JP4710571B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4710571B2
JP4710571B2 JP2005345668A JP2005345668A JP4710571B2 JP 4710571 B2 JP4710571 B2 JP 4710571B2 JP 2005345668 A JP2005345668 A JP 2005345668A JP 2005345668 A JP2005345668 A JP 2005345668A JP 4710571 B2 JP4710571 B2 JP 4710571B2
Authority
JP
Japan
Prior art keywords
compressor
temperature
indoor
outdoor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005345668A
Other languages
Japanese (ja)
Other versions
JP2007147220A (en
Inventor
貴之 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005345668A priority Critical patent/JP4710571B2/en
Publication of JP2007147220A publication Critical patent/JP2007147220A/en
Application granted granted Critical
Publication of JP4710571B2 publication Critical patent/JP4710571B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和装置の制御に関するものである。   The present invention relates to control of an air conditioner.

従来の空気調和機では、電源回路に瞬時停電を検知する検知回路を設け、瞬時停電が発
生した場合空気調和装置の運転を停止し、一定時間停止後圧縮機を再起動するように制御されている(例えば、特許文献1参照)。
特開平7−120045号公報
In a conventional air conditioner, a detection circuit that detects an instantaneous power failure is provided in the power supply circuit, and when an instantaneous power failure occurs, the operation of the air conditioner is stopped, and the compressor is controlled to restart after being stopped for a certain period of time. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 7-120045

しかしながら、従来の空気調和装置では、10msec以上で電圧0%(100%電圧がドロップ)のような瞬時停電は検知できるが、10msec以下の短い瞬時停電や、電圧が100%ドロップせず50%程度のドロップの場合検知できず、このような瞬時停電が発生した場合、進相コンデンサを用いて駆動する単相一定速タイプ(誘導電動機モデル)の圧縮機を使用している場合、圧縮機のロータが逆回転して冷媒が循環しなくなることがある。ただし逆回転した場合でも圧縮機にはある程度の電流が流れるので、電子制御装置は通常運転か逆回転運転かを判別できない。よって、冷媒が循環しないので空気調和が行われない問題が発生する。かつ、逆回転時には圧縮機が異常振動するのでこの振動による配管折れが発生したり、圧縮機メカ部へのオイル供給がなくなることによる圧縮機の破壊や冷媒循環による圧縮機モータ部の冷却がなくなることによるモータ焼損が発生する。   However, the conventional air conditioner can detect an instantaneous power outage such as a voltage of 0% (100% voltage drops) at 10 msec or more, but a short instantaneous power outage of 10 msec or less or a voltage of about 50% without dropping 100%. If such a momentary power failure occurs, if a single-phase constant speed type (induction motor model) compressor driven by a phase advance capacitor is used, the compressor rotor May reversely rotate and the refrigerant may not circulate. However, since a certain amount of current flows through the compressor even in the case of reverse rotation, the electronic control unit cannot distinguish between normal operation and reverse rotation operation. Therefore, there is a problem that air conditioning is not performed because the refrigerant does not circulate. In addition, since the compressor vibrates abnormally during reverse rotation, pipe breakage occurs due to this vibration, and the compressor motor part is not cooled due to the destruction of the compressor due to the absence of oil supply to the compressor mechanical part or refrigerant circulation. This causes motor burnout.

本発明は、前記従来の課題を解決するもので、圧縮機が運転中にもかかわらず冷媒が循環していないことを速やかに判断して正常運転に戻すことにより、快適性が損なわれることを抑制することができるとともに、圧縮機の逆回転運転による圧縮機や配管の損傷を防止することができる空気調和機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and it is determined that comfort is impaired by promptly determining that the refrigerant is not circulating even when the compressor is in operation and returning to normal operation. An object of the present invention is to provide an air conditioner that can be suppressed and that can prevent damage to the compressor and piping due to reverse rotation operation of the compressor.

前記従来の課題を解決するために、本発明の空気調和装置は、一定速の圧縮機、室外熱交換器、室外送風機、4方弁、絞り装置を有する室外機と、室内熱交換器、室内送風機を有する室内機と、室外機に室外空気温度検出装置と室外熱交換器温度検出装置と、圧縮機の運転電流値を検知する圧縮機運転電流検知装置と、圧縮機の運転時の最低運転電流値および最高運転電流値を記憶する圧縮機運転電流設定記憶装置と、室内機に室内吸込み空気温度検出装置と室内熱交換器温度検出装置とを設け、少なくとも冷房運転または除湿運転または暖房運転を行う空気調和装置において、圧縮機運転電流検知装置で検知する値が圧縮機運転電流設定記憶装置に記憶されている最低運転電流値と最高運転電流値の範囲内で圧縮機が運転中である場合に、冷房もしくは除湿運転中であれば、室外空気温度と室外熱交換器温度との差が所定温度以下の状態を所定時間継続した場合に、または、暖房運転中であれば、室内吸込み空気温度と室内熱交換器温度との差が所定温度以下の状態を所定時間継続した場合に、圧縮機の運転を停止し、所定時間停止後再起動する制御装置を設けたもので、圧縮機の運転中に、室内側の吸込み空気温度や室内熱交換器温度、室外側の空気温度や室外熱交換器温度から冷媒の循環の有無を判断するとともに、圧縮機を一旦停止し、再起動することにより、圧縮機が逆回転し続けることを防止する。 In order to solve the above conventional problems, an air conditioner of the present invention includes a constant speed compressor, an outdoor heat exchanger, an outdoor fan, a four-way valve, an outdoor unit having a throttle device, an indoor heat exchanger, An indoor unit having a blower, an outdoor air temperature detecting device and an outdoor heat exchanger temperature detecting device in the outdoor unit, a compressor operating current detecting device for detecting an operating current value of the compressor, and a minimum operation during the operation of the compressor A compressor operating current setting storage device that stores a current value and a maximum operating current value , an indoor unit is provided with an indoor intake air temperature detection device and an indoor heat exchanger temperature detection device, and at least a cooling operation, a dehumidifying operation, or a heating operation is provided. When the compressor is operating within the range of the minimum operating current value and the maximum operating current value stored in the compressor operating current setting storage device in the air conditioner to be performed. to, If the difference between the outdoor air temperature and the outdoor heat exchanger temperature is below a predetermined temperature for a predetermined period of time during a cell or dehumidifying operation, or if it is during a heating operation, the indoor intake air temperature and the indoor temperature A control device is provided that stops the compressor operation when the difference from the heat exchanger temperature is below the predetermined temperature for a predetermined time, and restarts after the predetermined time stop. Compress the refrigerant by determining whether refrigerant is circulating from the indoor intake air temperature, indoor heat exchanger temperature, outdoor air temperature, outdoor heat exchanger temperature, and stopping and restarting the compressor. Prevent the machine from continuing reverse rotation.

本発明の空気調和装置は、圧縮機が運転中にもかかわらず冷媒が循環していないことを速やかに判断して正常運転に戻すことにより、快適性が損なわれることを抑制することができるとともに、圧縮機の逆回転運転による圧縮機や配管の損傷を防止して信頼性を向上することができる。   The air-conditioning apparatus of the present invention can prevent the comfort from being impaired by quickly determining that the refrigerant is not circulating even when the compressor is in operation and returning to the normal operation. Further, it is possible to improve the reliability by preventing damage to the compressor and piping due to the reverse rotation operation of the compressor.

第1の発明は、一定速の圧縮機、室外熱交換器、室外送風機、4方弁、絞り装置を有する室外機と、室内熱交換器、室内送風機を有する室内機と、室外機に室外空気温度検出装置と室外熱交換器温度検出装置と、圧縮機の運転電流値を検知する圧縮機運転電流検知装置と、圧縮機の運転時の最低運転電流値および最高運転電流値を記憶する圧縮機運転電流
設定記憶装置と、室内機に室内吸込み空気温度検出装置と室内熱交換器温度検出装置とを設け、少なくとも冷房運転または除湿運転または暖房運転を行う空気調和装置において、圧縮機運転電流検知装置で検知する値が圧縮機運転電流設定記憶装置に記憶されている最低運転電流値と最高運転電流値の範囲内で圧縮機が運転中である場合に、冷房もしくは除湿運転中であれば、室外空気温度と室外熱交換器温度との差が所定温度以下の状態を所定時間継続した場合に、または、暖房運転中であれば、室内吸込み空気温度と室内熱交換器温度との差が所定温度以下の状態を所定時間継続した場合に、圧縮機の運転を停止し、所定時間停止後再起動する制御装置を設けたもので、圧縮機の運転中に、冷房あるいは除湿運転中は室外側の空気温度と室外熱交換器温度との差から、暖房運転中は室内側の吸込み空気温度と室内熱交換器温度との差から、冷媒の循環の有無を判断して、電気回路が検知できない瞬時停電による圧縮機逆回転により冷媒非循環状態になることによる空気調和装置の快適性の低下(冷えないや温まらないといった不具合)が回避できるとともに、圧縮機逆回転による圧縮機や配管の破損を防止でき、空気調和装置の快適性と信頼性が向上する。
The first invention includes a constant speed compressor, an outdoor heat exchanger, an outdoor blower, a four-way valve, an outdoor unit having a throttle device , an indoor heat exchanger, an indoor unit having an indoor blower, and outdoor air in the outdoor unit. Temperature detecting device, outdoor heat exchanger temperature detecting device, compressor operating current detecting device for detecting compressor operating current value, and compressor for storing minimum operating current value and maximum operating current value during compressor operation Operating current
Detected by the compressor operating current detection device in an air conditioner that is provided with a setting storage device and an indoor unit with an indoor intake air temperature detection device and an indoor heat exchanger temperature detection device that performs at least a cooling operation, a dehumidifying operation, or a heating operation. If the compressor is operating within the range of the minimum operating current value and the maximum operating current value stored in the compressor operating current setting storage device, the outdoor air temperature should be The difference between the indoor intake air temperature and the indoor heat exchanger temperature is less than or equal to the predetermined temperature when the difference between the outdoor heat exchanger temperature and the outdoor heat exchanger temperature continues for a predetermined time or when the temperature is in the heating operation. A controller that stops operation of the compressor when the state continues for a predetermined time and restarts after stopping for a predetermined time is provided. During the cooling or dehumidifying operation during the compressor operation, the outdoor air temperature When Compression by instantaneous power failure that cannot be detected by the electrical circuit by judging whether refrigerant is circulating from the difference between the intake air temperature on the indoor side and the indoor heat exchanger temperature from the difference from the external heat exchanger temperature. It can avoid the deterioration of the comfort of the air conditioner due to the refrigerant non-circulating due to the reverse rotation of the machine (problems such as not being cooled or warming), and can prevent damage to the compressor and piping due to the reverse rotation of the compressor. The comfort and reliability of the harmony device is improved.

第2の発明は、第1の発明において、圧縮機の起動から所定時間だけ各温度検出装置の非検知時間を設けたものである。圧縮機起動から冷媒が循環し熱交換器温度が上昇したり下降したりするのに時間がかかる。特に長時間停止時は冷媒が圧縮機内部に寝込み状態にあるので冷媒が循環するに要する時間がかかる。この間を非検知にしないと、圧縮機逆転による冷媒非循環と判別できずに誤って起動後即停止する可能性が有り、上記構成により、この誤動作を防止できる。 According to a second invention , in the first invention , a non-detection time of each temperature detection device is provided for a predetermined time from the start of the compressor. It takes time for the refrigerant to circulate and the heat exchanger temperature to rise or fall from the start of the compressor. In particular, when the engine is stopped for a long time, it takes time for the refrigerant to circulate because the refrigerant is in the stagnation state inside the compressor. If this interval is not detected, there is a possibility that the refrigerant will not be recirculated due to the reverse rotation of the compressor, and there is a possibility that it will stop immediately after starting, and this malfunction can be prevented by the above configuration.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における空気調和装置の冷凍サイクル図であり、図2は制御ブロック図、図3はフローチャート図である。図1において、室外機1には圧縮機2と、室外熱交換器3と、室外送風機4と、冷媒液管5aと、冷媒ガス管6aと、冷暖房切換用の四方弁7と、絞り装置8が設けられている。また、室外機1には室外熱交換器3の温度を検出する室外熱交換器温度検知装置9と室外気温度を検出する室外空気温度検知装置10が設けられている。一方、室内機11には室内送風機12と、室内熱交換器13と、室内熱交換器13の温度を検出する室内熱交換器温度検知装置14と、部屋の室温を検出する室内吸込み温度検知装置15と、居住者が希望する運転モード(冷房、除湿または暖房)、室温、運転あるいは停止、風量及び風向などを設定できる運転設定装置16が設けられている。そして、室外機1と室内機11とは接続配管5b,6bで接続されて、冷凍サイクルが構成されている。
(Embodiment 1)
FIG. 1 is a refrigeration cycle diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention, FIG. 2 is a control block diagram, and FIG. 3 is a flowchart diagram. In FIG. 1, the outdoor unit 1 includes a compressor 2, an outdoor heat exchanger 3, an outdoor blower 4, a refrigerant liquid pipe 5a, a refrigerant gas pipe 6a, a cooling / heating switching four-way valve 7, and a throttle device 8. Is provided. The outdoor unit 1 is also provided with an outdoor heat exchanger temperature detection device 9 that detects the temperature of the outdoor heat exchanger 3 and an outdoor air temperature detection device 10 that detects the outdoor air temperature. On the other hand, the indoor unit 11 includes an indoor fan 12, an indoor heat exchanger 13, an indoor heat exchanger temperature detection device 14 that detects the temperature of the indoor heat exchanger 13, and an indoor suction temperature detection device that detects the room temperature of the room. 15 and an operation setting device 16 capable of setting an operation mode (cooling, dehumidification or heating) desired by the resident, room temperature, operation or stop, air volume and direction. And the outdoor unit 1 and the indoor unit 11 are connected by the connection piping 5b and 6b, and the refrigerating cycle is comprised.

上記冷凍サイクルにおいて、冷房あるいは除湿運転時、圧縮機2から吐出された冷媒は四方弁7を介して室外熱交換器3へと流れ、室外送風機4により室外熱交換器3で室外空気と熱交換して凝縮液化し、次に冷媒液管5aを通って絞り装置8を通過することにより減圧された冷媒は室内熱交換器13で蒸発した後に、冷媒ガス管6aを通り四方弁7を介して再び圧縮機2に吸入される。暖房運転時は圧縮機2から吐出された冷媒は四方弁7を介して室内熱交換器13へと流れ、室内送風機12により室内熱交換器13で室内空気と熱交換して凝縮液化し、次に絞り装置8を通過することにより減圧された冷媒は室外熱交換器3で蒸発した後に、四方弁7を介して再び圧縮機2に吸入される。   In the refrigeration cycle, during cooling or dehumidifying operation, the refrigerant discharged from the compressor 2 flows to the outdoor heat exchanger 3 through the four-way valve 7, and exchanges heat with outdoor air by the outdoor heat exchanger 3 by the outdoor fan 4. The refrigerant that has been condensed and liquefied and then depressurized by passing through the expansion device 8 through the refrigerant liquid pipe 5a evaporates in the indoor heat exchanger 13, passes through the refrigerant gas pipe 6a, and passes through the four-way valve 7. It is sucked into the compressor 2 again. During the heating operation, the refrigerant discharged from the compressor 2 flows to the indoor heat exchanger 13 through the four-way valve 7, and the indoor blower 12 exchanges heat with the indoor air in the indoor heat exchanger 13 to be condensed and liquefied. Then, the refrigerant depressurized by passing through the expansion device 8 evaporates in the outdoor heat exchanger 3 and then is sucked into the compressor 2 again through the four-way valve 7.

次に、本発明の制御について図2,3を用いて説明する。図2において、本発明の空気調和装置の制御装置17には、居住者が希望する運転モード切替スイッチ18(冷房、除湿または暖房)と室内温度設定スイッチ19と運転停止スイッチ20と風量設定スイッチ
21と風向設定スイッチ22で構成されている運転設定装置16の信号を記憶する運転モード記憶装置23と、室内熱交換器温度検知装置14と室内吸込み温度検知装置15と、室外熱交換器検知装置9と、室外気温度検知装置10と、圧縮機2の運転電流を検知する圧縮機運転電流検知装置24と、圧縮機2の運転電流設定値を記憶する圧縮機運転電流設定記憶装置25(ここには低外気温度時の最低電流設定値と過負荷運転時の最高電流設定値が記憶されている)と、室内熱交換器温度検知装置14と室内吸込み温度検知装置15から検出される温度との差温設定値を記憶する室内差温設定記憶装置26と、室外熱交換器温度検知装置9と室外気温度検知装置10から検出される温度との差温設定値を記憶する室外差温設定記憶装置27と、以上の信号を定期的に検出するためのサンプリング時間を設定する運転時間設定記憶装置28aと差温設定の継続時間を記憶する運転時間設定記憶装置28bと、以上の信号をサンプリング時間毎に受けて圧縮機2、室内送風機12、室外送風機4等の運転を決定する判定装置29と、判定装置29の信号により、圧縮機2や室内送風機12、室外送風機4等を駆動する出力リレー回路30を有している。
Next, the control of the present invention will be described with reference to FIGS. In FIG. 2, the control device 17 of the air conditioner of the present invention includes an operation mode changeover switch 18 (cooling, dehumidification or heating) desired by a resident, an indoor temperature setting switch 19, an operation stop switch 20, and an air volume setting switch 21. And an operation mode storage device 23 for storing signals of the operation setting device 16 constituted by the wind direction setting switch 22, an indoor heat exchanger temperature detection device 14, an indoor suction temperature detection device 15, and an outdoor heat exchanger detection device 9. An outdoor air temperature detecting device 10, a compressor operating current detecting device 24 for detecting the operating current of the compressor 2, and a compressor operating current setting storage device 25 for storing the operating current set value of the compressor 2 (here. Stores the minimum current setting value at the time of low outside air temperature and the maximum current setting value at the time of overload operation), the indoor heat exchanger temperature detection device 14 and the indoor suction temperature detection device 15. The differential temperature setting value between the indoor differential temperature setting storage device 26 that stores the differential temperature setting value with respect to the detected temperature, the outdoor heat exchanger temperature detection device 9 and the outdoor air temperature detection device 10 is stored. An outdoor differential temperature setting storage device 27 for storing, an operation time setting storage device 28a for setting a sampling time for periodically detecting the above signals, and an operation time setting storage device 28b for storing a duration time of the differential temperature setting The determination device 29 that receives the above signals every sampling time and determines the operation of the compressor 2, the indoor fan 12, the outdoor fan 4, and the like, and the compressor 2, the indoor fan 12, and the outdoor fan according to the signal of the determination device 29 4 has an output relay circuit 30 for driving 4 and the like.

居住者が運転モード切替スイッチ18で冷房、除湿または暖房を選択し運転を開始すると、運転モード記憶装置23、室内吸い込み温度検知装置15、室内温度設定装置19の信号により出力リレー回路30が圧縮機2を駆動するが、図3において、居住者が運転モード切替スイッチ18で冷房、除湿を選択した場合には(S2のY)、圧縮機2がサーモON判定で連続運転中に(S4のY)、圧縮機運転電流検知装置24の検出値Icp(S5)が圧縮機運転電流設定記憶装置25に設定されている値の範囲内(例えば1.5A≦Icp≦30A)にあると(S6のY)、室外熱交換器温度検知装置9(Tc)と室外空気温度検知装置10(Tgs)との検出値からそれらの温度差△Tを算出し(S7)、温度差△Tが室外差温設定記憶装置27の設定値(例えば3℃)以下かどうか判定し(S8)、その状態が運転時間設定記憶装置28bの設定値(例えば3分)以上継続すると(S9のY)、圧縮機2を所定時間(例えば3分)停止し(S10)、時間経過後再起動する(S11)。   When the resident selects cooling, dehumidification or heating with the operation mode changeover switch 18 and starts operation, the output relay circuit 30 is driven by the signals from the operation mode storage device 23, the indoor suction temperature detection device 15, and the indoor temperature setting device 19. 3, in the case where the resident selects cooling or dehumidification with the operation mode changeover switch 18 (Y in S2), the compressor 2 is continuously operating with the thermo-ON determination (Y in S4). ) When the detected value Icp (S5) of the compressor operating current detection device 24 is within the range of values set in the compressor operating current setting storage device 25 (for example, 1.5A ≦ Icp ≦ 30A) (S6 Y) The temperature difference ΔT is calculated from the detected values of the outdoor heat exchanger temperature detection device 9 (Tc) and the outdoor air temperature detection device 10 (Tgs) (S7), and the temperature difference ΔT is the outdoor differential temperature. Setting memory It is determined whether or not it is equal to or less than a set value of 27 (for example, 3 ° C.) (S8). It stops (for example, 3 minutes) (S10) and restarts after the lapse of time (S11).

居住者が運転モード切替スイッチ18で暖房を選択した場合には(S2のN)、圧縮機2がサーモON判定で連続運転中に(S13のY)に、圧縮機運転電流検知装置24の検出値Icp(S14)が圧縮機運転電流設定記憶装置25に設定されている値の範囲内(例えば1.5A≦Icp≦30A)にあると(S15のY)、室内熱交換器温度検知装置14(Te)と室内吸込み空気温度検知装置15(Tns)との検出値からそれらの温度差△Tを算出し(S16)、温度差△Tが室内差温設定記憶装置26の設定値(例えば3℃)以下かどうか判定し(S17)、その状態が運転時間設定記憶装置28bの設定値(例えば3分)以上継続すると(S18のY)、圧縮機2を所定時間(例えば3分)停止し(S19)、時間経過後再起動する(S20)。   When the resident selects heating with the operation mode changeover switch 18 (N in S2), the compressor operating current detection device 24 detects the compressor 2 while the compressor 2 is continuously operating with a thermo-ON determination (Y in S13). If the value Icp (S14) is within the range of values set in the compressor operating current setting storage device 25 (for example, 1.5A ≦ Icp ≦ 30A) (Y in S15), the indoor heat exchanger temperature detection device 14 The temperature difference ΔT is calculated from the detected values of (Te) and the indoor intake air temperature detection device 15 (Tns) (S16), and the temperature difference ΔT is the set value (for example, 3) in the indoor differential temperature setting storage device 26. (S17), and if the state continues for more than the set value (for example, 3 minutes) in the operation time setting storage device 28b (Y in S18), the compressor 2 is stopped for a predetermined time (for example, 3 minutes). (S19), restart after a lapse of time That (S20).

冷房運転時は室外側は凝縮側(放熱側)であるので室外気温度(例えば35℃)に対し、室外熱交換器の温度は通常運転中は高い(例えば50℃)はずであるが、冷房運転中(サーモON中)で圧縮機に通常の運転電流が流れているのにもかかわらず、室外空気温と室外熱交換器温度との温度差がほとんどない(例えば3℃)状態がしばらく継続(例えば3分)するのは冷媒が循環していないと判断し(冷媒が循環せずに、ただの送風状態なので室内吸い込み温度と室内熱交換器温度が数分で同一温度になる)、特にそのような状態で他の保護装置が作動しない場合は、圧縮機が瞬時停電等により逆転運転している可能性が高いと考えられるので、圧縮機を停止し、3分後再起動するように制御している。   During cooling operation, the outdoor side is on the condensing side (heat radiation side), so the temperature of the outdoor heat exchanger should be higher (eg, 50 ° C.) during normal operation than the outdoor air temperature (eg 35 ° C.). Despite normal operation current flowing through the compressor during operation (when the thermo is ON), there is almost no temperature difference between the outdoor air temperature and the outdoor heat exchanger temperature (for example, 3 ° C) for a while. (For example, 3 minutes) it is determined that the refrigerant is not circulated (the refrigerant is not circulated and is just in a blowing state, so the indoor suction temperature and the indoor heat exchanger temperature become the same temperature in a few minutes), especially If other protection devices do not operate in such a state, it is highly likely that the compressor is operating in reverse due to an instantaneous power failure, etc., so stop the compressor and restart it after 3 minutes. I have control.

同様に暖房運転時は、室内側が凝縮側(放熱側)であるので室内吸込み温度(例えば20℃)に対し、室内熱交換器の温度は通常運転中は高い(例えば40℃)はずであるが、暖房運転中(サーモON中)で圧縮機に通常の運転電流が流れているのにもかかわらず、室内吸い込み空気温度と室内熱交換器温度の温度差がほとんどない(例えば3℃)状態が
しばらく継続(例えば3分)するのは冷媒が循環していないと判断し(冷媒が循環せずに、ただの送風状態なので室外気温度と室外熱交換器温度が数分で同一温度になる)、同様に圧縮機が瞬時停電等により逆転運転している可能性が高いので、圧縮機を停止し、3分後再起動するように制御している。
Similarly, during heating operation, the indoor side is the condensation side (heat radiation side), so the temperature of the indoor heat exchanger should be higher (eg, 40 ° C.) during normal operation than the indoor suction temperature (eg, 20 ° C.). There is almost no temperature difference between the indoor intake air temperature and the indoor heat exchanger temperature (for example, 3 ° C) even though normal operating current flows through the compressor during heating operation (when the thermo is ON) It is judged that the refrigerant is not circulated for a while (for example, 3 minutes) (the refrigerant is not circulated and is just in a blowing state, so the outdoor air temperature and the outdoor heat exchanger temperature become the same temperature in a few minutes) Similarly, since there is a high possibility that the compressor is rotating in reverse due to an instantaneous power failure or the like, the compressor is stopped and controlled to restart after 3 minutes.

冷房時の室内側、暖房時の室外側は共に蒸発側で、蒸発側でも判断できるが(例えば冷房時、室内吸込み温度に対し、熱交換器の温度は10℃〜15℃程低いのでこの温度差を検知し、温度差がなくなれば停止する制御も有効)、蒸発側は熱交換器に水滴が付着し、冷媒の循環がなくなって送風状態になっても水滴が蒸発するまでに時間がかかり、例えば冷房時の室内吸込み空気温度と室内熱交換器温度が同一温度になかなかならない(凝縮側は1分ほどでほぼ同一になるが、蒸発側は10分ほどかかる場合がある)。検知温度差を大きくとると誤作動の可能性が高くなるし(正常運転との差が判断しづらくなる)、温度差が小さいままの場合は検知まで時間がかかり(10分ほど)、この間一時的に冷えなくなるので快適性が著しく低下すると共に、圧縮機逆転による圧縮機異常振動による配管折れや、圧縮機メカ部へのオイル供給がなくなることによる圧縮機の破壊や冷媒循環による圧縮機モータ部の冷却なくなることによるモータ焼損が発生する可能性が高くなる。よって、凝縮側で判断するのが最も適している。   Both the indoor side during cooling and the outdoor side during heating can be judged by the evaporation side, but can also be determined by the evaporation side (for example, during cooling, the temperature of the heat exchanger is about 10 to 15 ° C. lower than the indoor suction temperature. Control is also effective to detect the difference and stop when the temperature difference disappears), and it takes time for the evaporation side to evaporate even if water drops adhere to the heat exchanger and the circulation of the refrigerant ceases to blow. For example, the indoor intake air temperature and the indoor heat exchanger temperature at the time of cooling are not easily the same temperature (the condensation side is almost the same in about 1 minute, but the evaporation side may take about 10 minutes). If the detected temperature difference is increased, the possibility of malfunction increases (it becomes difficult to judge the difference from normal operation), and if the temperature difference remains small, it takes time until detection (about 10 minutes). Compressor motor part due to breakage of the compressor due to abnormal vibration of the compressor due to the reverse rotation of the compressor, destruction of the compressor due to the absence of oil supply to the compressor mechanism and refrigerant circulation There is a high possibility that motor burnout will occur due to the lack of cooling. Therefore, it is most suitable to judge on the condensing side.

そしてこの構成によれば、電気回路が検知できない瞬時停電による圧縮機逆転により冷媒非循環状態になることによる空気調和装置の快適性の低下(冷えないや温まらないといった不具合)が回避できるとともに、圧縮機逆転による圧縮機や配管の破損を防止することができ、空気調和装置の快適性と信頼性が向上する。   According to this configuration, it is possible to avoid a decrease in comfort of the air-conditioning apparatus due to a reversal of the compressor due to a compressor reversal due to an instantaneous power failure that cannot be detected by an electric circuit (a problem such as failure to cool or warm) and compression. It is possible to prevent damage to the compressor and piping due to machine reversal, and to improve the comfort and reliability of the air conditioner.

参考例1
参考例1にかかる空気調和装置の冷凍サイクル図は実施の形態1に対し、室外空気温検出装置10がないだけなので説明は省略する。図4は制御ブロック図、図5はフローチャートである。実施の形態1で説明した様に冷房運転時の室内側(蒸発側)での冷媒不循環の判断が難しいが、本発明のように、室外空気温検出装置10がない場合、冷房運転時の室外側(凝縮側)で判断が不可能になる。これを解決するのが本発明である。
( Reference Example 1 )
The refrigeration cycle diagram of the air conditioner according to the first reference example is the same as that of the first embodiment except that the outdoor air temperature detection device 10 is not provided, and the description thereof is omitted. 4 is a control block diagram, and FIG. 5 is a flowchart. As described in the first embodiment, it is difficult to determine the refrigerant non-circulation on the indoor side (evaporation side) during the cooling operation. However, as in the present invention, when the outdoor air temperature detection device 10 is not provided, Judgment is impossible on the outdoor side (condensation side). The present invention solves this problem.

本発明の制御について図4,5を用いて説明する。図4において、本発明の空気調和装置の制御装置17には、居住者が希望する運転モード切替スイッチ18(冷房、除湿または暖房)と室内温度設定スイッチ19と運転停止スイッチ20と風量設定スイッチ21と風向設定スイッチ22で構成されている運転設定装置16の信号を記憶する運転モード記憶装置23と、室内熱交換器温度検知装置14と室内吸込み温度検知装置15と、室外熱交換器検知装置9と、圧縮機2の運転電流を検知する圧縮機運転電流検知装置24と、圧縮機2の運転電流設定値を記憶する圧縮機運転電流設定記憶装置25(ここには低外気温度時の最低電流設定値と過負荷運転時の最高電流設定値が記憶されている)と、室内熱交換器温度検知装置14と室外熱交換器温度検知装置9から検出される温度との差温設定値を記憶する差温設定記憶装置31と、以上の信号を定期的に検出するためのサンプリング時間を設定する運転時間設定記憶装置28aと差温設定の継続時間を記憶する運転時間設定記憶装置28bと、以上の信号をサンプリング時間毎に受けて圧縮機2、室内送風機12、室外送風機4等の運転を決定する判定装置29と、判定装置29の信号により、圧縮機2や室内送風機12、室外送風機4等を駆動する出力リレー回路30を有している。   The control of the present invention will be described with reference to FIGS. In FIG. 4, the control device 17 of the air conditioner of the present invention includes an operation mode changeover switch 18 (cooling, dehumidification or heating) desired by a resident, an indoor temperature setting switch 19, an operation stop switch 20, and an air volume setting switch 21. And an operation mode storage device 23 for storing signals of the operation setting device 16 constituted by the wind direction setting switch 22, an indoor heat exchanger temperature detection device 14, an indoor suction temperature detection device 15, and an outdoor heat exchanger detection device 9. A compressor operating current detecting device 24 for detecting the operating current of the compressor 2 and a compressor operating current setting storage device 25 for storing the operating current set value of the compressor 2 (here, the minimum current at a low outside air temperature) The set value and the maximum current set value during overload operation are stored) and the temperature difference between the temperature detected by the indoor heat exchanger temperature detector 14 and the outdoor heat exchanger temperature detector 9 A differential temperature setting storage device 31 that stores a constant value, an operation time setting storage device 28a that sets a sampling time for periodically detecting the above signals, and an operation time setting storage device 28b that stores the duration of the differential temperature setting. The determination device 29 that receives the above signals every sampling time to determine the operation of the compressor 2, the indoor fan 12, the outdoor fan 4, and the like, and the signal of the determination device 29, the compressor 2, the indoor fan 12, and the outdoor An output relay circuit 30 that drives the blower 4 and the like is included.

居住者が運転モード切替スイッチ18で冷房、除湿または暖房を選択し運転を開始すると、運転モード記憶装置23、室内吸い込み温度検知装置15、室内温度設定装置19の信号により出力リレー回路30が圧縮機2を駆動するが、図5において、居住者が運転モード切替スイッチ18で冷房、除湿を選択した場合には(S22のY)、圧縮機2がサーモON判定で連続運転中に(S24のY)に、圧縮機運転電流検知装置24の検出値Ic
p(S25)が圧縮機運転電流設定記憶装置25に設定されている値の範囲内(例えば1.5A≦Icp≦30A)にあると(S26のY)、室内熱交換器温度検知装置14(Tc)と室外熱交換器温度検知装置9(Te)との検出値からそれらの温度差△Tを算出し(S27)、温度差△Tが差温設定記憶装置31の設定値(例えば7℃)以下かどうかを判定し(S28)、その状態が運転時間設定記憶装置28bの設定値(例えば3分)以上継続すると(S29のY)、圧縮機2を所定時間(例えば3分)停止し(S30)、時間経過後再起動する(S31)。
When the resident selects cooling, dehumidification or heating with the operation mode changeover switch 18 and starts operation, the output relay circuit 30 is driven by the signals from the operation mode storage device 23, the indoor suction temperature detection device 15, and the indoor temperature setting device 19. In FIG. 5, when the resident selects cooling or dehumidification with the operation mode changeover switch 18 (Y in S22), the compressor 2 is in the continuous operation with the thermo-ON determination (Y in S24). ), The detected value Ic of the compressor operating current detector 24
If p (S25) is within the range of values set in the compressor operating current setting storage device 25 (for example, 1.5A ≦ Icp ≦ 30A) (Y in S26), the indoor heat exchanger temperature detection device 14 ( Tc) and the temperature difference ΔT are calculated from the detected values of the outdoor heat exchanger temperature detection device 9 (Te) (S27), and the temperature difference ΔT is a set value (for example, 7 ° C.) of the differential temperature setting storage device 31. ) It is determined whether or not (S28), and if the state continues for more than the set value (for example, 3 minutes) of the operation time setting storage device 28b (Y in S29), the compressor 2 is stopped for a predetermined time (for example, 3 minutes). (S30), restart after a lapse of time (S31).

そしてこの構成によれば、室外空気温検知装置がなくても冷房時の冷媒非循環が検知可能になるので、室外空気温度センサーが不要になり、コストダウンが図れる。よって、シンプルでかつ低コストな空気調和装置が提供でき、電気回路が検知できない瞬時停電による圧縮機逆転により冷媒非循環状態になることによる空気調和装置の快適性の低下(冷えないや温まらないといった不具合)が回避できるとともに、圧縮機逆転による圧縮機や配管の破損を防止することができ、空気調和装置の快適性と信頼性が向上する。   According to this configuration, the refrigerant non-circulation during cooling can be detected without the outdoor air temperature detecting device, so that the outdoor air temperature sensor is not required and the cost can be reduced. Therefore, a simple and low-cost air conditioner can be provided, and the comfort of the air conditioner decreases due to the refrigerant being non-circulated due to the reverse rotation of the compressor due to an instantaneous power failure that cannot be detected by the electrical circuit (such as not cooling or not warming) In addition, the compressor and piping can be prevented from being damaged due to the reverse rotation of the compressor, and the comfort and reliability of the air conditioner are improved.

参考例2
参考例2にかかる空気調和機の冷凍サイクル図は実施の形態1に対し、室外気温検出装置10がないだけなので説明は省略する。図6は制御ブロック図、図7はフローチャートである。実施の形態1で説明した様に冷房運転時の室内側(蒸発側)での冷媒不循環の判断が難しいが、本発明のように、室外空気温検出装置10がない場合、これを解決するのが本発明である。
( Reference Example 2 )
Since the refrigeration cycle diagram of the air conditioner according to the second reference example is merely the absence of the outdoor air temperature detection device 10 with respect to the first embodiment, the description thereof is omitted. FIG. 6 is a control block diagram, and FIG. 7 is a flowchart. As described in the first embodiment, it is difficult to determine the refrigerant non-circulation on the indoor side (evaporation side) during the cooling operation, but this is solved when there is no outdoor air temperature detection device 10 as in the present invention. This is the present invention.

本参考例の制御について図6,7を用いて説明する。図6において、本参考例の空気調和装置の制御装置17には、居住者が希望する運転モード切替スイッチ18(冷房、除湿または暖房)と室内温度設定スイッチ19と運転停止スイッチ20と風量設定スイッチ21と風向設定スイッチ22で構成されている運転設定装置16の信号を記憶する運転モード記憶装置23と、室内熱交換器温度検知装置14と室内吸込み温度検知装置15と、室外熱交換器検知装置9と、圧縮機2の運転電流を検知する圧縮機運転電流検知装置24と、圧縮機2の運転電流設定値を記憶する圧縮機運転電流設定記憶装置25(ここには低外気温度時の最低電流設定値と過負荷運転時の最高電流設定値が記憶されている)と、室内熱交換器温度検知装置14と室外熱交換器温度検知装置9から検出される温度との差温設定値を記憶する差温設定記憶装置32と、以上の信号を定期的に検出するためのサンプリング時間を設定する運転時間設定記憶装置28aと差温設定の継続時間を記憶する運転時間設定記憶装置28bと、以上の信号をサンプリング時間毎に受けて圧縮機2、室内送風機12、室外送風機4等の運転を決定する判定装置29と、判定装置29の信号により、圧縮機2や室内送風機12、室外送風機4等を駆動する出力リレー回路30を有している。 The control of this reference example will be described with reference to FIGS. In FIG. 6, the control device 17 of the air conditioner of the present reference example includes an operation mode changeover switch 18 (cooling, dehumidification or heating) desired by the occupant, an indoor temperature setting switch 19, an operation stop switch 20, and an air volume setting switch. 21, an operation mode storage device 23 that stores a signal of the operation setting device 16 constituted by a wind direction setting switch 22, an indoor heat exchanger temperature detection device 14, an indoor suction temperature detection device 15, and an outdoor heat exchanger detection device. 9, a compressor operating current detection device 24 that detects the operating current of the compressor 2, and a compressor operating current setting storage device 25 that stores the operating current setting value of the compressor 2 (here, the minimum value at the time of low outside air temperature) Current setting value and maximum current setting value during overload operation are stored) and the temperature detected from the indoor heat exchanger temperature detection device 14 and the outdoor heat exchanger temperature detection device 9 A differential temperature setting storage device 32 for storing set values, an operation time setting storage device 28a for setting a sampling time for periodically detecting the above signals, and an operation time setting storage device for storing the duration time of the differential temperature setting. 28b, the determination device 29 that determines the operation of the compressor 2, the indoor blower 12, the outdoor blower 4 and the like by receiving the above signals every sampling time, and the compressor 2 and the indoor blower 12, An output relay circuit 30 that drives the outdoor fan 4 and the like is included.

冷房運転時、室外送風機4は室外熱交換器温度検知装置9から検出される温度を一定の温度(例えば45℃)に保つように、温度が低下すると回転数を下げ、凝縮温度を上げるように制御するように構成されている。居住者が運転モード切替スイッチ18で冷房、除湿または暖房を選択し運転を開始すると、運転モード記憶装置23、室内吸い込み温度検知装置15、室内温度設定装置19の信号により出力リレー回路30が圧縮機2を駆動するが、図7において、居住者が運転モード切替スイッチ18で冷房、除湿を選択した場合には(S33のY)、圧縮機2がサーモON判定で連続運転中に(S35のY)に、圧縮機運転電流検知装置24の検出値Icp(S36)が圧縮機運転電流設定記憶装置25に設定されている値の範囲内(例えば1.5A≦Icp≦30A)にあると(S37のY)、室外熱交換器温度検知装置9(Te)で検出された温度が凝縮温度設定記憶装置32の値(例えば30℃)以下かどうかを判定し(S39)、その状態が運転時間設定記憶装置28bの設定値(例えば3分)以上継続すると(S40のY)、圧縮機2を所定時間(例
えば3分)停止し(S41)、時間経過後再起動する(S42)。
During the cooling operation, the outdoor fan 4 keeps the temperature detected by the outdoor heat exchanger temperature detection device 9 at a constant temperature (for example, 45 ° C.) so as to decrease the rotational speed and increase the condensation temperature when the temperature decreases. Configured to control. When the resident selects cooling, dehumidification or heating with the operation mode changeover switch 18 and starts operation, the output relay circuit 30 is driven by the signals from the operation mode storage device 23, the indoor suction temperature detection device 15, and the indoor temperature setting device 19. In FIG. 7, when the resident selects cooling or dehumidification with the operation mode switch 18 (Y in S33), the compressor 2 is in the continuous operation with the thermo-ON determination (Y in S35). ) When the detected value Icp (S36) of the compressor operating current detector 24 is within the range of values set in the compressor operating current setting storage device 25 (for example, 1.5A ≦ Icp ≦ 30A) (S37). Y), it is determined whether or not the temperature detected by the outdoor heat exchanger temperature detection device 9 (Te) is equal to or lower than the value of the condensing temperature setting storage device 32 (for example, 30 ° C.) (S39). The set value of the time setting memory 28b (for example, 3 minutes) for longer than the (S40 of Y), the compressor 2 a predetermined time (e.g., 3 minutes) stop (S41), restarts after the time (S42).

前にも述べたように、冷房運転時および除湿運転時は、室外送風機4は凝縮温度を一定(例えば45℃)に保つように制御しているが、室外送風機4の回転数を制御しているのにもかかわらず、凝縮温度が一向に上昇しない場合は、冷媒が循環していないと判断し、停止するのが本参考例である。本参考例は、凝縮温度をある一定温度以下(例えば30℃以下)で判断するため、室外空気温度が30℃以上の高い温度で冷房運転している場合は判定ができなが、室外空気温度が高い状態で運転している場合、圧縮機2が瞬時停電で逆転すると逆転時に発生する過電流により圧縮機運転電流検知装置24の検出値Icp(S36)が圧縮機運転電流設定記憶装置25に設定されている値の範囲外になり(S37、43)(例えばIcp≧30A)過電流異常で停止(S44)するように制御が構成されている。よって、本参考例は低外気温度冷房運転時に有効な制御である。 As described above, during the cooling operation and the dehumidifying operation, the outdoor fan 4 is controlled so as to keep the condensation temperature constant (for example, 45 ° C.), but the rotational speed of the outdoor fan 4 is controlled. However, if the condensing temperature does not rise at all, the reference example determines that the refrigerant is not circulating and stops. In this reference example , the condensation temperature is determined at a certain temperature or lower (for example, 30 ° C. or lower). Therefore, the outdoor air temperature cannot be determined when the cooling operation is performed at a high temperature of 30 ° C. or higher. When the compressor 2 is operating in a high state, when the compressor 2 reverses due to an instantaneous power failure, the detected value Icp (S36) of the compressor operating current detector 24 is stored in the compressor operating current setting storage device 25 due to an overcurrent that occurs during reverse rotation. The control is configured so that it is out of the set value range (S37, 43) (for example, Icp ≧ 30A) and stops due to an overcurrent abnormality (S44). Therefore, this reference example is effective control at the time of low outdoor temperature cooling operation.

そしてこの構成によれば、室外空気温検知装置がなくても冷房時の冷媒非循環が検知可能になるので、室外空気温度センサーが不要になり、コストダウンが図れる。よって、シンプルでかつ低コストな空気調和装置が提供でき、電気回路が検知できない瞬時停電による圧縮機逆転により冷媒非循環状態になることによる空気調和装置の快適性の低下(冷えないや温まらないといった不具合)が回避できるとともに、圧縮機逆転による圧縮機や配管の破損を防止することができ、空気調和装置の快適性と信頼性が向上する。   According to this configuration, the refrigerant non-circulation during cooling can be detected without the outdoor air temperature detecting device, so that the outdoor air temperature sensor is not required and the cost can be reduced. Therefore, a simple and low-cost air conditioner can be provided, and the comfort of the air conditioner decreases due to the refrigerant being non-circulated due to the reverse rotation of the compressor due to an instantaneous power failure that cannot be detected by the electrical circuit (such as not cooling or not warming) In addition, the compressor and piping can be prevented from being damaged due to the reverse rotation of the compressor, and the comfort and reliability of the air conditioner are improved.

実施の形態2
本発明にかかる空気調和機の冷凍サイクル図は実施の形態1と同様なので説明は省略する。図8は制御ブロック図、図9はフローチャートである。本発明は、実施の形態1〜3に対し、圧縮機起動後から所定時間だけ各温度検出装置の非検知時間を設けたものであり、実施の形態1〜3全てに有効であるが、代表で実施の形態1に追加した構成として説明を行う。
( Embodiment 2 )
Since the refrigeration cycle diagram of the air conditioner according to the present invention is the same as that of Embodiment 1, the description thereof is omitted. FIG. 8 is a control block diagram, and FIG. 9 is a flowchart. The present invention provides a non-detection time for each temperature detection device for a predetermined time after the start of the compressor in the first to third embodiments, and is effective for all the first to third embodiments. Thus, the configuration added to the first embodiment will be described.

図8において、本発明の空気調和装置の制御装置17には、居住者が希望する運転モード切替スイッチ18(冷房、除湿または暖房)と室内温度設定スイッチ19と運転停止スイッチ20と風量設定スイッチ21と風向設定スイッチ22で構成されている運転設定装置16の信号を記憶する運転モード記憶装置23と、室内熱交換器温度検知装置14と室内吸込み温度検知装置15と、室外熱交換器検知装置9と、室外気温度検知装置10と、圧縮機2の運転電流を検知する圧縮機運転電流検知装置24と、圧縮機2の運転電流設定値を記憶する圧縮機運転電流設定記憶装置25(ここには低外気温度時の最低電流設定値と過負荷運転時の最高電流設定値が記憶されている)と、室内熱交換器温度検知装置14と室内吸込み温度検知装置15から検出される温度との差温設定値を記憶する室内差温設定記憶装置26と、室外熱交換器温度検知装置9と室外気温度検知装置10から検出される温度との差温設定値を記憶する室外差温設定記憶装置27と、以上の信号を定期的に検出するためのサンプリング時間を設定する運転時間設定記憶装置28aと差温設定の継続時間を記憶する運転時間設定記憶装置28bとサーモON(圧縮機運転開始)からの非検知時間を設定した運転時間設定記憶装置28cと、以上の信号をサンプリング時間毎に受けて圧縮機2、室内送風機12、室外送風機4等の運転を決定する判定装置29と、判定装置29の信号により、圧縮機2や室内送風機12、室外送風機4等を駆動する出力リレー回路30を有している。   In FIG. 8, the control device 17 of the air conditioner of the present invention includes an operation mode changeover switch 18 (cooling, dehumidification or heating) desired by a resident, an indoor temperature setting switch 19, an operation stop switch 20, and an air volume setting switch 21. And an operation mode storage device 23 for storing signals of the operation setting device 16 constituted by the wind direction setting switch 22, an indoor heat exchanger temperature detection device 14, an indoor suction temperature detection device 15, and an outdoor heat exchanger detection device 9. An outdoor air temperature detecting device 10, a compressor operating current detecting device 24 for detecting the operating current of the compressor 2, and a compressor operating current setting storage device 25 for storing the operating current set value of the compressor 2 (here. Stores the minimum current setting value at the time of low outside air temperature and the maximum current setting value at the time of overload operation), the indoor heat exchanger temperature detection device 14 and the indoor suction temperature detection device 15. The differential temperature setting value between the indoor differential temperature setting storage device 26 that stores the differential temperature setting value with respect to the detected temperature, the outdoor heat exchanger temperature detection device 9 and the outdoor air temperature detection device 10 is stored. An outdoor differential temperature setting storage device 27 for storing, an operation time setting storage device 28a for setting a sampling time for periodically detecting the above signals, and an operation time setting storage device 28b for storing a duration time of the differential temperature setting The operation time setting storage device 28c in which the non-detection time from the thermo ON (compressor operation start) is set, and the above signals are received every sampling time to determine the operation of the compressor 2, the indoor fan 12, the outdoor fan 4, etc. And an output relay circuit 30 that drives the compressor 2, the indoor fan 12, the outdoor fan 4, and the like according to a signal from the determination device 29.

居住者が運転モード切替スイッチ18で冷房、除湿または暖房を選択し運転を開始すると、運転モード記憶装置23、室内吸い込み温度検知装置15、室内温度設定装置19の信号により出力リレー回路30が圧縮機2を駆動するが、居住者が運転モード切替スイッチ18で冷房、除湿または暖房を選択し運転を開始すると、運転モード記憶装置23、室内吸い込み温度検知装置15、室内温度設定装置19の信号により出力リレー回路30が
圧縮機2を駆動するが、図9において、居住者が運転モード切替スイッチ18で冷房、除湿を選択した場合には(S2のY)、圧縮機2が運転を開始(サーモON)(S4)するが、運転開始から運転時間設定記憶装置28cに設定されている時間(例えば3分間)検知を行わず(S45のN)、3分経過後(S45のY)、圧縮機運転電流検知装置24の検出値Icp(S5)が圧縮機運転電流設定記憶装置25に設定されている値の範囲内(例えば1.5A≦Icp≦30A)にあると(S6のY)、室外熱交換器温度検知装置9(Tc)と室外気温度検知装置(Tgs)との検出値からそれらの温度差△Tを算出し(S7)、温度差△Tが室外差温設定記憶装置27の設定値(例えば3℃)以下かどうか判定し(S8)、その状態が運転時間設定記憶装置28bの設定値(例えば3分)以上継続すると(S9のY)、圧縮機2を所定時間(例えば3分)停止し(S10)、時間経過後再起動する(S11)。
When the resident selects cooling, dehumidification or heating with the operation mode changeover switch 18 and starts operation, the output relay circuit 30 is driven by the signals from the operation mode storage device 23, the indoor suction temperature detection device 15, and the indoor temperature setting device 19. 2, but when the resident selects cooling, dehumidification or heating with the operation mode changeover switch 18, the operation is started by the signals of the operation mode storage device 23, the indoor suction temperature detection device 15, and the indoor temperature setting device 19. The relay circuit 30 drives the compressor 2. In FIG. 9, when the resident selects cooling or dehumidifying with the operation mode changeover switch 18 (Y in S2), the compressor 2 starts operation (thermo ON). ) (S4), but does not detect the time (for example, 3 minutes) set in the operation time setting storage device 28c from the start of operation (N in S45), 3 After elapse (Y in S45), the detected value Icp (S5) of the compressor operating current detection device 24 is within the range of values set in the compressor operating current setting storage device 25 (for example, 1.5A ≦ Icp ≦ 30A). (Y in S6), the temperature difference ΔT is calculated from the detection values of the outdoor heat exchanger temperature detection device 9 (Tc) and the outdoor air temperature detection device (Tgs) (S7), and the temperature difference Δ It is determined whether or not T is equal to or less than a set value (for example, 3 ° C.) in the outdoor temperature difference setting storage device 27 (S8), and the state continues for a set value (for example, 3 minutes) in the operation time setting storage device 28b (Y in S9). ), The compressor 2 is stopped for a predetermined time (for example, 3 minutes) (S10), and restarted after the lapse of time (S11).

居住者が運転モード切替スイッチ18で暖房を選択した場合には(S2のN)、圧縮機2が運転を開始(サーモON)(S13のY)するが、運転開始から運転時間設定記憶装置28cに設定されている時間(例えば3分間)検知を行わず(S46のN)、3分経過後(S46のY)、圧縮機運転電流検知装置24の検出値Icp(S14)が圧縮機運転電流設定記憶装置25に設定されている値の範囲内(例えば1.5A≦Icp≦30A)にあると(S15のY)、室内熱交換器温度検知装置14(Te)と室内吸込み空気温度検知装置15(Tns)との検出値からそれらの温度差△Tを算出し(S16)、温度差△Tが室内差温設定記憶装置26の設定値(例えば3℃)以下かどうか判定し(S17)、その状態が運転時間設定記憶装置28bの設定値(例えば3分)以上継続すると(S18のY)、圧縮機2を所定時間(例えば3分)停止し(S19)、時間経過後再起動する(S20)。   When the resident selects heating with the operation mode changeover switch 18 (N in S2), the compressor 2 starts operation (thermo ON) (Y in S13), but the operation time setting storage device 28c from the start of operation. Is not detected (for example, 3 minutes) (N in S46), and after 3 minutes (Y in S46), the detected value Icp (S14) of the compressor operating current detector 24 is the compressor operating current. When the value is within the range of values set in the setting storage device 25 (for example, 1.5A ≦ Icp ≦ 30A) (Y in S15), the indoor heat exchanger temperature detection device 14 (Te) and the indoor intake air temperature detection device The temperature difference ΔT is calculated from the detected value of 15 (Tns) (S16), and it is determined whether the temperature difference ΔT is less than or equal to the set value (for example, 3 ° C.) of the indoor differential temperature setting storage device 26 (S17). , That state is memorized operation time setting Continuing the set value of the location 28b (e.g. three minutes) or more (S18 of Y), the compressor 2 a predetermined time (e.g., 3 minutes) stop (S19), restarts after the time (S20).

この非検知時間を設ける理由は、圧縮機起動から冷媒が循環し熱交換器温度が上昇したり下降するのに時間がかかる。特に長時間停止時は冷媒が圧縮機内部に寝込み状態にあるので冷媒が循環するに要する時間がかかる。この間を非検知にしないと、圧縮機逆転による冷媒非循環と圧縮機起動直後による冷媒循環不足(時間的な遅れ)とを判別できず誤動作で起動後即停止してしまうからである。   The reason for providing this non-detection time is that it takes time for the refrigerant to circulate and the heat exchanger temperature to rise or fall from the start of the compressor. In particular, when the engine is stopped for a long time, it takes time for the refrigerant to circulate because the refrigerant is in the stagnation state inside the compressor. If this period is not detected, it is not possible to distinguish between refrigerant non-circulation due to compressor reverse rotation and refrigerant circulation shortage (temporal delay) immediately after starting the compressor, and it will stop immediately after starting due to a malfunction.

そしてこの構成によれば、電気回路が検知できない瞬時停電による圧縮機逆転により冷媒非循環状態になることによる空気調和装置の快適性の低下(冷えないや温まらないといった不具合)が回避できるとともに、圧縮機逆転による圧縮機や配管の破損を防止することができ、空気調和装置の快適性と信頼性が向上する。特に、圧縮機起動後非検知時間を設けることにより、誤動作の心配がなくなり、空気調和装置の快適性と信頼性がなお一層向上する。   According to this configuration, it is possible to avoid a decrease in comfort of the air-conditioning apparatus due to a reversal of the compressor due to a compressor reversal due to an instantaneous power failure that cannot be detected by an electric circuit (a problem such as failure to cool or warm) and compression. It is possible to prevent damage to the compressor and piping due to machine reversal, and to improve the comfort and reliability of the air conditioner. In particular, by providing a non-detection time after starting the compressor, there is no fear of malfunction, and the comfort and reliability of the air conditioner are further improved.

以上のように、本発明にかかる空気調和装置は、単相一定速度圧縮機の逆転による冷媒不循環の不具合を解決するものであるが、他の理由による(バルブ閉塞等)の冷媒不循環に対しても応用できる。   As described above, the air-conditioning apparatus according to the present invention solves the problem of refrigerant non-circulation due to the reverse rotation of the single-phase constant speed compressor. Also applicable.

本発明の空気調和装置の実施の形態1または2、参考例1または2における冷凍サイクル図Refrigeration cycle diagram in Embodiment 1 or 2, Reference Example 1 or 2 of the air conditioner of the present invention 実施の形態1における制御ブロック図Control block diagram in the first embodiment 実施の形態1におけるフローチャートFlowchart in the first embodiment 参考例1における制御ブロック図Control block diagram in Reference Example 1 参考例1におけるフローチャートFlow chart in Reference Example 1 参考例2における制御ブロック図Control block diagram in Reference Example 2 参考例2におけるフローチャートFlow chart in Reference Example 2 実施の形態2における制御ブロック図Control block diagram in the second embodiment 実施の形態2におけるフローチャートFlowchart in the second embodiment

1 室外機
2 圧縮機
3 室外熱交換器
4 室外送風機
5 冷媒液管
6 冷媒ガス管
7 四方弁
8 絞り装置
9 室外熱交換器温度検知装置
10 室外空気温度検知装置
11 室内機
12 室内送風機
13 室内熱交換器
14 室内熱交換器温度検知装置
15 室内吸込み空気温度検知装置
16 室内風向変更装置
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Compressor 3 Outdoor heat exchanger 4 Outdoor fan 5 Refrigerant liquid pipe 6 Refrigerant gas pipe 7 Four-way valve 8 Throttle device 9 Outdoor heat exchanger temperature detector 10 Outdoor air temperature detector 11 Indoor unit 12 Indoor fan 13 Indoor Heat exchanger 14 Indoor heat exchanger temperature detection device 15 Indoor intake air temperature detection device 16 Indoor air direction change device

Claims (2)

一定速の圧縮機、室外熱交換器、室外送風機、4方弁、絞り装置を有する室外機と、室内熱交換器、室内送風機を有する室内機と、前記室外機に室外空気温度検出装置と室外熱交換器温度検出装置と、前記圧縮機の運転電流値を検知する圧縮機運転電流検知装置と、前記圧縮機の運転時の最低運転電流値および最高運転電流値を記憶する圧縮機運転電流設定記憶装置と、前記室内機に室内吸込み空気温度検出装置と室内熱交換器温度検出装置とを設け、少なくとも冷房運転または除湿運転または暖房運転を行う空気調和装置において、前記圧縮機運転電流検知装置で検知する値が前記圧縮機運転電流設定記憶装置に記憶されている最低運転電流値と最高運転電流値の範囲内で前記圧縮機が運転中である場合に、冷房もしくは除湿運転中であれば、室外空気温度と室外熱交換器温度との差が所定温度以下の状態を所定時間継続した場合に、または、暖房運転中であれば、室内吸込み空気温度と室内熱交換器温度との差が所定温度以下の状態を所定時間継続した場合に、前記圧縮機の運転を停止し、所定時間停止後再起動する制御装置を設けたことを特徴とする空気調和装置。 Constant speed compressor, an outdoor heat exchanger, an outdoor fan, 4-way valve, an outdoor unit having a throttle device, the indoor heat exchanger, and an indoor unit having an indoor fan, the outdoor air temperature detecting device and the outdoor to the outdoor unit Heat exchanger temperature detection device , compressor operating current detection device for detecting the operating current value of the compressor, and compressor operating current setting for storing the minimum operating current value and the maximum operating current value during operation of the compressor a storage device, and an indoor suction air temperature detector and the indoor heat exchanger temperature detector provided in the indoor unit, the air conditioning apparatus performing at least cooling operation or dehumidifying operation or heating operation, in the compressor operation current detection device when the compressor value detected within the minimum operating current and maximum operating current value stored in the compressor operation current setting storage device is in operation, it is in the cooling or dehumidifying operation When the difference between the outdoor air temperature and the outdoor heat exchanger temperature is below a predetermined temperature for a predetermined time or during heating operation, the difference between the indoor intake air temperature and the indoor heat exchanger temperature is An air conditioner provided with a control device that stops operation of the compressor and restarts after stopping for a predetermined time when a state of a predetermined temperature or lower is continued for a predetermined time. 圧縮機の起動から所定時間だけ各温度検出装置の非検知時間を設けた請求項1に記載の空気調和装置。 The air conditioning apparatus according to claim 1 , wherein a non-detection time of each temperature detection device is provided for a predetermined time from the start of the compressor.
JP2005345668A 2005-11-30 2005-11-30 Air conditioner Expired - Fee Related JP4710571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005345668A JP4710571B2 (en) 2005-11-30 2005-11-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005345668A JP4710571B2 (en) 2005-11-30 2005-11-30 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007147220A JP2007147220A (en) 2007-06-14
JP4710571B2 true JP4710571B2 (en) 2011-06-29

Family

ID=38208818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005345668A Expired - Fee Related JP4710571B2 (en) 2005-11-30 2005-11-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP4710571B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185118A (en) * 2017-04-27 2018-11-22 パナソニックIpマネジメント株式会社 Air conditioner
JP7263116B2 (en) 2019-05-20 2023-04-24 サンデン株式会社 TEMPERATURE ADJUSTMENT DEVICE FOR ON-BOARD DEVICE AND VEHICLE AIR CONDITIONING DEVICE INCLUDING THE SAME
CN110617606B (en) * 2019-09-23 2021-09-21 芜湖美智空调设备有限公司 Air conditioner and control method and system thereof
JP7392567B2 (en) 2020-04-30 2023-12-06 株式会社富士通ゼネラル air conditioner
CN114110933B (en) * 2021-10-29 2023-08-01 珠海格力电器股份有限公司 Control method of air source heat pump unit system and air source heat pump unit system
CN115875818A (en) * 2022-12-28 2023-03-31 宁波奥克斯电气股份有限公司 Control method and control device of air conditioner, air conditioner and readable storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055564A (en) * 1991-06-28 1993-01-14 Toshiba Corp Air conditioner
JPH07174386A (en) * 1993-12-17 1995-07-14 Mitsubishi Heavy Ind Ltd Separate type air-conditioning machine
JPH07218059A (en) * 1994-02-02 1995-08-18 Hitachi Ltd Air conditioner provided with reverse rotation-preventing function
JP2003090582A (en) * 2001-09-20 2003-03-28 Fujitsu General Ltd Control method for air conditioner
JP2003139418A (en) * 2001-10-31 2003-05-14 Daikin Ind Ltd Air conditioner
JP2003152250A (en) * 2001-11-14 2003-05-23 Matsushita Electric Ind Co Ltd Cooling device for laser oscillator
JP2003279110A (en) * 2002-03-25 2003-10-02 Hitachi Ltd Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055564A (en) * 1991-06-28 1993-01-14 Toshiba Corp Air conditioner
JPH07174386A (en) * 1993-12-17 1995-07-14 Mitsubishi Heavy Ind Ltd Separate type air-conditioning machine
JPH07218059A (en) * 1994-02-02 1995-08-18 Hitachi Ltd Air conditioner provided with reverse rotation-preventing function
JP2003090582A (en) * 2001-09-20 2003-03-28 Fujitsu General Ltd Control method for air conditioner
JP2003139418A (en) * 2001-10-31 2003-05-14 Daikin Ind Ltd Air conditioner
JP2003152250A (en) * 2001-11-14 2003-05-23 Matsushita Electric Ind Co Ltd Cooling device for laser oscillator
JP2003279110A (en) * 2002-03-25 2003-10-02 Hitachi Ltd Air conditioner

Also Published As

Publication number Publication date
JP2007147220A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP5471873B2 (en) Air conditioner
US9651294B2 (en) Outdoor unit of air conditioner and air conditioner
KR101044128B1 (en) Refrigeration device
JP4710571B2 (en) Air conditioner
JP2008064447A (en) Refrigeration device
JP2011144960A (en) Air conditioner and method of defrosting operation of air conditioner
JP4844147B2 (en) Air conditioner
JP2008286419A (en) Air conditioning device
JP2009085463A (en) Air conditioner
JPH08247561A (en) Air conditioner
JP2000292017A (en) Heat pump type refrigerating machine
KR100803444B1 (en) Fan controller, refrigeration cycle system and method for estimating rotation speed of fan
JP6105270B2 (en) Air conditioner
JP2006112696A (en) Air conditioner
JPH07120049A (en) Air conditioner
JP4736970B2 (en) Air conditioner
JP5012102B2 (en) Vending machine control equipment
JP6251429B2 (en) Air conditioner
JP2001141323A (en) Air conditioner
JPH1019344A (en) Air conditioner
JP2020200958A (en) Air conditioner
JPH10153179A (en) Device for protecting compressor from abnormality, and refrigerating cycle device
JPH10170052A (en) Air conditioner
JPH09152168A (en) Separate type air conditioner
JP7465827B2 (en) Refrigeration Cycle Equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees