JP4600144B2 - Complex seismic isolation bearing - Google Patents

Complex seismic isolation bearing Download PDF

Info

Publication number
JP4600144B2
JP4600144B2 JP2005142316A JP2005142316A JP4600144B2 JP 4600144 B2 JP4600144 B2 JP 4600144B2 JP 2005142316 A JP2005142316 A JP 2005142316A JP 2005142316 A JP2005142316 A JP 2005142316A JP 4600144 B2 JP4600144 B2 JP 4600144B2
Authority
JP
Japan
Prior art keywords
rubber
viscoelastic
seismic isolation
laminate
isolation bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005142316A
Other languages
Japanese (ja)
Other versions
JP2006316954A (en
Inventor
達 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005142316A priority Critical patent/JP4600144B2/en
Publication of JP2006316954A publication Critical patent/JP2006316954A/en
Application granted granted Critical
Publication of JP4600144B2 publication Critical patent/JP4600144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は複合免震支承体に関し、さらに詳しくは、変形後の歪みの回復を早めると共に、振動の速度に応じて減衰効果を向上させるようにした複合免震支承体に関する。   The present invention relates to a composite seismic isolation bearing, and more particularly to a composite seismic isolation bearing that accelerates the recovery of distortion after deformation and improves the damping effect in accordance with the speed of vibration.

地震発生時の建物等の構造物の揺れや倒壊などによる被害を最小限に抑えるための免震支承体として、複数のゴム層と鋼板とを上下方向に交互に積層させたゴム積層体の中央に設けられた穴に鉛の棒を挿入して、塑性変形による減衰機能を付与した弾性支承体が知られている。しかしながら、このような形態の弾性支承体では、大地震の際にゴム積層体内の鋼板が鉛棒を損傷させ、繰り返しの変形によって破断し易くなるという欠点があった。   The center of a rubber laminate in which multiple rubber layers and steel plates are alternately laminated in the vertical direction as a seismic isolation bearing to minimize damage caused by shaking or collapse of structures such as buildings during an earthquake. 2. Description of the Related Art An elastic bearing body is known in which a lead rod is inserted into a hole provided in a metal plate to provide a damping function by plastic deformation. However, the elastic bearing body having such a configuration has a drawback that the steel plate in the rubber laminate damages the lead bar during a large earthquake and is easily broken by repeated deformation.

このような観点から、ゴム積層体の中央に設けられた穴に粘性体を充填させて、水平方向の振動に対する減衰機能を付与するようにした提案が幾つかある(例えば、特許文献1、2参照)。しかしながら、何れの提案にあっても、変形後の歪みの回復機能が充分に得られず、かつ減衰特性の速度依存性が低いことから、大地震に対する免震支承体としては、未だ満足し得るものではなかった。
特開平4−337130号公報 特開平5−202636号公報
From such a viewpoint, there are some proposals in which a viscous body is filled in a hole provided in the center of the rubber laminate to provide a damping function against horizontal vibration (for example, Patent Documents 1 and 2). reference). However, in any proposal, the strain recovery function after deformation cannot be obtained sufficiently and the speed dependence of the damping characteristics is low, so that it can still be satisfied as a seismic isolation bearing for a large earthquake. It was not a thing.
JP-A-4-337130 JP-A-5-202636

この発明の目的は、上述する問題点を解消するもので、変形後の歪みの回復を早めると共に、振動の速度に応じて減衰効果を向上させるようにした複合免震支承体を提供することにある。   An object of the present invention is to solve the above-mentioned problems, and to provide a composite seismic isolation support body that accelerates recovery of distortion after deformation and improves the damping effect according to the speed of vibration. is there.

上記目的を達成するためのこの発明の複合免震支承体は、複数のゴム層と鋼板とを上下方向に交互に積層させたゴム積層体と、粘弾性ゴムとを同一平面上に並列に配置すると共に、前記ゴム積層体と前記粘弾性ゴムとの上下面を支承板により挟持した複合免震支承体において、前記ゴム積層体を構成するゴム層に等価粘性減衰定数が0.03〜0.05のゴムを使用し、前記粘弾性ゴムに等価粘性減衰定数が0.3〜0.5のゴムを使用すると共に、前記粘弾性ゴムの全容積が前記ゴム積層体の全容積に対して占める割合を120%以上、200%以下にしたことを要旨とする。 In order to achieve the above object, the composite seismic isolation bearing of the present invention comprises a rubber laminate in which a plurality of rubber layers and steel plates are alternately laminated in the vertical direction and a viscoelastic rubber arranged in parallel on the same plane. In addition, in the composite seismic isolation bearing body in which the upper and lower surfaces of the rubber laminate and the viscoelastic rubber are sandwiched by a bearing plate, the equivalent viscous damping constant of the rubber layer constituting the rubber laminate is 0.03 to 0. 05 , rubber having an equivalent viscosity damping constant of 0.3 to 0.5 is used for the viscoelastic rubber, and the total volume of the viscoelastic rubber occupies the total volume of the rubber laminate. The gist is that the ratio is 120% or more and 200% or less .

この発明によれば、免震支承体をゴム積層体と粘弾性ゴムとを同一の平面上に並列に配置したので、縦方向には高いばね定数が、横方向には低いばね定数が備わるようになり、地震による建造物の振動を効率よく吸収することができる。さらに、ゴム積層体を構成するゴムの等価粘性減衰定数を0.03〜0.05とし、粘弾性ゴムの等価粘性減衰定数を0.3〜0.5し、かつ粘弾性ゴムの全容積がゴム積層体の全容積に対して占める割合を120%以上、200%以下にしたので、変形後の歪みの回復を早めると共に、減衰特性の速度依存性を高めて、振動の速度に応じて減衰効果を向上させることができる。 According to this invention, since the seismic isolation bearing body has the rubber laminate and the viscoelastic rubber arranged in parallel on the same plane, a high spring constant is provided in the vertical direction and a low spring constant is provided in the horizontal direction. Therefore, the vibration of the building due to the earthquake can be efficiently absorbed. Further, the equivalent viscous damping constant of the rubber constituting the rubber laminate is 0.03 to 0.05 , the equivalent viscous damping constant of the viscoelastic rubber is 0.3 to 0.5 , and the total volume of the viscoelastic rubber is Occupies 120% or more and 200% or less of the total volume of the rubber laminate, thereby speeding up the recovery of distortion after deformation and increasing the speed dependency of the damping characteristics, depending on the vibration speed. The attenuation effect can be improved.

以下、この発明の構成につき添付の図面を参照しながら詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.

図1はこの発明の実施形態による複合免震支承体の一例を示す断面図、図2は図1のX−X矢視断面図である。   1 is a cross-sectional view showing an example of a composite seismic isolation bearing according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line XX of FIG.

図1及び図2において複合免震支承体1は、複数のゴム層2と鋼板3とを上下方向に交互に積層させたゴム積層体4と粘弾性ゴム5とを同一平面上に並列に配置すると共に、これらゴム積層体4と粘弾性ゴム5との上下面を支承板6a、6bにより挟持している。なお、図中7は粘弾性ゴム5の周囲を被覆するカバ−ゴム層を示している。そして、ゴム積層体4を構成するゴム層2には等価粘性減衰定数が0.03〜0.05のゴムが使用され、粘弾性ゴム5には等価粘性減衰定数が0.3〜0.5のゴムが使用されている。 1 and 2, the composite seismic isolation bearing body 1 includes a rubber laminate 4 and a viscoelastic rubber 5 in which a plurality of rubber layers 2 and steel plates 3 are alternately laminated in the vertical direction arranged in parallel on the same plane. At the same time, the upper and lower surfaces of the rubber laminate 4 and the viscoelastic rubber 5 are sandwiched between support plates 6a and 6b. In the figure, reference numeral 7 denotes a cover rubber layer covering the periphery of the viscoelastic rubber 5. The rubber layer 2 constituting the rubber laminate 4 uses a rubber having an equivalent viscous damping constant of 0.03 to 0.05 , and the viscoelastic rubber 5 has an equivalent viscous damping constant of 0.3 to 0.5. Of rubber is used.

このようにゴム積層体4と粘弾性ゴム5とを同一平面上に並列に配置したので、複合免震支承体1の縦方向にはゴム積層体4により高いばね定数が備えられ、横方向には粘弾性ゴム5により低いばね定数が備わるようになり、地震による建造物の振動を効率よく吸収することができる。さらに、ゴム積層体4を構成するゴムの等価粘性減衰定数を0.03〜0.05とし、粘弾性ゴム5の等価粘性減衰定数を0.3〜0.5としたので、変形後の歪みの回復を早めると共に、減衰特性の速度依存性を高めて、振動の速度に応じて減衰効果を向上させることができる。 Thus, since the rubber laminate 4 and the viscoelastic rubber 5 are arranged in parallel on the same plane, a high spring constant is provided in the longitudinal direction of the composite seismic isolation bearing 1 by the rubber laminate 4, and in the lateral direction. Is provided with a low spring constant by the viscoelastic rubber 5, and can efficiently absorb the vibration of the building due to the earthquake. Furthermore, since the equivalent viscous damping constant of the rubber constituting the rubber laminate 4 is 0.03 to 0.05 and the equivalent viscous damping constant of the viscoelastic rubber 5 is 0.3 to 0.5 , In addition to speeding up the recovery, the speed dependency of the damping characteristic can be increased, and the damping effect can be improved according to the speed of vibration.

なお、この発明において、ゴムの等価粘性減衰定数とは、ゴムの非線形復元力特性を、等価な線形復元力と減衰に置き換えたときの減衰定数をいい、この減衰定数は、出願人の開示に係る特開2002−20546号公報に記載のせん断特性値(Heq)と同等にして求めることができ、せん断試験機にて、ゴム積層体及び粘弾性ゴムへの鉛直荷重をそれぞれ10MPa、0MPa、変形周波数0.5Hz、100%歪みとして求めた等価粘性減衰定数をいう。   In the present invention, the equivalent viscous damping constant of rubber refers to a damping constant obtained by replacing the nonlinear restoring force characteristic of rubber with an equivalent linear restoring force and damping. This damping constant is disclosed in the applicant's disclosure. It can be obtained in the same manner as the shear characteristic value (Heq) described in JP-A-2002-20546, and the vertical load on the rubber laminate and the viscoelastic rubber is 10 MPa and 0 MPa, respectively, with a shear tester. Equivalent viscous damping constant obtained with a frequency of 0.5 Hz and 100% strain.

ゴム積層体4を構成するゴムの等価粘性減衰定数が0.05超ではゴム積層体としての力学特性や温度依存性を得ることが難しくなる。また、粘弾性ゴム5の等価粘性減衰定数が0.3未満では複合免震支承体としての減衰性を充分に確保することが難しくなる。   If the equivalent viscosity damping constant of the rubber constituting the rubber laminate 4 is more than 0.05, it is difficult to obtain mechanical properties and temperature dependence as the rubber laminate. Further, if the equivalent viscous damping constant of the viscoelastic rubber 5 is less than 0.3, it is difficult to sufficiently secure the damping property as a composite seismic isolation bearing.

図1及び図2では、複合免震支承体1の中央に円筒状に形成したゴム積層体4を配置し、このゴム積層体4の周囲に粘弾性ゴム5を配置した場合を示したが、ゴム積層体4の形態及び粘弾性ゴム5との配置関係はこれに限られることなく、複合免震支承体1の中央に粘弾性ゴム5を配置し、粘弾性ゴム5の周囲にゴム積層体4を配置することができる。   1 and 2, the rubber laminated body 4 formed in a cylindrical shape is arranged at the center of the composite seismic isolation bearing 1, and the viscoelastic rubber 5 is arranged around the rubber laminated body 4. The configuration of the rubber laminate 4 and the arrangement relationship with the viscoelastic rubber 5 are not limited thereto, and the viscoelastic rubber 5 is arranged in the center of the composite seismic isolation bearing 1, and the rubber laminate is arranged around the viscoelastic rubber 5. 4 can be arranged.

この発明の複合免震支承体1において、粘弾性ゴム5の複合免震支承体1の中に占める割合は、複合免震支承体1の変形歪みの回復速度及び減衰特性の速度依存性を支配することになる。したがって、この発明では、粘弾性ゴム5の全容積がゴム積層体4の全容積に対して占める割合120%以上、200%以下となるように調整している。 In the composite seismic isolation bearing 1 of the present invention, the proportion of the viscoelastic rubber 5 in the composite seismic isolation bearing 1 dominates the deformation strain recovery speed of the composite seismic isolation bearing 1 and the speed dependence of the damping characteristics. Will do. Therefore, in this invention, the total volume of the viscoelastic rubber 5 is a proportion of 120% or more relative to the total volume of the rubber laminate 4 is adjusted to be 200% or less.

この発明において、上述するゴム積層体4を構成するゴム層には天然ゴムを使用し、粘弾性ゴム5には熱可塑ゴム又はジエン系ゴムをベースとしたカーボンブラック充填ゴムを使用するとよい。なお、カバ−ゴム層7には耐候性及び耐摩耗性に優れたクロロプレンゴムを使用するとよい。   In the present invention, natural rubber may be used for the rubber layer constituting the rubber laminate 4 described above, and carbon black-filled rubber based on thermoplastic rubber or diene rubber may be used for the viscoelastic rubber 5. The cover rubber layer 7 may be made of chloroprene rubber having excellent weather resistance and wear resistance.

上述するように、この発明の複合免震支承体は、免震支承体をゴム積層体と粘弾性ゴムとを同一平面上に並列に配置すると共に、ゴム積層体を構成するゴムと粘弾性ゴムの等価粘性減衰定数をそれぞれ特定し、かつ粘弾性ゴムの全容積がゴム積層体の全容積に対して占める割合を特定することにより、変形後の歪みの回復を早めると共に、減衰特性の速度依存性を高めるようにしたもので、振動の速度に応じて減衰効果が向上することから、大地震に対する建造物の免震支承体として好ましく適用することができる。 As described above, the composite seismic isolation bearing according to the present invention includes a rubber laminate and a viscoelastic rubber arranged in parallel on the same plane, and the rubber and the viscoelastic rubber constituting the rubber laminate. By specifying the equivalent viscous damping constant of each and specifying the ratio of the total volume of the viscoelastic rubber to the total volume of the rubber laminate , the strain recovery after deformation is accelerated and the speed dependence of the damping characteristics Since the damping effect is improved according to the speed of vibration, it can be preferably applied as a seismic isolation support for a building against a large earthquake.

この発明の実施形態による複合免震支承体の一例を示す断面図である。It is sectional drawing which shows an example of the composite seismic isolation bearing body by embodiment of this invention. 図1のX−X矢視断面図である。It is XX arrow sectional drawing of FIG.

符号の説明Explanation of symbols

1 複合免震支承体
2 ゴム層
3 鋼板
4 ゴム積層体
5 粘弾性ゴム
6a、6b 支承板
7 カバ−ゴム層
DESCRIPTION OF SYMBOLS 1 Composite seismic isolation bearing body 2 Rubber layer 3 Steel plate 4 Rubber laminated body 5 Viscoelastic rubber 6a, 6b Bearing plate 7 Cover rubber layer

Claims (2)

複数のゴム層と鋼板とを上下方向に交互に積層させたゴム積層体と、粘弾性ゴムとを同一平面上に並列に配置すると共に、前記ゴム積層体と前記粘弾性ゴムとの上下面を支承板により挟持した複合免震支承体において、
前記ゴム積層体を構成するゴム層に等価粘性減衰定数が0.03〜0.05のゴムを使用し、前記粘弾性ゴムに等価粘性減衰定数が0.3〜0.5のゴムを使用すると共に、前記粘弾性ゴムの全容積が前記ゴム積層体の全容積に対して占める割合を120%以上、200%以下にした複合免震支承体。
A rubber laminate in which a plurality of rubber layers and steel plates are alternately laminated in the vertical direction and a viscoelastic rubber are arranged in parallel on the same plane, and upper and lower surfaces of the rubber laminate and the viscoelastic rubber are arranged In a composite seismic isolation bearing sandwiched between bearing plates,
The rubber layer equivalent viscous damping constant constituting a rubber laminate using the rubber 0.03-0.05, equivalent viscous damping constant to the viscoelastic rubber to use rubber 0.3 to 0.5 In addition, a composite seismic isolation bearing in which the ratio of the total volume of the viscoelastic rubber to the total volume of the rubber laminate is 120% or more and 200% or less .
前記ゴム積層体を構成するゴム層が天然ゴムからなり、前記粘弾性ゴムが熱可塑ゴム又はジエン系ゴムをベースとしたカーボンブラック充填ゴムからなる請求項1に記載の複合免震支承体。
The composite seismic isolation bearing according to claim 1, wherein the rubber layer constituting the rubber laminate is made of natural rubber, and the viscoelastic rubber is made of carbon black-filled rubber based on thermoplastic rubber or diene rubber.
JP2005142316A 2005-05-16 2005-05-16 Complex seismic isolation bearing Expired - Fee Related JP4600144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142316A JP4600144B2 (en) 2005-05-16 2005-05-16 Complex seismic isolation bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142316A JP4600144B2 (en) 2005-05-16 2005-05-16 Complex seismic isolation bearing

Publications (2)

Publication Number Publication Date
JP2006316954A JP2006316954A (en) 2006-11-24
JP4600144B2 true JP4600144B2 (en) 2010-12-15

Family

ID=37537807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142316A Expired - Fee Related JP4600144B2 (en) 2005-05-16 2005-05-16 Complex seismic isolation bearing

Country Status (1)

Country Link
JP (1) JP4600144B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333099B2 (en) * 2009-09-11 2013-11-06 横浜ゴム株式会社 Laminated rubber bearing
CN105421225B (en) * 2015-11-20 2017-03-22 刘策 Bridge damping support
CN106436562B (en) * 2016-11-07 2017-12-15 济南大学 Annulus damper vibration absorption and isolation support
CN109113408A (en) * 2018-10-10 2019-01-01 徐赵东 It is a kind of with multi-direction anti-pulling, the multidimensional of pretightning force function every vibration absorber and its every oscillation damping method
CN109629405B (en) * 2018-12-28 2021-02-12 同济大学 Large-deformation rubber support with combined cross section and reduced shear rigidity
CN109629404B (en) * 2018-12-28 2021-02-12 同济大学 Large-deformation rubber support with inhaul cable limiting combined section and reduced shear rigidity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641843A (en) * 1987-06-24 1989-01-06 Bridgestone Corp Base isolation structure
JPH03204420A (en) * 1989-12-28 1991-09-06 Sumitomo Rubber Ind Ltd Laminated rubber supporter
WO1993004301A1 (en) * 1991-08-23 1993-03-04 Sumitomo Rubber Industries Ltd. Laminated rubber support and method of designing the same
JPH0530586U (en) * 1991-09-26 1993-04-23 昭和電線電纜株式会社 Seismic isolation isolators
JP2002061706A (en) * 2000-08-21 2002-02-28 Showa Electric Wire & Cable Co Ltd Damper
JP2002340089A (en) * 2001-05-18 2002-11-27 Bridgestone Corp Rubber composition for base isolation and base isolating structure
JP2004035648A (en) * 2002-07-01 2004-02-05 Yokohama Rubber Co Ltd:The Vibration damping elastomer composition for building

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570341B2 (en) * 1987-04-06 1997-01-08 株式会社ブリヂストン Seismic isolation structure
JP2615639B2 (en) * 1987-07-27 1997-06-04 株式会社ブリヂストン Seismic isolation structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641843A (en) * 1987-06-24 1989-01-06 Bridgestone Corp Base isolation structure
JPH03204420A (en) * 1989-12-28 1991-09-06 Sumitomo Rubber Ind Ltd Laminated rubber supporter
WO1993004301A1 (en) * 1991-08-23 1993-03-04 Sumitomo Rubber Industries Ltd. Laminated rubber support and method of designing the same
JPH0530586U (en) * 1991-09-26 1993-04-23 昭和電線電纜株式会社 Seismic isolation isolators
JP2002061706A (en) * 2000-08-21 2002-02-28 Showa Electric Wire & Cable Co Ltd Damper
JP2002340089A (en) * 2001-05-18 2002-11-27 Bridgestone Corp Rubber composition for base isolation and base isolating structure
JP2004035648A (en) * 2002-07-01 2004-02-05 Yokohama Rubber Co Ltd:The Vibration damping elastomer composition for building

Also Published As

Publication number Publication date
JP2006316954A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4600144B2 (en) Complex seismic isolation bearing
JP5541329B2 (en) Seismic isolation device
JP6076849B2 (en) Anti-vibration structure
Hedayati Dezfuli et al. Performance of carbon fiber‐reinforced elastomeric isolators manufactured in a simplified process: experimental investigations
JP6432271B2 (en) Seismic isolation support device
RU101514U1 (en) RUBBER-METAL SUPPORT
JP2010190409A (en) Seismic isolation device and building
Peng et al. Experimental study of seismic isolated structures with sliding implant-magnetic bearings
CN109072574B (en) Shock-proof support device for bridge and bridge using same
JP2011190598A (en) Vibration control structure of viaduct
WO2014104995A3 (en) A high performance solid polyurethane elastomer seismic isolator with or without an elastomer core or lead core
Tsai Seismic isolation devices: history and recent developments
JP5845130B2 (en) Laminated rubber bearing
JP2013096221A (en) Simple vibration absorbing foundation packing
JP6767183B2 (en) Seismic structures and methods for improving seismic resistance
JP5911743B2 (en) Damping damper and damping structure
JP4581832B2 (en) Composite viscoelastic damper
JP6275978B2 (en) Anti-vibration support device
JP5984012B2 (en) Laminated rubber support
WO2015030690A3 (en) Elastomer-based earthquake isolators made of natural rubber, synthetic rubber, rigid polyurethane and similar materials with conical, pyramidal shape (frusto-conical prism, frusto-pyramidal prism with square, rectangular and other geometric cross-sections)
JP6051325B1 (en) Seismic isolation device with concentric laminated damping material
JP5524683B2 (en) Rubber bearing
JP6202829B2 (en) Connecting structure of pier and revetment
JP7121645B2 (en) Seismic structure of pile pier and seismic reinforcement method
JP2012145196A (en) Base isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees