JP4470319B2 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP4470319B2
JP4470319B2 JP2000386463A JP2000386463A JP4470319B2 JP 4470319 B2 JP4470319 B2 JP 4470319B2 JP 2000386463 A JP2000386463 A JP 2000386463A JP 2000386463 A JP2000386463 A JP 2000386463A JP 4470319 B2 JP4470319 B2 JP 4470319B2
Authority
JP
Japan
Prior art keywords
voltage
filament
reactor
switching element
fluorescent tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000386463A
Other languages
Japanese (ja)
Other versions
JP2002190396A (en
Inventor
享 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2000386463A priority Critical patent/JP4470319B2/en
Publication of JP2002190396A publication Critical patent/JP2002190396A/en
Application granted granted Critical
Publication of JP4470319B2 publication Critical patent/JP4470319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、放電灯を高周波で点灯させる照明装置に関する。
【0002】
【従来の技術】
予熱用コンデンサを備えた放電灯に直列に接続されたリアクトルと、これらの負荷回路に直流電圧とゼロ電圧を交互に印加するスイッチング素子からなる高周波インバータの照明装置が広く用いられている。
図6に従来例の照明装置の回路図を示す。直流電源Vと、この直流電源Vに2つのトランジスタFET1,FET2の直列回路が並列に接続される。また、直流電源Vに2つのコンデンサC1,C2からなる直列回路が並列に接続される。2つのトランジスタFET1およびFET2の接続部と、2つのコンデンサC1およびC2の接続部との間にリアクトルL1および蛍光管Kの直列回路が接続される。蛍光管Kには予熱用のコンデンサCpreが接続される。トランジスタFET1,FET2は図示していない制御回路により交互にオン、オフするように制御され、高周波電圧を蛍光管Kに印加し点灯する。
【0003】
【発明が解決しようとする課題】
蛍光管Kが寿命末期になると片エミッタレス状態となる。この片エミッタレス状態においてさらに点灯動作を継続すると、フィラメントが溶断してしまう。フィラメントが溶断した(溶断オープン)状態で、フィラメント間に電圧が印加され続けると、フィラメント間で放電を生じ、この放電による温度上昇で蛍光管Kのガラスが溶融する虞がある。特に、最近、高輝度で、細い管径16mmの蛍光管が使用されるようになってきた。この管径16mmの蛍光管においては、放電による温度上昇によって蛍光管のガラスが溶ける虞がより高くなった。このため蛍光管の寿命を確実に検出することが重要であり、求められている。
従来、蛍光管をはじめとする放電灯の片エミッタレス状態を検出する方法としては、スイッチング素子の温度を検出する方法、フィラメントの電圧を検出する方法、蛍光管の電圧を検出する方法などがある。しかしながら、スイッチング素子の温度を検出する方法においては、検出速度が遅く、検出精度が悪いという問題がある。またフィラメントあるいは蛍光管の電圧を検出する方法においては、蛍光管の2つあるフィラメントのどちらかが片エミッタレス状態となると、それを回路で検出することが困難となる問題があった。
本発明は、放電灯の片側のフィラメントの断線を確実に検出して出力信号を発することのできる検出手段を備えた照明装置を提供するものである。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本発明は、放電灯と直列に接続されたリアクトルに、直流電圧を変換して交流電圧を供給する高周波インバータ回路を備えた照明装置において、前記リアクトルの補助巻線の発生電圧が所定の値以下でかつ前記放電灯の片側のフィラメントの端子電圧が検出されると出力信号を発する検出手段を備えたものとする。
【0005】
また、前記検出手段は、前記リアクトルの補助巻線を整流平滑回路を介しスイッチング素子の入力部に接続し、前記フィラメントの両端に並列に接続した第1抵抗のいずれか一方の端子を前記スイッチング素子の出力部に接続し、前記リアクトルの補助巻線の発生電圧が前記スイッチング素子をオンしない電圧でかつ前記フィラメントの端子電圧が検出されると前記スイッチング素子の出力部から前記出力信号を発するものでよい。
さらに、前記検出手段は、前記第1抵抗のいずれか一方の端子と前記スイッチング素子の出力部との間に第2抵抗を、前記スイッチング素子の出力部に並列に第3抵抗を接続したことでよい。
このような構成とすることにより、放電灯の片側のフィラメントの断線を検出して出力信号を出力する。そしてこの検出手段の発する出力信号を受けた制御回路は高周波インバータを停止するなどして照明装置の異常状態を回避することができる。
【0006】
【発明の実施の形態】
この発明の実施の形態として、図1に照明装置の回路図を示す。図2に図1の検出回路の回路図を示す。後述する各波形図に示されている記号はそれぞれ次のとおりであり、Vds2はスイッチング素子FET2のドレインーソース電圧波形、ILはリアクトルL2の1次側巻線に流れる電流波形、 VLはリアクトルL2の補助巻線に発生する電圧波形、 Ilampは蛍光管Kに流れる電流波形、VRは管抜け検出抵抗(抵抗R5+R6)の電圧波形である。従来例の図6と同一な部分には同一の符号を付しその説明を省略する。
図1に示すように、従来例(図6)との相違点は、リアクトルL2に補助巻線を設け、この補助巻線の出力電圧VLと蛍光管Kのフィラメントの端子電圧とをそれぞれ入力し、これらの電圧関係において、補助巻線の出力電圧VLが所定の電圧値以下(例えばほぼゼロ電圧)でかつ蛍光管Kのフィラメントのいずれか一方の端子電圧が検出されると出力信号を出力する検出回路Mを備える点である。
図2に検出回路Mの回路図を示す。リアクトルL2の補助巻線の一方をダイオードDのアノードに接続し、他方を接地する。ダイオードDのカソードと接地間に抵抗R1,R2,R3の直列接続回路を接続する。抵抗R1およびR2の接続部と接地間とにコンデンサC3を接続する。抵抗R2およびR3との接続部をトランジスタTRのベースに接続する。蛍光管Kのフィラメントの両端子に並列に抵抗R4を接続し、その抵抗R4の一方(この場合、コンデンサC1とC2との接続部に接続されたフィラメント端子側)と接地間とに、抵抗R5とR6との直列回路を接続する。抵抗R5とR6との接続部にトランジスタTRのコレクタを、抵抗R6の接地側にエミッタをそれぞれ接続する。トランジスタのコレクタ(抵抗R5とR6との接続部)から検出回路Mの出力信号を出力する。この出力信号を受けた制御回路は高周波インバータ回路の停止などを行ない、照明装置の異常状態を回避する。ここで、抵抗R4,R5およびR6はいずれも高抵抗であり、これら抵抗に流れる電流はほとんど無視できるのでリアクトルL2の発生電圧に影響しない。
検出回路Mの動作について説明する。この検出回路Mは、リアクトルL2の補助巻線の発生電圧VLを、ダイオードDで整流し抵抗R1を介し、抵抗R2,R3の直列回路に並列に接続されたコンデンサC3からなる回路に印加する。抵抗R2と抵抗R3との接続部の電圧がトランジスタTRのベースーエミッタのえん層電圧(およそ0.7V)を越えると、トランジスタTRはオン状態となる。一方、リアクトルL2の補助巻線の発生電圧VLがトランジスタTRのベースーエミッタのえん層電圧以下であると、トランジスタTRはオフ状態となる。
次に、蛍光管Kのフィラメントが両側共に正常の場合、蛍光管Kのフィラメントの片側が溶断(断線)している場合、蛍光管Kが抜けている場合のそれぞれにおける検出回路Mの動作を説明する。
(1)蛍光管Kのフィラメントが共に正常の場合
図3に蛍光管Kのフィラメントが両側共に正常の場合の各部の電圧、電流の波形図を示す。この場合には、リアクトルL2および蛍光管Kには正常時の電流がそれぞれ流れるので、リアクトルL2の補助巻線には発生電圧VLを発生する。この補助巻線の発生電圧VLをダイオードDで整流し抵抗R1,R2,R3の直列回路に加える。抵抗R2とR3とに並列にコンデンサC3を接続して平滑化している。抵抗R2とR3との接続部がトランジスタTRのベースに接続されており、この抵抗R3の分圧電圧がベースーエミッタ間のえん層電圧(およそ0.7V)を越えるよう設定されているので、トランジスタTRはオン状態となる。一方、蛍光管Kの両フィラメントに並列に接続された抵抗R4に接続される直列抵抗R5,R6のうち抵抗R6の分圧電圧がトランジスタTRに加わるのであるが、トランジスタTRはオンしているから、コレクタの電位は接地電位に等しくなり、よって、検出回路Mは出力信号を発しない。
