JP4547813B2 - DC-DC converter - Google Patents

DC-DC converter Download PDF

Info

Publication number
JP4547813B2
JP4547813B2 JP2001043822A JP2001043822A JP4547813B2 JP 4547813 B2 JP4547813 B2 JP 4547813B2 JP 2001043822 A JP2001043822 A JP 2001043822A JP 2001043822 A JP2001043822 A JP 2001043822A JP 4547813 B2 JP4547813 B2 JP 4547813B2
Authority
JP
Japan
Prior art keywords
output
circuit
diode
transformer
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001043822A
Other languages
Japanese (ja)
Other versions
JP2002247854A (en
Inventor
政和 鷁頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2001043822A priority Critical patent/JP4547813B2/en
Publication of JP2002247854A publication Critical patent/JP2002247854A/en
Application granted granted Critical
Publication of JP4547813B2 publication Critical patent/JP4547813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、直流電源から変圧器を介してn(任意の整数)個の直流出力に変換する直流−直流変換装置、特に入力電圧の変化や負荷の変化に対して可飽和リアクトルの磁束制御により出力電圧を一定にすることができ、かつ入力電圧の変化に対して発振周波数を変える機能を持つ直流−直流変換装置に関する。
【0002】
【従来の技術】
図8に多出力電源の従来例を示す。
図示のように、直流電源1、半導体スイッチ素子21、変圧器3の一次巻線31および半導体スイッチ素子22が直列に接続され、半導体スイッチ素子21と変圧器3の一次巻線31との接続点と、半導体スイッチ素子22と直流電源1との接続点との間に変圧器リセットダイオード151が接続され、半導体スイッチ素子22と変圧器3の一次巻線31との接続点と、半導体スイッチ素子21と直流電源1との接続点との間に変圧器リセットダイオード152が接続され、発振器6が半導体スイッチ素子21と22のゲート端子にそれぞれ接続されている。
【0003】
また、変圧器二次巻線32a,33a、可飽和リアクトル91a,92a、ダイオード101a,101b,102a,102b、平滑リアクトル141,142、平滑用コンデンサ81,82、出力電圧検出・調節回路121,122、磁束制御回路131,132およびリセットダイオード111a,112aからなる出力回路が、出力数n(任意の整数)に応じて設けられる。
【0004】
図9に、図8における動作の一例を示す。なお、変圧器二次巻線32aを含む出力回路の動作のみ説明する。
まず期間▲1▼において、半導体スイッチ素子21,22をオンすると、変圧器一次巻線31には直流電源電圧が印加され、変圧器二次巻線32aにも直流電源電圧に比例した電圧が印加される。このとき、可飽和リアクトル91aは不飽和状態であり、インダクタンス値が高いため、ダイオード101aには電流は流れない。
期間▲2▼において、可飽和リアクトル91aが飽和状態になると、ダイオード101aに電流が流れ、平滑リアクトル141にエネルギーを蓄えるとともに、負荷に電力を供給する。
【0005】
期間▲3▼において、半導体スイッチ素子21,22がオフになると、変圧器一次巻線31にはそれまでと逆極性の直流電源電圧が印加され、変圧器二次巻線32aにもそれまでと逆極性の直流電源電圧に比例した電圧が印加される。この時、平滑リアクトル141に蓄えられていたエネルギーにより、平滑リアクトル141にはダイオード101bを介して電流が流れ続ける。また、出力電圧検出・調節回路121および磁束制御回路131は、可飽和リアクトル91aのリセット量を調節し、出力電圧を一定となるようにする。
このような動作を繰り返すことにより、直流電源から絶縁された直流電力を供給する。なお、変圧器二次巻線33aを含む出力回路の動作も、上記と同様である。
【0006】
【発明が解決しようとする課題】
即ち、図8に示す従来例では、ダイオードの導通開始時における電流変化率が大きく、磁束制御回路による出力電圧制御の精度を上げることが困難である。また、変圧器および可飽和リアクトルの磁束密度変化ΔBは次の(1)式で表すことができ、入力電圧が高くなった場合ΔBは増大する。このため、入力電圧最大の条件において変圧器および可飽和リアクトルを設計する必要があり、変圧器および可飽和リアクトルが大型化するという問題が生じる。
ΔB=ET/(N・Ae) …(1)
ET:巻線に印加される電圧と時間の積 N:巻線のターン数
Ae:コア実効断面積
したがって、この発明の課題は、変圧器および可飽和リアクトルを大型化することなく、出力電圧制御の精度を上げられるようにすることにある。
【0007】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、直流電源から変圧器を介して別の直流出力に変換するn(任意の整数)出力の直流−直流変換装置において、
前記直流電源に対し第1の半導体スイッチ素子,変圧器一次巻線および第1のコンデンサを直列に接続し、第2の半導体スイッチ素子と第2のコンデンサとの並列回路を、前記変圧器一次巻線と前記第1のコンデンサとの間に並列に接続し、発振回路を前記第1,第2の半導体スイッチ素子のゲート端子にそれぞれ接続し、前記変圧器二次巻線に対し可飽和リアクトル,ダイオードおよび平滑コンデンサを直列に接続し、直流出力端には出力電圧検出・調節回路を、この出力電圧検出・調節回路の出力を磁束制御回路に、この磁束制御回路の出力を前記可飽和リアクトルとダイオードとの接続点にリセットダイオードを介して接続してなる出力回路をn出力分設け、
直流入力端に入力電圧検出回路を接続し、前記発振回路の発振周波数が前記入力電圧検出回路からの出力により定まることを特徴とする。
【0008】
請求項2の発明では、直流電源から変圧器を介して別の直流出力に変換するn(任意の整数)出力の直流−直流変換装置において、
前記直流電源に対し第1の半導体スイッチ素子,変圧器一次巻線および第1のコンデンサを直列に接続し、第2の半導体スイッチ素子と第2のコンデンサとの並列回路を、前記変圧器一次巻線と前記第1のコンデンサとの間に並列に接続し、発振回路を前記第1,第2の半導体スイッチ素子のゲート端子にそれぞれ接続し、前記第1の変圧器二次巻線に対し第1の可飽和リアクトル,第1のダイオードおよび第1の平滑コンデンサを直列に接続し、第2の変圧器二次巻線に対し第2の可飽和リアクトル,第2のダイオードおよび第2の平滑コンデンサを直列に接続し、直流出力端には出力電圧検出・調節回路を、この出力電圧検出・調節回路の出力を磁束制御回路に、この磁束制御回路の出力を前記第1の可飽和リアクトルと第1のダイオードとの接続点には第1のリセットダイオードを介して、前記第2の可飽和リアクトルと第2のダイオードとの接続点には第2のリセットダイオードを介してそれぞれ接続してなる出力回路をn出力分設け、
直流入力端に入力電圧検出回路を接続し、前記発振回路の発振周波数が前記入力電圧検出回路からの出力により定まることを特徴とする。
【0009】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す構成図である。
図示のように、直流電源1、半導体スイッチ素子21、変圧器一次巻線31、およびコンデンサ4を直列に接続し、半導体スイッチ素子22とコンデンサ5との並列回路を、前記変圧器一次巻線31とコンデンサ4との間に並列に接続し、発振回路6を上記半導体スイッチ素子21,22のゲート端子にそれぞれ接続するとともに、変圧器3の二次巻線32aに対し可飽和リアクトル91a,ダイオード101aおよび平滑コンデンサ81を直列に接続し、直流出力端には出力電圧検出・調節回路121を、この出力電圧検出・調節回路121の出力を磁束制御回路131に、この磁束制御回路131の出力を前記可飽和リアクトル91aとダイオード101aとの接続点にリセットダイオード111aを介して接続した出力回路をn出力分(図1では2回路分)設けて構成される。
【0010】
図3は図1における動作を説明するための波形図である。
期間▲1▼において、半導体スイッチ素子21をオン、半導体スイッチ素子22をオフすることにより、変圧器一次巻線31には直流電源電圧とコンデンサ4の電圧との差電圧が印加され、変圧器3の二次巻線32aにもこの差電圧に比例した電圧が印加される。このとき、可飽和リアクトル91aは不飽和状態であり、インダクタンス値が高いため、ダイオード101aには電流は流れない。
期間▲2▼において、可飽和リアクトル91aが飽和状態になると、ダイオード101aに電流が流れる。この電流は、変圧器漏れインダクタンスとコンデンサ4との共振により決定され、正弦波状に緩やかに上昇し、平滑コンデンサ81を充電するとともに負荷に電力を供給する。
【0011】
期間▲3▼において、半導体スイッチ素子21をオフ、半導体スイッチ素子22をオンすることにより、変圧器一次巻線31にはコンデンサ4の電圧が印加され、変圧器3の二次巻線32aにもコンデンサ4の電圧に比例した電圧が印加されるが、ダイオード101aがオフとなり、平滑コンデンサ81から負荷に電力を供給する。また、出力電圧検出・調節回路121および磁束制御回路131は、可飽和リアクトル91aのリセット量を調節し、出力電圧を一定となるようにしている。このような動作を繰り返すことにより、直流電源から絶縁された直流電力を供給する。なお、変圧器二次巻線33aを含む出力回路の動作も、上記と同様である。
【0012】
図1の回路では、ダイオード101aに流れる電流は、変圧器漏れインダクタンスとコンデンサ4との共振により決定されるため、電流変化率が小さい。この場合、磁束制御回路による出力定電圧制御は、緩やかな電流変化に対して制御できるため精度が向上することになる。
図2に図1の変形例を示す。
これは、直流電源1の正極側端子を半導体スイッチ素子22に、負極側端子を半導体スイッチ素子21にそれぞれ接続した点が特徴であり、機能的には図1と全く同じであるため、詳細は省略する。
【0013】
図4はこの発明の第2の実施の形態を示す回路図である。
図示のように、直流電源1に対し半導体スイッチ素子21,変圧器一次巻線31およびコンデンサ4を直列に接続し、半導体スイッチ素子22とコンデンサ5との並列回路を、変圧器一次巻線31とコンデンサ4との間に並列に接続し、発振回路6を半導体スイッチ素子21,22のゲート端子にそれぞれ接続し、変圧器二次巻線32aに対し可飽和リアクトル91a,ダイオード101aおよび平滑コンデンサ81を直列に接続し、変圧器二次巻線32bに対し可飽和リアクトル91b,ダイオード101bおよび平滑コンデンサ81を直列に接続し、直流出力端には出力電圧検出・調節回路121を、この出力電圧検出・調節回路121の出力を磁束制御回路131に、この磁束制御回路131の出力を可飽和リアクトル91aとダイオード101aとの接続点には第1のリセットダイオード111aを介して、可飽和リアクトル91bとダイオード101bとの接続点にはリセットダイオード111bを介してそれぞれ接続した出力回路をn出力分(図4では2回路分)設けて構成されている。
【0014】
この回路の基本動作は図1の場合と同様であるが、半導体スイッチ素子21がオフ、半導体スイッチ素子22がオンの期間において、可飽和リアクトル91b,92bが不飽和状態ではダイオード101b,102bには電流が流れず、飽和状態となることにより、変圧器二次巻線32b,33bからダイオード101b,102bを介して負荷に電力を供給する。
この回路においても、ダイオード101a,101b,102a,102bに流れる電流は、変圧器漏れインダクタンスとコンデンサ4との共振により決定されるため、電流変化率は小さい。この場合、磁束制御回路131による出力定電圧制御は、緩やかな電流変化に対して制御できるため、精度が向上する。
【0015】
図5に図1の変形例を示す。
これは、直流電源1の正極側端子を半導体スイッチ素子22に、負極側端子を半導体スイッチ素子21にそれぞれ接続した点が特徴であり、機能的には図4と全く同じなので説明は省略する。
【0016】
図6はこの発明の第3の実施の形態を示す回路図である。図4との相違点は、直流入力端に入力電圧検出回路7を接続し、この入力電圧検出回路7からの出力に基づき発振回路6の発振周波数を変えるようにしている点にある。
つまり、入力電圧検出回路7は直流入力電圧を検出し、その結果を発振回路6に入力する。発振回路6は、入力電圧検出回路7からの出力結果にもとづき、直流入力電圧が低い場合は発振周波数を低くし、直流入力電圧が高い場合は発振周波数を高くするように動作する。
【0017】
図7に発振周波数の一例を示す。
図示のように、直流入力電圧値に応じて発振周波数を変化させることにより、上記(1)式に示す分子ETがほぼ一定となり、ΔBを入力電圧によらずほぼ一定にすることができる。その結果、入力電圧最大の条件で変圧器および可飽和リアクトルを設計する必要がなく、変圧器および可飽和リアクトルが大型化することはない。
【0018】
【発明の効果】
この発明によれば、磁束制御回路による出力定電圧制御が、緩やかな電流変化に対して制御できるため精度を向上させることができる。また、入力電圧の変化に対し動作周波数を変えることで、変圧器および可飽和リアクトルの磁束密度変化が入力電圧によらずほぼ一定となるため、変圧器および可飽和リアクトルが大型化しない。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す回路図である。
【図2】図1の変形例を示す構成図である。
【図3】図1の動作を説明するための波形図である。
【図4】この発明の第2の実施の形態を示す構成図である。
【図5】図4の変形例を示す構成図である。
【図6】この発明の第3の実施の形態を示す構成図である。
【図7】図6の動作を説明するための特性図である。
【図8】従来例を示す回路図である。
【図9】図8の動作説明図である。
【符号の説明】
1…直流電源、21,22…半導体スイッチ素子、3…変圧器、31…変圧器一次巻線、32a,32b,33a,33b…変圧器二次巻線、4,5…コンデンサ、6…発振回路、7…入力電圧検出回路、81,82…平滑用コンデンサ、91a,91b,92a,92b…可飽和リアクトル、101a,101b,102a,102b…ダイオード、111a,111b,112a,112b…リセットダイオード、121,122…出力電圧検出,調節回路、131,132…磁束制御回路、141,142…平滑リアクトル、151,152…変圧器リセットダイオード。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a DC-DC converter that converts n (arbitrary integer) DC outputs from a DC power source through a transformer, and in particular, by a magnetic flux control of a saturable reactor against changes in input voltage and load. The present invention relates to a DC-DC converter capable of making an output voltage constant and having a function of changing an oscillation frequency in response to a change in input voltage.
[0002]
[Prior art]
FIG. 8 shows a conventional example of a multi-output power source.
As shown in the figure, the DC power source 1, the semiconductor switch element 21, the primary winding 31 of the transformer 3 and the semiconductor switch element 22 are connected in series, and the connection point between the semiconductor switch element 21 and the primary winding 31 of the transformer 3. The transformer reset diode 151 is connected between the connection point of the semiconductor switch element 22 and the DC power source 1, the connection point of the semiconductor switch element 22 and the primary winding 31 of the transformer 3, and the semiconductor switch element 21. And a connection point between the DC power source 1 and a transformer reset diode 152 are connected, and the oscillator 6 is connected to the gate terminals of the semiconductor switch elements 21 and 22, respectively.
[0003]
Also, transformer secondary windings 32a and 33a, saturable reactors 91a and 92a, diodes 101a, 101b, 102a and 102b, smoothing reactors 141 and 142, smoothing capacitors 81 and 82, and output voltage detection / regulation circuits 121 and 122 The output circuit composed of the magnetic flux control circuits 131 and 132 and the reset diodes 111a and 112a is provided according to the output number n (an arbitrary integer).
[0004]
FIG. 9 shows an example of the operation in FIG. Only the operation of the output circuit including the transformer secondary winding 32a will be described.
First, in the period {circle around (1)}, when the semiconductor switch elements 21 and 22 are turned on, a DC power supply voltage is applied to the transformer primary winding 31, and a voltage proportional to the DC power supply voltage is also applied to the transformer secondary winding 32a. Is done. At this time, since the saturable reactor 91a is in an unsaturated state and has a high inductance value, no current flows through the diode 101a.
In the period {circle around (2)}, when the saturable reactor 91a becomes saturated, a current flows through the diode 101a, stores energy in the smoothing reactor 141, and supplies power to the load.
[0005]
In the period {circle around (3)}, when the semiconductor switch elements 21 and 22 are turned off, a DC power supply voltage having a reverse polarity is applied to the transformer primary winding 31, and the transformer secondary winding 32a is also applied to that time. A voltage proportional to the reverse polarity DC power supply voltage is applied. At this time, due to the energy stored in the smoothing reactor 141, a current continues to flow through the smoothing reactor 141 via the diode 101b. The output voltage detection / adjustment circuit 121 and the magnetic flux control circuit 131 adjust the reset amount of the saturable reactor 91a so that the output voltage becomes constant.
By repeating such an operation, the DC power insulated from the DC power supply is supplied. The operation of the output circuit including the transformer secondary winding 33a is the same as described above.
[0006]
[Problems to be solved by the invention]
That is, in the conventional example shown in FIG. 8, the current change rate at the start of conduction of the diode is large, and it is difficult to improve the accuracy of output voltage control by the magnetic flux control circuit. Further, the magnetic flux density change ΔB of the transformer and the saturable reactor can be expressed by the following equation (1), and ΔB increases when the input voltage increases. For this reason, it is necessary to design a transformer and a saturable reactor under the condition where the input voltage is maximum, and there arises a problem that the transformer and the saturable reactor are increased in size.
ΔB = ET / (N · Ae) (1)
ET: product of voltage applied to winding and time N: number of turns of winding Ae: effective core area The object of the present invention is to control the output voltage without increasing the size of the transformer and the saturable reactor. It is to be able to increase the accuracy.
[0007]
[Means for Solving the Problems]
In order to solve such a problem, in the invention of claim 1, in an n (arbitrary integer) output DC-DC converter for converting from a DC power supply to another DC output via a transformer,
A first semiconductor switch element, a transformer primary winding, and a first capacitor are connected in series to the DC power source, and a parallel circuit of a second semiconductor switch element and a second capacitor is connected to the transformer primary winding. Connected in parallel between a line and the first capacitor, an oscillation circuit is connected to the gate terminals of the first and second semiconductor switch elements, respectively, a saturable reactor for the transformer secondary winding, A diode and a smoothing capacitor are connected in series, an output voltage detection / regulation circuit is connected to the DC output terminal, an output of the output voltage detection / regulation circuit is connected to the magnetic flux control circuit, and an output of the magnetic flux control circuit is connected to the saturable reactor. N output circuits are provided which are connected to a connection point with a diode through a reset diode.
An input voltage detection circuit is connected to a DC input terminal, and an oscillation frequency of the oscillation circuit is determined by an output from the input voltage detection circuit .
[0008]
According to the invention of claim 2, in a DC-DC converter of n (arbitrary integer) output for converting from a DC power source to another DC output via a transformer,
A first semiconductor switch element, a transformer primary winding, and a first capacitor are connected in series to the DC power source, and a parallel circuit of a second semiconductor switch element and a second capacitor is connected to the transformer primary winding. Connected in parallel between the line and the first capacitor, an oscillation circuit is connected to the gate terminals of the first and second semiconductor switch elements, respectively, and the first transformer secondary winding is One saturable reactor, a first diode and a first smoothing capacitor are connected in series, and a second saturable reactor, a second diode and a second smoothing capacitor are connected to the second transformer secondary winding. Are connected in series, the output voltage detection / regulation circuit is connected to the DC output terminal, the output of the output voltage detection / regulation circuit is connected to the magnetic flux control circuit, and the output of the magnetic flux control circuit is connected to the first saturable reactor and the first output. 1 Daio An output circuit is connected to the connection point between the second saturable reactor and the second diode via a first reset diode, and to the connection point between the second saturable reactor and the second diode via a second reset diode. Provide output,
An input voltage detection circuit is connected to a DC input terminal, and an oscillation frequency of the oscillation circuit is determined by an output from the input voltage detection circuit .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a first embodiment of the present invention.
As shown in the figure, a DC power source 1, a semiconductor switch element 21, a transformer primary winding 31, and a capacitor 4 are connected in series, and a parallel circuit of the semiconductor switch element 22 and the capacitor 5 is connected to the transformer primary winding 31. And the capacitor 4 are connected in parallel, the oscillation circuit 6 is connected to the gate terminals of the semiconductor switch elements 21 and 22, respectively, and the saturable reactor 91a and the diode 101a are connected to the secondary winding 32a of the transformer 3. And a smoothing capacitor 81 are connected in series, an output voltage detection / regulation circuit 121 is connected to the DC output terminal, an output of the output voltage detection / regulation circuit 121 is sent to the magnetic flux control circuit 131, and an output of the magnetic flux control circuit 131 is sent to the output An output circuit connected to a connection point between the saturable reactor 91a and the diode 101a via a reset diode 111a is provided for n outputs. 2 circuit component in FIG. 1) provided configured.
[0010]
FIG. 3 is a waveform diagram for explaining the operation in FIG.
In the period {circle around (1)}, the semiconductor switch element 21 is turned on and the semiconductor switch element 22 is turned off, whereby the voltage difference between the DC power supply voltage and the voltage of the capacitor 4 is applied to the transformer primary winding 31. A voltage proportional to the difference voltage is also applied to the secondary winding 32a. At this time, since the saturable reactor 91a is in an unsaturated state and has a high inductance value, no current flows through the diode 101a.
In the period {circle around (2)}, when the saturable reactor 91a becomes saturated, a current flows through the diode 101a. This current is determined by the resonance between the transformer leakage inductance and the capacitor 4 and rises gently in a sine wave shape to charge the smoothing capacitor 81 and supply power to the load.
[0011]
In period {circle around (3)}, the semiconductor switch element 21 is turned off and the semiconductor switch element 22 is turned on, whereby the voltage of the capacitor 4 is applied to the transformer primary winding 31, and the secondary winding 32 a of the transformer 3 is also applied. A voltage proportional to the voltage of the capacitor 4 is applied, but the diode 101a is turned off, and power is supplied from the smoothing capacitor 81 to the load. Further, the output voltage detection / adjustment circuit 121 and the magnetic flux control circuit 131 adjust the reset amount of the saturable reactor 91a so that the output voltage becomes constant. By repeating such an operation, the DC power insulated from the DC power supply is supplied. The operation of the output circuit including the transformer secondary winding 33a is the same as described above.
[0012]
In the circuit of FIG. 1, the current flowing through the diode 101a is determined by the resonance between the transformer leakage inductance and the capacitor 4, so that the current change rate is small. In this case, since the output constant voltage control by the magnetic flux control circuit can be controlled with respect to a gradual current change, the accuracy is improved.
FIG. 2 shows a modification of FIG.
This is characterized in that the positive terminal of the DC power source 1 is connected to the semiconductor switch element 22 and the negative terminal is connected to the semiconductor switch element 21, respectively. Omitted.
[0013]
FIG. 4 is a circuit diagram showing a second embodiment of the present invention.
As shown in the figure, a semiconductor switch element 21, a transformer primary winding 31 and a capacitor 4 are connected in series to the DC power source 1, and a parallel circuit of the semiconductor switch element 22 and the capacitor 5 is connected to the transformer primary winding 31. The oscillation circuit 6 is connected to the gate terminals of the semiconductor switch elements 21 and 22, respectively. The saturable reactor 91a, the diode 101a, and the smoothing capacitor 81 are connected to the transformer secondary winding 32a. A saturable reactor 91b, a diode 101b and a smoothing capacitor 81 are connected in series to the transformer secondary winding 32b, and an output voltage detection / regulation circuit 121 is connected to the DC output terminal of the transformer secondary winding 32b. The output of the adjustment circuit 121 is supplied to the magnetic flux control circuit 131, and the output of the magnetic flux control circuit 131 is connected to the saturable reactor 91a and the diode. The output circuit connected to the node between the node 101a via the first reset diode 111a and the node between the saturable reactor 91b and the diode 101b via the reset diode 111b is provided for n outputs (in FIG. 4). 2 circuits).
[0014]
The basic operation of this circuit is the same as that of FIG. 1, except that the saturable reactors 91b and 92b are in an unsaturated state during the period when the semiconductor switch element 21 is off and the semiconductor switch element 22 is on, the diodes 101b and 102b When the current does not flow and becomes saturated, power is supplied to the load from the transformer secondary windings 32b and 33b via the diodes 101b and 102b.
Also in this circuit, the current flowing through the diodes 101a, 101b, 102a, 102b is determined by the resonance between the transformer leakage inductance and the capacitor 4, so that the current change rate is small. In this case, since the output constant voltage control by the magnetic flux control circuit 131 can be controlled with respect to a gradual current change, the accuracy is improved.
[0015]
FIG. 5 shows a modification of FIG.
This is characterized in that the positive terminal of the DC power source 1 is connected to the semiconductor switch element 22 and the negative terminal is connected to the semiconductor switch element 21, respectively, and functionally the same as FIG.
[0016]
FIG. 6 is a circuit diagram showing a third embodiment of the present invention. The difference from FIG. 4 is that an input voltage detection circuit 7 is connected to the DC input terminal, and the oscillation frequency of the oscillation circuit 6 is changed based on the output from the input voltage detection circuit 7.
That is, the input voltage detection circuit 7 detects a DC input voltage and inputs the result to the oscillation circuit 6. Based on the output result from the input voltage detection circuit 7, the oscillation circuit 6 operates to lower the oscillation frequency when the DC input voltage is low and to increase the oscillation frequency when the DC input voltage is high.
[0017]
FIG. 7 shows an example of the oscillation frequency.
As shown in the figure, by changing the oscillation frequency according to the DC input voltage value, the numerator ET shown in the above equation (1) becomes substantially constant, and ΔB can be made substantially constant regardless of the input voltage. As a result, it is not necessary to design the transformer and the saturable reactor under the maximum input voltage condition, and the transformer and the saturable reactor are not increased in size.
[0018]
【The invention's effect】
According to the present invention, since the output constant voltage control by the magnetic flux control circuit can be controlled with respect to a gradual current change, the accuracy can be improved. Further, by changing the operating frequency with respect to the change in the input voltage, the change in the magnetic flux density of the transformer and the saturable reactor becomes substantially constant regardless of the input voltage, so that the transformer and the saturable reactor do not increase in size.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of the present invention.
FIG. 2 is a configuration diagram showing a modification of FIG. 1;
FIG. 3 is a waveform diagram for explaining the operation of FIG. 1;
FIG. 4 is a block diagram showing a second embodiment of the present invention.
FIG. 5 is a configuration diagram showing a modification of FIG. 4;
FIG. 6 is a block diagram showing a third embodiment of the present invention.
7 is a characteristic diagram for explaining the operation of FIG. 6; FIG.
FIG. 8 is a circuit diagram showing a conventional example.
9 is an operation explanatory diagram of FIG. 8. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... DC power source, 21, 22 ... Semiconductor switch element, 3 ... Transformer, 31 ... Transformer primary winding, 32a, 32b, 33a, 33b ... Transformer secondary winding, 4, 5 ... Capacitor, 6 ... Oscillation Circuit, 7 ... Input voltage detection circuit, 81, 82 ... Smoothing capacitor, 91a, 91b, 92a, 92b ... Saturable reactor, 101a, 101b, 102a, 102b ... Diode, 111a, 111b, 112a, 112b ... Reset diode, 121, 122 ... output voltage detection and adjustment circuit, 131, 132 ... magnetic flux control circuit, 141, 142 ... smoothing reactor, 151, 152 ... transformer reset diode.

Claims (2)

直流電源から変圧器を介して別の直流出力に変換するn(任意の整数)出力の直流−直流変換装置において、
前記直流電源に対し第1の半導体スイッチ素子,変圧器一次巻線および第1のコンデンサを直列に接続し、第2の半導体スイッチ素子と第2のコンデンサとの並列回路を、前記変圧器一次巻線と前記第1のコンデンサとの間に並列に接続し、発振回路を前記第1,第2の半導体スイッチ素子のゲート端子にそれぞれ接続し、前記変圧器二次巻線に対し可飽和リアクトル,ダイオードおよび平滑コンデンサを直列に接続し、直流出力端には出力電圧検出・調節回路を、この出力電圧検出・調節回路の出力を磁束制御回路に、この磁束制御回路の出力を前記可飽和リアクトルとダイオードとの接続点にリセットダイオードを介して接続してなる出力回路をn出力分設け、
直流入力端に入力電圧検出回路を接続し、前記発振回路の発振周波数が前記入力電圧検出回路からの出力により定まることを特徴とする直流−直流変換装置。
In an n (arbitrary integer) output DC-DC converter that converts from a DC power source to another DC output via a transformer,
A first semiconductor switch element, a transformer primary winding, and a first capacitor are connected in series to the DC power source, and a parallel circuit of a second semiconductor switch element and a second capacitor is connected to the transformer primary winding. Connected in parallel between a line and the first capacitor, an oscillation circuit is connected to the gate terminals of the first and second semiconductor switch elements, respectively, a saturable reactor for the transformer secondary winding, A diode and a smoothing capacitor are connected in series, an output voltage detection / regulation circuit is connected to the DC output terminal, an output of the output voltage detection / regulation circuit is connected to the magnetic flux control circuit, and an output of the magnetic flux control circuit is connected to the saturable reactor. N output circuits are provided which are connected to a connection point with a diode through a reset diode.
A DC- DC converter characterized in that an input voltage detection circuit is connected to a DC input terminal, and an oscillation frequency of the oscillation circuit is determined by an output from the input voltage detection circuit .
直流電源から変圧器を介して別の直流出力に変換するn(任意の整数)出力の直流−直流変換装置において、
前記直流電源に対し第1の半導体スイッチ素子,変圧器一次巻線および第1のコンデンサを直列に接続し、第2の半導体スイッチ素子と第2のコンデンサとの並列回路を、前記変圧器一次巻線と前記第1のコンデンサとの間に並列に接続し、発振回路を前記第1,第2の半導体スイッチ素子のゲート端子にそれぞれ接続し、前記第1の変圧器二次巻線に対し第1の可飽和リアクトル,第1のダイオードおよび第1の平滑コンデンサを直列に接続し、第2の変圧器二次巻線に対し第2の可飽和リアクトル,第2のダイオードおよび第2の平滑コンデンサを直列に接続し、直流出力端には出力電圧検出・調節回路を、この出力電圧検出・調節回路の出力を磁束制御回路に、この磁束制御回路の出力を前記第1の可飽和リアクトルと第1のダイオードとの接続点には第1のリセットダイオードを介して、前記第2の可飽和リアクトルと第2のダイオードとの接続点には第2のリセットダイオードを介してそれぞれ接続してなる出力回路をn出力分設け、
直流入力端に入力電圧検出回路を接続し、前記発振回路の発振周波数が前記入力電圧検出回路からの出力により定まることを特徴とする直流−直流変換装置。
In an n (arbitrary integer) output DC-DC converter that converts from a DC power source to another DC output via a transformer,
A first semiconductor switch element, a transformer primary winding, and a first capacitor are connected in series to the DC power source, and a parallel circuit of a second semiconductor switch element and a second capacitor is connected to the transformer primary winding. Connected in parallel between the line and the first capacitor, an oscillation circuit is connected to the gate terminals of the first and second semiconductor switch elements, respectively, and the first transformer secondary winding is One saturable reactor, a first diode and a first smoothing capacitor are connected in series, and a second saturable reactor, a second diode and a second smoothing capacitor are connected to the second transformer secondary winding. Are connected in series, the output voltage detection / regulation circuit is connected to the DC output terminal, the output of the output voltage detection / regulation circuit is connected to the magnetic flux control circuit, and the output of the magnetic flux control circuit is connected to the first saturable reactor and the first output. 1 Daio An output circuit is connected to the connection point between the second saturable reactor and the second diode via a first reset diode, and to the connection point between the second saturable reactor and the second diode via a second reset diode. Provide output,
A DC- DC converter characterized in that an input voltage detection circuit is connected to a DC input terminal, and an oscillation frequency of the oscillation circuit is determined by an output from the input voltage detection circuit .
JP2001043822A 2001-02-20 2001-02-20 DC-DC converter Expired - Fee Related JP4547813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001043822A JP4547813B2 (en) 2001-02-20 2001-02-20 DC-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001043822A JP4547813B2 (en) 2001-02-20 2001-02-20 DC-DC converter

Publications (2)

Publication Number Publication Date
JP2002247854A JP2002247854A (en) 2002-08-30
JP4547813B2 true JP4547813B2 (en) 2010-09-22

Family

ID=18905928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043822A Expired - Fee Related JP4547813B2 (en) 2001-02-20 2001-02-20 DC-DC converter

Country Status (1)

Country Link
JP (1) JP4547813B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151608A (en) 2003-11-11 2005-06-09 Hitachi Ltd Resonance converter and its control method
JP6478323B2 (en) * 2015-03-20 2019-03-06 コーセル株式会社 Switching power supply

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161889U (en) * 1987-10-09 1989-04-20
JP2000324837A (en) * 1999-04-23 2000-11-24 Lg Electronics Inc Dc power supply circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277372A (en) * 1985-05-31 1986-12-08 Toshiba Corp Power supply device
JPH02202357A (en) * 1989-01-31 1990-08-10 Fujitsu Ltd Magnetic amplifier control switching regulator
JPH05161352A (en) * 1991-11-29 1993-06-25 Origin Electric Co Ltd Resonant converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161889U (en) * 1987-10-09 1989-04-20
JP2000324837A (en) * 1999-04-23 2000-11-24 Lg Electronics Inc Dc power supply circuit

Also Published As

Publication number Publication date
JP2002247854A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
KR910001046B1 (en) Integrated magnetic resonant power converter
Choi et al. Fundamental duty modulation of dual-active-bridge converter for wide-range operation
US4563731A (en) Resonant type constant voltage supply apparatus
Jang et al. A new family of full-bridge ZVS converters
JP2507216B2 (en) Resonant DC / DC converter
JPH07327365A (en) Assembly set composed of static converter with control switch and its control circuit
Fang et al. Energy feedback control of light-load voltage regulation for LLC resonant converter
JPH0787690B2 (en) Switching power converter using saturable inductor
JP4547813B2 (en) DC-DC converter
Dawande et al. Bang-bang current control with predecided switching frequency for switch-mode rectifiers
JPH04229074A (en) Method of controlling magnetism for transmitting energy to static converter
US5327334A (en) Zero current switching DC-DC converter incorporating a tapped resonant inductor
JP2561201B2 (en) Resonant DC-DC converter
JPH0365054A (en) Dc-dc converter
JPS58123369A (en) Constant-voltage power source
Jin et al. Input voltage range extension method for half-bridge LLC converters by using magamp auxiliary post-regulator
JP2004248441A (en) Ac-dc converter
JP3410578B2 (en) Switching power supply
JPS6236468B2 (en)
JPH09131056A (en) Power-factor improved converter circuit
JPS6236467B2 (en)
JPH08154381A (en) Power factor improvement converter
JPH06292357A (en) Power supply device
JP2003088120A (en) Switching power supply unit
JPH10210745A (en) Switching power circuit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4547813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees