JP4400442B2 - Parallel operation control method for uninterruptible power supply - Google Patents

Parallel operation control method for uninterruptible power supply Download PDF

Info

Publication number
JP4400442B2
JP4400442B2 JP2004367981A JP2004367981A JP4400442B2 JP 4400442 B2 JP4400442 B2 JP 4400442B2 JP 2004367981 A JP2004367981 A JP 2004367981A JP 2004367981 A JP2004367981 A JP 2004367981A JP 4400442 B2 JP4400442 B2 JP 4400442B2
Authority
JP
Japan
Prior art keywords
voltage
converter
output
power supply
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004367981A
Other languages
Japanese (ja)
Other versions
JP2006174679A (en
Inventor
久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004367981A priority Critical patent/JP4400442B2/en
Publication of JP2006174679A publication Critical patent/JP2006174679A/en
Application granted granted Critical
Publication of JP4400442B2 publication Critical patent/JP4400442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

この発明は、無停電電源装置の並列運転制御回路、特に並列運転による出力電流アンバランスの抑制方法に関する。   The present invention relates to a parallel operation control circuit for an uninterruptible power supply, and more particularly to a method for suppressing output current imbalance by parallel operation.

無停電電源装置の高効率化を低価格に提供するものとしては、例えば特許文献1に示すものがある。図3にその回路図を示す。これは直並列方式の例である。
この回路は、負荷5または入力電源4に並列に接続される第1の変換器1(並列INV)と、電源4と負荷5との間に直列に接続される第2の変換器2(直列INV)とを備え、入力電源4が正常なときは第1の変換器1が蓄電池3の充電制御を行ない、入力電源4が停電したときはスイッチ6を開放して、第1の変換器1が蓄電器3の直流電力を交流に変換して負荷5に電力を供給する。直列に接続される第2の変換器2は、入力電源4の電圧と第2の変換器2の出力電圧Vsoutが所定の値になるように制御される。
For example, Japanese Patent Application Laid-Open No. H10-133707 provides high efficiency of the uninterruptible power supply device at a low price. FIG. 3 shows a circuit diagram thereof. This is an example of a series-parallel system.
This circuit includes a first converter 1 (parallel INV) connected in parallel to a load 5 or an input power source 4 and a second converter 2 (series connected) between the power source 4 and the load 5 in series. INV), the first converter 1 controls charging of the storage battery 3 when the input power supply 4 is normal, and the switch 6 is opened when the input power supply 4 fails, and the first converter 1 Converts the DC power of the battery 3 to AC and supplies the load 5 with power. The second converter 2 connected in series is controlled so that the voltage of the input power supply 4 and the output voltage Vsout of the second converter 2 become a predetermined value.

次に、入力電源正常時における第1の変換器1の制御動作について、図4(b)を参照して説明する。
まず、蓄電池電圧の指令値Vd*と検出値Vdとの偏差を自動調節器14に入力し、必要な充電電流指令Ib*を算出する。次に、この結果が第1の変換器1の許容電流以内になるように設定したリミッタ(LIM3)16に入力し、その出力を第1の変換器1の出力電流指令Iinv*とする。この電流指令Iinv*と第1の変換器1の出力電流検出値Iinvとの偏差を自動調節器(ACR)18に入力し、その得られた制御信号(λ指令)により第1の変換器1を動作させる。
Next, the control operation of the first converter 1 when the input power is normal will be described with reference to FIG.
First, the deviation between the storage battery voltage command value Vd * and the detected value Vd is input to the automatic adjuster 14 to calculate the necessary charging current command Ib * . Next, the result is input to the limiter (LIM3) 16 set so that the result is within the allowable current of the first converter 1, and the output is set as the output current command Iinv * of the first converter 1. The deviation between the current command Iinv * and the output current detection value Iinv of the first converter 1 is input to an automatic adjuster (ACR) 18, and the first converter 1 is obtained by the obtained control signal (λ command). To work.

次に、入力電源許容範囲逸脱時(停電時)の、第1の変換器1制御動作を説明する。
停電判定信号(34)を受信すると、切替スイッチ25により電流制御ブロックから電圧制御ブロックに制御を切替える。電圧制御ブロックに切り替わると、設定された出力電圧指令値Vout*と出力電圧検出値Voutとの偏差を自動調節器(AVR)22に入力し、出力電圧を所定の値にするための制御信号を演算する。この演算結果を第1の変換器1の制御信号(λ指令)として動作させる。
Next, the control operation of the first converter 1 when the input power supply allowable range deviates (during a power failure) will be described.
When the power failure determination signal (34) is received, the changeover switch 25 switches the control from the current control block to the voltage control block. When switching to the voltage control block, the deviation between the set output voltage command value Vout * and the detected output voltage value Vout is input to the automatic regulator (AVR) 22, and a control signal for setting the output voltage to a predetermined value is generated. Calculate. This calculation result is operated as a control signal (λ command) of the first converter 1.

次に、第2の変換器2の動作を、図4(a)を参照して説明する。
第2の変換器2は、電源電圧正常時のみ動作する。まず、振幅信号変換器(AVE)52により出力電圧の平均値(または実効値)を検出し、その検出電圧と出力電圧指令値Vout*との偏差を算出する。算出された偏差量を自動調節器(AVR)44に入力し、無停電電源装置の出力電圧振幅を所定の値にするための制御信号を演算する。なお、この演算結果を図示されないPLL(フェーズロックドループ回路)等で作られた入力電圧Vinと同相の基準波形Vref(0°el)に乗じて、第2の変換器2の制御信号(λ指令)を生成し、第2の変換器2を駆動する。
Next, the operation of the second converter 2 will be described with reference to FIG.
The second converter 2 operates only when the power supply voltage is normal. First, the average value (or effective value) of the output voltage is detected by the amplitude signal converter (AVE) 52, and the deviation between the detected voltage and the output voltage command value Vout * is calculated. The calculated deviation amount is input to the automatic regulator (AVR) 44, and a control signal for setting the output voltage amplitude of the uninterruptible power supply device to a predetermined value is calculated. The calculation result is multiplied by a reference waveform Vref (0 ° el) in phase with an input voltage Vin generated by a PLL (phase locked loop circuit) or the like (not shown), and a control signal (λ command) of the second converter 2 is obtained. ) To drive the second converter 2.

ところで、システムの信頼性を向上させる目的で、図5のように入力電源4および負荷5を共通として、複数台の無停電電源装置を並列運転させる場合がある。図3の無停電電源装置における第2の変換器2は、入力電圧Vinと同相の出力電圧を出力し、入力電圧Vinとの和が所定のレベルになるように制御している。したがって、並列運転システムに適用する場合には、各無停電電源装置の配線インピーダンスのずれが問題となる。   By the way, for the purpose of improving the reliability of the system, there are cases where a plurality of uninterruptible power supplies are operated in parallel with the input power supply 4 and the load 5 in common as shown in FIG. The second converter 2 in the uninterruptible power supply of FIG. 3 outputs an output voltage in phase with the input voltage Vin, and controls so that the sum of the input voltage Vin and the input voltage Vin becomes a predetermined level. Therefore, when applying to a parallel operation system, the shift | offset | difference of the wiring impedance of each uninterruptible power supply device becomes a problem.

例えば、無停電電源装置を図5のように2台並列する場合、第1の無停電電源装置と負荷間の配線インピーダンスZ1と、第2の無停電電源装置と負荷間の配線インピーダンスZ2との比率が1:2であったとすると、負荷に供給される電力が2:1の割合で分担されてしまう。このような複数台並列時の、配線インピーダンスによる各無停電電源装置の分担不均衡は、システムの有効利用を妨げるおそれがある。
特許第3082849号公報(第6−7頁、図1)
For example, when two uninterruptible power supply units are arranged in parallel as shown in FIG. 5, the wiring impedance Z1 between the first uninterruptible power supply unit and the load and the wiring impedance Z2 between the second uninterruptible power supply unit and the load If the ratio is 1: 2, the power supplied to the load is shared at a ratio of 2: 1. Such unbalanced allocation of the uninterruptible power supply devices due to the wiring impedance when a plurality of units are in parallel may hinder effective use of the system.
Japanese Patent No. 3082849 (page 6-7, FIG. 1)

上述のような、アンバランスの抑制対策として、従来は各変換器の配線端に配線インピーダンスの影響を無視できるインピーダンスを直列接続することにより、出力アンバランスを抑制するようにしている。
しかしながら、配線インピーダンスは設備毎に異なるため、その都度設計が必要になるだけでなく、装置の大型化・高価格化の要因になるという問題がある。
したがって、この発明の課題は、直並列補償型の無停電電源装置を並列運転させるにあたり、配線インピーダンスのアンバランスによって発生する各無停電電源装置の出力アンバランス(横流)を抑制することにある。
As a countermeasure for suppressing the unbalance as described above, conventionally, an output imbalance is suppressed by connecting in series an impedance that can ignore the influence of the wiring impedance to the wiring end of each converter.
However, since the wiring impedance is different for each facility, there is a problem that not only the design is required each time, but also the size and cost of the apparatus are increased.
Accordingly, an object of the present invention is to suppress the output unbalance (cross current) of each uninterruptible power supply that is caused by the imbalance of wiring impedance when the series-parallel compensation type uninterruptible power supply is operated in parallel.

このような課題を解決するため、請求項1の発明では、電力貯蔵装置と、負荷と並列に接続されて順逆両方向に電力変換可能な第1の変換器と、交流電源を開閉するスイッチと、このスイッチと負荷との間にその交流出力側を直列接続され順逆両方向に電力変換可能な第2の変換器とを設け、交流電源電圧が正常な場合には前記スイッチを閉じ、前記第2の変換器の交流出力電圧と前記交流電源電圧との和が所定の値となるように前記第2の変換器を制御するとともに、前記第1の変換器を前記第2の変換器と前記電力貯蔵装置とに電力を供給するように制御し、交流電源電圧が許容電圧範囲を逸脱したときには、前記スイッチを開いて、前記第1の変換器を前記負荷に印加する交流電圧が所定の値となるように制御する無停電電源装置を複数台、その入力電源および負荷を共通にして互いに並列運転するときは、
前記負荷電流を検出しその検出信号から所望の負荷分担量を算出する算出手段と、前記無停電電源装置の出力電流を検出する検出手段と、前記算出手段にて得られた負荷分担量を出力電流指令とし、その出力電流指令と出力電流検出信号とが一致するように制御する電流調節器(ACR)と、出力電圧振幅指令に基準波形を乗算して得られる瞬時電圧波形指令に前記電流調節器の出力を加算して得られる瞬時電圧波形指令と前記交流出力電圧瞬時波形との偏差を零にする電圧調節器(AVR)とを用い、この電圧調節器(AVR)の出力に前記基準波形を乗算して得られる電圧波形指令に基づき前記第2の変換器を制御することを特徴とする。
In order to solve such a problem, in the invention of claim 1, a power storage device, a first converter connected in parallel with a load and capable of converting power in both forward and reverse directions, a switch for opening and closing an AC power source, A second converter is connected between the switch and the load and the AC output side is connected in series and can convert power in both forward and reverse directions. When the AC power supply voltage is normal, the switch is closed, and the second The second converter is controlled so that the sum of the AC output voltage of the converter and the AC power supply voltage becomes a predetermined value, and the first converter is connected to the second converter and the power storage. When the AC power supply voltage deviates from the allowable voltage range, the switch is opened and the AC voltage applied to the first converter to the load becomes a predetermined value. Control the uninterruptible power supply Platform, when operated in parallel with each other in common the input power and load,
Calculation means for detecting the current of the load and calculating a desired load sharing amount from the detection signal, detection means for detecting the output current of the uninterruptible power supply, and load sharing amount obtained by the calculation means An output current command, a current regulator (ACR) that controls the output current command and the output current detection signal to coincide with each other, and the current voltage waveform command obtained by multiplying the output voltage amplitude command by a reference waveform to the current voltage command A voltage regulator (AVR) that makes the deviation between the instantaneous voltage waveform command obtained by adding the outputs of the regulator and the AC output voltage instantaneous waveform zero is used, and the output of the voltage regulator (AVR) is used as the reference. The second converter is controlled based on a voltage waveform command obtained by multiplying the waveforms .

請求項2の発明では、電力貯蔵装置と、負荷と並列に接続されて順逆両方向に電力変換可能な第1の変換器と、交流電源を開閉するスイッチと、このスイッチと負荷との間にその交流出力側を直列接続され順逆両方向に電力変換可能な第2の変換器とを設け、交流電源電圧が正常な場合には前記スイッチを閉じ、前記第2の変換器の交流出力電圧と前記交流電源電圧との和が所定の値となるように前記第2の変換器を制御するとともに、前記第1の変換器を前記第2の変換器と前記電力貯蔵装置とに電力を供給するように制御し、交流電源電圧が許容電圧範囲を逸脱したときには、前記スイッチを開いて、前記第1の変換器を前記負荷に印加する交流電圧が所定の値となるように制御する無停電電源装置を、複数台その入力電源および負荷を共通にして互いに並列運転するときは、
前記負荷電流を検出しその検出信号から所望の負荷分担量を算出する算出手段と、前記無停電電源装置の出力電流を検出する検出手段と、前記算出手段にて得られた負荷分担量を出力電流指令とし、この出力電流指令値と出力電流検出値との瞬時偏差を求め、この瞬時偏差の有効電力成分と無効電力成分を演算する演算手段と、前記有効電力成分を調整する第1の自動調節器(AFR)と、前記無効電力成分を調整する第2の自動調節器(AVR)と、この第2の自動調節器の出力と出力電圧指令との和を出力電圧振幅指令とし、この指令と出力電圧の振幅値との偏差を零にする第3の自動調節器(AVR)とを用い、この第3の自動調節器(AVR)の出力に入力電圧と同相の基準波形を乗算して出力電圧振幅信号を生成し、前記第1の自動調節器(AFR)の出力に入力電圧の90度位相波形を乗算して出力電圧位相信号を生成し、この出力電圧位相信号と前記出力電圧振幅信号との和に基づき前記第2の変換器を制御することを特徴とする。
In the invention of claim 2, the power storage device, the first converter connected in parallel with the load and capable of converting power in both forward and reverse directions, the switch for opening and closing the AC power source, and the switch and the load A second converter connected in series on the AC output side and capable of power conversion in both forward and reverse directions; when the AC power supply voltage is normal, the switch is closed, and the AC output voltage of the second converter and the AC The second converter is controlled so that a sum with the power supply voltage becomes a predetermined value, and the first converter supplies power to the second converter and the power storage device. An uninterruptible power supply that controls and controls the first converter so that the AC voltage applied to the load becomes a predetermined value when the AC power supply voltage deviates from an allowable voltage range. Multiple units with their input power and load When parallel operation with each other in the through the
Calculation means for detecting the current of the load and calculating a desired load sharing amount from the detection signal, detection means for detecting the output current of the uninterruptible power supply, and load sharing amount obtained by the calculation means An output current command, an instantaneous deviation between the output current command value and the detected output current value is obtained, a calculation means for calculating an active power component and a reactive power component of the instantaneous deviation, and a first for adjusting the active power component The sum of the automatic regulator (AFR), the second automatic regulator (AVR) for adjusting the reactive power component, and the output of the second automatic regulator and the output voltage command is used as an output voltage amplitude command. A third automatic regulator (AVR) that makes the deviation between the command and the amplitude value of the output voltage zero, and the output of the third automatic regulator (AVR) is multiplied by a reference waveform in phase with the input voltage. To generate an output voltage amplitude signal. Dynamic control by multiplying the 90 degree phase waveform of the input voltage to the output (AFR) generates an output voltage phase signal, the second transducer on the basis of the sum of the output voltage amplitude signal with the output voltage phase signal It is characterized by controlling.

この発明によれば、第2の変換器(直列INV)による入力電圧変動分を補正する基本機能に加え、無停電電源装置の並列運転システムにて設定される所定の負荷分担電流を供給するための振幅・位相制御を行なうようにしたので、配線インピーダンスに関わらず、負荷に安定した電圧を供給するとともに、所望の負荷電流を適宜な分担比で供給することができる。   According to the present invention, in addition to the basic function of correcting the input voltage fluctuation by the second converter (series INV), in order to supply a predetermined load sharing current set in the parallel operation system of the uninterruptible power supply As a result, the stable voltage can be supplied to the load and a desired load current can be supplied at an appropriate sharing ratio regardless of the wiring impedance.

図1はこの発明の実施の形態を示す構成図である。
これは、従来の無停電電源装置の入力電源4と負荷5との間に、直列接続される第2の変換器2の制御に関するものであり、従って以下ではその制御方法を主に説明する。つまり、図1に示すように、第2の変換器2の出力電圧の制御を従来の平均値制御から瞬時波形制御に変更するとともに、アンバランス抑制制御部の演算結果を、出力電圧指令(波形指令)に反映させるようにした点が特徴である。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This relates to the control of the second converter 2 connected in series between the input power supply 4 and the load 5 of the conventional uninterruptible power supply apparatus. Therefore, the control method will be mainly described below. That is, as shown in FIG. 1, the control of the output voltage of the second converter 2 is changed from the conventional average value control to the instantaneous waveform control, and the calculation result of the unbalance suppression control unit is changed to the output voltage command (waveform The feature is that it is reflected in (command).

図1の場合のアンバランス抑制制御部の動作について、説明する。
まず、各無停電電源装置は並列システムの負荷電流ILを検出し、システムにより設定される自己分担比(1/n)を乗じて出力電流指令Iout*を算出する。この出力電流指令Iout*と自己の電流検出値Ioutとの瞬時偏差を、自動調節器(ACR)49に入力する。ACR49は上記偏差をゼロとするために必要な、出力電圧Voutに加算されるべき電圧波形ΔVout*を出力する。こうして算出されたΔVout*を、定格出力電圧指令Vout*に加算することにより、第2の変換器2の出力電圧指令Vout**とする。
The operation of the unbalance suppression control unit in the case of FIG. 1 will be described.
First, each uninterruptible power supply detects the load current IL of the parallel system and multiplies the self-sharing ratio (1 / n) set by the system to calculate an output current command Iout * . An instantaneous deviation between the output current command Iout * and its own current detection value Iout is input to an automatic adjuster (ACR) 49. The ACR 49 outputs a voltage waveform ΔVout * that is necessary to make the deviation zero and is to be added to the output voltage Vout. ΔVout * calculated in this way is added to the rated output voltage command Vout * to obtain the output voltage command Vout ** of the second converter 2.

次に、第2の変換器2の出力電圧制御について説明する。
従来の電圧制御は、無停電電源装置出力電圧Voutの振幅を所定の値に制御する、いわゆる平均値制御を行なっている。ここでは、アンバランス抑制のため、振幅に加えて位相を制御するもので、要点は以下の通りである。
まず、従来の出力電圧指令Vout*(振幅値)に、上述の基準波形Vref(0°el)を乗じることで、電圧指令を瞬時波形に変更している。また、出力電圧検出値Voutも平均値への変換をやめ、瞬時波形を制御対象としている。
以上のような制御をすることにより、配線インピーダンスに関わらず、負荷に安定した電圧を供給するとともに、所望の負荷電流を適宜な分担比で供給することができる。
Next, output voltage control of the second converter 2 will be described.
In the conventional voltage control, so-called average value control is performed in which the amplitude of the uninterruptible power supply output voltage Vout is controlled to a predetermined value. Here, in order to suppress unbalance, the phase is controlled in addition to the amplitude. The main points are as follows.
First, the voltage command is changed to an instantaneous waveform by multiplying the conventional output voltage command Vout * (amplitude value) by the above-described reference waveform Vref (0 ° el). Further, the output voltage detection value Vout is also converted to the average value, and the instantaneous waveform is controlled.
By controlling as described above, a stable voltage can be supplied to the load regardless of the wiring impedance, and a desired load current can be supplied at an appropriate sharing ratio.

図2は、この発明の他の実施の形態を示す構成図である。
その要点は、図1で説明した負荷電流ILに基づく出力電流指令Iout*と、自己の出力電流検出値Ioutとの瞬時偏差ΔIを、有効電力成分と無効電力成分とに成分分解し、有効電力成分に対しては位相制御を、また無効電力成分に対しては振幅制御を行ない、その結果を合成して第2の変換器2の出力電圧とすることで、アンバランス電流の抑制を実現する点にある。なお、各電力成分と電圧振幅・位相の関係については、電力系統制御等で一般的に利用されているため、説明は省略する。必要ならば、「社団法人電気学会,1987年発行“半導体変換回路”,p216“系統連系時におけるインバータ出力の有効電力および無効電力”の項」を参照されたい。
FIG. 2 is a block diagram showing another embodiment of the present invention.
The main point is that the instantaneous deviation ΔI between the output current command Iout * based on the load current IL described in FIG. 1 and its own output current detection value Iout is divided into an active power component and a reactive power component, and active power is obtained. Phase control is performed for the component, and amplitude control is performed for the reactive power component, and the result is combined to obtain the output voltage of the second converter 2, thereby realizing suppression of the unbalanced current. In the point. The relationship between each power component and the voltage amplitude / phase is generally used in power system control and the like, and thus the description thereof is omitted. If necessary, refer to “Electrical Society of Japan, 1987“ Semiconductor Conversion Circuit ”, p216,“ Active Power and Reactive Power of Inverter Output in Grid Connection ”section.

図2におけるアンバランス抑制制御部の動作について、説明する。
まず、各無停電電源装置は並列システムの負荷電流ILを検出し、システムにより設定される自己分担比(1/n)を乗じて出力電流指令Iout*を算出する。この出力電流指令Iout*と自己の電流検出値Ioutとの瞬時偏差ΔIを、成分分解回路53に入力する。成分分解回路53は入力電圧Vinを規準として、同相成分を有効電力成分ΔIpとして直流量として出力する。このような成分分解回路の一般的なものとして、座標変換理論等を利用したものが知られている。例えば、特開2004−156986号公報では、停電検出のための電圧検出方法として、座標変換理論を用いて同相成分と90°位相成分とを抽出している。
The operation of the unbalance suppression control unit in FIG. 2 will be described.
First, each uninterruptible power supply detects the load current IL of the parallel system and multiplies the self-sharing ratio (1 / n) set by the system to calculate an output current command Iout * . An instantaneous deviation ΔI between this output current command Iout * and its own current detection value Iout is input to the component decomposition circuit 53. The component decomposition circuit 53 outputs the in-phase component as an active power component ΔIp as a DC amount with the input voltage Vin as a reference. As a general component decomposition circuit, one using a coordinate transformation theory or the like is known. For example, in Japanese Patent Application Laid-Open No. 2004-156986, as a voltage detection method for power failure detection, an in-phase component and a 90 ° phase component are extracted using coordinate transformation theory.

成分分解回路53から出力された有効電力成分ΔIpは自動調節器(AFR)57に入力され、ΔIpがゼロとなるための位相調整指令に変換される。ここでは、入力電圧Vinを規準としてPLL回路28で生成される90°位相の規準正弦波Vref(90°)とAFR57の出力とを乗じて、第2の変換器2の出力電圧位相信号ΔVq*を生成している。
一方、成分分解回路53から出力された無効電力成分ΔIqは自動調節器(AVR)59に入力され、ΔIqがゼロとなるための位相調整指令に変換され、無停電電源装置の出力電圧指令Vout*に加算されて出力電圧指令Vout**となる。
The active power component ΔIp output from the component decomposition circuit 53 is input to an automatic regulator (AFR) 57 and converted into a phase adjustment command for ΔIp to become zero. Here, the output voltage phase signal ΔVq * of the second converter 2 is obtained by multiplying the reference sine wave Vref (90 °) of 90 ° generated by the PLL circuit 28 with the input voltage Vin as a reference and the output of the AFR 57 . Is generated.
On the other hand, the reactive power component ΔIq output from the component decomposition circuit 53 is input to an automatic regulator (AVR) 59, converted into a phase adjustment command for ΔIq to become zero, and output voltage command Vout * of the uninterruptible power supply . Is added to the output voltage command Vout ** .

上記指令値Vout**と、AVE52からの出力電圧Voutの平均値(または実効値)との偏差が自動調節器(AVR)44に入力され、ここで無停電電源装置の出力電圧振幅を所定の値にするための振幅調整指令に変換される。この振幅調整指令と入力電圧と同相の規準正弦波Vref(0°)とを乗じて、第2の変換器2の出力電圧振幅信号ΔVp*を生成する。この出力電圧振幅信号ΔVp*に上記のようにして得られたΔVq*とを加算して、第2の変換器2の制御指令(λ)とする。
以上のように、第2の変換器2の出力電圧制御を行なうことにより、配線インピーダンスに関わらず、負荷に安定した電圧を供給するとともに、所望の負荷電流を適宜な分担比で供給することができる。
The deviation between the command value Vout ** and the average value (or effective value) of the output voltage Vout from the AVE 52 is input to the automatic regulator (AVR) 44, where the output voltage amplitude of the uninterruptible power supply is set to a predetermined value. It is converted into an amplitude adjustment command for making a value. The output voltage amplitude signal ΔVp * of the second converter 2 is generated by multiplying the amplitude adjustment command and the reference sine wave Vref (0 °) in phase with the input voltage. The output voltage amplitude signal ΔVp * and the ΔVq * obtained as described above are added to obtain a control command (λ) for the second converter 2.
As described above, by controlling the output voltage of the second converter 2, a stable voltage can be supplied to the load regardless of the wiring impedance, and a desired load current can be supplied at an appropriate sharing ratio. it can.

この発明の実施の形態を示す回路構成図Circuit configuration diagram showing an embodiment of the present invention この発明の他の実施の形態を示す回路構成図Circuit configuration diagram showing another embodiment of the present invention 従来の無停電電源装置のシステム構成図System configuration diagram of conventional uninterruptible power supply 図3の直列INVと並列のINVの各出力制御回路例を示すブロック図The block diagram which shows each output control circuit example of serial INV of FIG. 3 and parallel INV 無停電電源装置の並列運転システム構成図Uninterruptible power supply parallel operation system configuration diagram

符号の説明Explanation of symbols

1…第1の直交変換器、2…第2の直交変換器、3…直流電力貯蔵装置(蓄電器)、4…交流電源、5…負荷、6…スイッチ、14,22,44,59…自動調節器(AVR)、16(LIM3)…リミッタ、18,49…自動調節器(ACR)、25…制御切替スイッチ、28…PLL(フェーズロックドループ回路)、52…振幅信号変換器、53…成分分解回路、57…自動調節器(AFR)。

DESCRIPTION OF SYMBOLS 1 ... 1st orthogonal transformation device, 2 ... 2nd orthogonal transformation device, 3 ... DC power storage device (electric storage device), 4 ... AC power supply, 5 ... Load, 6 ... Switch, 14, 22, 44, 59 ... Automatic Adjuster (AVR), 16 (LIM3) ... limiter, 18, 49 ... automatic adjuster (ACR), 25 ... control switch, 28 ... PLL (phase locked loop circuit), 52 ... amplitude signal converter, 53 ... component Disassembly circuit, 57... Automatic regulator (AFR).

Claims (2)

電力貯蔵装置と、負荷と並列に接続されて順逆両方向に電力変換可能な第1の変換器と、交流電源を開閉するスイッチと、このスイッチと負荷との間にその交流出力側を直列接続され順逆両方向に電力変換可能な第2の変換器とを設け、交流電源電圧が正常な場合には前記スイッチを閉じ、前記第2の変換器の交流出力電圧と前記交流電源電圧との和が所定の値となるように前記第2の変換器を制御するとともに、前記第1の変換器を前記第2の変換器と前記電力貯蔵装置とに電力を供給するように制御し、交流電源電圧が許容電圧範囲を逸脱したときには、前記スイッチを開いて、前記第1の変換器を前記負荷に印加する交流電圧が所定の値となるように制御する無停電電源装置を複数台、その入力電源および負荷を共通にして互いに並列運転するときは、
前記負荷電流を検出しその検出信号から所望の負荷分担量を算出する算出手段と、前記無停電電源装置の出力電流を検出する検出手段と、前記算出手段にて得られた負荷分担量を出力電流指令とし、その出力電流指令と出力電流検出信号とが一致するように制御する電流調節器(ACR)と、出力電圧振幅指令に基準波形を乗算して得られる瞬時電圧波形指令に前記電流調節器の出力を加算して得られる瞬時電圧波形指令と前記交流出力電圧瞬時波形との偏差を零にする電圧調節器(AVR)とを用い、この電圧調節器(AVR)の出力に前記基準波形を乗算して得られる電圧波形指令に基づき前記第2の変換器を制御することを特徴とする無停電電源装置の並列運転制御方法。
A power storage device, a first converter connected in parallel to the load and capable of converting power in both forward and reverse directions, a switch for opening and closing an AC power source, and an AC output side connected in series between the switch and the load A second converter capable of power conversion in both forward and reverse directions, and when the AC power supply voltage is normal, the switch is closed and the sum of the AC output voltage of the second converter and the AC power supply voltage is predetermined. The second converter is controlled so as to be a value of the first converter, and the first converter is controlled so as to supply power to the second converter and the power storage device. When deviating from the allowable voltage range, the plurality of uninterruptible power supply devices for opening the switch and controlling the first converter so that the AC voltage applied to the load has a predetermined value, its input power supply, and Parallel to each other with a common load When Ten,
Calculation means for detecting the current of the load and calculating a desired load sharing amount from the detection signal, detection means for detecting the output current of the uninterruptible power supply, and load sharing amount obtained by the calculation means An output current command, a current regulator (ACR) that controls the output current command and the output current detection signal to coincide with each other, and the current voltage waveform command obtained by multiplying the output voltage amplitude command by a reference waveform to the current voltage command A voltage regulator (AVR) that makes the deviation between the instantaneous voltage waveform command obtained by adding the outputs of the regulator and the AC output voltage instantaneous waveform zero is used, and the output of the voltage regulator (AVR) is used as the reference. A parallel operation control method for an uninterruptible power supply, wherein the second converter is controlled based on a voltage waveform command obtained by multiplying waveforms .
電力貯蔵装置と、負荷と並列に接続されて順逆両方向に電力変換可能な第1の変換器と、交流電源を開閉するスイッチと、このスイッチと負荷との間にその交流出力側を直列接続され順逆両方向に電力変換可能な第2の変換器とを設け、交流電源電圧が正常な場合には前記スイッチを閉じ、前記第2の変換器の交流出力電圧と前記交流電源電圧との和が所定の値となるように前記第2の変換器を制御するとともに、前記第1の変換器を前記第2の変換器と前記電力貯蔵装置とに電力を供給するように制御し、交流電源電圧が許容電圧範囲を逸脱したときには、前記スイッチを開いて、前記第1の変換器を前記負荷に印加する交流電圧が所定の値となるように制御する無停電電源装置を、複数台その入力電源および負荷を共通にして互いに並列運転するときは、
前記負荷電流を検出しその検出信号から所望の負荷分担量を算出する算出手段と、前記無停電電源装置の出力電流を検出する検出手段と、前記算出手段にて得られた負荷分担量を出力電流指令とし、この出力電流指令値と出力電流検出値との瞬時偏差を求め、この瞬時偏差の有効電力成分と無効電力成分を演算する演算手段と、前記有効電力成分を調整する第1の自動調節器(AFR)と、前記無効電力成分を調整する第2の自動調節器(AVR)と、この第2の自動調節器の出力と出力電圧指令との和を出力電圧振幅指令とし、この指令と出力電圧の振幅値との偏差を零にする第3の自動調節器(AVR)とを用い、この第3の自動調節器(AVR)の出力に入力電圧と同相の基準波形を乗算して出力電圧振幅信号を生成し、前記第1の自動調節器(AFR)の出力に入力電圧の90度位相波形を乗算して出力電圧位相信号を生成し、この出力電圧位相信号と前記出力電圧振幅信号との和に基づき前記第2の変換器を制御することを特徴とする無停電電源装置の並列運転制御方法。
A power storage device, a first converter connected in parallel to the load and capable of converting power in both forward and reverse directions, a switch for opening and closing an AC power source, and an AC output side connected in series between the switch and the load A second converter capable of power conversion in both forward and reverse directions, and when the AC power supply voltage is normal, the switch is closed and the sum of the AC output voltage of the second converter and the AC power supply voltage is predetermined. The second converter is controlled so as to be a value of the first converter, and the first converter is controlled so as to supply power to the second converter and the power storage device. When the voltage deviates from the allowable voltage range, a plurality of uninterruptible power supply devices that control the AC voltage applied to the load to be a predetermined value by opening the switch, Parallel to each other with a common load When Ten,
Calculation means for detecting the current of the load and calculating a desired load sharing amount from the detection signal, detection means for detecting the output current of the uninterruptible power supply, and load sharing amount obtained by the calculation means An output current command, an instantaneous deviation between the output current command value and the detected output current value is obtained, a calculation means for calculating an active power component and a reactive power component of the instantaneous deviation, and a first for adjusting the active power component The sum of the automatic regulator (AFR), the second automatic regulator (AVR) for adjusting the reactive power component, and the output of the second automatic regulator and the output voltage command is used as an output voltage amplitude command. A third automatic regulator (AVR) that makes the deviation between the command and the amplitude value of the output voltage zero, and the output of the third automatic regulator (AVR) is multiplied by a reference waveform in phase with the input voltage. To generate an output voltage amplitude signal. Dynamic control by multiplying the 90 degree phase waveform of the input voltage to the output (AFR) generates an output voltage phase signal, the second transducer on the basis of the sum of the output voltage amplitude signal with the output voltage phase signal The parallel operation control method of the uninterruptible power supply characterized by controlling.
JP2004367981A 2004-12-20 2004-12-20 Parallel operation control method for uninterruptible power supply Active JP4400442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004367981A JP4400442B2 (en) 2004-12-20 2004-12-20 Parallel operation control method for uninterruptible power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367981A JP4400442B2 (en) 2004-12-20 2004-12-20 Parallel operation control method for uninterruptible power supply

Publications (2)

Publication Number Publication Date
JP2006174679A JP2006174679A (en) 2006-06-29
JP4400442B2 true JP4400442B2 (en) 2010-01-20

Family

ID=36674807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367981A Active JP4400442B2 (en) 2004-12-20 2004-12-20 Parallel operation control method for uninterruptible power supply

Country Status (1)

Country Link
JP (1) JP4400442B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199874A (en) * 2007-01-18 2008-08-28 Nissin Electric Co Ltd Parallel operation control unit of inverter
JP4759535B2 (en) * 2007-06-14 2011-08-31 三菱電機株式会社 Uninterruptible power system
JP5109574B2 (en) * 2007-10-19 2012-12-26 富士電機株式会社 Uninterruptible power system
JP5223711B2 (en) * 2009-02-10 2013-06-26 富士電機株式会社 Uninterruptible power system
US9450479B2 (en) 2015-02-20 2016-09-20 Ge Energy Power Conversion Technology Ltd Systems and methods to optimize active current sharing of parallel power converters

Also Published As

Publication number Publication date
JP2006174679A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP5259077B2 (en) Instantaneous voltage drop compensation circuit, power converter, instantaneous voltage drop compensation method, and instantaneous voltage drop compensation program
JP4585774B2 (en) Power conversion device and power supply device
JP2526992B2 (en) AC output converter parallel operation system
JP6552739B2 (en) Parallel power supply
JP2007244068A (en) Power converter
JP2016025680A (en) Imbalance compensation device
US10910876B2 (en) Uninterruptible power supply device
JP5048280B2 (en) Inverter device
JP4400442B2 (en) Parallel operation control method for uninterruptible power supply
JP5115730B2 (en) PWM converter device
JP2010110120A (en) Ac power supply system
US10581338B2 (en) Power supply system
WO2021205701A1 (en) Power conversion device
JP2007097246A (en) Controller for self-excited transformer
WO2022044135A1 (en) Power conversion device control device and power conversion system
JPWO2005031939A1 (en) Electric motor drive system
KR101936564B1 (en) Apparatus for controlling multilevel inverter
KR100918277B1 (en) Output voltage control apparatus and system for the inverter of an uninterruptible power supply
JP2006311725A (en) Controller for power converter
WO2007105613A1 (en) Power compensation device, power compensation facility, uninterruptible power supply device, and uninterruptible power supply facility
JP4470618B2 (en) Control device and method for power converter
JP2002272124A (en) Self-excitated type inverter controller
JP2011172387A (en) Power conversion controller, converter control circuit, power conversion control method, power conversion control program and recording medium
JP2019193377A (en) Series multiple power converter
JP2006136054A (en) Uninterruptible power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4400442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250