(2)蛍光管Kのフィラメントの片側が溶断している場合
図4に蛍光管の片側(リアクトル側)のフィラメントが断線した場合の各部の電圧、電流の波形図を示す。この場合には、リアクトルL2の1次側巻線にほとんど電流が流れないので、リアクトルL2の補助巻線の発生電圧VLはほぼゼロ電圧(スイッチング時のヒゲ状電圧は無視できる)となる。そうすると補助巻線の発生電圧VLもほぼゼロ電圧(スイッチング時のヒゲ状電圧は無視できる)となるのでトランジスタTRはオフ状態となる。 一方、蛍光管KのフィラメントのうちリアクトルL2に接続されている側のフィラメントが溶断しており、このフィラメントはオープン状態となるが、コンデンサC1とC2との接続部に接続されている側のフィラメントは溶断していないので、こちら側のフィラメントの端子電圧を抵抗R5を介して抵抗R6の分圧電圧としてトランジスタTRのコレクタに加えることができる。そうして、トランジスタTRはオフ状態であるから、このコレクタ電圧が検出回路Mの出力信号となる。この出力信号を受けて例えば制御回路は高周波インバータの動作を停止する。
また、図示していないが、蛍光管Kの両フィラメントのうちコンデンサC1とC2との接続部に接続されている側のフィラメントが溶断した場合、このフィラメントはオープン状態となるが、リアクトルL2に接続されている側のフィラメントは溶断していないので、こちら側のフィラメントの端子電圧を検出し、抵抗R4,R5を介して抵抗R6の分圧電圧をトランジスタTRのコレクタに加えることができ、このコレクタ電圧が検出回路Mの出力信号となる。
(3)蛍光管が抜けている場合
図5に蛍光管が抜けた場合の各部の電圧、電流の波形図を示す。この場合には、リアクトルL2にほとんど電流が流れないので、リアクトルL2の一次側巻線の発生電圧はほぼゼロ電圧(スイッチング時のヒゲ状電圧は無視できる)となる。そうすると補助巻線の発生電圧VLもほぼゼロ電圧(スイッチング時のヒゲ状電圧は無視できる)となり、トランジスタTRはオフ状態となる。 一方、蛍光管Kが抜けているのであるから、抵抗R4のいずれの端も電圧の印加されていない状態となり、管抜け検出抵抗(R5+R6)の電圧VRは電圧を検出しない。そうすると、トランジスタTRのコレクタは抵抗R6を介して接地電位に等しくなり、よって、検出回路Mは出力信号を発しない。
以上のように、検出回路Mは、蛍光管Kのフィラメントの片側のみが溶断などで断線した場合に出力信号を出力する。この信号を受けた制御回路は高周波インバータ回路の停止などを行なうことにより、照明装置の異常状態を回避させることができる。蛍光管Kのフィラメントの溶断、さらに蛍光管Kのガラスの溶融を防止することができる。
なお、ここではインバータ回路としてハーフブリッジ回路の例を示したが、フルブリッジ回路やその他の回路を用いてもよく特に限定されるものではない。また、検出回路にスイッチング素子としてバイポーラトランジスタを用いているが、これと同様な機能を持つものならば例えばMOSFETなどを用いてもよく特に限定されるものではない。
【0007】
【発明の効果】
この発明は、リアクトルの補助巻線の発生電圧が所定の値以下でかつ放電灯の片側のフィラメントの端子電圧が検出されると出力信号を発する検出手段を備えたことにより、放電灯の片側のフィラメントの断線を確実に検出することができる。そして出力信号を受けた制御回路は高周波インバータを停止することでフィラメントの溶断、放電灯のガラスの溶融を防止することができ、信頼性の向上を図ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す照明装置の回路図
【図2】図1の検出回路の回路図
【図3】図1において正常な蛍光管の場合の各部の電圧、電流の波形図
【図4】図1において蛍光管が片エミッタレスの場合の各部の電圧、電流の波形図
【図5】図1において蛍光管が抜けた場合の各部の電圧、電流の波形図
【図6】従来例の照明装置の回路図
【符号の説明】
FET1,FET2 :FETトランジスタ
L1,L2 :リアクトル
K :蛍光管
C1,C2,C3:コンデンサ
Cpre:予熱用コンデンサ
D:ダイオード
TR:トランジスタ
R1,R2,R3,R4,R5,R6:抵抗
M:検出回路
V:直流電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lighting device for lighting a discharge lamp at a high frequency.
[0002]
[Prior art]
2. Description of the Related Art A high-frequency inverter illumination device is widely used that includes a reactor connected in series to a discharge lamp having a preheating capacitor and a switching element that alternately applies a DC voltage and a zero voltage to these load circuits.
FIG. 6 shows a circuit diagram of a conventional illumination device. A DC power supply V and a series circuit of two transistors FET1 and FET2 are connected in parallel to the DC power supply V. A series circuit composed of two capacitors C1 and C2 is connected in parallel to the DC power supply V. A series circuit of the reactor L1 and the fluorescent tube K is connected between the connection portion of the two transistors FET1 and FET2 and the connection portion of the two capacitors C1 and C2. A condenser Cpre for preheating is connected to the fluorescent tube K. The transistors FET1 and FET2 are controlled so as to be alternately turned on and off by a control circuit (not shown), and a high frequency voltage is applied to the fluorescent tube K to light it.
[0003]
[Problems to be solved by the invention]
When the fluorescent tube K reaches the end of its life, it becomes a one-emitterless state. If the lighting operation is further continued in this one-emitter-less state, the filament will melt. If a voltage continues to be applied between the filaments in a state where the filaments are blown (melted open), a discharge is generated between the filaments, and the glass of the fluorescent tube K may be melted due to a temperature rise due to the discharge. In particular, fluorescent tubes with high brightness and a thin tube diameter of 16 mm have recently been used. In the fluorescent tube having a tube diameter of 16 mm, there is a higher possibility that the glass of the fluorescent tube is melted due to a temperature rise due to discharge. Therefore, it is important and required to reliably detect the life of the fluorescent tube.
Conventionally, as a method for detecting a single emitterless state of a discharge lamp including a fluorescent tube, there are a method for detecting a temperature of a switching element, a method for detecting a voltage of a filament, a method of detecting a voltage of a fluorescent tube, and the like. . However, the method for detecting the temperature of the switching element has a problem that the detection speed is slow and the detection accuracy is poor. In addition, in the method of detecting the voltage of the filament or the fluorescent tube, there is a problem that it becomes difficult to detect it by a circuit when one of the two filaments of the fluorescent tube is in a single emitterless state.
The present invention provides an illuminating device including detection means that can reliably detect the disconnection of a filament on one side of a discharge lamp and emit an output signal.
[0004]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a lighting device including a high-frequency inverter circuit that converts a DC voltage and supplies an AC voltage to a reactor connected in series with a discharge lamp. It is assumed that there is provided detection means for emitting an output signal when the generated voltage is less than a predetermined value and the terminal voltage of the filament on one side of the discharge lamp is detected.
[0005]
Further, the detecting means connects the auxiliary winding of the reactor to the input part of the switching element through a rectifying and smoothing circuit, and connects one terminal of the first resistor connected in parallel to both ends of the filament to the switching element. The output voltage of the auxiliary winding of the reactor is a voltage that does not turn on the switching element, and the output signal is emitted from the output part of the switching element when the terminal voltage of the filament is detected. Good.
Further, the detecting means connects a second resistor between one terminal of the first resistor and the output portion of the switching element, and a third resistor in parallel with the output portion of the switching element. Good.
With such a configuration, the disconnection of the filament on one side of the discharge lamp is detected and an output signal is output. Then, the control circuit that has received the output signal from the detection means can avoid the abnormal state of the lighting device by stopping the high-frequency inverter.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
As an embodiment of the present invention, FIG. 1 shows a circuit diagram of a lighting device. FIG. 2 shows a circuit diagram of the detection circuit of FIG. Symbols shown in the waveform diagrams described below are as follows, Vds2 is a drain-source voltage waveform of the switching element FET2, IL is a current waveform flowing in the primary side winding of the reactor L2, and VL is a reactor L2 Is a voltage waveform generated in the auxiliary winding, Ilamp is a current waveform flowing in the fluorescent tube K, and VR is a voltage waveform of the tube dropout resistance (resistor R5 + R6). Parts identical to those of the conventional example shown in FIG.
As shown in FIG. 1, the difference from the conventional example (FIG. 6) is that an auxiliary winding is provided in the reactor L2, and the output voltage VL of this auxiliary winding and the terminal voltage of the filament of the fluorescent tube K are respectively input. In these voltage relationships, an output signal is output when the output voltage VL of the auxiliary winding is not more than a predetermined voltage value (for example, substantially zero voltage) and the terminal voltage of one of the filaments of the fluorescent tube K is detected. This is a point provided with a detection circuit M.
FIG. 2 shows a circuit diagram of the detection circuit M. One of the auxiliary windings of the reactor L2 is connected to the anode of the diode D, and the other is grounded. A series connection circuit of resistors R1, R2, and R3 is connected between the cathode of the diode D and the ground. Connect capacitor C3 between the connection of resistors R1 and R2 and ground. The connection between the resistors R2 and R3 is connected to the base of the transistor TR. A resistor R4 is connected in parallel to both filament terminals of the fluorescent tube K, and a resistor R5 is connected between one of the resistors R4 (in this case, the filament terminal connected to the connection between the capacitors C1 and C2) and the ground. And connect a series circuit of R6. The collector of the transistor TR is connected to the connection between the resistors R5 and R6, and the emitter is connected to the ground side of the resistor R6. The output signal of the detection circuit M is output from the collector of the transistor (the connection portion between the resistors R5 and R6). Upon receiving this output signal, the control circuit stops the high frequency inverter circuit and avoids an abnormal state of the lighting device. Here, the resistors R4, R5, and R6 are all high resistances, and the current flowing through these resistors is almost negligible, so the voltage generated in the reactor L2 is not affected.
The operation of the detection circuit M will be described. The detection circuit M applies the voltage VL generated in the auxiliary winding of the reactor L2 to a circuit composed of a capacitor C3 rectified by a diode D and connected in parallel to a series circuit of resistors R2 and R3 via a resistor R1. When the voltage at the connection between the resistors R2 and R3 exceeds the base layer-emitter layer voltage (approximately 0.7 V) of the transistor TR, the transistor TR is turned on. On the other hand, when the voltage VL generated in the auxiliary winding of the reactor L2 is equal to or lower than the base layer-emitter voltage of the transistor TR, the transistor TR is turned off.
Next, the operation of the detection circuit M when the filament of the fluorescent tube K is normal on both sides, when one side of the filament of the fluorescent tube K is blown (disconnected), and when the fluorescent tube K is disconnected is described. To do.
(1) When the filament of the fluorescent tube K is normal FIG. 3 shows waveform diagrams of voltage and current at each part when the filament of the fluorescent tube K is normal on both sides. In this case, normal currents flow through the reactor L2 and the fluorescent tube K, respectively, so that the generated voltage VL is generated in the auxiliary winding of the reactor L2. The voltage VL generated by the auxiliary winding is rectified by the diode D and added to the series circuit of the resistors R1, R2, and R3. Smoothing is performed by connecting a capacitor C3 in parallel with the resistors R2 and R3. Since the connection between the resistors R2 and R3 is connected to the base of the transistor TR, and the divided voltage of the resistor R3 is set to exceed the base layer-emitter voltage (approximately 0.7V), The transistor TR is turned on. On the other hand, the divided voltage of the resistor R6 among the series resistors R5 and R6 connected to the resistor R4 connected in parallel to both filaments of the fluorescent tube K is applied to the transistor TR, but the transistor TR is turned on. The collector potential becomes equal to the ground potential, and therefore the detection circuit M does not emit an output signal.
(2) When one side of the filament of the fluorescent tube K is melted FIG. 4 shows waveform diagrams of voltage and current at each part when the filament on one side (reactor side) of the fluorescent tube is disconnected. In this case, since almost no current flows through the primary side winding of the reactor L2, the generated voltage VL of the auxiliary winding of the reactor L2 becomes almost zero voltage (the whisker-like voltage at the time of switching can be ignored). Then, the voltage VL generated in the auxiliary winding also becomes almost zero voltage (the beard-like voltage at the time of switching can be ignored), so that the transistor TR is turned off. On the other hand, among the filaments of the fluorescent tube K, the filament connected to the reactor L2 is melted, and this filament is open, but the filament connected to the connection between the capacitors C1 and C2 Is not blown, the terminal voltage of the filament on this side can be applied to the collector of the transistor TR as a divided voltage of the resistor R6 via the resistor R5. Thus, since the transistor TR is in an off state, this collector voltage becomes an output signal of the detection circuit M. In response to this output signal, for example, the control circuit stops the operation of the high-frequency inverter.
Although not shown, when one of the filaments of the fluorescent tube K that is connected to the connection part between the capacitors C1 and C2 is melted, the filament is opened but connected to the reactor L2. Since the side filament is not blown, the terminal voltage of this side filament can be detected, and the divided voltage of resistor R6 can be applied to the collector of transistor TR via resistors R4 and R5. The voltage becomes an output signal of the detection circuit M.
(3) When the fluorescent tube is disconnected FIG. 5 shows waveform diagrams of voltage and current of each part when the fluorescent tube is disconnected. In this case, since almost no current flows through the reactor L2, the voltage generated at the primary side winding of the reactor L2 is almost zero voltage (the voltage at the time of switching can be ignored). As a result, the generated voltage VL of the auxiliary winding also becomes almost zero voltage (the beard-like voltage at the time of switching can be ignored), and the transistor TR is turned off. On the other hand, since the fluorescent tube K is disconnected, no voltage is applied to any end of the resistor R4, and the voltage VR of the tube disconnection detection resistor (R5 + R6) does not detect the voltage. Then, the collector of the transistor TR becomes equal to the ground potential via the resistor R6, and therefore the detection circuit M does not emit an output signal.
As described above, the detection circuit M outputs an output signal when only one side of the filament of the fluorescent tube K is disconnected due to melting or the like. The control circuit that has received this signal can avoid an abnormal state of the lighting device by stopping the high-frequency inverter circuit. It is possible to prevent the filament of the fluorescent tube K from being melted and further the glass of the fluorescent tube K from being melted.
Although an example of a half-bridge circuit is shown here as an inverter circuit, a full-bridge circuit or other circuits may be used and are not particularly limited. Further, although a bipolar transistor is used as a switching element in the detection circuit, for example, a MOSFET may be used as long as it has a function similar to this, and there is no particular limitation.
[0007]
【The invention's effect】
The present invention includes a detecting means for generating an output signal when the generated voltage of the auxiliary winding of the reactor is equal to or lower than a predetermined value and the terminal voltage of the filament on one side of the discharge lamp is detected. The disconnection of the filament can be reliably detected. The control circuit that has received the output signal can stop the high-frequency inverter to prevent the filament from fusing and the glass of the discharge lamp from melting, thereby improving the reliability.
[Brief description of the drawings]
1 is a circuit diagram of an illuminating device showing an embodiment of the present invention. FIG. 2 is a circuit diagram of a detection circuit of FIG. 1. FIG. 3 is a waveform of voltage and current of each part in the case of a normal fluorescent tube in FIG. FIG. 4 is a waveform diagram of voltage and current of each part when the fluorescent tube is one-emitterless in FIG. 1. FIG. 5 is a waveform diagram of voltage and current of each part when the fluorescent tube is disconnected in FIG. 】 Circuit diagram of conventional lighting device 【Explanation of symbols】
FET1, FET2: FET transistors
L1, L2: Reactor K: Fluorescent tube
C1, C2, C3: Capacitors
Cpre: Preheating capacitor
D: Diode
TR: Transistor
R1, R2, R3, R4, R5, R6: Resistance
M: Detection circuit V: DC power supply

Claims (3)

放電灯と直列に接続されたリアクトルに、直流電圧を変換して交流電圧を供給する高周波インバータ回路を備えた照明装置において、前記リアクトルの補助巻線の発生電圧が所定の値以下でかつ前記放電灯の片側のフィラメントの端子電圧が検出されると出力信号を発する検出手段を備えたことを特徴とする照明装置。In a lighting device including a high-frequency inverter circuit that converts a DC voltage to supply an AC voltage to a reactor connected in series with a discharge lamp, a voltage generated in an auxiliary winding of the reactor is equal to or lower than a predetermined value and the discharge An illuminating device comprising: a detecting means for generating an output signal when a terminal voltage of a filament on one side of an electric lamp is detected. 前記検出手段は、前記リアクトルの補助巻線を整流平滑回路を介しスイッチング素子の入力部に接続し、前記フィラメントの両端に並列に接続した第1抵抗のいずれか一方の端子を前記スイッチング素子の出力部に接続し、前記リアクトルの補助巻線の発生電圧が前記スイッチング素子をオンしない電圧でかつ前記フィラメントの端子電圧が検出されると前記スイッチング素子の出力部から前記出力信号を発することを特徴とする請求項1記載の照明装置。The detecting means connects the auxiliary winding of the reactor to the input part of the switching element via a rectifying and smoothing circuit, and outputs one terminal of a first resistor connected in parallel to both ends of the filament to the output of the switching element. The output voltage of the auxiliary winding of the reactor is a voltage that does not turn on the switching element, and when the terminal voltage of the filament is detected, the output signal is emitted from the output part of the switching element. The lighting device according to claim 1. 前記検出手段は、前記第1抵抗のいずれか一方の端子と前記スイッチング素子の出力部との間に第2抵抗を、前記スイッチング素子の出力部に並列に第3抵抗をそれぞれ接続したことを特徴とする請求項2記載の照明装置。The detection means includes a second resistor connected between one terminal of the first resistor and the output portion of the switching element, and a third resistor connected in parallel to the output portion of the switching element. The lighting device according to claim 2.
JP2000386463A 2000-12-20 2000-12-20 Lighting device Expired - Fee Related JP4470319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000386463A JP4470319B2 (en) 2000-12-20 2000-12-20 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000386463A JP4470319B2 (en) 2000-12-20 2000-12-20 Lighting device

Publications (2)

Publication Number Publication Date
JP2002190396A JP2002190396A (en) 2002-07-05
JP4470319B2 true JP4470319B2 (en) 2010-06-02

Family

ID=18853559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000386463A Expired - Fee Related JP4470319B2 (en) 2000-12-20 2000-12-20 Lighting device

Country Status (1)

Country Link
JP (1) JP4470319B2 (en)

Also Published As

Publication number Publication date
JP2002190396A (en) 2002-07-05

Similar Documents

Publication Publication Date Title
US6366031B2 (en) Electronic ballast for at least one low-pressure discharge lamp
US20080203934A1 (en) Method and Circuit for Enabling Dimming Using Triac Dimmer
JPH11503266A (en) Electronic lamp protection ballast
US6847174B2 (en) Drive for a half-bridge inverter
WO1995024819A1 (en) Dimming circuit for powering gas discharge lamps
CA2213426C (en) Circuit arrangement for operating electrical incandescent bulbs
US6137233A (en) Ballast circuit with independent lamp control
US6222326B1 (en) Ballast circuit with independent lamp control
CN212992651U (en) Asymmetric half-bridge circuit and lighting system
US20020011806A1 (en) Ballast circuit with independent lamp control
JP2002110388A (en) Lighting device of discharge tube
JP4470319B2 (en) Lighting device
JP4735789B2 (en) Lighting device for fluorescent tube
US8488353B2 (en) Control integrated circuit with combined output and input
JP3932672B2 (en) Discharge lamp lighting device
JP4348813B2 (en) Discharge lamp lighting device
JPH08335497A (en) Discharge tube lighting circuit
JPH1131593A (en) Lamp-lighting device, and lighting system
JPH113795A (en) Lighting system
JPH11162688A (en) Discharge-lamp lighting device
JP2001155887A (en) Lighting apparatus for discharge lamp
KR880002936Y1 (en) Electronic ballast of fluorescent lamp
KR19980024273A (en) Discharge lamp lighting device
JP3456056B2 (en) Discharge lamp lighting device
JP2001155886A (en) Lighting apparatus for discharge lamp

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees