に無効電力指令を大きく与えると、入力電流と電圧の位相差Δθが大きくなる状態が多発する。±90度の位相差が最大値となるが、大きな位相差を持つ条件下では、(2)式や(4)式における分子が分母に対して大きくなり、θは極めて変動的で、一定の割合を超えると外乱等の多い実機では不安定になることがある。
そこで、本実施形態では、図4で示すように、実施形態3における入力電流の大きさ|Is|の制限に加え、低負荷時に予測される不安定な位相差Δθを制限する演算ブロック41を設ける。この位相差Δθの制限は、変動幅最大値を予め設定しておく。変動幅の決定は任意であるが、ここでは例として、±60度をθ最大値と設定するならば、±60度を超える位相差Δθが入力された場合は強制的にその制限値で飽和させ、±60度以内の位相差Δθが与えられたならば、実施形態3における演算ブロック31での入力電流|Is|の制限値を最大とする。
本実施形態によれば、低負荷時に無効電力指令値を与えた場合に変動的となる位相差Δθの異常制御を防止し、不安定動作を回避することができる。なお、制限されたときは、無効電力量が指令値に一致しないが、不安定動作の回避を優先させた無効電力制御を得ることができる。
(Embodiment 4)
As is clear from the above equation (4), when the reactive power command is largely given at low load when the active current (output current I 0 × cos φ) is small, a state in which the phase difference Δθ between the input current and the voltage increases frequently occurs. . The phase difference of ± 90 degrees is the maximum value, but under the condition with a large phase difference, the numerator in the equations (2) and (4) is larger than the denominator, and θ is extremely variable and constant. Exceeding the ratio may cause instability in a real machine with many disturbances.
Therefore, in the present embodiment, as shown in FIG. 4, in addition to the restriction of the input current magnitude | Is | in the third embodiment, a calculation block 41 that restricts the unstable phase difference Δθ predicted at the time of low load is provided. Provide. The limit of the phase difference Δθ is set in advance with a maximum fluctuation range. The determination of the fluctuation range is arbitrary, but here, as an example, if ± 60 degrees is set as the θ maximum value, if a phase difference Δθ exceeding ± 60 degrees is input, it is forcibly saturated at the limit value If the phase difference Δθ within ± 60 degrees is given, the limit value of the input current | Is | in the calculation block 31 in the third embodiment is maximized.
According to this embodiment, it is possible to prevent abnormal control of the phase difference Δθ that becomes variable when a reactive power command value is given at low load, and to avoid unstable operation. When restricted, the reactive power amount does not coincide with the command value, but reactive power control giving priority to avoiding unstable operation can be obtained.

本発明の実施形態1を示す交流−交流直接変換装置の構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the alternating current-alternating-current direct conversion apparatus which shows Embodiment 1 of this invention. 本発明の実施形態2を示す無効電力制御回路図。The reactive power control circuit diagram which shows Embodiment 2 of this invention. 本発明の実施形態3を示す無効電力制御回路図。The reactive power control circuit diagram which shows Embodiment 3 of this invention. 本発明の実施形態4を示す無効電力制御回路図。The reactive power control circuit diagram which shows Embodiment 4 of this invention. 交流−交流直接変換装置の基本構成図。The basic block diagram of an alternating current-alternating current direct conversion apparatus.

符号の説明Explanation of symbols

1 交流電源
2 入力LCフィルタ
3 交流−交流直接変換回路
4 制御装置
11~17 演算ブロック
21,22 演算ブロック
31 演算ブロック
41 演算ブロック
DESCRIPTION OF SYMBOLS 1 AC power source 2 Input LC filter 3 AC-AC direct conversion circuit 4 Control device 11-17 Calculation block 21, 22 Calculation block 31 Calculation block 41 Calculation block

Claims (4)

単相または多相交流電源の各相に双方向スイッチ構成の交流−交流直接変換回路を介挿して負荷に接続し、前記各双方向スイッチのPWM制御を行う制御装置によって無効電力を制御する交流−交流直接変換装置において、
前記交流−交流直接変換回路の電力変換効率ηも含めた入力有効電力と負荷が要求する有効電力の一致条件から交流−交流直接変換回路の入力電流Isの大きさ|Is|を推定し、この入力電流の大きさ|Is|と電源相電圧Vsの大きさ|Vs|および無効電力指令値Qrefから電源相電圧Vsに対する該入力電流Isの位相差Δθを推定し、該入力電流Isの大きさ|Is|と電源相電圧Vsおよび該位相差Δθから無効電力制御に必要な入力電流Isを推定する演算手段を備え、
前記制御装置は、前記演算手段で推定した入力電流Isと、電源相電圧Vsと出力電流I0、および出力相電圧指令値Vrefpに応じて前記位相差Δθを調整することで、交流−交流直接変換回路の無効電力を制御することを特徴とする交流−交流直接変換装置。
AC that controls reactive power by a control device that performs PWM control of each bidirectional switch by connecting to each phase of a single-phase or multiphase AC power source via a direct-current AC / AC conversion circuit having a bidirectional switch configuration. -In an AC direct conversion device,
The magnitude | Is | of the input current Is of the AC-AC direct conversion circuit is estimated from the matching condition between the input active power including the power conversion efficiency η of the AC-AC direct conversion circuit and the active power required by the load. The phase difference Δθ of the input current Is with respect to the power supply phase voltage Vs is estimated from the magnitude of the input current | Is |, the magnitude of the power supply phase voltage Vs | Vs |, and the reactive power command value Qref, and the magnitude of the input current Is | Is |, arithmetic means for estimating the input current Is required for reactive power control from the power supply phase voltage Vs and the phase difference Δθ,
The control device adjusts the phase difference Δθ in accordance with the input current Is estimated by the calculation means, the power supply phase voltage Vs, the output current I 0 , and the output phase voltage command value Vrefp, whereby AC-AC direct An AC-AC direct conversion device characterized by controlling reactive power of a conversion circuit.
前記演算手段は、前記推定入力電流Isの推定演算と前記位相差Δθの推定演算とを並列的に行う構成にしたことを特徴とする請求項1に記載の交流−交流直接変換装置。   2. The AC-AC direct conversion device according to claim 1, wherein the calculation unit is configured to perform an estimation calculation of the estimated input current Is and an estimation calculation of the phase difference Δθ in parallel. 前記演算手段は、前記出力電流I0の大きさ|I0|と予め設定した係数値とを掛け合わした値となるように前記推定入力電流Isの大きさ|Is|を制限する手段を備えたことを特徴とする請求項1または2に記載の交流−交流直接変換装置。 The computing means includes means for limiting the magnitude | Is | of the estimated input current Is so as to be a value obtained by multiplying the magnitude | I 0 | of the output current I 0 by a preset coefficient value. The AC / AC direct conversion device according to claim 1, wherein the AC / AC direct conversion device is provided. 前記演算手段は、前記位相差Δθの最大値を予め設定した値に制限する手段を備えたことを特徴とする請求項1〜3のいずれか1項に記載の交流−交流直接変換装置。
The AC-AC direct conversion device according to any one of claims 1 to 3, wherein the arithmetic means includes means for limiting a maximum value of the phase difference Δθ to a preset value.
JP2006125143A 2006-04-28 2006-04-28 AC-AC direct conversion device Expired - Fee Related JP4775101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125143A JP4775101B2 (en) 2006-04-28 2006-04-28 AC-AC direct conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125143A JP4775101B2 (en) 2006-04-28 2006-04-28 AC-AC direct conversion device

Publications (2)

Publication Number Publication Date
JP2007300710A JP2007300710A (en) 2007-11-15
JP4775101B2 true JP4775101B2 (en) 2011-09-21

Family

ID=38769734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125143A Expired - Fee Related JP4775101B2 (en) 2006-04-28 2006-04-28 AC-AC direct conversion device

Country Status (1)

Country Link
JP (1) JP4775101B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH699321A1 (en) * 2008-08-15 2010-02-15 Alstom Technology Ltd Power station for the selective operation in electricity network with different power frequency.
JP5316767B2 (en) * 2008-12-22 2013-10-16 シンフォニアテクノロジー株式会社 Power conversion device and power supply system
GB2528909B (en) * 2014-08-04 2017-01-11 Htip Ltd An AC to AC converter and a control system therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266961A (en) * 2003-03-03 2004-09-24 Chubu Electric Power Co Inc Phase modification method for power system utilizing distributed power supply

Also Published As

Publication number Publication date
JP2007300710A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP6240704B2 (en) Three-phase inverter offset voltage generator and three-phase inverter controller
EP3522358B1 (en) Inverter control device
KR102009512B1 (en) Apparatus and method for generating offset voltage of 3-phase inverter
KR102109574B1 (en) Apparatus for controlling inverter
WO2018135045A1 (en) Power conversion device and power conversion system
JP2009131021A (en) Motor driving system
JP4775101B2 (en) AC-AC direct conversion device
JP4893151B2 (en) Space vector modulation method for AC-AC direct conversion device
JP4893150B2 (en) Space vector modulation method for AC-AC direct conversion device
JP4893152B2 (en) Space vector modulation method for AC-AC direct conversion device
JP5506619B2 (en) Inverter device and control method
JP2010172148A (en) Uninterruptible power supply apparatus
JP4351688B2 (en) Power converter
KR101861986B1 (en) Apparatus for controlling inverter
CN111819781B (en) Rectifying circuit device
JP2014023310A (en) Converter system control method and control device
US11482963B2 (en) Inverter control device
JP6695028B2 (en) Rectifier circuit device
JP2008206286A (en) Controller for ac-ac direct converter
JP4419514B2 (en) Power converter
Tarkiainen et al. Current controlled line converter using direct torque control method
JP4407892B2 (en) Matrix converter controller
Kulkarni et al. Implementation of closed loop V/Hz control of Induction Motor drive using TMS320F28035 and Altair sT Embed
CN114766078A (en) Inverter control device
JP2006050687A (en) Pwm cycloconverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Ref document number: 4775101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees