JP4528192B2 - Filter, manufacturing method thereof, air cleaning device - Google Patents

Filter, manufacturing method thereof, air cleaning device Download PDF

Info

Publication number
JP4528192B2
JP4528192B2 JP2005128396A JP2005128396A JP4528192B2 JP 4528192 B2 JP4528192 B2 JP 4528192B2 JP 2005128396 A JP2005128396 A JP 2005128396A JP 2005128396 A JP2005128396 A JP 2005128396A JP 4528192 B2 JP4528192 B2 JP 4528192B2
Authority
JP
Japan
Prior art keywords
porous substrate
filter
slurry
nanostructure
catalyst particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005128396A
Other languages
Japanese (ja)
Other versions
JP2006305422A (en
JP2006305422A5 (en
Inventor
紀江 松井
幹宏 山中
淳 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005128396A priority Critical patent/JP4528192B2/en
Publication of JP2006305422A publication Critical patent/JP2006305422A/en
Publication of JP2006305422A5 publication Critical patent/JP2006305422A5/ja
Application granted granted Critical
Publication of JP4528192B2 publication Critical patent/JP4528192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

本発明は、有害物質を効率的に除去可能なフィルター、その製造方法、空気清浄装置に関する。   The present invention relates to a filter capable of efficiently removing harmful substances, a manufacturing method thereof, and an air cleaning device.

近年では、工場やクリーンルームなどで工業的に発生する悪臭、汚染物質または有害化学物質などによる従来からの環境汚染の問題に加えて、最近のアメニティ志向の高まりに伴い、一般生活空間、たとえば室内や自動車内などにおける悪臭、有害化学物質、花粉、浮遊塵または浮遊細菌などの有害物質による室内環境汚染の問題が注目されており、これらの有害物質の除去に対するニーズが急速に高まっている。その代表的な理由としては、化学物質過敏症にかかる人口が年々増加しており、現時点では10人に1人の割合となっていることが挙げられる。   In recent years, in addition to the conventional environmental pollution problems caused by foul odors, pollutants or toxic chemicals that are industrially produced in factories and clean rooms, etc., along with the recent increase in the amenity orientation, general living spaces such as indoors and The problem of indoor environmental pollution caused by harmful substances such as bad odors, harmful chemical substances, pollen, airborne dust or airborne bacteria in automobiles has been attracting attention, and the need for the removal of these harmful substances is rapidly increasing. A typical reason for this is that the population of chemical hypersensitivity is increasing year by year, and at present, the ratio is one in ten.

環境中の悪臭や有害化学物質などの有害物質の除去方法としては、多孔質材料に有害化学物質を分解するための触媒を担持し、この触媒の分解作用を利用することが一般的である。この触媒の分解作用は、内燃機関の排気ガス中に含まれる炭化水素や一酸化炭素、及び窒素化合物を除去や、一般産業、例えば排ガスの脱臭処理等に幅広く利用されている。   As a method for removing harmful substances such as bad odors and harmful chemical substances in the environment, it is common to carry a catalyst for decomposing harmful chemical substances in a porous material and use the decomposition action of this catalyst. This catalyst decomposition action is widely used for removing hydrocarbons, carbon monoxide, and nitrogen compounds contained in the exhaust gas of an internal combustion engine, and for general industries such as deodorization treatment of exhaust gas.

これら触媒の担持方法としては、ハニカム状担体などの多孔質材料を、触媒を分散させた分散液に浸漬し、場合によっては、浸漬後、余分な触媒を圧縮空気等で除去する方法がとられていた(たとえば、特許文献1および特許文献2参照)。
特開2004−290896号公報 特公昭62−1784号公報
As a method for supporting these catalysts, a porous material such as a honeycomb-shaped carrier is immersed in a dispersion liquid in which the catalyst is dispersed, and in some cases, after the immersion, excess catalyst is removed with compressed air or the like. (For example, see Patent Document 1 and Patent Document 2).
JP 2004-290896 A Japanese Examined Patent Publication No. 62-1784

上記方法でハニカム状担体の孔内に触媒が担持された触媒体が得られるが、この触媒体では触媒の分散が十分でなく、触媒性能が十分に発揮されないことがある。
本発明は、係る事情に鑑みてなされたものであり、触媒粒子の分散度を高め、触媒粒子の触媒性能を高めることができるフィルターを提供するものである。
Although the catalyst body in which the catalyst is supported in the pores of the honeycomb-shaped carrier is obtained by the above method, the catalyst body does not sufficiently disperse the catalyst, and the catalyst performance may not be sufficiently exhibited.
This invention is made | formed in view of the situation which concerns, and provides the filter which can raise the dispersibility of a catalyst particle and can improve the catalyst performance of a catalyst particle.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明のフィルターは、複数の貫通孔を有する多孔質基材と、貫通孔内に形成されたナノ構造体を備え、ナノ構造体の表面にスプレー法により触媒粒子が担持されていることを特徴とする。
本発明によれば、貫通孔内に形成されたナノ構造体の表面に触媒粒子が担持されているので、触媒粒子は高度に分散可能であり、その結果、触媒粒子の触媒性能が高められる。また、スプレー法(詳しくは、後述する。)によって、触媒粒子を担持しているので、触媒粒子は、特に高度に分散されている。従って、このフィルターを用いると、有害物質等を効率的に分解可能であり、高性能な空気清浄装置が得られる。
The filter of the present invention includes a porous substrate having a plurality of through holes and a nanostructure formed in the through holes, and catalyst particles are supported on the surface of the nanostructure by a spray method. And
According to the present invention, since the catalyst particles are supported on the surface of the nanostructure formed in the through hole, the catalyst particles can be highly dispersed, and as a result, the catalyst performance of the catalyst particles is enhanced. Further, since the catalyst particles are supported by a spray method (details will be described later), the catalyst particles are particularly highly dispersed. Therefore, when this filter is used, harmful substances and the like can be efficiently decomposed, and a high-performance air purifier can be obtained.

以下、本発明の実施の形態について説明する。なお、本願の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。   Embodiments of the present invention will be described below. In the drawings of the present application, the same reference numerals denote the same or corresponding parts.

1.フィルターの構成
まず、図1(斜視透視図)を用いて、本発明のフィルター1の構成について説明する。
本発明のフィルター1は、複数の貫通孔2aを有する多孔質基材2と、貫通孔2a内に形成されたナノ構造体3を備え、ナノ構造体3の表面にスプレー法により分解触媒粒子5が担持されていることを特徴とする。ナノ構造体3は、種触媒粒子4を介して貫通孔2a内に形成されている。
1. Configuration of Filter First, the configuration of the filter 1 of the present invention will be described with reference to FIG. 1 (perspective perspective view).
The filter 1 of the present invention includes a porous substrate 2 having a plurality of through-holes 2a and a nanostructure 3 formed in the through-hole 2a, and the decomposition catalyst particles 5 are sprayed on the surface of the nanostructure 3 by a spray method. Is supported. The nanostructure 3 is formed in the through hole 2 a via the seed catalyst particle 4.

1−1.多孔質基材
多孔質基材2を構成する材料としては、たとえばAl23、TiO2、ZrO2、Nb25、SnO2、HfO2若しくはAlPO4などの金属酸化物系材料、SiO2・Al23、SiO2・TiO2、SiO2・V25、SiO2・B23若しくはSiO2・Fe23などのシリケート系材料、Pt、Ag若しくはAuなどからなる金属系材料、Siなどからなる半導体系材料、活性炭若しくは有機高分子などからなる炭素系材料、珪藻土若しくはホタテ貝殻などの生体由来系材料またはSiO2などを用いることができる。ここで、多孔質基材2の表面にナノ構造体3を形成する際には多孔質基材2の温度が200℃以上に加熱されることが多いため、多孔質基材2は200℃以上の耐熱性を有していることが好ましい。なお、本発明において「200℃以上の耐熱性を有している」とは、1気圧下で多孔質基材2の温度が200℃以上になるように多孔質基材2を加熱したときに、多孔質基材2の形状が変形しないことをいう。また、多孔質基材2及び貫通孔2aの形状は特に限定されないが、多孔質基材2が板状であり、貫通孔2aが多孔質基材2の両主面を貫通する形状が好ましい。具体的には、例えば、ハニカム状などである。
また、多孔質基材2を貫通する貫通孔2aの開口部の直径は多孔質基材2を構成する材料によって異なるが、多孔質基材2がたとえばコーディエライトからなるハニカム構造の場合にはたとえば0.5〜数10mm程度になり得る。なお、本明細書において、円以外の対象の「直径」は、その外接円の直径を意味する。
1-1. Porous base material Examples of the material constituting the porous base material 2 include metal oxide materials such as Al 2 O 3 , TiO 2 , ZrO 2 , Nb 2 O 5 , SnO 2 , HfO 2 or AlPO 4 , SiO 2 2 · Al 2 O 3 , SiO 2 · TiO 2 , SiO 2 · V 2 O 5 , SiO 2 · B 2 O 3 or SiO 2 · Fe 2 O 3 or other silicate materials, such as Pt, Ag or Au A metal material, a semiconductor material made of Si, a carbon material made of activated carbon or an organic polymer, a biological material such as diatomaceous earth or scallop shell, or SiO 2 can be used. Here, since the temperature of the porous substrate 2 is often heated to 200 ° C. or higher when the nanostructure 3 is formed on the surface of the porous substrate 2, the porous substrate 2 is heated to 200 ° C. or higher. It is preferable to have the heat resistance. In the present invention, “having a heat resistance of 200 ° C. or higher” means that the porous substrate 2 is heated so that the temperature of the porous substrate 2 becomes 200 ° C. or higher under 1 atm. It means that the shape of the porous substrate 2 is not deformed. In addition, the shapes of the porous substrate 2 and the through holes 2a are not particularly limited, but a shape in which the porous substrate 2 is plate-like and the through holes 2a penetrate both main surfaces of the porous substrate 2 is preferable. Specifically, for example, it has a honeycomb shape.
Further, the diameter of the opening of the through hole 2a penetrating the porous substrate 2 varies depending on the material constituting the porous substrate 2, but in the case where the porous substrate 2 has a honeycomb structure made of cordierite, for example. For example, it may be about 0.5 to several tens of mm. In the present specification, the “diameter” of an object other than a circle means the diameter of the circumscribed circle.

1−2.ナノ構造体
「ナノ構造体」は、幅、長さまたは直径などの少なくとも1つの寸法が1nm以上1000nm未満である構造体であり、好ましくは、繊維状の構造体である。
ナノ構造体3は、内部が中空であってもよく、中空でなくてもよい。また、ナノ構造体3を構成する材料としては、たとえば内部が中空であるカーボンナノチューブ、内部が中空でないカーボンファイバー若しくはカーボンナノワイヤ(カーボンファイバーよりも微細な繊維状のもの)などの炭素系材料、Au、Ag若しくはNiなどの金属系材料、TiO2またはSiなどの材料を用いることができる。なお、図1においては、ナノ構造体3は貫通孔2aの内面のみから形成されているが、貫通孔2aの内面だけでなく多孔質基材2の外面から形成されていてもよい。
1-2. Nanostructure The “nanostructure” is a structure having at least one dimension such as width, length, or diameter of 1 nm or more and less than 1000 nm, and is preferably a fibrous structure.
The nanostructure 3 may be hollow inside or not hollow. The material constituting the nanostructure 3 is, for example, a carbon-based material such as a carbon nanotube having a hollow interior, a carbon fiber having a hollow interior or a carbon nanowire (a finer fiber than a carbon fiber), Au A metal material such as Ag or Ni, or a material such as TiO 2 or Si can be used. In FIG. 1, the nanostructure 3 is formed only from the inner surface of the through hole 2a, but may be formed from the outer surface of the porous substrate 2 as well as the inner surface of the through hole 2a.

ナノ構造体3は、通常、後述するように、種触媒粒子4の触媒作用によって、種触媒粒子4から成長して、貫通孔2a内に形成される。種触媒粒子4を構成する材料としては、ナノ構造体3が上記の炭素系材料からなる場合にはたとえばFe、Ni、Co、Cr、Mo、W、Ti、Au、Ag、Cu、Pt、Ta、Al、Pd、Gd、Sm、NdまたはDyなどの金属を用いることができる。なお、種触媒粒子4の直径は繊維状のナノ構造体3の直径を制御する傾向にあり、種触媒粒子4の直径が小さいほど直径の小さい繊維状のナノ構造体3をプラズマCVD法などの気相成長法によって形成することができる傾向にある。   As will be described later, the nanostructure 3 usually grows from the seed catalyst particle 4 by the catalytic action of the seed catalyst particle 4 and is formed in the through hole 2a. The material constituting the seed catalyst particle 4 is, for example, Fe, Ni, Co, Cr, Mo, W, Ti, Au, Ag, Cu, Pt, Ta when the nanostructure 3 is made of the above carbon-based material. A metal such as Al, Pd, Gd, Sm, Nd, or Dy can be used. The diameter of the seed catalyst particles 4 tends to control the diameter of the fibrous nanostructure 3. The smaller the diameter of the seed catalyst particles 4, the smaller the diameter of the fibrous nanostructure 3 is, for example, by plasma CVD. It tends to be formed by vapor phase epitaxy.

ナノ構造体3は、長さが100nm以上であることが好ましい。また、ナノ構造体3は必ずしも直線状に成長しないので、貫通孔2aの内壁から100nm以上離れた位置にナノ構造体3の一部が存在する長さがさらに好ましい。この場合、分解触媒粒子5を効率良く担持可能であると同時に、有害化学物質を貫通孔2aの内壁に通す際に、有害化学物質を捕捉することができる。ナノ構造体3が短すぎる場合、担持する分解触媒粒子5同士が会合して、薄膜状に成長する場合がある。この場合、分解触媒粒子5が有害化学物質と反応できる面積が低下し、触媒効果が著しく低下する。   The nanostructure 3 preferably has a length of 100 nm or more. In addition, since the nanostructure 3 does not necessarily grow linearly, a length in which a part of the nanostructure 3 exists at a position away from the inner wall of the through hole 2a by 100 nm or more is more preferable. In this case, the decomposition catalyst particles 5 can be efficiently supported, and at the same time, the harmful chemical substance can be captured when the harmful chemical substance is passed through the inner wall of the through hole 2a. If the nanostructure 3 is too short, the supported decomposition catalyst particles 5 may associate with each other and grow into a thin film. In this case, the area in which the decomposition catalyst particles 5 can react with harmful chemical substances is reduced, and the catalytic effect is significantly reduced.

また、ナノ構造体3は、太さが5〜500nmであることが好ましい。5nm以上であれば、分解触媒粒子5を担持するのに十分な剛性があり、500nm以下であれば、貫通孔2aの内壁という限定された領域において有害化学物質との反応領域を十分に確保することができるからである。また、後述するスプレー法により分解触媒粒子5を担持する際、500nmを越える比較的太いナノ構造体3の下に存在する別のナノ構造体3に分解触媒粒子5が含まれるスラリーが塗布されなく(スプレー塗布時の陰が生じる)なってしまうからである。   In addition, the nanostructure 3 preferably has a thickness of 5 to 500 nm. If it is 5 nm or more, it has sufficient rigidity to support the decomposition catalyst particles 5, and if it is 500 nm or less, a sufficient reaction area with the harmful chemical substance is secured in a limited area of the inner wall of the through hole 2a. Because it can. Further, when the decomposition catalyst particles 5 are supported by the spray method described later, the slurry containing the decomposition catalyst particles 5 is not applied to another nanostructure 3 existing below the relatively thick nanostructure 3 exceeding 500 nm. This is because a shadow at the time of spray application occurs.

1−3.分解触媒粒子
分解触媒粒子5は、種々の有害物質を分解(又は無毒化)するための触媒(以下、「分解触媒」と呼ぶ。)の粒子であり、分解触媒は、種触媒と同じものであってもよいが、Fe、Ni、Co、Cr、Mo、W、Ti、Au、Ag、Cu、Pt、Ta、Al、Pd、Gd、Sm、NdまたはDyなどの金属以外にも、PtPd、NiMo、CoMo等の合金類、AlCl3、CuCl2、等の塩化物、TiO2、CuO、Cu2O、V25等の酸化物、RhやCu等が配位した錯体、ゼオライト類等であってもよい。
1-3. Decomposition catalyst particles The decomposition catalyst particles 5 are particles (hereinafter referred to as “decomposition catalyst”) for decomposing (or detoxifying) various harmful substances, and the decomposition catalyst is the same as the seed catalyst. In addition to metals such as Fe, Ni, Co, Cr, Mo, W, Ti, Au, Ag, Cu, Pt, Ta, Al, Pd, Gd, Sm, Nd or Dy, PtPd, Alloys such as NiMo and CoMo, chlorides such as AlCl 3 and CuCl 2 , oxides such as TiO 2 , CuO, Cu 2 O and V 2 O 5 , complexes coordinated with Rh and Cu, zeolites and the like It may be.

分解触媒粒子5が分解する化学物質としては、たとえばホルムアルデヒドなどのアルデヒド類、トルエンやキシレンなどのVOC(Volataile Organic Compound;揮発性有機化合物)、一酸化炭素、二酸化炭素、酢酸、アンモニアまたは硫黄含有物質などが挙げられる。これら対象物の種類によって分解触媒粒子5は選択され、一又は複数の種類の分解触媒粒子5をナノ構造体3の表面に担持させる。   Examples of chemical substances that the decomposition catalyst particle 5 decomposes include aldehydes such as formaldehyde, VOCs (Volataile Organic Compounds) such as toluene and xylene, carbon monoxide, carbon dioxide, acetic acid, ammonia or sulfur-containing substances. Etc. The decomposition catalyst particles 5 are selected depending on the types of these objects, and one or a plurality of types of decomposition catalyst particles 5 are supported on the surface of the nanostructure 3.

1−4.その他
本発明のフィルター1の一方の表面に対して、有害物質を含む気体又は液体が流入する。有害物質は、貫通孔2aの内面に形成されているナノ構造体3に吸着されてもされなくても構わない。図面には記載しないが、フィルター1を加熱できるシステム内に装着し、例えば100℃程度に加熱することで、分解触媒粒子5の活性が高まり、有害物質が除去されて清浄された気体または液体が、流入した側と反対側のフィルター1の表面から流出する。通常、本発明のフィルター1に形成されているナノ構造体3は、それ自体強固であり、多孔質基材2とも強固に結合しており、さらに分解触媒粒子5とナノ構造体3の結合も強固な為、フィルター1自身の破壊によるダストの発生などの二次汚染も発生しにくい。
1-4. Others Gas or liquid containing harmful substances flows into one surface of the filter 1 of the present invention. The harmful substance may or may not be adsorbed by the nanostructure 3 formed on the inner surface of the through hole 2a. Although not shown in the drawings, the filter 1 is mounted in a system that can be heated and heated to, for example, about 100 ° C., so that the activity of the decomposition catalyst particles 5 is increased, and the gas or liquid that has been cleaned by removing harmful substances is removed. Then, it flows out from the surface of the filter 1 on the opposite side to the inflow side. Usually, the nanostructure 3 formed in the filter 1 of the present invention is itself strong, and is also firmly bonded to the porous substrate 2, and further, the bond between the decomposition catalyst particles 5 and the nanostructure 3 is also achieved. Because it is strong, secondary contamination such as generation of dust due to destruction of the filter 1 itself is unlikely to occur.

2.フィルターの製造方法
図2(a)〜(d)及び図3〜6を用いて、本発明のフィルター1の製造方法について説明する。
2. 2. Manufacturing method of filter The manufacturing method of the filter 1 of this invention is demonstrated using FIG. 2 (a)-(d) and FIGS. 3-6.

2−1.種触媒粒子のコーティング
まず、種触媒粒子4を分散媒(例えば水やアセトン、エタノール等の有機溶媒)中に分散させた種触媒スラリーを容器(図示せず)に収容し、多孔質基材2をこの容器内に収容して、これらを容器内で攪拌することにより、多孔質基材2の外面および貫通孔2aの内面に種触媒粒子4をコーティングし、図2(a)に示す構造を得る。種触媒粒子のコーティング方法としては、真空蒸着法、電子ビーム蒸着法、無電解メッキ法、後述するスプレー法などを用いてもよい。
2-1. Coating of seed catalyst particles First, a seed catalyst slurry in which the seed catalyst particles 4 are dispersed in a dispersion medium (for example, an organic solvent such as water, acetone, ethanol, etc.) is accommodated in a container (not shown), and the porous substrate 2 In the container, and stirring them in the container, the seed catalyst particles 4 are coated on the outer surface of the porous substrate 2 and the inner surface of the through hole 2a, and the structure shown in FIG. obtain. As a method for coating the seed catalyst particles, a vacuum deposition method, an electron beam deposition method, an electroless plating method, a spray method described later, or the like may be used.

また、コーティング前に、多孔質基材2に紫外線を照射し、多孔質基材2の表面に付着している不純物を除去する工程を含んでいてもよい。この場合、紫外線の光源としてたとえばXe2誘電体バリア放電エキシマランプ装置を用い、中心波長146nmの紫外光を放射照度10mW/cm2で1時間程度照射することが好ましい。 In addition, before coating, a step of irradiating the porous substrate 2 with ultraviolet rays to remove impurities adhering to the surface of the porous substrate 2 may be included. In this case, it is preferable to use, for example, a Xe 2 dielectric barrier discharge excimer lamp device as an ultraviolet light source and irradiate ultraviolet light having a central wavelength of 146 nm at an irradiance of 10 mW / cm 2 for about 1 hour.

2−2.ナノ構造体の成長
次に、種触媒粒子4がコーティングされた多孔質基材2を、たとえばプラズマCVD装置内に設置し、ナノ構造体3の原料となるガスをこの装置内に流入し、装置内に流入したガスのプラズマを生成させることによって、ナノ構造体3を成長させ、図2(b)に示す構造を得る。また、上記したプラズマCVD法だけでなく熱CVD法などによってもナノ構造体3の形成は可能である。このようにして形成されるナノ構造体3は、種触媒粒子4をその先端に保持して成長する傾向にある。
2-2. Next, the porous substrate 2 coated with the seed catalyst particles 4 is placed in, for example, a plasma CVD apparatus, and a gas that is a raw material of the nanostructure 3 flows into the apparatus. The nanostructure 3 is grown by generating the plasma of the gas that has flowed into the structure, and the structure shown in FIG. 2B is obtained. Further, the nanostructure 3 can be formed not only by the above-described plasma CVD method but also by a thermal CVD method or the like. The nanostructure 3 formed in this manner tends to grow while holding the seed catalyst particles 4 at their tips.

2−3.分解触媒スラリーの塗布
次に、分解触媒粒子5と分散媒(例えば水やアセトン、エタノール等の有機溶媒)を含む分解触媒スラリー(以下、単に「スラリー」とも呼ぶ。)5aをナノ構造体3に塗布する。スラリー5aの塗布は、図2(c)に示すように、噴霧器(スプレーヘッド機構)6を用いて、ナノ構造体3を成長させた多孔質基材2に対して、容器8に収容されたスラリー5aを噴霧する方法で行う。スラリー5aを噴霧するために、矢印7に示すように、圧縮空気等の圧力気体を容器8中に送り込む。本明細書においては、スラリーを噴霧によって塗布する方法を、「スプレー法」という。
2-3. Application of Decomposition Catalyst Slurry Next, a decomposition catalyst slurry (hereinafter also simply referred to as “slurry”) 5 a containing decomposition catalyst particles 5 and a dispersion medium (for example, an organic solvent such as water, acetone, ethanol, etc.) is applied to the nanostructure 3. Apply. As shown in FIG. 2 (c), the slurry 5 a was applied in a container 8 with respect to the porous substrate 2 on which the nanostructure 3 was grown using a sprayer (spray head mechanism) 6. This is performed by spraying the slurry 5a. In order to spray the slurry 5a, as shown by an arrow 7, a pressure gas such as compressed air is fed into the container 8. In this specification, the method of applying the slurry by spraying is referred to as “spray method”.

スプレー法によれば、噴霧されたスラリー5aは、霧状になって均一にナノ構造体3に付着するため、ナノ構造体3に分解触媒粒子5を均一に担持させることができる。なお、均一度を高めるため、容器8に収容されたスラリー5aをよく攪拌しておくことが好ましい。また、蒸発による濃度変化を防ぐため、容器8は、密栓できる構造が望ましい。なお、「均一」とは、分解触媒粒子が担持された多孔質基材から無作為に3〜10点程の分析点を抽出し、走査型電子顕微鏡などの評価装置で、ナノ構造体に担持された分解触媒粒子の数を実測したときの数的ばらつきが一桁を超えないことをいう。
また、スラリー5aの分散媒が水やエタノールのような極性溶媒である場合、噴霧と同時に摩擦によってスラリー5aが正電荷を帯びる。一方、上記方法で成長させたナノ構造体3は、通常、負電荷を帯びている。従って、スラリー5aは、静電力によってナノ構造体3に引き付けられ、付着する。
According to the spray method, the sprayed slurry 5a is atomized and uniformly adhered to the nanostructure 3, so that the decomposition catalyst particles 5 can be uniformly supported on the nanostructure 3. In addition, in order to improve uniformity, it is preferable that the slurry 5a accommodated in the container 8 is well stirred. Moreover, in order to prevent the density | concentration change by evaporation, the container 8 has the structure which can be sealed. “Uniform” means that 3 to 10 analysis points are randomly extracted from the porous substrate on which the decomposition catalyst particles are supported, and supported on the nanostructure by an evaluation device such as a scanning electron microscope. This means that the numerical variation when the number of cracked catalyst particles is actually measured does not exceed one digit.
Further, when the dispersion medium of the slurry 5a is a polar solvent such as water or ethanol, the slurry 5a is positively charged by friction simultaneously with the spraying. On the other hand, the nanostructure 3 grown by the above method is usually negatively charged. Therefore, the slurry 5a is attracted to and adhered to the nanostructure 3 by the electrostatic force.

容器8中に送り込む圧力気体は、図3に示す圧縮機(コンプレッサー)9で生成され、圧力調整機(レギュレーター等)10でその圧力が調整される。圧力気体の圧力は、0.1MPaを超える圧力にすることが好ましい。この場合、20mmを超える厚さを持つ多孔質基材2の貫通孔2aの内壁から成長しているナノ構造体3表面に均一にスラリー5aを塗布することが可能になり、分解触媒粒子5を均一に担持することが可能になる。   The pressure gas sent into the container 8 is generated by a compressor (compressor) 9 shown in FIG. 3 and its pressure is adjusted by a pressure regulator (regulator or the like) 10. The pressure of the pressure gas is preferably set to a pressure exceeding 0.1 MPa. In this case, it becomes possible to uniformly apply the slurry 5a to the surface of the nanostructure 3 growing from the inner wall of the through hole 2a of the porous substrate 2 having a thickness exceeding 20 mm. It becomes possible to carry uniformly.

スラリー5aの噴霧は、図4に示すような、複数の貫通孔11aを有するステージ11上に、多孔質基材2を載置して行うことが好ましい。この場合、噴霧されたスラリー5aは、多孔質基材2の貫通孔2aを通過した後、ステージ11の貫通孔11aを通過することが可能になり、噴霧されたスラリー5aの流れが均一になり、スラリー5aを均一にナノ構造体3に塗布することが可能なる。   The spraying of the slurry 5a is preferably performed by placing the porous substrate 2 on a stage 11 having a plurality of through holes 11a as shown in FIG. In this case, the sprayed slurry 5a can pass through the through hole 11a of the stage 11 after passing through the through hole 2a of the porous substrate 2, and the flow of the sprayed slurry 5a becomes uniform. The slurry 5a can be uniformly applied to the nanostructure 3.

さらに、スラリー5aの噴霧は、噴霧されたスラリー5aが、多孔質基材2の貫通孔2aを通って吸引されるように行われることが好ましい。具体的には、噴霧の際に、図4に示すような、複数の貫通孔11aを有するステージ11上に、ナノ構造体3を成長させた多孔質基材2を載置し、ステージ11の下側で吸引ポンプを作動させることによって、噴霧されたスラリー5aをステージ11の下側に吸引する。この場合、噴霧されたスラリー5aは、貫通孔2aを通って吸引され、その流れが均一になり、スラリー5aを均一にナノ構造体3に塗布することが可能なる。   Further, the spraying of the slurry 5 a is preferably performed such that the sprayed slurry 5 a is sucked through the through hole 2 a of the porous substrate 2. Specifically, at the time of spraying, the porous substrate 2 on which the nanostructure 3 is grown is placed on the stage 11 having a plurality of through holes 11a as shown in FIG. The sprayed slurry 5a is sucked to the lower side of the stage 11 by operating the suction pump on the lower side. In this case, the sprayed slurry 5a is sucked through the through hole 2a, the flow becomes uniform, and the slurry 5a can be uniformly applied to the nanostructure 3.

また、スラリー5aの噴霧は、噴霧されたスラリー5aが電界の影響によって多孔質基材2の貫通孔2a内に集束されるように行われることが好ましい。具体的には、図5に示すように、多孔質基材2の貫通孔2aを通るようにワイヤ15aを配置し、噴霧器6の直下に環状ワイヤ15bを配置し、回路15によってこれらの間に電界を形成する。図5の場合は、環状ワイヤ15bは、正に帯電し、ワイヤ15aは、負に帯電する。
スラリー5aは、その分散媒が水やエタノールのような極性溶媒である場合、噴霧器6から飛び出した際に摩擦によって正に帯電する。また、この場合、スラリー5aは、回路15によって形成された電界の影響によってさらに強く正に帯電する。
正に帯電したスラリー5aは、負に帯電したワイヤ15aから吸引力を受ける。また、噴霧された直後には、正に帯電した環状ワイヤ15bから反発力を受ける。このため、噴霧されたスラリー5aは、貫通孔2a内に集束される。また、ワイヤ15a、15bから受ける吸引力及び反発力によって、スラリー5aが加速され、スラリー5aはナノ構造体3に強く衝突し、確実に付着する。
この方法によれば、スラリー5aを特定の貫通孔にのみ噴霧することが可能になる。従って、例えば、一部の貫通孔にはホルムアルデヒドの分解に適した分解触媒粒子を担持させ、残りの貫通孔にはアンモニアの分解に適した分解触媒粒子を担持させることが可能になり、貫通孔ごとに種類の異なる少なくとも2種類の触媒粒子が担持されているフィルターを製造することができる。
なお、スラリー5aが、噴霧器6から飛び出した際に負に帯電する場合、ワイヤ15a,15bに加える電圧の向きを逆にすればよい。
Moreover, it is preferable that spraying of the slurry 5a is performed so that the sprayed slurry 5a is focused in the through-hole 2a of the porous base material 2 by the influence of an electric field. Specifically, as shown in FIG. 5, a wire 15 a is disposed so as to pass through the through hole 2 a of the porous substrate 2, and an annular wire 15 b is disposed immediately below the sprayer 6. Create an electric field. In the case of FIG. 5, the annular wire 15b is positively charged, and the wire 15a is negatively charged.
When the dispersion medium is a polar solvent such as water or ethanol, the slurry 5a is positively charged by friction when it is ejected from the sprayer 6. In this case, the slurry 5a is more positively charged due to the influence of the electric field formed by the circuit 15.
The positively charged slurry 5a receives a suction force from the negatively charged wire 15a. Immediately after spraying, a repulsive force is received from the positively charged annular wire 15b. For this reason, the sprayed slurry 5a is focused in the through hole 2a. Further, the slurry 5a is accelerated by the suction force and the repulsive force received from the wires 15a and 15b, and the slurry 5a strongly collides with the nanostructure 3 and adheres securely.
According to this method, it becomes possible to spray the slurry 5a only on a specific through-hole. Therefore, for example, it is possible to carry cracking catalyst particles suitable for decomposition of formaldehyde in some through holes and carry cracking catalyst particles suitable for decomposition of ammonia in the remaining through holes. It is possible to manufacture a filter on which at least two types of catalyst particles of different types are supported.
When the slurry 5a is negatively charged when it jumps out of the sprayer 6, the direction of the voltage applied to the wires 15a and 15b may be reversed.

また、スラリー5aの噴霧は、噴霧器6と多孔質基材2が相対移動可能な装置を用いて行われることが好ましい。具体的には、図6に示すように、多孔質基材2をステージ17上に載置し、ステージ17に駆動装置19を取り付ける。駆動装置19は、ステージ17を図6の矢印X,Yで示す二軸方向に移動可能である。なお、駆動装置19は、回転駆動可能なものであってもよい。これによって、噴霧器6に対する多孔質基材2の位置を自在に調節可能になる。この場合、噴霧器6は、固定していてもよく、別の駆動装置によって移動可能であってもよい。なお、噴霧器6のみを移動可能にし、多孔質基材2の位置を固定してもよい。
図6には、アーム21を介して噴霧器6に取り付けられた駆動装置23を示している。駆動装置23は、アーム21を介して噴霧器6の位置を矢印L方向に移動可能である。また、駆動装置23は、軸23aを中心に回転可能であり、噴霧器6の位置を矢印R方向に回転可能である。矢印L及びR方向の移動の組合せによって、噴霧器6の位置は、自在に調節可能である。
また、噴霧器6及びステージ17には、それぞれ、光源23及び光センサー25が取り付けられている。光センサー25は、例えば、多孔質基材2を載置する領域の端に取り付けておく。これにより、スラリー5aを噴霧する領域をより正確に決定できる。また、スラリー5aが無駄に塗布されることを防ぐインターロック機能を設けることもできる。また、光センサー25が光源からの光を受光した位置を原点とし、そこからの移動量を検出することにより、噴霧器6とステージ17の相対位置が常に把握できるので、別途用意したパーソナルコンピューターなどに記憶させてスラリー塗布プログラムを用いて、スラリーの塗布を行うことも可能である。
Moreover, it is preferable that spraying of the slurry 5a is performed using the apparatus with which the sprayer 6 and the porous base material 2 can move relatively. Specifically, as shown in FIG. 6, the porous substrate 2 is placed on the stage 17, and the driving device 19 is attached to the stage 17. The driving device 19 can move the stage 17 in the biaxial directions indicated by arrows X and Y in FIG. The driving device 19 may be a device that can be rotationally driven. As a result, the position of the porous substrate 2 with respect to the sprayer 6 can be freely adjusted. In this case, the sprayer 6 may be fixed, or may be movable by another driving device. Note that only the sprayer 6 may be movable, and the position of the porous substrate 2 may be fixed.
FIG. 6 shows a driving device 23 attached to the sprayer 6 via the arm 21. The drive device 23 can move the position of the sprayer 6 in the direction of arrow L via the arm 21. Moreover, the drive device 23 can rotate centering on the axis | shaft 23a, and can rotate the position of the sprayer 6 to the arrow R direction. The position of the sprayer 6 can be freely adjusted by a combination of movements in the directions of the arrows L and R.
Moreover, the light source 23 and the optical sensor 25 are attached to the sprayer 6 and the stage 17, respectively. For example, the optical sensor 25 is attached to an end of a region where the porous substrate 2 is placed. Thereby, the area | region which sprays the slurry 5a can be determined more correctly. An interlock function that prevents the slurry 5a from being applied unnecessarily can also be provided. In addition, since the relative position between the sprayer 6 and the stage 17 can always be grasped by using the position where the light sensor 25 receives light from the light source as the origin and detecting the amount of movement therefrom, it is possible to use a personal computer or the like separately prepared. It is also possible to apply the slurry using a slurry application program that is stored.

2−4.分散媒の除去
次に、ナノ構造体3に付着したスラリー5a中に含まれる分散媒を除去する。この除去は、多孔質基材2を加熱し、分散媒を蒸発させることによって行ってもよく、多孔質基材2に圧縮空気を吹き付け、分散媒を吹き飛ばすことによって行ってもよい。
例えば、図2(d)に示すように、多孔質基材2を加熱ステージ29上に載置し、加熱ステージ29を200℃程度に昇温することにより、分散媒を蒸発させて除去する。
分散媒を除去することによって、スラリー5aに含まれる分解触媒粒子5がナノ構造体3に担持される。
2-4. Removal of Dispersion Medium Next, the dispersion medium contained in the slurry 5a attached to the nanostructure 3 is removed. This removal may be performed by heating the porous substrate 2 and evaporating the dispersion medium, or by blowing compressed air on the porous substrate 2 and blowing off the dispersion medium.
For example, as shown in FIG. 2 (d), the porous substrate 2 is placed on the heating stage 29 and the heating stage 29 is heated to about 200 ° C. to evaporate and remove the dispersion medium.
By removing the dispersion medium, the decomposition catalyst particles 5 contained in the slurry 5 a are supported on the nanostructure 3.

ここまで示した各構成は、互いに組み合わせることができる。   Each structure shown so far can be combined with each other.

次に、本発明の実施例について説明する。本発明は、以下の実施例に限定されない。   Next, examples of the present invention will be described. The present invention is not limited to the following examples.

1.種触媒(Ni)粒子のコーティング
多孔質基材としてハニセラムの商品名で販売されている日本ガイシ製セラミックスハニカム(コーディエライト)を用いた。この多孔質基材は直径47mm、厚さ5mmであって、多孔質基材を貫通する孔の開口部の平均の口径は1mm程度であった。
1. Coating of Seed Catalyst (Ni) Particles As a porous substrate, a ceramic honeycomb (cordierite) manufactured by NGK sold under the trade name of Haniseram was used. This porous substrate had a diameter of 47 mm and a thickness of 5 mm, and the average diameter of the openings of the holes penetrating the porous substrate was about 1 mm.

まず、Xe2誘電体バリア放電エキシマランプ装置を用い、中心波長146nmの紫外線を放射照度10mW/cm2でこの多孔質基材の表面に1時間照射して多孔質基材の表面の汚染物質を除去した。 First, using a Xe 2 dielectric barrier discharge excimer lamp device, the surface of the porous substrate is irradiated with ultraviolet rays having a central wavelength of 146 nm at an irradiance of 10 mW / cm 2 for 1 hour to remove contaminants on the surface of the porous substrate. Removed.

次に、容器内に収容されたアセトン中に粒径が10nm程度の複数のNi粒子を含むNiペースト(日本ペイント株式会社製)および紫外線照射後の多孔質基材を収容し、その後容器内に超音波を印加することによってこれらを攪拌した。   Next, Ni paste (Nihon Paint Co., Ltd.) containing a plurality of Ni particles having a particle size of about 10 nm in acetone contained in a container and a porous substrate after ultraviolet irradiation are accommodated, and then in the container These were stirred by applying ultrasonic waves.

次に、攪拌後の多孔質基材を取り出し、これをMPCVD(マイクロ波プラズマCVD)装置の真空チャンバ内の設置台上に設置し、真空チャンバ内の圧力が1×10-5Paになるまで真空ポンプを使って排気した後に600℃で30分間多孔質基材の熱処理を行なった。 Next, the agitated porous substrate is taken out and placed on a setting table in a vacuum chamber of an MPCVD (microwave plasma CVD) apparatus until the pressure in the vacuum chamber becomes 1 × 10 −5 Pa. After evacuation using a vacuum pump, the porous substrate was heat-treated at 600 ° C. for 30 minutes.

2.ナノ構造体の成長
次いで、Ni粒子がコーティングされた多孔質基材の表面にナノ構造体を成長させるプロセスを実施した。
まず、真空チャンバ内の設置台の温度を600℃に維持し、真空チャンバ内の圧力が15〜25Torr程度になるように圧力コントロールバルブにて調整しながら、マスフローコントローラーを通じて真空チャンバ内にH2ガスを100sccm導入し、次に2.45GHzのマイクロ波(350W)を導入することによってH2ガスをプラズマ化し、5〜30分程度、設置台上の多孔質基材の表面をクリーニングした(以下、「H2還元プロセス」と呼ぶ)。
2. Nanostructure Growth Next, a process of growing nanostructures on the surface of a porous substrate coated with Ni particles was performed.
First, while maintaining the temperature of the installation base in the vacuum chamber at 600 ° C. and adjusting the pressure control valve so that the pressure in the vacuum chamber is about 15 to 25 Torr, H 2 gas is introduced into the vacuum chamber through the mass flow controller. 100 sccm, and then 2.45 GHz microwave (350 W) was introduced to make H 2 gas into plasma, and the surface of the porous substrate on the installation table was cleaned for about 5 to 30 minutes (hereinafter, referred to as “H 2 gas”). Called “H 2 reduction process”).

続いて、真空チャンバ内にH2ガスを80sccmおよびCH4ガスを20sccm導入し、さらに2.45GHzのマイクロ波(500W)を導入した。これにより、H2ガスおよびCH4ガスからなる原料ガスをプラズマ化して、設置台上の多孔質基材をプラズマに10分間曝した。この際、設置台に対して、−100Vのバイアス電圧をかけた。これにより、多孔質基材の外面全体および多孔質基材に形成されている複数の孔の内部から先端にNi粒子を備えた炭素からなる繊維状のナノ構造体が複数成長した。成長したナノ構造体のハニカム内孔からのそれぞれの長さは0.5〜50μm、直径は10〜30nmであった。また、ナノ構造体は、内部が中空でないカーボンファイバーと内部が中空であるカーボンナノチューブとがほぼ1:1の割合で混在して構成されていた。このナノ構造体の様子については透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)を用いて確認した。この時に用いたNi粒子の量は5mgで、得られたナノ構造体は1.5mgであった。なお、Niペースト中に含まれるNi粒子の量と、成長するナノ構造体の数には相関がある。したがって、成長させるナノ構造体の数を増やしたい場合は、Ni粒子の量を増やせばよい。 Subsequently, 80 sccm of H 2 gas and 20 sccm of CH 4 gas were introduced into the vacuum chamber, and a 2.45 GHz microwave (500 W) was further introduced. Thereby, the raw material gas consisting of H 2 gas and CH 4 gas was turned into plasma, and the porous substrate on the installation table was exposed to plasma for 10 minutes. At this time, a bias voltage of −100 V was applied to the installation table. As a result, a plurality of fibrous nanostructures made of carbon having Ni particles at the tips from the entire outer surface of the porous substrate and inside the plurality of holes formed in the porous substrate grew. Each of the grown nanostructures from the honeycomb inner holes had a length of 0.5 to 50 μm and a diameter of 10 to 30 nm. In addition, the nanostructure is composed of a mixture of carbon fibers that are not hollow inside and carbon nanotubes that are hollow inside at a ratio of approximately 1: 1. The state of the nanostructure was confirmed using a transmission electron microscope (TEM) or a scanning electron microscope (SEM). The amount of Ni particles used at this time was 5 mg, and the resulting nanostructure was 1.5 mg. There is a correlation between the amount of Ni particles contained in the Ni paste and the number of growing nanostructures. Accordingly, when it is desired to increase the number of nanostructures to be grown, the amount of Ni particles should be increased.

3.分解触媒(Ag)粒子の担持
このようにして得られたナノ構造体を有する多孔質基材を、噴霧器から90mmの位置に設置した。分解触媒スラリーは、日本ペイント製のAgW−102(30w%)の銀コロイドペーストをイオン交換水で1/300の濃度に希釈し、0.1w%で調製した。このスラリーを別途用意した超音波洗浄槽で30分間攪拌し、更にムサシノ電子製の自動噴霧装置MS−2に設置した。噴霧圧力は0.2MPaに設定し、噴霧量0.5ml/秒で5秒間噴霧(合計噴霧量2.5ml)した。各工程における重量を比較することで、噴霧量あたりの触媒の担持量を見積もると、ほぼ1g/lとなっていた。この後、ホットプレートを200℃に維持し、その上にスラリーを塗布した多孔質基材を載せ、余分な分散媒(イオン交換水)や界面活性剤を除去し、本実施例のフィルターを作製した。
3. Supporting cracked catalyst (Ag) particles The porous substrate having the nanostructure thus obtained was placed at a position 90 mm from the sprayer. The cracking catalyst slurry was prepared by diluting AgW-102 (30 w%) silver colloid paste made by Nippon Paint to a concentration of 1/300 with ion-exchanged water and 0.1 w%. This slurry was stirred for 30 minutes in a separately prepared ultrasonic cleaning tank, and further installed in an automatic spraying device MS-2 manufactured by Musashino Electronics. The spraying pressure was set to 0.2 MPa, and spraying was performed at a spraying amount of 0.5 ml / second for 5 seconds (total spraying amount 2.5 ml). By comparing the weight in each step, the amount of catalyst supported per spray amount was estimated to be approximately 1 g / l. Thereafter, the hot plate is maintained at 200 ° C., and a porous base material coated with slurry is placed on the hot plate, and the excess dispersion medium (ion exchange water) and the surfactant are removed to produce the filter of this example. did.

4.フィルターA,B,Cの作製
上記工程で作製されたフィルターをフィルターAとする。
また、次の条件で、フィルターB,Cを作製した。フィルターBは、フィルターAと同様の方法でナノ構造体を成長させた多孔質基材をフィルターAと同一の濃度のスラリーに5秒間浸漬することで作製した。フィルターBに用いた直径47mm、厚さ5mmの多孔質基材を浸漬できるだけのスラリー量は500ml程度であった。フィルターCは、ナノ構造体を形成していない多孔質基材をフィルターAと同一の濃度のスラリーに5秒間浸漬することで作製した。
4). Preparation of filters A, B, and C The filter prepared in the above process is referred to as filter A.
Filters B and C were produced under the following conditions. The filter B was produced by immersing a porous substrate on which a nanostructure was grown in the same manner as the filter A in a slurry having the same concentration as the filter A for 5 seconds. The amount of slurry that can be used to immerse a porous substrate having a diameter of 47 mm and a thickness of 5 mm used for the filter B was about 500 ml. The filter C was produced by immersing a porous substrate not forming a nanostructure in a slurry having the same concentration as the filter A for 5 seconds.

5.フィルターの性能評価
以下の方法により、上記工程で得られたフィルターの性能評価を行った。
まず、フィルターを、1m3の容量の評価チャンバ内に設置されたステンレス製のハウジングにセットした。次に、外部から抵抗加熱により熱を加えて130℃に維持し、有害物質としてトルエンを含むドライエアを1ppmの濃度で導入し、評価チャンバの出口側で1分間捕集管に気体を捕集した。この捕集された気体中のトルエンの濃度を固相吸着/加熱脱着法とガスクロマトグラフィー/質量分析法の組み合わせによる公知の測定手法により評価した。捕集管にはTenaxを用い、水分を除去するための除湿管、流量を100〜1000ml/分の範囲で制御するためのマスフローコントローラー、捕集流量を確保するためのポンプと、Tenax等に固相吸着された有害物質を加熱脱着し、急冷し、ガスクロマトグラフィー質量分析(GC/MS)を用いて気体中のトルエン量(濃度)を分析することにより行なわれた。
5). Performance evaluation of filter The performance evaluation of the filter obtained at the said process was performed with the following method.
First, the filter was set in a stainless steel housing installed in an evaluation chamber having a capacity of 1 m 3 . Next, heat was applied from the outside by resistance heating and maintained at 130 ° C., dry air containing toluene as a harmful substance was introduced at a concentration of 1 ppm, and gas was collected in a collection tube for 1 minute on the outlet side of the evaluation chamber. . The concentration of toluene in the collected gas was evaluated by a known measurement method using a combination of solid-phase adsorption / heat desorption method and gas chromatography / mass spectrometry method. Tenax is used for the collection tube, and a dehumidification tube for removing moisture, a mass flow controller for controlling the flow rate in the range of 100 to 1000 ml / min, a pump for securing the collection flow rate, and Tenax are fixed. The phase-adsorbed harmful substances were desorbed by heating, rapidly cooled, and analyzed for the amount (concentration) of toluene in the gas using gas chromatography mass spectrometry (GC / MS).

この質量分析結果は表1に示す通りである。浄化率とは、触媒で分解除去された有害化学物質の割合である(すなわち、(フィルター通過による有害化学物質の減少量)/(有害化学物質の注入量))。   The results of mass spectrometry are as shown in Table 1. The purification rate is a ratio of harmful chemical substances decomposed and removed by the catalyst (that is, (amount of harmful chemical substances reduced by passage through the filter) / (injection quantity of harmful chemical substances)).

表1より、フィルターAは、フィルターB,Cよりトルエンの除去効果が高いことが分かる。これは、スプレー法で作製したフィルターAでは、浸漬法で作製したフィルターBやナノ構造体を保持していないフィルターCと比べて分解触媒粒子が高度に分散しているためであると考えられる。
また、フィルターA,B,CをTEMおよびSEMで観察したところ、フィルターAではナノ構造体の表面にAg粒子が2〜3×1010個/cm2程度で均一に担持されていたのに対し、フィルターBではAg粒子が0.8〜1.8×1010個/cm2程度と僅かに保持量が少なかった。また、フィルターCでは、Ag粒子同士が会合しており、その個数も0.2〜1.0×108個/cm2程度であり、触媒数の場所によるばらつきも大きかった。
From Table 1, it can be seen that the filter A has a higher toluene removal effect than the filters B and C. This is considered to be because the decomposition catalyst particles are highly dispersed in the filter A produced by the spray method compared to the filter B produced by the dipping method and the filter C not holding the nanostructure.
Further, when the filters A, B, and C were observed with TEM and SEM, the filter A showed that Ag particles were uniformly supported on the surface of the nanostructure at about 2 to 3 × 10 10 particles / cm 2. In the filter B, the amount of Ag particles was about 0.8 to 1.8 × 10 10 particles / cm 2 and the holding amount was slightly small. Further, in the filter C, Ag particles were associated with each other, and the number thereof was about 0.2 to 1.0 × 10 8 particles / cm 2 , and the variation depending on the location of the number of catalysts was large.

実施例2では、以下の点を変更した以外は、実施例1と同様の方法によって、フィルターD,Eを作製した。フィルターDは、H2還元プロセスを省略して作製した。フィルターEは、Ni種触媒の平均粒径を300nm程度に変え、ナノ構造体成長プロセスにおける設置台の温度を450℃に設定して作製した。
フィルターD,Eのナノ構造体の表面をTEMおよびSEMで観察したところ、フィルターDでは、ナノ構造体の長さは、50〜100nm程度であった。フィルターEでは、長さが0.5〜50μm、直径が500nmを超えるナノ構造体が1μm2に数〜10個見られた。また、フィルターEでは、Ag粒子同士が分散できず、薄膜のような連続体を構成していたり、特に噴霧されたスラリーが入ってくる側で分解触媒粒子が凝集してしまい、多孔質基材の厚さ方向へ分解触媒粒子が均一に分散していない様子が確認された。
実施例1と同様の手法でトルエンの浄化率を評価したところ、表2に示すような結果となった。
In Example 2, filters D and E were produced by the same method as in Example 1 except that the following points were changed. Filter D was made by omitting the H 2 reduction process. The filter E was produced by changing the average particle size of the Ni seed catalyst to about 300 nm and setting the temperature of the installation base in the nanostructure growth process to 450 ° C.
When the surfaces of the nanostructures of the filters D and E were observed with TEM and SEM, in the filter D, the length of the nanostructure was about 50 to 100 nm. In the filter E, several to ten nanostructures having a length of 0.5 to 50 μm and a diameter exceeding 500 nm were observed in 1 μm 2 . Further, in the filter E, Ag particles cannot be dispersed with each other to form a continuous body such as a thin film, or the decomposition catalyst particles aggregate on the side where the sprayed slurry enters, and the porous substrate It was confirmed that the cracked catalyst particles were not uniformly dispersed in the thickness direction.
When the purification rate of toluene was evaluated in the same manner as in Example 1, the results shown in Table 2 were obtained.

実施例3では、噴霧圧力を0.01MPaに設定した以外は、実施例1と同様の方法によって、フィルターを作製した。
このフィルターのナノ構造体の表面をTEMおよびSEMで観察したところ、表面から1mmより下側にはAg粒子が確認されず、Ag粒子が不均一に担持されていることが確認された。
従って、噴霧圧力は、塗布する材料の面積や厚みに応じて適宜調整できることが望ましいことが明らかとなった。
In Example 3, a filter was produced by the same method as in Example 1 except that the spray pressure was set to 0.01 MPa.
When the surface of the nanostructure of this filter was observed with TEM and SEM, Ag particles were not confirmed below 1 mm from the surface, and it was confirmed that Ag particles were supported nonuniformly.
Therefore, it became clear that it is desirable that the spray pressure can be appropriately adjusted according to the area and thickness of the material to be applied.

実施例4では、加熱機構を有するステージ上に多孔質基材を載置して、スラリーの噴霧を行った以外は、実施例1と同様の方法によって、フィルターを作製した。
このステージは、具体的には、メッシュ構造(各メッシュ径は1.5cmΦ)を有するステンレス板の内部に通電加熱機構を設けたものである。試作的なサイズは縦15cm×横15cm×厚さ5cmとした。通電過熱機構には、埋め込み型のヒーターを用いた。この改良により、スラリーを塗布した多孔質基材を加熱ステージ等に移動させる必要がなくなり、フィルターの生産性が高まった。
In Example 4, a filter was produced in the same manner as in Example 1 except that the porous substrate was placed on a stage having a heating mechanism and the slurry was sprayed.
Specifically, this stage is provided with an electric heating mechanism inside a stainless steel plate having a mesh structure (each mesh diameter is 1.5 cmΦ). The prototype size was 15 cm long × 15 cm wide × 5 cm thick. An embedded heater was used for the energization overheating mechanism. This improvement eliminates the need to move the porous substrate coated with the slurry to a heating stage or the like, thereby increasing the productivity of the filter.

実施例5では、メッシュ構造(各メッシュ径は1.5cmΦ)を有するステンレス板からなるステージ及び噴霧器に駆動装置を設けた装置を用いて、スラリーの噴霧を行った以外は、実施例1と同様の方法によって、フィルターを作製した。
ステージ及び噴霧器は、具体的には、ギアボックス付き電気モータからなる駆動装置を備えている。なお、ステージは、実施例4の加熱機構も備えている。
試作的に作製されたシステムにおける駆動可能量は、噴霧器、ステージ供に縦、横それぞれ50cmずつ、高さは15cmずつであった。
また、噴霧器とステージの相対位置を確認するために、噴霧器及びステージにそれぞれ光源及び光センサーを設けた。光源からの光を受光素子が検知できる位置を基準(原点)として、プラス方向、マイナス方向にそれぞれ25cmずつ駆動できることが確認された。
Example 5 is the same as Example 1 except that the slurry is sprayed using a stage made of a stainless steel plate having a mesh structure (each mesh diameter is 1.5 cmΦ) and a device provided with a driving device in the sprayer. A filter was prepared by the method described above.
Specifically, the stage and the sprayer are provided with a driving device including an electric motor with a gear box. The stage also includes the heating mechanism of the fourth embodiment.
The driveable amount in the prototype system was 50 cm in length and width for the sprayer and stage, and the height was 15 cm.
Further, in order to confirm the relative positions of the sprayer and the stage, a light source and a light sensor were provided on the sprayer and the stage, respectively. It was confirmed that the position where the light receiving element can detect the light from the light source can be driven 25 cm in each of the plus direction and the minus direction with reference to the origin (origin).

実施例6では、メッシュ構造(各メッシュ径は1.5cmΦ)を有するステンレス板からなるステージ上に多孔質基材を載置し、このステージの下側で吸引ポンプを作動させながら、スラリーの噴霧を行った以外は、実施例1と同様の方法によって、フィルターを作製した。但し、多孔質基材には、55mmΦ、厚さ500mmのハニセラム(日本ガイシ製セラミックスハニカム)を用いた。なお、ステージとポンプ本体の間に、シリカゲルを充填した水分トラップ機構を付け加えることで、ポンプへの水分混入量を最小限に抑えるようにした。
吸引ポンプを作動させた場合と作動させなかった場合の触媒担持形態の違いをTEMおよびSEMで観察した。ポンプを作動させなかった場合、多孔質基材の内壁表面にAg粒子が均一に、それぞれが結合することなく孤立に分散している領域は表面から300mm程度の奥行きまでであった。しかしポンプを作動させた場合、厚さ500mmのハニセラムの内壁表面にAg粒子が均一に、それぞれが結合することなく孤立に分散していた。
このことから、特に、厚い多孔質基材への触媒担持を行う場合には、噴霧されたスラリーが多孔質基材を介して吸引される条件で、スラリーの噴霧を行うことのメリットが確認された。
In Example 6, a porous substrate is placed on a stage made of a stainless steel plate having a mesh structure (each mesh diameter is 1.5 cmΦ), and a slurry is sprayed while operating a suction pump below the stage. A filter was produced in the same manner as in Example 1 except that the above was performed. However, for the porous substrate, Haniseram (NGK ceramic honeycomb) having a diameter of 55 mm and a thickness of 500 mm was used. A moisture trap mechanism filled with silica gel was added between the stage and the pump body to minimize the amount of moisture mixed into the pump.
The difference in the catalyst loading form between when the suction pump was activated and when it was not activated was observed by TEM and SEM. When the pump was not operated, the region where Ag particles were uniformly dispersed on the inner wall surface of the porous base material without being bonded to each other was about 300 mm deep from the surface. However, when the pump was operated, Ag particles were uniformly dispersed on the inner wall surface of the 500 mm thick haniseram without being bonded to each other.
This confirms the merit of spraying the slurry under the condition that the sprayed slurry is sucked through the porous substrate, particularly when carrying the catalyst on the thick porous substrate. It was.

実施例7では、メッシュ構造(各メッシュ径は1.5cmΦ)を有するステンレス板からなるステージ上に多孔質基材を載置し、このステージの下側から、直径1mmのW製のワイヤを多孔質基材の貫通孔に通し、また、噴霧器の直下0.5mmに環状ワイヤを設置し、両者間に10Vの電圧(環状ワイヤ側が正)を印加しながら、スラリーの噴霧を行った以外は、実施例1と同様の方法によって、フィルターを作製した。
この方法により、多孔質基材の特定の貫通孔にのみスラリーを塗布することが可能となり、例えば一枚のフィルターに、複数種類の触媒を塗布することで、複数の有害化学物質の除去を行うことが可能であることが確認された。勿論、ワイヤ数を増やし、同時に多数の貫通孔にスラリーを塗布することは可能である。
噴霧器やステージを移動する際には、このワイヤは収納することも可能である。つまり噴霧器の直下に絶縁部を設けてリングを設置し、噴霧器、若しくはステージが移動後、ワイヤを出して電界の発生できる機構を作製しても良い。
In Example 7, a porous substrate is placed on a stage made of a stainless steel plate having a mesh structure (each mesh diameter is 1.5 cmΦ), and a W wire having a diameter of 1 mm is perforated from the lower side of the stage. Except that the slurry was sprayed while passing through the through-hole of the base material and installing an annular wire 0.5 mm directly below the sprayer and applying a voltage of 10 V between them (the annular wire side was positive) A filter was produced in the same manner as in Example 1.
This method makes it possible to apply the slurry only to specific through-holes of the porous substrate. For example, a plurality of types of catalysts are applied to one filter to remove a plurality of harmful chemical substances. It was confirmed that it was possible. Of course, it is possible to increase the number of wires and simultaneously apply the slurry to a large number of through holes.
When moving the sprayer or the stage, this wire can be stored. In other words, an insulating part may be provided immediately below the sprayer to install a ring, and after the sprayer or the stage has moved, a mechanism that can generate an electric field by generating a wire may be produced.

本発明のフィルターの構造を示す斜視透視図である。It is a perspective perspective view which shows the structure of the filter of this invention. 本発明のフィルターの製造工程を示す斜視透視図である。It is a perspective perspective view which shows the manufacturing process of the filter of this invention. 圧力気体の供給方法を示す斜視透視図である。It is a perspective perspective view which shows the supply method of pressure gas. フィルターを載置するためのステージを示す斜視透視図である。It is a perspective perspective view which shows the stage for mounting a filter. 電界をかけながらスラリーの噴霧を行う状態を示す斜視透視図である。It is a perspective perspective view which shows the state which sprays a slurry, applying an electric field. 相対移動可能な噴霧器とステージを示す斜視透視図である。It is a perspective perspective view which shows the sprayer and stage which can move relatively.

符号の説明Explanation of symbols

1:フィルター、2:多孔質基材、2a:貫通孔、3:ナノ構造体、4:種触媒粒子、5:分解触媒粒子、5a:スラリー、6:スラリーの噴霧器、7:圧力気体の流路、8:容器、9:圧縮機、10:圧力調整機、11:ステージ、11a:貫通孔、15:回路、15a:ワイヤ、15b:環状ワイヤ、17:ステージ、19:駆動装置、21:アーム、23:駆動装置、23a:駆動装置の軸、25:光源、27:光センサー、29:加熱ステージ 1: filter, 2: porous substrate, 2a: through-hole, 3: nanostructure, 4: seed catalyst particle, 5: decomposition catalyst particle, 5a: slurry, 6: slurry atomizer, 7: pressure gas flow Path, 8: container, 9: compressor, 10: pressure regulator, 11: stage, 11a: through-hole, 15: circuit, 15a: wire, 15b: annular wire, 17: stage, 19: drive device, 21: Arm, 23: Drive device, 23a: Drive device axis, 25: Light source, 27: Optical sensor, 29: Heating stage

Claims (12)

複数の貫通孔を有する多孔質基材と、貫通孔内に形成された繊維状のカーボンナノ構造体を備え、繊維状のカーボンナノ構造体の表面にスプレー法により触媒粒子が担持されていることを特徴とするフィルター。 A porous substrate having a plurality of through-holes and a fibrous carbon nanostructure formed in the through-hole, and catalyst particles are supported on the surface of the fibrous carbon nanostructure by a spray method Filter characterized by. 貫通孔ごとに種類の異なる少なくとも2種類の触媒粒子が担持されている請求項1に記載のフィルター。     The filter according to claim 1, wherein at least two types of catalyst particles of different types are supported for each through hole. 多孔質基材は、板状であり、貫通孔は、多孔質基材の両主面を貫通する請求項1又は2に記載のフィルター     The filter according to claim 1 or 2, wherein the porous substrate is plate-shaped, and the through holes penetrate both main surfaces of the porous substrate. 繊維状のカーボンナノ構造体は、長さが100nm以上である請求項1から3の何れか1つに記載のフィルター。 The filter according to any one of claims 1 to 3, wherein the fibrous carbon nanostructure has a length of 100 nm or more. 繊維状のカーボンナノ構造体は、太さが5〜500nmである請求項1から4の何れか1つに記載のフィルター。 The filter according to any one of claims 1 to 4, wherein the fibrous carbon nanostructure has a thickness of 5 to 500 nm. 複数の貫通孔を有する多孔質基材の貫通孔内に繊維状のカーボンナノ構造体を成長させ、
得られた多孔質基材に対して触媒粒子を分散媒中に分散させてなるスラリーを噴霧し、噴霧されたスラリーを繊維状のカーボンナノ構造体に付着させる工程を備えるフィルターの製造方法。
Growing a fibrous carbon nanostructure in a through-hole of a porous substrate having a plurality of through-holes,
A method for producing a filter, comprising: spraying a slurry obtained by dispersing catalyst particles in a dispersion medium on the obtained porous substrate, and attaching the sprayed slurry to a fibrous carbon nanostructure.
噴霧は、噴霧されたスラリーが電界の影響によって多孔質基材の貫通孔内に集束されるように行われる請求項6に記載の方法。     The method according to claim 6, wherein the spraying is performed such that the sprayed slurry is focused in the through holes of the porous substrate by the influence of the electric field. 噴霧圧力は、0.1MPaを超える圧力である請求項6又は7に記載の方法。     The method according to claim 6 or 7, wherein the spray pressure is a pressure exceeding 0.1 MPa. 繊維状のカーボンナノ構造体に付着したスラリー中に含まれる分散媒を除去する工程をさらに備える請求項6から8の何れか1つに記載の方法。 The method according to any one of claims 6 to 8, further comprising a step of removing a dispersion medium contained in the slurry attached to the fibrous carbon nanostructure. 噴霧は、噴霧器を用いて行なわれ、かつ、噴霧器と多孔質基材が相対移動可能な装置を用いて行われる請求項6から9の何れか1つに記載の方法。     The method according to any one of claims 6 to 9, wherein the spraying is performed using a sprayer, and is performed using an apparatus in which the sprayer and the porous substrate can move relative to each other. 噴霧は、噴霧されたスラリーが多孔質基材の貫通孔を通って吸引されるように行われる請求項6から10の何れか1つに記載の方法。     The method according to any one of claims 6 to 10, wherein the spraying is performed such that the sprayed slurry is sucked through the through holes of the porous substrate. 請求項1から5の何れか1つに記載のフィルターを装着した空気清浄装置。   An air purifier equipped with the filter according to any one of claims 1 to 5.
JP2005128396A 2005-04-26 2005-04-26 Filter, manufacturing method thereof, air cleaning device Expired - Fee Related JP4528192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005128396A JP4528192B2 (en) 2005-04-26 2005-04-26 Filter, manufacturing method thereof, air cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005128396A JP4528192B2 (en) 2005-04-26 2005-04-26 Filter, manufacturing method thereof, air cleaning device

Publications (3)

Publication Number Publication Date
JP2006305422A JP2006305422A (en) 2006-11-09
JP2006305422A5 JP2006305422A5 (en) 2007-11-01
JP4528192B2 true JP4528192B2 (en) 2010-08-18

Family

ID=37472936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005128396A Expired - Fee Related JP4528192B2 (en) 2005-04-26 2005-04-26 Filter, manufacturing method thereof, air cleaning device

Country Status (1)

Country Link
JP (1) JP4528192B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073252A (en) * 2013-02-22 2015-11-18 住友电气工业株式会社 Porous member and catalyst member

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253943B2 (en) * 2008-09-11 2013-07-31 国立大学法人東北大学 Conductive material and method for producing the same
WO2010059165A1 (en) 2008-11-21 2010-05-27 Alliance For Sustainable Energy, Llc Porous block nanofiber composite filters
JP5272767B2 (en) * 2009-02-05 2013-08-28 トヨタ自動車株式会社 Hydrogen generator
JP5310791B2 (en) * 2011-06-10 2013-10-09 三菱電機株式会社 Air purifier
JP2013111511A (en) * 2011-11-28 2013-06-10 Nano Summit Kk Ultrafine particle support, ultrafine particle supporting device, method of manufacturing ultrafine particle support and method of manufacturing ultrafine particle supporting device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288626A (en) * 2000-04-03 2001-10-19 Nissan Motor Co Ltd Method for producing fixed body of carbon nanofiber
US20040007528A1 (en) * 2002-07-03 2004-01-15 The Regents Of The University Of California Intertwined, free-standing carbon nanotube mesh for use as separation, concentration, and/or filtration medium
JP2004148305A (en) * 2002-10-11 2004-05-27 Osaka Gas Co Ltd Photocatalyst and air cleaner using the same
JP2004148304A (en) * 2002-10-11 2004-05-27 Osaka Gas Co Ltd Dioxins removing filter, and method of removing dioxins and device for treating exhaust gas using the filter
JP2004337731A (en) * 2003-05-15 2004-12-02 National Institute Of Advanced Industrial & Technology Sheet-like catalyst structure using carbon nanotube and its production method
JP2005255439A (en) * 2004-03-10 2005-09-22 Japan Fine Ceramics Center Nano, micro and macro multiplex structured porous body and method of manufacturing the same
JP2006095429A (en) * 2004-09-29 2006-04-13 Sharp Corp Air cleaning device
JP2006150348A (en) * 2004-11-19 2006-06-15 Internatl Business Mach Corp <Ibm> Method for forming carbon nanotube, filter and exposure system (chemical particle filter including chemically modified carbon nanotube structure)
JP2006223986A (en) * 2005-02-17 2006-08-31 Sharp Corp Micro structure, production method of microstructure, air cleaner and air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288626A (en) * 2000-04-03 2001-10-19 Nissan Motor Co Ltd Method for producing fixed body of carbon nanofiber
US20040007528A1 (en) * 2002-07-03 2004-01-15 The Regents Of The University Of California Intertwined, free-standing carbon nanotube mesh for use as separation, concentration, and/or filtration medium
JP2004148305A (en) * 2002-10-11 2004-05-27 Osaka Gas Co Ltd Photocatalyst and air cleaner using the same
JP2004148304A (en) * 2002-10-11 2004-05-27 Osaka Gas Co Ltd Dioxins removing filter, and method of removing dioxins and device for treating exhaust gas using the filter
JP2004337731A (en) * 2003-05-15 2004-12-02 National Institute Of Advanced Industrial & Technology Sheet-like catalyst structure using carbon nanotube and its production method
JP2005255439A (en) * 2004-03-10 2005-09-22 Japan Fine Ceramics Center Nano, micro and macro multiplex structured porous body and method of manufacturing the same
JP2006095429A (en) * 2004-09-29 2006-04-13 Sharp Corp Air cleaning device
JP2006150348A (en) * 2004-11-19 2006-06-15 Internatl Business Mach Corp <Ibm> Method for forming carbon nanotube, filter and exposure system (chemical particle filter including chemically modified carbon nanotube structure)
JP2006223986A (en) * 2005-02-17 2006-08-31 Sharp Corp Micro structure, production method of microstructure, air cleaner and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073252A (en) * 2013-02-22 2015-11-18 住友电气工业株式会社 Porous member and catalyst member
US10105683B2 (en) 2013-02-22 2018-10-23 Sumitomo Electric Industries, Ltd. Porous member and catalyst member

Also Published As

Publication number Publication date
JP2006305422A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
US7927567B2 (en) Adsorbent, porous filter, air cleaning device, method of cleaning air, and method of manufacturing porous filter
JP4528192B2 (en) Filter, manufacturing method thereof, air cleaning device
KR101527102B1 (en) Device for eliminating harmful substance
RU2602152C2 (en) Device and method for gas treatment using low-temperature plasma and catalyst medium
US20240024809A1 (en) Porous Materials For Treating Contaminants
JP4674071B2 (en) Gas purifier
US20230025309A1 (en) Method for manufacturing a photocatalytic device, photocatalytic device, photocatalytic composition and gas depolluting apparatus
EP1555065A1 (en) Photocatalyst material and process for producing the same
JP3710323B2 (en) Deodorizing device
JP4787253B2 (en) Alumina coating forming method, alumina fiber, and gas treatment apparatus equipped with the same
JP4049774B2 (en) Porous filter, method for producing porous filter, air cleaning device and air cleaning method
WO2001062307A1 (en) Apparatus for removing chemical substance
JP2003299965A (en) Photocatalyst material and production method of the same
JP2006167694A (en) Adsorbent, air cleaning apparatus and concentration sensor
JP2004313844A (en) Harmful substance decomposing method
JP4846245B2 (en) Air purifier and air conditioner
JP3660710B2 (en) Deodorizing device
WO2002101800A1 (en) Semiconductor manufacturing method and apparatus
JP4514644B2 (en) Gas cleaning method and cleaning apparatus
JP2006026561A (en) Catalyst body, catalyst body for purifying exhaust gas and manufacturing method for catalyst body
JP2004154336A (en) Air cleaning equipment
KR102663639B1 (en) Air purifier system using visible-light sensitive photocatalytic materials
KR20060042799A (en) Air cleaning filter using active carbon fiber and preparation method thereof
JPH10249209A (en) Photocatalyst and air conditioner using this catalyst
JP2006007119A (en) Photocatalyst material, manufacturing method therefor and synthetic raw material solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees